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Abstract. Two ways of mounting distinguishing attacks on two similar
stream ciphers, SOBER-t16 and SOBER-t32, are proposed. It results in
distinguishing attacks faster than exhaustive key search on full SOBER-
t16 and on SOBER-t32 without stuttering.

1 Introduction

In the design of symmetric ciphers, security and performance are of outmost
importance. For example, in the recent AES process we have seen a number of
block ciphers competing in security and performance.

When choosing a symmetric encryption algorithm, the first choice is whether
to choose a block cipher or a stream cipher. Most known block ciphers offer a
sufficient security and a reasonably good performance. But a block cipher must
usually be used in a “stream cipher” mode, which suggests that using a pure
stream cipher primitive might be beneficial.

Modern stream ciphers will indeed offer an improved performance compared
with block ciphers (typically a factor 4-5 if measured in speed). However, the
security of stream ciphers is not as well understood as for block ciphers. Most
proposed stream ciphers such as (alleged) RC4, A5/1, have security weaknesses
[7, 1].

In the recent call for primitives in the NESSIE project, two similar stream ci-
phers were submitted from Qualcomm Australia, called SOBER-t16 and SOBER-
t32, respectively. These are two shift register based stream ciphers developed
from previous versions of stream ciphers under the name of SOBER. There has
been no known attacks better than exhaustive key search on these two stream
ciphers, which means that they have offered full security. By full security we
roughly mean that there is no attack that is better than an exhaustive key
search attack. It should be noted that not many proposed stream ciphers offer
full security.

A stream cipher consists of a keyed generator, producing a pseudo-random
sequence that is added to the plaintext. In cryptanalysis, we consider the pseudo-
random sequence to be known (known plaintext attack) and try to either recover
the key, called a key recovery attack, or we try to distinguish the pseudo-random
sequence from a truly random sequence, called a distinguishing attack.
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The SOBER-t16 and SOBER-t32 generators can roughly be described as
being nonlinear filter generators with an additional “stuttering” step before pro-
ducing the output. Because of the stuttering step, the output will be irregularly
produced. It is known that because of this irregularity, one can use a power
analysis attack or a timing attack to recover the input to the stuttering step
[9]. However, the authors claim that the generator is secure even without the
stuttering step [9].

In this paper we consider several new ways of mounting distinguishing attacks
on SOBER-t16 and SOBER-t32. The attacks are based on combining linear
approximations of the nonlinear filter with the linear recurrence, defined through
the feedback polynomial. Linear approximations have previously been used in
e.g. the BAA attack on stream ciphers [3] and in linear cryptanalysis on block
ciphers [8]. In our case we mainly derive the distribution of the noise introduced
through the linear approximations by simulations. We consider attacks on the
ciphers both including and excluding the stuttering step.

The final results are as follows. For SOBER-t16 without stuttering, which
uses a 128 bit key, the output can be distinguished from a random sequence
using at most 292 output words and the same complexity. For the full SOBER-
t16 with stuttering, we need at most 2111 output words and the same complexity.
For SOBER-t32, without stuttering, which uses a 256 bit key, the output can be
distinguished from a random sequence using at most 287 output words and the
same complexity. For the full SOBER-t32 with stuttering we could not find an
exact complexity expression, but the proposed methods indicate a strong attack
also here.

We should also mention that the proposed methods are applicable to the
stream cipher SNOW [4], another candidate in the NESSIE project. The strength
of such an attack on SNOW is considered in a subsequent paper.

The paper is organized as follows. In Section 2 we shortly describe the stream
ciphers SOBER-t16 and SOBER-t32. Then we start by explaining the attack on
SOBER-t16 without stuttering in Section 3. This is generalized to an attack
on the full SOBER-t16 in Section 4. In Section 5 we describe a simple attack
on SOBER-t32 without stuttering. In Section 6 we then elaborate on different
possibilities for mounting an attack on the full SOBER-t32. Finally, we give
some concluding remarks.

2 A brief description of SOBER-t16 and t32

Both SOBER-t16 and SOBER-t32 are word oriented stream ciphers. The word
size is 16 bits for t16 and 32 bits for t32. The structure of t16 and t32 are very
similar and we will here describe them as one cipher. The specific parameters
for both t16 and t32 will be given alongside. To simplify the description of the
common parts of t16 and t32, we will use the notation W to denote the word
size. Thus, W is either 16 or 32 bits, depending on which cipher we are looking
at. The operations in the ciphers include both addition in an extension field F2W

and addition modulo 2W , and we will denote the field addition by ⊕ (also called
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XOR) and the ring addition by ¢. In case there is no risk of confusion we will
simply use the addition symbol +.

There are three main building blocks for the SOBER stream ciphers. The first
is a word oriented linear feedback shift register (LFSR) which produces a LFSR
sequence denoted {st, t ≥ 0}. Secondly, a non-linear filter (NLF) takes some of
these symbols as inputs and produces a new sequence {vt, t ≥ 0}. Finally, there
is a so called stuttering unit. The stuttering unit takes {vt, t ≥ 0} as input and
produces an irregular output {zn, n ≥ 0}. The overall structure is pictured in
Figure 1.
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Fig. 1. Overall structure of SOBER-t16 and SOBER-t32.
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2.1 The LFSR

The LFSR is a length 17 shift register, where each register element contains one
word. Each word is considered as an element in an extension field (F2W ). The
contents of the LFSR at time t is called the state of the LFSR at time t and will
be denoted by a vector S̄t = (st, st+1, . . . , st+16). The next state of the LFSR
is obtained by shifting the previous state one step, and calculating a new word
st+17. The new word is calculated as a certain linear combination of the contents
of the previous state. Thus the next state will be S̄t+1 = (st+1, st+2, . . . , st+17)
where

st+17 =

16
∑

i=0

cist+i, (1)

for some known constants ci ∈ F2W , i = 0, 1 . . . , 16. The arithmetics in Eq. (1) is
performed in the extension field F2W . Equation (1) is called the linear recurrence
equation. The specific extension fields and recurrence equations for t16 and t32
are summarized below:

SOBER-t16

Defining polynomial for F216 : x16 + x14 + x7 + x6 + x4 + x2 + x+ 1
Linear recurrence equation: st+17 ⊕ αst+15 ⊕ st+4 ⊕ βst = 0
where α = 0xE382 and β = 0x67C3.

SOBER-t32

Defining polynomial for F232 : x32 + (x24 + x16 + x8 + 1)(x6 + x5 + x2 + 1)
Linear recurrence equation: st+17 ⊕ st+15 ⊕ st+4 ⊕ αst = 0
where α = 0xC2DB2AA3.

The field elements α and β have been given in a hexadecimal form, corre-
sponding to a polynomial basis. See [5, 6] for more details.

2.2 The NLF function

At time t, the NLF function takes five words from the LFSR state, (st, st+1, st+6,
st+13, st+16) and one constant value (Konst) as input, and produces through a
nonlinear function an output word, denoted by vt. The value of Konst∈ F2W

is determined during the initialization phase of the LFSR and is kept constant
throughout the entire session. The operations involved in the NLF function are
XOR (denoted ⊕), addition modulo 2W (denoted ¢) and application of a sub-
stitution box (denoted SBOX).

The output of the NLF function, vt, at time t, can be written as:

vt = ((st+1 ¢ st+6 ¢ f(st ¢ st+16))⊕Konst)¢ st+13, (2)

where f(x) is a function, different for SOBER-t16 and SOBER-t32, which in
both cases involves an SBOX application. The interior design of the function f
is pictured in Fig. 2. First the input is partitioned into a high part containing
the 8 most significant bits, and a low part containing the remaining bits. The
high part addresses an SBOX with W bits of output. The 8 most significant bits
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Fig. 2. The structure of the f -function in SOBER-t16 and SOBER-t32.

are directly taken as the f -function output, whereas the least significant part of
the SBOX output is first XORed to the low part from the input, see Fig. 2.

2.3 Stuttering

Before producing the running key, the output from the NLF is passed through
a stuttering unit. The stuttering decimates the NLF output, thus making e.g. a
correlation attack harder. The first output from the NLF, v0 is taken as the first
stutter control word (SCW). The SCW is divided into pairs of bits (called dibits).
Starting with the least significant dibit, the stuttering is determined from the
value of these dibits. Actions are taken according to the value of the dibit, as
listed in Table 1. The constant C has value 0x6996 for t16 and 0x6996C53A for
t32, and ∼ C denotes the bitwise complement of C.

When all dibits in the SCW have been used, the LFSR is clocked once and a
new SCW is read from the output of the NLF. This word determines the next 8
or 16 actions, depending on whether we are looking at SOBER-t16 or SOBER-
t32. The resulting stream from the stuttering unit, denoted zn, is the running
key.

This concludes the brief description of SOBER-t16 and SOBER-t32. For a
more detailed description, especially regarding the key initialization, we refer to
[5] and [6].



217

Dibit Action

00 1. Clock the LFSR, but do not output anything.

01 1. Clock the LFSR.
2. Set the value of the next key stream word to
be the XOR between C and the NLF output.

3. Clock the LFSR again, but do not output anything.

10 1. Clock the LFSR, but do not output anything.
2. Clock the LFSR.
3. Set the value of the next key stream word to
be the value of the NLF output.

11 1. Clock the LFSR.
2. Set the value of the next key stream word to
be the XOR between ∼ C and the NLF output.

Table 1. The possible actions taken in the stuttering unit depending on the value of
the dibit.

3 A distinguishing attack on SOBER-t16 without

stuttering

We start by analyzing a version of SOBER-t16 where the stuttering unit has
been removed. In this scenario each NLF output word is taken as a running key
word. Thus we have zt = vt for all t ≥ 0. We also assume that we are given N
words of the output key stream, so we have access to z0, z1, . . . , zN−1.

The first step in our attack is to approximate the NLF-function with a lin-
ear function and then argue that the noise introduced by the approximation
possesses a nonuniform distribution. Recall the expression for the NLF output:

vt = ((st+1 ¢ st+6 ¢ f(st ¢ st+16))⊕Konst)¢ st+13. (3)

We now approximate this function with a linear function by replacing ¢ with
⊕, and f by the identity map. When we do this approximation we introduce a
noise (an error), which we denoted by wt. We also move the value of Konst into
the noise wt. I.e., we write

vt = st+1 ⊕ st+6 ⊕ st ⊕ st+16 ⊕ st+13 ⊕ wt, (4)

where wt, t ≥ 0 denotes random variables that represent the error we get in
the approximation at each time t. The distribution of wt will be dependent on
the value Konst. Also, wt will have the same distribution for all t, and this
distribution is denoted F .

Introduce the notation Ωt = st ⊕ st+1 ⊕ st+6 ⊕ st+13 ⊕ st+16 for the XOR
of the words from the LFSR that are inputs to the NLF function. Then we can
write the output word vt as

vt = Ωt ⊕ wt. (5)
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By looking at the running key at time t, t+ 4, t+ 15 and t+ 17 in combination
with Eq. (5) we can express zt+17 ⊕ αzt+15 ⊕ zt+4 ⊕ βzt in the following way,

zt+17 ⊕ αzt+15 ⊕ zt+4 ⊕ βzt =

vt+17 ⊕ αvt+15 ⊕ vt+4 ⊕ βvt = (Ωt+17 ⊕ wt+17)⊕ α(Ωt+15 ⊕ wt+15)⊕ (6)

(Ωt+4 ⊕ wt+4)⊕ β(Ωt ⊕ wt).

Rearranging the terms of the right hand side of (6) we get

zt+17 ⊕ αzt+15 ⊕ zt+4 ⊕ βzt = Ωt+17 ⊕ αΩt+15 ⊕Ωt+4 ⊕ βΩt ⊕ (7)

wt+17 ⊕ αwt+15 ⊕ wt+4 ⊕ βwt.

Recalling the linear recurrence relation for SOBER-t16,

st+17 ⊕ αst+15 ⊕ st+4 ⊕ βst = 0, (8)

we see that Ωt+17 ⊕ αΩt+15 ⊕Ωt+4 ⊕ βΩt = 0 and we can reduce (6) to

zt+17 ⊕ αzt+15 ⊕ zt+4 ⊕ βzt = wt+17 ⊕ αwt+15 ⊕ wt+4 ⊕ βwt, (9)

where the multiplications with α and β are in the extension field F2W .

3.1 Estimating the distribution of wt

The noise wt, t ≥ 0 are random variables taken from F216 with a nonuniform but
unknown distribution F . Let us write the distribution F in the form

F =











f0

f1

...
f216−1











where P (wt = x) = fx. We can not hope to find a closed expression for the
distribution F , since it is computationally too complex to derive. However, we
can run the cipher and estimate the distribution F .
In the simulations, we measure the frequency of different values for the noise wt,
calculated as

wt = (((st+1 ¢ st+6 ¢ f(st ¢ st+16))⊕Konst)¢ st+13)⊕Ωt. (10)

Assume that we sample 2ν values of wt according to (10), and denote the mea-

sured frequencies by the vector F̂ = (f̂0, f̂1, . . . , f̂216−1). F̂ is an estimation of

F and we can write F = F̂ + Ē, where Ē is a vector representing the error in
the estimation. Focusing on one single component of Ē, it will be approximately
Gaussian distributed with zero mean and a standard deviation of 2−(ν/2+8).
Simulations show that F is quite nonuniform. For example, in simulation with
Konst = 0 and ν = 38, the maximum value is 2−16 + 2−17.6. The error in this
estimation is of order 2−28. The distribution F has been tabulated for a number
of different values of Konst.
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3.2 Calculating the full noise distribution

Let us define
Wt = wt+17 ⊕ αwt+15 ⊕ wt+4 ⊕ βwt,

i.e, Wt, t ≥ 0 are the random variables corresponding to the full noise that we can
sample from the running key. Looking at Eq. (9) we see that we must combine
four F distributions (as above) to get the overall noise distribution, denoted
P (W ). Since the samples are taken at different positions in time, we assume
wt, t ≥ 0 to be independent variables.

The distribution H = [hi] of the XOR of two random variables with distri-
bution F = [fi] and G = [gi] respectively, is obtained by

hl =
∑

i⊕j=l

figj . (11)

The distribution of αwt is simply a permutation of the distribution F .
It can be shown that when combining distributions as done in (11), we sustain

significance in the resulting distribution. So by estimating the F distribution
by simulation and then combining the probabilities according to (11), we can
estimate the distribution P (W ), of the right hand side of (9) for different values
of Konst.

To be able to distinguish the full noise distribution, P (W ), from the uniform
distribution we need have some N different keystream symbols. The theory of
hypothesis testing [2] gives us a bound on N .

Let Zt = zt+17 ⊕ αzt+15 ⊕ zt+4 ⊕ βzt. For short, the optimal test for dis-
tinguishing between the two possible distributions (P (W ) and uniform distribu-
tion) is according to the Neyman-Pearson lemma to check if the likelihood ratio
∑N

t=0 log[P (Wt = Zt)/2
−16] is smaller or larger than 0.

The probability that we make an incorrect decision, denoted Pe, when trying
to distinguish between two distributions P1 and P2, given N samples from one
of the distributions is bounded by

Pe ≤ 2−N ·C(P1,P2), (12)

where C(P1, P2) is the Chernoff information between the two distributions. The
Chernoff information is defined as

C(P1, P2) = − min
0≤λ≤1

log2(
∑

x

Pλ
1 (x)P

1−λ
2 (x)). (13)

We get a lower bound on C(P1, P2) by using e.g. λ = 1/2. We fix a probability
of error of Pe = 2−32. Then we need to choose N ≥ 32C(P1, P2)

−1.

3.3 Summarizing the results

The distribution P (W ) has been determined through simulation as previously
described. The analysis in this section summarizes to the following attack:
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For t = 1 . . . N do

1. Calculate Zt = zt+17 ⊕ αzt+15 ⊕ zt+4 ⊕ βzt.
2. Let f̂Zt

= f̂Zt
+ 1.

end for.

Calculate I =
∑

x∈F
216

f̂x log2

[

P (W=x)
2−16

]

.

If I > 0 then output SOBER otherwise output random

We have calculated the combined P (W ) distribution using 238, (ν = 38)
outputs to generate the F distribution. Note that since F (and thus P (W )) is
dependent on the unknown value of Konst, we actually need to determine the
P (W ) distribution for all 216 possible values of Konst.

The resulting Chernoff information between P (W ) and the uniform distri-
bution, have been derived for 50 random values of Konst. They were all be-
tween 2−84 and 2−87. We assume that calculating the Chernoff information for
other values of Konst will give similar results. In the worst case, we need at
least N = 32 · 287 = 292 words from the running key to be able to distinguish
a SOBER-t16 output sequence without stuttering from a uniform distribution
with a probability of error Pe = 2−32. The computational complexity of the
attack is roughly 292.

Finally, the Neyman-Pearson test must be performed for each of the 216

possible values ofKonst. Still, the probability of error is smaller than 2−16, which
is small enough. Note that this step does not change the overall complexity.

4 A distinguishing attack on SOBER-t16 with stuttering

When the stuttering unit is present, not every NLF output, vt, is used to pro-
duce a keystream symbol. Recalling the functionality of the stuttering unit, we
see that each vt can be either discarded, used as a new SCW, or used (pos-
sible XORed with a constant) as a keystream symbol zn. To be able to use
the results from Section 3, we must have access to the NLF output quadruple
(vt, vt+4, vt+15, vt+17).

Assume that we look at one output symbol zn = C0⊕ vt, where C0 ∈ {0, C,∼
C} is the constant that is XORed to vt in the stuttering unit to form zn. Simula-
tions show that the most probable position in the key stream for vt+4 to appear
in is zn+2. Similar simulations to determine the most probable position for vt+15

and vt+17 give the following results

P (C1 ⊕ vt+4 → zn+2|C0 ⊕ vt → zn) = 0.31,

P (C2 ⊕ vt+15 → zn+7|C1 ⊕ vt+4 → zn+2) = 0.19,

P (C3 ⊕ vt+17 → zn+8|C2 ⊕ vt+15 → zn+7) = 0.40.
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Having established the most probable positions in the keystream for (vt+4,
vt+15, vt+17), given an output zn = C0 ⊕ vt, we are still faced with the problem
of which constants Ci, i = 0, 1, 2, 3 each NLF output is XORed with.

Denote by E the event that, given C0 ⊕ vt → zn, we have C1 ⊕ vt+4 → zn+2,
C2 ⊕ vt+15 → zn+7, C3 ⊕ vt+17 → zn+8. The probability of event E , denoted p0,
is p0 ≈ 2−5.5.

By looking at Table 1 we note that certain combinations of (C0, C1, C2, C3)
can not occur under the assumption E . In general, the distribution is nonuniform
and, for example, the five combinations, (C0, C1, C2, C3) =

(0, 0, 0, 0)
(C,C,C,∼ C)
(C,C,∼ C, 0)
(C,∼ C, 0, 0)
(∼ C, 0, 0, 0)

are more likely to occur than others.
From Eq. (6) and (9) in Section 3, we know that

vt+17 ⊕ αvt+15 ⊕ vt+4 ⊕ βvt = wt+17 ⊕ αwt+15 ⊕ wt+4 ⊕ βwt. (14)

Given event E , we can write

zn+8 ⊕ αzn+7 ⊕ zn+2 ⊕ βzn = Wt ⊕ C3 ⊕ αC2 ⊕ C1 ⊕ βC0, (15)

where Wt = wt+17 ⊕ αwt+15 ⊕ wt+4 ⊕ βwt and has known distribution P (W ).
Again, we derive the distribution of the right hand side of (15) and denote

this distribution by P (W ′), assuming W ′
t = Wt ⊕ C3 ⊕ αC2 ⊕ C1 ⊕ βC0. The

Chernoff information between P (W ′) and the uniform distribution, is calculated
to be C(P (W ′), PU ) ≈ 2−95, where PU is the uniform distribution.

Sampling the keystream output sequence at (zn, zn+2, zn+7, zn+8) will give us
a sample of the noise from the distribution P (W ′) with probability p0 = 2−5.5.
With probability 1−p0 the assumption was wrong and it is reasonable to assume
that we then get a uniform distribution. Write the distribution P (W ′) as a vector

P (W ′) =











2−16 + ξ0
2−16 + ξ1

...
2−16 + ξ216−1











, (16)

where each element 2−16 + ξx represents P (W ′ = x) = 2−16 + ξx.
Let Y = zn+8 ⊕ αzn+7 ⊕ zn+2 ⊕ βzn. The distribution of Y , denoted P (Y ),

can then be calculated to be

P (Y ) =











2−16 + ξ0p0

2−16 + ξ1p0

...
2−16 + ξ216−1p0











. (17)
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The resulting Chernoff information between Y and the uniform distribution,
is finally calculated to be C(P (Y ), PU ) ≈ p2

0C(P (W ′), PU ), where PU is the
uniform distribution.

From the discussion in Section 3.3, we conclude that we need at most N =
32 · p−2

0 295 ≈ 2111 keystream symbols to be able to distinguish the output of
SOBER-t16 with stuttering from a uniform source. The complexity is of the
same size. We summarize the results in this section in the following attack.

For t = 1 . . . N do

1. Calculate Zn = zn+8 ⊕ αzn+7 ⊕ zn+2 ⊕ βzn.
2. Let f̂Zn

= f̂Zn
+ 1.

end for.

Calculate I =
∑

x∈F
216

f̂x log2

[

P (Y =x)
2−16

]

.

If I > 0, then output SOBER otherwise output random

Again, we should note that P (Y ) is dependent on Konst, and a full attack
includes testing against 216 different distributions.

5 A distinguishing attack on SOBER-t32 without

stuttering

The attack on SOBER-t16 was possible because we could compute the noise
distribution F by simulation. From F we could derive P (W ).

Obtaining significance in simulation was possible because of the small word
size of 16 bits. In SOBER-t32 we cannot directly use the same method to obtain
a similar distribution F , due to our computational limitations. We note, however,
that if we could simulate and find a noise distribution, then the attack on t32
would probably be strong. This is due to the fact that the linear recurrence
relation in t32 has only one constant α different from one, whereas t16 has
two, α and β. The multiplications by these constants tend to smooth out the
distribution.

However, in this section we present another attack, based on a bitwise linear
approximation through the NLF function. Using the same notation as before,
we denote the XOR of the input words to the NLF at time t, by Ωt = st⊕st+1⊕
st+6 ⊕ st+13 ⊕ st+16. The output from the NLF at time t, is denoted vt. Since
the stuttering unit is removed, we have zt = vt for all t ≥ 0. Each word is 32
bits, and we will denote a specific bit i, 0 ≤ i ≤ 31, in a word x, with x[i]. Let
k denote the value of Konst.

We start by considering the linear recurrence relation of t32 given by

st+17 ⊕ st+15 ⊕ st+4 ⊕ αst = 0, (18)
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and the corresponding characteristic polynomial for the recurrence

x17 + x15 + x4 + α. (19)

Repeated squaring of this polynomial will still yield a valid linear recurrence
equation for the considered linear recurrence of t32. Specifically, exponentiation
with 232 gives

x17·232

+ x15·232

+ x4·232

+ α232

. (20)

Since α ∈ F232 we have α232

= α and addition of (19) and (20) gives

x17 + x15 + x4 + x17·232

+ x15·232

+ x4·232

. (21)

Here we can divide with x4, and the resulting linear recurrence is given by

st+17·232−4 ⊕ st+15·232−4 ⊕ st+4·232−4 ⊕ st+13 ⊕ st+11 ⊕ st = 0,

which is written

st+τ5 ⊕ st+τ4 ⊕ st+τ3 ⊕ st+τ2 ⊕ st+τ1 ⊕ st = 0, (22)

by introducing the constants τ1 = 11, τ2 = 13, τ3 = 4 · 232 − 4, τ4 = 15 · 232 − 4
and τ5 = 7 · 232 − 4. Note that in Eq. (22) we have derived a linear recurrence
equation that holds for each single bit position.

Consider the XOR between two adjacent bits, i and i − 1, i ≥ 1, in the
running key zt. As before, we use a linear approximation of the NLF function,
zt = Ωt⊕wt, where the value of Konst is merged into the binary random variable
wt representing the noise. We can now write

zt[i]⊕ zt[i− 1] = Ωt[i]⊕Ωt[i− 1]⊕ wt[i]. (23)

where wt[i] denotes the noise in bit position i introduced by the linear approx-
imation. Let F [i] be the distribution of wt[i]. We can estimate the distribution
F [i] by simulation and the result shows that the distribution is quit nonuniform
for many positions 0 ≤ i ≤ 31. We can write the correlation between the XOR
of bit i and i− 1 of the input and output as

P (zt[i]⊕ zt[i− 1] = Ωt[i]⊕Ωt[i− 1]) =

P (F [i] = 0) =
1

2
+ εi, (24)

for each bit position 0 < i ≤ 31.
The largest correlation we have found is for the XOR of bit 29 and bit 30

(i.e. F [30]) in the input and output words. Simulations with 230 samples for
100 random values of k, indicates that the correlation in (24) for i = 30 is only
dependent on the two corresponding bits in k, i.e. k[30] and k[29]. We have the
following result,

ε30 ≈















−0.0086 if k[30] = 0 and k[29] = 0
−0.0052 if k[30] = 1 and k[29] = 1
+0.0086 if k[30] = 1 and k[29] = 0
+0.0052 if k[30] = 0 and k[29] = 1.

(25)
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Now, given a key stream output, z0, z1, . . . , zN−1, of length N , we can use
the linear recurrence relation (22) to calculate

zt+τ5 ⊕ zt+τ4 ⊕ zt+τ3 ⊕ zt+τ2 ⊕ zt+τ1 ⊕ zt = Ωt+τ5 ⊕ wt+τ5 ⊕Ωt+τ4 ⊕ wt+τ4 ⊕

Ωt+τ3 ⊕ wt+τ3 ⊕Ωt+τ2 ⊕ wt+τ2 ⊕

Ωt+τ1 ⊕ wt+τ1 ⊕Ωt ⊕ wt⊕

where the sum of all the Ωj terms will equal zero because of Eq. (22). Thus, we
have

zt+τ5 ⊕ zt+τ4 ⊕ zt+τ3 ⊕ zt+τ2 ⊕ zt+τ1 ⊕ zt =

5
⊕

j=0

wt+τj
. (26)

Introduce the notation Zt = zt+τ5 ⊕ zt+τ4 ⊕ zt+τ3 ⊕ zt+τ2 ⊕ zt+τ1 ⊕ zt for the

left hand side of (26), and Wt =
⊕5

j=0 wt+τj
for the right hand side. We can

calculate the probability that

P (Zt[i]⊕ Zt[i− 1] = 0) =

P (Wt[i]⊕Wt[i− 1] = 0) =
1

2
+ 25ε6

i , (27)

where the last equality comes from combining the six independent noise distri-
butions of wt[i], each with probability 1/2 + εi of being zero.

Recalling the measured correlation for bits 29 XOR 30 from (25), we see that
ε30 takes four possible values. If we want to distinguish the distribution of w
from a uniform source, the worst case is the smallest value of ε30. Thus, using
ε30 = 0.0052 and combining the six noise distribution according to (27) we derive
the final correlation probability for the six independent key stream positions as

p0 = P (Zt[i]⊕ Zt[i− 1] = 0) =
1

2
+ 25(0.0052)6 ≈

1

2
+ 2−40.5. (28)

5.1 Summarizing the results

To be able to distinguish this nonuniform distribution, denoted P0, from a uni-
form source, denoted PU , we again calculate the Chernoff information between
the two distributions,

C(P0, PU ) = − min
0≤λ≤1

log2

∑

x

Pλ
0 (x)P

1−λ
U (x) ≈ 2−81.5. (29)

Settling for an error probability of Pe = 2−32 we see that we need N = 286.5 sam-
ples from the key stream. Each sample spans a distance of τ5 = 17 ·232−4 ≈ 236

positions, so all in all we need N + τ5 ≤ 287 key stream output words, to dis-
tinguish an output sequence from SOBER-t32 without stuttering unit, from a
uniform source. The attack presented in this section summarizes as follows.
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For t = 1 . . . N do

1. Calculate Zt = zt+τ5 ⊕ zt+τ4 ⊕ zt+τ3 ⊕ zt+τ2 ⊕ zt+τ1 ⊕ zt.

2. Let f̂ = f̂ + (1− (Zt[i]⊕ Zt[i− 1])).

end for.
Calculate I = f̂ log

[

1

2
+2−40.5

1/2

]

+ (2N − f̂) log
[

1

2
−2−40.5

1/2

]

.

If I > 0, then output SOBER otherwise output random

6 Some remarks on SOBER-t32 with stuttering

The obvious extension of the attack in the previous section would be to guess
the most probable key stream positions for vt+τ5 , . . . , vt+τ1 , given zn = vt. Since
τ3, τ4, τ5 are all in the order of 232, the probability of guessing the positions of
vt+τ5 , . . . , vt+τ3 in the output will be very small. However, it might be possible
to get an attack using N < 2256 words, in this way.

Another approach would be to repeat the attack on SOBER-t16 but consider
only a specific subset of the bit positions of the words. Then we can simulate
the distribution of the selected bit positions of wt as well as the same bit posi-
tions of αwt. If these distributions show a non-uniformity of similar magnitude
as SOBER-t16, we can distinguish the full SOBER-t32 using about the same
method as for t16.

7 Conclusions

We have derived a distinguishing attack, based on a linear approximation of the
NLF function, on SOBER-t16 with and without stuttering unit. We can distin-
guish the output sequence from a random source using at most 292 keystream
words and same complexity in the case of no stuttering, and using at most 2111

key stream words and same complexity for full SOBER-t16. For SOBER-t32
without the stuttering unit we can, due to a fairly strong bit correlation in the
NLF function, distinguish the output from a random source using 287 key stream
output words and same complexity.
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