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Abstract. We present a new type of differential that is particularly suited to an-
alyzing ciphers that use modular multiplication as a primitive operation. These
differentials are partially inspired by the differential used to break Nimbus, and
we generalize that result. We use these differentials to break the MultiSwap ci-
pher that is part of the Microsoft Digital Rights Management subsystem, to derive
a complementation property in the xmx cipher using the recommended modulus,
and to mount a weak key attack on the xmx cipher for many other moduli. We also
present weak key attacks on several variants of IDEA. We conclude that cipher
designers may have placed too much faith in multiplication as a mixing operator,
and that it should be combined with at least two other incompatible group opera-
tions. ut

1 Introduction

Modular multiplication is a popular primitive for ciphers targeted at software because
many CPUs have built-in multiply instructions. In memory-constrained environments,
multiplication is an attractive alternative to S-boxes, which are often implemented us-
ing large tables. Multiplication has also been quite successful at foiling traditional dif-
ferential cryptanalysis, which considers pairs of messages of the form (x, x ⊕ ∆) or
(x, x + ∆). These differentials behave well in ciphers that use xors, additions, or bit
permutations, but they fall apart in the face of modular multiplication. Thus, we con-
sider differential pairs of the form (x, αx), which clearly commute with multiplication.
The task of the cryptanalyst applying multiplicative differentials is to £nd values for α
that allow the differential to pass through the other operations in a cipher.

It is well-known that differential cryptanalysis can be applied with respect to any
Abelian group, with the group operation de£ning the notion of difference between texts.
However, researchers have mostly ignored multiplicative differentials, i.e., differentials
over the multiplicative group (Z/nZ)∗, perhaps because it was not clear how to com-
bine them with basic operations like xor. In this paper, we develop new techniques that
make multiplicative differentials a more serious threat than previously recognized.

A key observation is that in certain cases, multiplicative differentials can be used
to approximate bitwise operations, like xor, with high probability. As we will see in
Section 4, for many choices of n there exists a ∆n such that −1 · x mod n = x ⊕∆n

with non-negligible probability. Similarly, 2x mod 2n is simply a left-shift operation.
It is therefore possible to analyze how these differentials interact with other operations
that are normally thought incompatible with multiplication, such as xor and bitwise
permutations.
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Cipher Complexity Comments
[Data] [Time] [Keys]

Nimbus 28 CP 210 all see [4] (previously known)
xmx (standard version) 2 CP 2 all mult. complementation property (new)
xmx (challenge version) 233 CP 233 2−8 multiplicative differentials (new)
MultiSwap 213 CP 225 all multiplicative differentials (new)
MultiSwap 222 KP 227 all multiplicative differentials (new)
IDEA-X 238 CP 236 2−16 multiplicative differentials (new)

Table 1. A summary of some cryptanalytic results using multiplicative differentials. The attacks
on xmx are distinguishing attacks with advantages close to one; the remaining attacks are key-
recovery attacks. All attacks are on the full ciphers; we do not need to consider reduced-round
variants. “CP” denotes chosen plaintexts, and “KP” denotes known plaintexts.

After reviewing previous work in Section 2, we give two examples using the ciphers
xmx [11] and Nimbus [8] to convey the ¤avor of these attacks in Section 3. In Section 4,
we generalize these ideas and catalogue several common cipher primitives that preserve
multiplicative differentials. We then focus on speci£c ciphers. Section 5 presents many
moduli, including the xmx challenge modulus, that admit large numbers of weak keys
in xmx. In Section 6, we examine the MultiSwap cipher [12], which is used in Mi-
crosoft’s Digital Rights Management system, and show that it is extremely vulnerable
to multiplicative differential cryptanalysis. In Section 7, we study several IDEA [7]
variants obtained by replacing additions with xors and show that these variants are vul-
nerable to weak key attacks using multiplicative differentials. As an example, we show
that IDEA-X, a version of IDEA derived by replacing all the additions with xors, is in-
secure. This suggests that multiplicative differentials may yield new attacks on IDEA.
Table 1 summarizes the attacks developed in this paper.

2 Related Work

In this paper, we analyze the xmx cipher, originally proposed by M’Raihi, Naccache,
Stern and Vaudenay [11]. We also look at Nimbus, which was proposed by Machado
[8] and broken by Furman [4]. IDEA was £rst proposed by Lai, Massey and Murphy
[7]. Meier observed that part of the IDEA cipher often reduces to an af£ne transfor-
mation, and used this to break 2 rounds using differential cryptanalysis [10]. Daemen,
Govaerts, and Vandewalle observed that −x mod 216 + 1 = x ⊕ 11 · · · 101 whenever
x1, the second least signicant bit of x, is 1[2]. They showed that if certain IDEA sub-
keys are ±1, the algorithm can be broken with differential cryptanalysis. We use the
same observation to £nd weak keys for a variant of IDEA in Section 7. The class of
weak keys we £nd is much larger (2112 keys versus 251 keys), but they are otherwise
unrelated. The newest cipher we look at, MultiSwap, was designed by Microsoft and
subsequently reverse-engineered and published on the Internet under the pseudonym
Beale Screamer [12].

Differential cryptanalysis was invented by Biham and Shamir [1]. In the present
paper, we apply the ideas of differential cryptanalysis using a non-standard group op-
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eration: multiplication modulo n. Daemen, van Linden, Govaerts, and Vandewalle have
performed a very thorough analysis of multiplication mod 2` − 1, how it relates to
elementary bit-operations, and its potential for foiling differential cryptanalysis [3].

In Section 6 we use the multiplicative homomorphism (Z/232Z)∗ → (Z/216Z)∗

to recover MultiSwap keys ef£ciently. This technique is the multiplicative equivalent
of Matsui’s linear cryptanalysis [9]. In a similar vein, Harpes, Kramer and Massey ap-
plied the quadratic residue multiplicative homomorphism QR: (Z/nZ)∗ → Z/2Z, for
n = 216 + 1, to attack IDEA [5]. Kelsey, Schneier and Wagner used the reduction
map Z/nZ → Z/mZ (a ring homomorphism), for n = 2` − 1 and m dividing n, in
cryptanalysis[6].

3 Two Examples

To illustrate some of the ideas behind our attacks, we give two examples of using mul-
tiplicative differentials to cryptanalyze simple ciphers. Throughout the paper, xi will
represent the ith bit of x, and x0 will denote the least signi£cant bit of x.1

Cryptanalysis of xmx. As a £rst example, we demonstrate a complementation property
for the “standard” version of the xmx cipher [11], which operates on `-bit blocks using
two basic operations: multiplication modulo n and xor. The ith round of the cipher is

f(x, k2i−1, k2i) = (x ◦ k2i−1)× k2i mod n,

where the binary operator “◦” is de£ned by

x ◦ k2i−1 =

{

x⊕ k2i−1 if x⊕ k2i−1 < n

x otherwise.

The cipher has an output termination phase that may be viewed as an extra half-round,
so the entire algorithm is

xmx(x) = (f(f(· · · f(x, k1, k2) · · · ), k2r−3, k2r−2), k2r−1, k2r) ◦ k2r+1.

where r counts the number of rounds.
In the paper introducing xmx [11], the designers recommend selecting n = 2`−1.2

The curious thing about this choice of n is that for all x,

x⊕ n = −x mod n.

This is a consequence of the following simple observation: if 0 ≤ x, y < 2` − 1, then
x+y = 2`−1 if and only if x⊕y = 2`−1. As a result, this differential will be preserved
with probability 1 through the entire cipher, giving a complementation property

xmx(−x mod n) = −xmx(x) mod n.

1 However, for convenience, we will use ki to denote a cipher’s ith subkey, not the ith bit of k.
2 Actually, at one point the authors suggest that n be secret, but later state, “Standard implemen-

tations should use . . . ` = 512, n = 2512
− 1.” For this reason, we call this the “standard”

version of xmx, as opposed to the “challenge” version discussed later in this paper.
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After describing the basic cipher, the xmx designers suggest several possible extensions,
including rotations and other bit permutations. None of these enhancements would de-
stroy this complementation property.

We analyze other versions of xmx later; see Section 5.

Cryptanalysis of Nimbus. As a second example, we explain how the framework of
multiplicative differentials can be used to better understand a previously known attack
on Nimbus. Nimbus accepts 64-bit blocks, and its ith round is

f(x) = k2i+1 × rev(x⊕ k2i) mod 264,

where rev() reverses the bits in a 64-bit word. The subkeys k2i+1 must be odd for the
cipher to be invertible.

At FSE2001, Furman used the xor differential 011 · · · 10 −→ 011 · · · 10, which
passes through one round of Nimbus whenever t = rev(x ⊕ k2i) is odd, to launch a
devastating attack on this cipher [4].

Furman’s xor differential may appear mysterious at £rst, but can be readily ex-
plained using the language of multiplicative differentials. Whenever t is odd,

t⊕ 11 · · · 10 = −t mod 2`.

(This is a standard fact from two’s complement arithmetic, and follows from the earlier
observation that (t ⊕ 11 · · · 11) + t = 2` − 1.) So Furman’s differential pairs (x, x ⊕
011 · · · 10) are in fact pairs (x, x∗) where x∗ = −x mod 263 but x∗ 6= −x mod 264,
a property that obviously survives multiplication by k2i+1 whenever k2i+1 is odd. In
other words, Furman’s xor differential is equivalent to the multiplicative differential

−1 −→ −1 (with probability 1/2),

taken mod 263, with explicit analysis of the high bit to ease propagation through the
rev() operation.

Discussion. The complementation property of standard xmx has not been previously
described, despite xmx’s relative maturity. The attack on Nimbus was previously de-
scribed using xor differentials, but is neatly summarized in our new framework for
multiplicative differentials. We believe these two examples motivate further study of
multiplicative differentials, and the remainder of this paper is dedicated to this task.

4 New Differentials

Most of the conclusions in this section are summarized in Table 2.
The xmx example in Section 3 used the multiplicative difference α = −1, because

−x mod 2` − 1 = x ⊕ 11 · · · 1. Thus the multiplicative differential pair (x,−x) is
equivalent to the xor differential pair (x, x ⊕ 11 · · · 1). In the Nimbus example, the
modulus is of the form 2` instead of 2`−1, so the identity between the multiplicative and
xor differentials does not hold. However, there is an approximate identity−x mod 2` =
x⊕ 11 · · · 10, which holds whenever x is odd, or equivalently, when x0 = 1.
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Operation Modulus multiply by α xor rotate bit perm σ

multiply by −1 2` − 1 1 1 1 1
multiply by −1 2` 1 1

2
0 z(σ)

multiply by −1 n 1 2−c(n) – –
multiply by 2 2` − 1 1 0 1 –
multiply by 2 2` 1 0 1

4
2−ω(σ)−z(σ)

reduction mod 2k 2` 1 1 – –

Table 2. A partial list of the operations we consider. Each entry in the table speci£es the probabil-
ity that the two operations commute. See Proposition 1 for an explanation of c(n). See Proposi-
tion 3 for the de£nitions of z(σ) and ω(σ). An entry of “0” indicates the probability is negligible,
and a “–” means we do not investigate this combination.

n 1 1 1 1 0 0 0 0 0 1 1 1 0 0 1
x x14 x13 x12 0 x10 x9 x8 x7 1 x5 x4 0 x2 1 x0

∆n 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1
x+ x⊕∆n 1 1 1 1 0 0 0 0 0 1 1 1 0 0 1

Fig. 1. The modulus n = 30777, the bit-constraints on values of x for which x+(x⊕∆n) = n,
and ∆n. See Proposition 1 for a precise de£nition of ∆n.

To generalize the multiplicative/xor correspondence exploited in these two exam-
ples, £rst observe that every `-bit modulus, n, can be divided into strings of the form
11 · · · 1 and strings of the form 100 · · · 0. As an example, the 15-bit modulus n = 30777
is divided into such substrings in Figure 1.

For each segment of the modulus of the form 11 · · · 1, we use the xor differential
11 · · · 1. For the segments of the modulus of the form 100 · · · 0, we use the xor differ-
ential 011 · · · 10. Suppose nk · · ·nj is one of the segments of n of the form 100 · · · 0.
Then we also require that xj = 1 and xk = 0. The constraint that xj = 1 serves the
same purpose as the constraint that x be odd in the Nimbus differential: it ensures that
when x and x⊕∆n are added together, a chain of carries is started at bit j. The require-
ment that xk = 0 assures that no carry bits propagate past bit k when x and x⊕∆n are
added together. In the example, bit i of x is constrained if and only if bit i of ∆n is 0.
This is always true because of the symmetry between x and −x.

The above scheme works by controlling the carry bits when x and x⊕∆n are added
together. It ensures that, for each substring of the modulus of the form 10 · · · 0, a carry
chain is started at the low bit and terminated at the high bit. Starting and stopping carry
chains necessitates imposing constraints on x, and if two substrings of the form 10 · · · 0
are adjacent, it is more ef£cient to simply ensure that the carry chain from the £rst
substring propagates to the second. Analogously, if the modulus contains a substring
of the form 11 · · · 1011 · · · 1, then the above method will start a carry chain, only to
terminate it at the next bit. A more ef£cient approach would ensure that no carry ever
started. Algorithm 1, which computes an optimal value of∆n for a given n, incorporates
these improvements. The algorithm also outputs ωn and νn, which represent the bits of
x constrained to 0 and 1, respectively.
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Algorithm 1 Compute the optimal ∆ = ¬(ω ∨ ν).

best-differential(n)
c← 0, ω, ν ← 00 · · · 0
for i = 0, . . . ,length(n)-2

switch (ni+1, ni, c)
case (0, 0, 0) // Begin a carry chain by requiring xi = 1.

νi ← 1, c← 1
case (0, 1, 1) // Force carry propagation by requiring xi = 1.

νi ← 1
case (1, 0, 0) // Force no carry by requiring xi = 0.

ωi ← 1
case (1, 1, 1) // End carry chain by requiring xi = 0.

ωi ← 1, c← 0
default // No change to carry bit. No constraint on x.

if c = 1 then ω`−1 ← 1
∆ = ¬(ω ∨ ν)
output (∆,ω, ν)

To determine the probability that a randomly selected x ∈ Z/nZ satis£es the bit-
constraints described above, let c(n) be the number of 0 bits in ∆n (i.e., the number of
bits of x that are constrained). Then x will satisfy these constraints with probability at
least 2−c(n). To see why this is only a lower bound, consider the modulus n = 1001
(base 2). The constraints derived from this modulus are x3 = 0 and x1 = 1. However,
only one value of x ∈ Z/nZ fails to satisfy x3 = 0, so this constraint is nearly vacuous.
The following proposition formalizes this discussion:

Proposition 1. Let n be an `-bit modulus. Let the `-bit words ωn, νn be the result of
Algorithm 1, and let ∆n = ¬(ωn ∨ νn). Take any x ∈ Z/nZ. De£ne:

Cn(x) =

{

−1 if x ∧ ωn = 0 and ¬x ∧ νn = 0

1 otherwise.

Then Cn(x) = −1 if and only if −x mod n = x ⊕ ∆n. By symmetry, Cn(−x) =
Cn(x). Further, de£ne c(n) to be the number of 0 bits in ∆n. Then, for a uniformly
distributed x ∈ Z/nZ, Cn(x) = −1 with probability at least 2−c(n). Finally, for any
∆′, Pr[x⊕ (−x mod n) = ∆′] ≤ Pr[x⊕ (−x mod n) = ∆n].

The Nimbus attack uses the slight tweak of considering pairs (x, x∗) such that
x∗ = −x mod 2`−1 but not mod 2`. Generalizing this gives a truncated multiplica-
tive differential.

Proposition 2. Suppose

x∗ = x⊕ (a`−1a`−2 · · · am11 · · · 10),

where each ai stands for any single bit, and suppose moreover that x is odd. If k is odd,
then

k × x∗ = (k × x)⊕ b`−1b`−2 · · · bm11 · · · 10,
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where the multiplication is modulo 2`. Additionally, am = bm.

Until now, we have only discussed multiplicative differential pairs (x,−x), but the
cryptanalysis of MultiSwap uses pairs of the form (x, 2x mod 232). One of the basic
operations in MultiSwap is to swap the two 16-bit halves of a 32-bit word. The multi-
plicative relation (x, 2x) is preserved through this operation whenever x15 = x31 = 0.

An arbitrary bit permutation σ can cause two types of problems for the multiplica-
tive differential 2. First, it can disturb the consecutive ordering of the bits. Because
multiplication by 2 is just a left-shift, it’s not surprising that the bit ordering comes into
play. Second, σ may place some bit i in position 0. If σ is to commute with multipli-
cation by 2, then the value of bit i must be 0. These notions are summarized in the
following proposition:

Proposition 3. Let σ be a permutation of the set {0, . . . , `−1}, and let σ̂ be the induced
function on `-bit words given by σ̂(x) = xσ(`−1)xσ(`−2) · · ·xσ(0). Then

Pr [σ̂(2x) = 2σ̂(x)] = 2−ω(σ)−z(σ)

where
ω(σ) = #{j ∈ 0, . . . , `− 2|σ(j + 1) 6= σ(j) + 1}

and

z(σ) =

{

0 if σ(0) = 0

1 otherwise.

Intuitively, ω(σ) counts the number of times that σ disturbs the consecutive ordering
of the bits, and z(σ) tests whether σ places bit i 6= 0 in position 0. So, for example,
the (x, 2x) differential survives rotations with probability 1

4 independent of the amount
of rotation. Also, dividing a word into k chunks, such as dividing a 32-bit word into
4 bytes, and permuting the chunks leaves the differential undisturbed with probability
2−k.

Multiplicative differentials are compatible with many other operations. Reversing
the bits in a word transforms the pair (x, 2x mod 2`) into (x, x/2 mod 2`) with prob-
ability 1. Multiplicative differentials may even survive addition in some cases, since
α × a + α × b = α × (a + b). Finally one may consider differentials in which part
of the differential is de£ned using multiplication, and part is de£ned using some other
operation. For example, if a cipher operates on 64-bit blocks (a, b, c, d), where a, b, c,
and d are 16-bit subblocks, we may want to consider differential pairs (a, b, c, d) and
(a∗, b∗, c∗, d∗) where a∗ = α× a, b∗ = b⊕∆, c∗ = c⊕∆, and d∗ = α× d. In other
words, the differences (α,∆,∆, α) are elements of the group (Z/216Z)∗×(Z/2Z)16×
(Z/2Z)16 × (Z/216Z)∗. When there can be no confusion as to the groups in question,
we simply refer to these as “hybrid” differentials.

5 xmx

We can now apply our new understanding to £nd differentials for a large class of moduli
in the xmx cipher.
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We describe the analysis using the parameters given in the “xmx challenge” [11].
This cipher has 8 rounds, 256-bit blocks, and modulus n = (280 − 1) · 2176 + 157,
which is the smallest prime whose 80 most signi£cant bits are all 1. Written in binary,
this modulus is

80 168

n =
︷ ︸︸ ︷

11 · · · 1
︷ ︸︸ ︷

00 · · · 0 10011101,

which has c(n) = 4. From Proposition 1, whenever x is of the form

x = x255x254 · · ·x1770x175 · · ·x81x61x4x3x20x0

(i.e. whenever x176 = 0, x7 = 1, x5 = 1 and x1 = 0) then Cn(x) = −1 and therefore
x⊕∆n = −x mod n, where

79 167

∆n =
︷ ︸︸ ︷

11 · · · 1 0
︷ ︸︸ ︷

11 · · · 1 101011101.

Recall that ∆n has a 0 bit in exactly those positions that are constrained in x. If
k ∧ ¬∆n = 0, then k has a 0 in each constrained bit position, and hence Cn(x⊕ k) =
Cn(x).

The key schedule for the xmx challenge cipher is

s, s, . . . , s, s, s⊕ s−1, s, s−1, . . . , s, s−1

where s is a 256-bit number. Suppose s ∧ ¬∆n = 0 and s−1 ∧ ¬∆n = 0. The £rst
equation is satis£ed whenever bits 1,5,7 and 176 of s are 0, and hence will be satis£ed
with probability 2−4. The second equation establishes similar requirements on the bits
of s−1, and will be satis£ed with probability 2−4. So about 2−8 of the keys s satisfy
these constraints simultaneously. Obviously, if s∧¬∆n = 0 and s−1 ∧¬∆n = 0, then
(s⊕ s−1) ∧ ¬∆n = 0, as well.

Consider one round of xmx using such a weak key, and let a and b be the subkeys for
the current round, so that a = s or s−1 or s⊕ s−1, but it doesn’t matter which. Suppose
we apply this round of the cipher to the differential pair (x, x∗), where x⊕x∗ = ∆n and
Cn(x) = −1. Then by Proposition 1, x∗ = x⊕∆n = −x mod n. Since a∧¬∆n = 0,
Cn(x⊕ a) = −1, so x∗ ⊕ a = x⊕ a⊕∆n = −(x⊕ a) mod n.

We would like to conclude that −(x ◦ a) = x∗ ◦ a mod n, but must consider the
two different behaviors of the operator “◦”. From the de£nition,

x ◦ a =

{

x⊕ a if x⊕ a < n

x otherwise.

But by assumption, x176 = a176 = 0. Thus bit 176 of x⊕ a is also 0. Furthermore, bits
255 through 176 of n are all 1. This implies x⊕a < n. Bit 176 of ∆n is 0, so x∗176 = 0,
and hence x∗ ⊕ a < n for the same reasons. From this, −(x ◦ a) = −(x ⊕ a) =
x⊕ a⊕∆n = x∗ ⊕ a = x∗ ◦ a.

So x∗ ◦ a = −(x ◦ a) mod n. The next step in a round of xmx is multiplication
by the second subkey, b, which will preserve this multiplicative relationship. So at the
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end of one round of xmx, with probability 1, the outputs y = (x ◦ a) × b mod n and
y∗ = (x∗ ◦ a) × b mod n will satisfy y∗ = −y mod n. However, it’s not clear that
Cn(y) = −1. Since multiplication by b affects each bit of the output in a complicated
way, we can assume that y is randomly distributed, and therefore Cn(y) = −1 with
probability 2−c(n) = 2−4, by Proposition 1. When Cn(y) = −1, y∗ = y ⊕∆n. Thus
an input pair (x, x ⊕ ∆n) becomes an output pair of the form (y, y ⊕ ∆n) after one
round of encryption with probability 1

16 . This yields the following 1-round iterative
xor-differential:

∆n −→ ∆n (with probability 1/16),

or equivalently, the 1-round iterative multiplicative differential

−1 −→ −1 (with probability 1/16).

The probability of the differential may be much higher for many keys, because there
are many −1 ↔ ∆ correspondences that hold with high probability. For example,

78 167

x⊕ (−x mod n) =
︷ ︸︸ ︷

11 · · · 1 00
︷ ︸︸ ︷

11 · · · 1 101011101.

whenever x1 = 0, x5 = 1, x7 = 1, x176 = 1 and x177 = 0. Thus, if, in addition
to the weak key constraints described above, s177 = s−1

177 = 0, then the multiplicative
differential −1 survives one round of the cipher with probability 2−4 + 2−5. There are
many other very similar differentials, and if s satis£es even more weak key constraints,
then the −1 differential will survive with even greater probability.

This differential survives 8 rounds of the cipher with probability 2−32. The last half
round of the cipher consists of only the “◦” operator, and we’ve already seen that this
differential passes through that operation with probability 1, so the differential survives
the whole cipher with probability 2−32. Each right pair, (x, x∗), yields 4 constraints on
the bits of (x ⊕ s) × s mod n, the output of the £rst round of the cipher. Although a
careful analysis of multiplication mod n may reveal an ef£cient key recovery attack, we
leave this as a distinguishing attack.

This analysis easily generalizes to other instances of xmx with different parameters.
For any `-bit modulus n that is not a power of 2, we can compute ∆n and c(n) as
described in the previous section. Consider a single round of xmx that uses modulus
n, subkeys k2i−1 and k2i in the ◦ and multiply steps respectively, and suppose k2i−1 ∧
¬∆n = 0. Given an input pair (x, x⊕∆n) where Cn(x) = −1, with probability 2−c(n)

the output of the round for the pair is of the form (y, y ⊕ ∆n), with Cn(y) = −1, by
an analysis similar to the one above. Therefore, the differential survives r rounds of
the cipher with probability 2−c(n)r, as long as each subkey used in the “◦” operation
satis£es k2i−1 ∧ ¬∆

n = 0. If independent subkeys are used, 2−c(n)r of all keys satisfy
this weak key condition. If the xmx key schedule is used, 2−2c(n) of all keys are weak,
since only s and s−1 must satisfy the condition.

Whenever the modulus n used in xmx has a highly regular bit pattern—in particu-
lar, long sequences of 1’s and 0’s—c(n) will be small and therefore such a weak key
analysis may be of signi£cantly lower complexity than an exhaustive search.
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Fig. 2. The MultiSwap cipher. Processing begins with s0 = s1 = 0 on plaintext x0, x1 and
proceeds from left to right. The output of the £rst half, s ′0 and s′1, is fed into the second half
to produce ciphertext c0, c1. The “./” operator swaps the 16-bit halves of a 32-bit word, “¢”
represents addition modulo 232, and “⊗” represents multiplication modulo 232.

6 MultiSwap

The MultiSwap cipher is used in Microsoft’s Digital Rights Management subsystem
and was £rst described in a report published on the Internet under the pseudonym Beale
Screamer [12]. The cipher, shown in Figure 2, operates entirely on 32-bit words, main-
tains two words of internal state, s0 and s1, and uses 12 32-bit subkeys k0, . . . , k11.
The subkeys k0, . . . , k4, k6, . . . , k10 must be odd if the cipher is to be invertible. Unless
the cipher is being used in some sort of feedback mode, s0 = s1 = 0; we will assume
this in the analysis. This analysis is also applicable when s0 and s1 are non-zero but
their values are known. No key schedule is described, so we assume the subkeys are
all independent. The cipher operates on 64-bit blocks (x0, x1) to produce ciphertext
(c0, c1).

We £rst present a chosen-plaintext attack, and then describe how to convert this
to a known-plaintext attack. Consider the algorithm operating on input (0, x1). Since
s0 = s1 = 0, t = s0 + x0 = 0. Since u = 0 if and only if t = 0, u is also 0. Thus
s′0 = s′1 = k5. After the second half, regardless of the input x1 the output satis£es
c1 = c0 + k5. Thus one can derive k5 = c1 − c0 with one chosen-plaintext message of
the form (0, x1). Given k5, one additional message suf£ces to recover k11. With input
(0,−k5), it is still the case that s′0 = s′1 = k5. In the second half, though, since x1 =
−k5, w = s′0 + x1 = k5 + (−k5) = 0, which propagates through the multiplications
and swaps as before. Thus the output is c0 = k11 and c1 = k5 + k11. So a 2-message
adaptive chosen-plaintext attack exposes k5 and k11.

Given k5, we can control the input to the second half of the cipher. To make w = a,
query the encryption oracle with the plaintext (0, a − k5). With k11, we can partially
decrypt a ciphertext to obtain the intermediate value v. Therefore, we only have to ana-
lyze the sequence of multiplications and swaps in the second half of the cipher between
w and v. Similarly, we can analyze the sequence between t and u using knowledge of
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⊗ -./ -

k7

?
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?
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k9

?
⊗ -./ -

k10

?
⊗ -v

Fig. 3. The second half of the MultiSwap cipher.

k5 and the fact that s′0 = c1−c0−s1. Because this is a chosen-plaintext attack, we have
reduced the problem to the system in Figure 3 for which the input, w, can be controlled
and the output, v, can be observed. The goal is to recover k6, . . . , k10.

So we focus only on this fragment of MultiSwap. If this fragment operates on inputs
w and w∗ = 2w, then k6 ·w

∗ = k6 ·(2w) = 2(k6 ·w). From Proposition 3, ./(k6 ·w
∗) =

2 · ./(k6 · w) whenever bits 15 and 31 of k6 · w are 0, or 1
4 of the time. Analyzing the

rest of Figure 3 in the same way shows that v∗ = 2v with probability 1
256 .

If this condition holds, call (w, 2w) a right pair. Then with high probability bits 15
and 31 of k6 · w are 0. This is a two-bit condition on k6 · w that we can use to £lter the
set of potential values of k6; 1

4 of all k6 values will pass this test. We can repeat this test
for 16 right input pairs (w1, 2w1), . . . , (w16, 2w16) chosen uniformly at random, and
the probability of a given k6 value surviving all 16 tests is roughly ( 1

4 )16 = 2−32, so
with high probability only one value of k6 survives.

If (w, 2w) is a right pair, then the multiplicative differential of w∗ = 2w must
survive each one of the ./ operations. Therefore, k7 ·./(k6 ·w) must have bits 15 and 31
set to 0. Thus the same right pairs can determine k7, and then k8 and k9. At this point we
can determine k10 from any known-plaintext. Thus 16 right pairs are enough to recover
k6, . . . , k10, and we can obtain the pairs with about 212 chosen plaintexts. Repeating
the analysis for k0, . . . , k4 breaks the whole cipher with 213 chosen plaintexts. This is
surprisingly small considering the large key size.

The work factor of breaking the cipher is quite low. Let (w1, 2w1), . . . , (w16, 2w16)
be right pairs that determine k6. By de£nition of being right, bits 15 and 31 of k6 · wi
are 0 for all i. Observe that bit 15 of k6 · wi is independent of bits 16 through 31 of k6.
Thus we can determine the value of the low 16 bits of k6 independently of the high bits.
After discovering the low 16 bits, we can then do the same thing for the upper 16 bits.
Since we have to test each half of a key against each right pair, the total number of tests
performed is 2 · 216 · 16 = 221. Repeating for k7, ..., k9, and then again for k0, . . . , k3

yields a break on the whole cipher requiring 8 ·221 = 224 tests. Each test is quite cheap,
involving only a multiply, bit-mask, and test for equality.

To convert this to a known-plaintext attack, observe that even without knowledge of
k5 and k11, we can derive the input to the second half of the cipher via w = c1−c0+x1.
Consider a pair of inputs such that the differential (w, 2w) −→ (v, 2v) holds. Suppose
further that ./(2v) = 2 · ./(v). In this case, c0 = ./(v) + k11 and c∗0 = 2 · ./(v) + k11;
hence, k11 = 2c0 − c∗0. If, on the other hand, ./(2v) 6= 2 · ./(v), there are three
possible values for c∗0: 2c0 + k11 − 1, 2c0 + k11 + 65536, 2c0 + k11 + 65535. Each of
these possibilities suggests an equation for k11; we can try all four equations and see
which makes v∗ = 2v hold under partial decryption of c0, c∗0. Therefore, each right pair
suggests the correct value for k11.

So collect 222 known plaintexts which by the birthday paradox will contain 212

pairs whose input to the second half of the cipher is of the form (w, 2w). Each pair is
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a right pair with probability 2−8, so the correct k11 value will be suggested 16 times.
Most wrong pairs will suggest a random value for k11, but, because the sequence of
multiplies and swaps maintains suf£cient structure, some incorrect values of k11 will
be suggested with a lower, but still signi£cant probability. In practice, the correct k11

will be among the top few, say 8, suggested; since the rest of the analysis is fast, we can
repeat it for each of the top 8 suggested values of k11 and use trial encryptions to detect
the correct one.

With k11, we can now use the same set of pairs to recover k6, . . . , k10. A similar
attack reveals k5, and then k0, . . . , k4. Except for having to repeat the attack for several
possible values of k11 and k5, the work factor is about the same as for the previous
attacks. Hence the total work for the known plaintext attack is 227. The storage is also
quite small, since we don’t have to keep a counter for every possible value of k11, only
the ones suggested by a pair. Since the attack uses only about 212 pairs, the storage
requirement is about 215 bytes.

To summarize, MultiSwap can be broken with a 213 chosen-plaintext attack requir-
ing 225 work or a 222 known-plaintext attack requiring a work factor of about 227.

7 IDEA Variants

The IDEA cipher designers deliberately used incompatible group operations to destroy
any algebraic relations among the inputs, and this strategy has proven very successful.
The basic operations used in IDEA are addition modulo 216, xor of 16-bit words, and
multiplication modulo 216 + 1.

IDEA uses the addition operation in two places: key mixing and the MA-structure.
As has been noted before [10], if a+b < 216, then a+b mod 216 = a+b mod 216+
1, and thus the MA-structure is linear about 1

4 of the time. We consider a variant of
IDEA, which we call IDEA-X, in which all the additions have been replaced by xors.
Because of the observations above, it may appear that IDEA-X is an improvement over
IDEA, but we show below that IDEA-X has a large class of weak keys for which it is
susceptible to multiplicative differential cryptanalysis.

Because of the heavy use of the xor operation in IDEA-X, we use the multiplicative
differential (−1,−1,−1,−1). Let n = 216 + 1, and ∆ = 11 · · · 101. By Proposition 1,
−x mod n = x ⊕ ∆ if and only if Cn(x) = −1. For n = 216 + 1, Cn(x) = −1
if and only if x1 = 1.3 The analysis maintains, with non-negligible probability, an
invariant on all the intermediate values z and z∗ in the cipher. The invariant is that all
the intermediate values will satisfy the relation z∗ = (−1)z1z. This condition may look
mysterious, but it simply means that either z∗ = z, or z∗ = −z = z ⊕∆. The rest of
the analysis is essentially repeated application of the following two rules.

Rule 1 If x∗ = (−1)x1 · x, then kx∗ = (−1)(kx)1 · kx with probability 1
2 . This is the

multiplication rule.

Rule 2 If a∗ = (−1)a1 · a and b∗ = (−1)b1 · b, then a∗ ⊕ b∗ = (−1)(a⊕b)1 · (a ⊕ b)
with probability 1. This is the xor rule.

3 Technically, Cn(x) = −1 if and only if x1 = 1 and x16 = 0, but since x is a 16-bit number,
the latter condition is vacuous.
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: bit-by-bit exclusive-OR of 16-bit subblocks
⊙

: multiplication modulo 216 + 1 of 16-bit integers
with the zero subblock corresponding to 216

Fig. 4. The IDEA-X cipher. All the adds in IDEA have been changed to xors. The diagram is
annotated with the path of the multiplicative differential (−1,−1,−1,−1).
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Fig. 5. The three cases of the xor rule. The edges are labeled with the multiplicative differentials,
e.g. x∗/x. The probability in each case is 1. Recall that differential pairs always satisfy x∗ =
(−1)x1 · x. So in case (iii), a1 = b1 = 1, and hence a∗ = −a = a⊕∆ and b∗ = −b = b⊕∆.
Thus c∗ = −a ⊕ −b = a ⊕∆ ⊕ b ⊕∆ = a ⊕ b = c. Furthermore, a1 = b1 = 1, so c1 = 0.
Hence c∗ = (−1)c1 · c. The other cases are similar.

Both rules are easy to prove. Figure 5 explains the xor rule in more detail.
To demonstrate the use of these rules, consider one round of IDEA-X in which bit

1 of Z(1)
2 is 0. This is a weak key condition. We’ll look only at the inputs X0 and X2.

Referring to Figure 4, consider two different executions of the round, one with inputs
X0 = a and X2 = c, the other with inputs X0 = −a and X2 = −c. Suppose also that
a1 = c1 = 1. By the xor rule, g1 = 1 and g∗ = −g = (−1)g1g with probability 1. By
the multiplication rule, e1 = 1 and e∗ = −e = (−1)e1e with probability 1

2 . Combining
these two results and applying the xor rule to e⊕g shows that p∗ = p whenever e1 = 1.

If we also assume that bit 1 of Z(1)
1 = 0 then more of the same sort of reasoning

shows that the multiplicative differential

(−1,−1,−1,−1) −→ (−1,−1,−1,−1)

survives one round of IDEA-X with probability 1
16 . In order for this differential to work,

the input (a, b, c, d) must satisfy a1 = b1 = c1 = d1 = 1. When the differential does
successfully pass through the round, the output (v, w, x, y) satis£es v1 = w1 = x1 =
y1 = 1. Thus the differential can be iterated.

So we have found an iterative 1-round multiplicative differential that works for keys
in which bit 1 of Z(i)

1 is 0 and bit 1 of Z(i)
2 is 0 in every round. This differential survives

8 rounds of IDEA-X with probability 2−32, and works against 2−16 of the keys. The
only thing left to consider is the output phase. This phase uses multiplications, which
will not disturb the −1 differential, and xors. The differential will survive the xors
even without weak key constraints on the subkeys used in the output phase. To see this,
consider a differential that has passed 8 rounds; then we have a pair of intermediate texts
(A,B,C,D) and (A∗, B∗, C∗, D∗) where (A∗, B∗, C∗, D∗) = (−A,−B,−C,−D).
Recall that the −1 multiplicative differential is equivalent to the ∆ xor differential.
Therefore, B∗ = B ⊕ ∆ and C∗ = C ⊕ ∆. This differential survives the £nal xor of
the output phase, giving a hybrid differential (Y ∗0 , Y

∗
1 , Y

∗
2 , Y

∗
3 ) = (−Y0, Y1 ⊕∆,Y2 ⊕

∆,−Y3) that survives the whole cipher with probability 2−32 for 2−16 of the keys.
Using this differential to recover keys is relatively straightforward. An attack us-

ing 238 chosen plaintexts yields 32 right pairs with high probability. Each right pair
(a, b, c, d) and (a∗, b∗, c∗, d∗) establishes the condition that bit 1 of Z(1)

0 · a is 1. Just as

in the MultiSwap attack, we can use this condition to £lter the possible values of Z (1)
0 ,
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Round Modi£cations

A The additions in the MA-structure are changed to xors or multiplications
B The subkey Z2 is mixed with input X2 using xor or multiplication
C The subkey Z1 is mixed with input X1 using xor or multiplication

The additions in the MA-structure are changed to xors or multiplications

Table 3. A characterization of many IDEA variants which are susceptible to multiplicative dif-
ferential cryptanalysis.

and given 32 right pairs only two values of Z(1)
0 will survive. Unfortunately, whenever

Z
(1)
0 · a satis£es this constraint, so will −Z (1)

0 · a, so this £lter will leave us with two

choices for Z(1)
0 which differ by a factor of−1. We can recover±Z(1)

3 in a similar man-

ner. Each right pair also yields a constraint r1 = 0. Observe that r = Z
(1)
4 ·(e⊕Z

(1)
2 ⊕c).

After recovering±Z(1)
0 , we can compute±e. Thus we can compute the correct value of

e or e⊕∆. Hence we can use this condition to £lter possible values for (Z
(1)
2 , Z

(1)
4 ) and

given 32 right pairs only two values will survive. If we guess the wrong value for Z (1)
0 ,

we will perform this £ltering with intermediate value e ⊕ ∆, and hence will compute
Z

(1)
2 ⊕∆ instead of Z(1)

2 . As before, the £lter can only determine Z (1)
4 up to a factor of

±1. We now guess the correct value of Z(1)
4 and recover Z(1)

1 and ±Z(1)
5 in a manner

similar to the recovery of Z(1)
2 and ±Z(1)

4 . We then guess the correct value of Z(1)
5 ,

and recover ±Z(2)
0 the same way we recovered Z

(1)
0 . We £nish by making guesses for

±Z
(1)
0 , ±Z(1)

3 , and ±Z(2)
0 and using trial encryptions to recover Z(2)

1 and verify our
guesses.

Recovering Z(1)
1 and Z(1)

5 , dominates the analysis time, requiring 2 · 232 · 32 ≈ 238

trials. Each trial involves one round of IDEA-X, so the work required is equivalent to
about 235 IDEA-X encryptions. A generous estimate of the rest of the work easily gives
a work factor of 236 IDEA-X encryptions.

Many other variants of IDEA are also vulnerable to multiplicative differential at-
tacks. Table 3 characterizes a large class of weak IDEA variants by showing the min-
imum changes necessary to IDEA to render it vulnerable. These IDEA variants have
three different round functions, A, B, and C. The output function, D, is exactly as in
the original IDEA cipher. The cipher can be any number of rounds, and can begin with
A, B, or C, but must cycle through the rounds in the order A,B,C. The round func-
tions are almost identical to the IDEA round functions, except that some of the additions
have been changed to xors or multiplications. Each of the speci£ed additions may be
replaced with either an xor or a multiply, independent of the other additions. The other
additions in the cipher may also be replaced, but this isn’t necessary.

This class of weak IDEA variants generalizes our results on IDEA-X: it is only
necessary to remove half the additions from the cipher to render it vulnerable to multi-
plicative differential attacks. From this we conclude that multiplicative differentials can
be applicable even to some ciphers with three incompatible group operations.
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Cipher Rounds Probability Pairs Right pairs
[Expected] [Actual]

Nimbus 5 2−5 106 31250 31245
xmx (standard version) 8 1 105 105 105

xmx (challenge version) 4 2−16 106 15.3 562
IDEA-X 4 2−16 108 1525.9 1537
MultiSwap all 2−8 108 390625 390532

Table 4. Experimental veri£cation of differential probabilities. We use reduced-rounds variants
of the xmx challenge cipher and IDEA-X to make the measurement feasible.

8 Experimental Veri£cation

We performed several experiments to verify our claims. We £rst tested the differential
probabilities derived in this paper; Table 4 summarizes the results. With the exception
of the xmx challenge cipher, all the measurements agree with the theory.

The experiments show that the differential −1 survives 4 rounds of xmx with much
higher probability than expected. Part of this discrepancy can be explained by observing
that a randomly chosen weak key may allow many −1 ↔ ∆ correspondences, for
different choices of ∆, increasing the probability of the −1 differential. We did further
experiments to verify that this was indeed the source of the discrepancy, and were able
to predict the experimentally observed probability for a given key to within a factor of
4 (for 4 rounds). We leave it as an open question to explain the remaining error. Since
the differential actually survives four rounds with probability about 2−11, we estimate
that the xmx challenge cipher can be distinguished using only 223 chosen plaintexts.

We next veri£ed the claim, made in Section 5, that approximately 2−8 keys for the
xmx challenge cipher are weak. Recall that a key s is weak if s∧¬∆n = s−1∧¬∆n =
0. These comprise 4 bit constraints on s and 4 bit constraints on s−1. It is not clear
that this will be satis£ed by 2−8 keys, so we tested 106 randomly generated keys, from
which we expected to £nd 3906 weak keys. The actual number of weak keys was 3886,
con£rming our analysis.

Next we implemented the chosen-plaintext key recovery attack on IDEA-X. In order
to make the data requirements feasible, we only attacked 4 rounds of IDEA-X, and only
ran 10 trials. The IDEA-X experiments required an average of 124 right pairs to recover
the key, about 4 times as many right pairs as we predicted in Section 7. Observing the
attack in action reveals that frequently a small number of right pairs—around 30 or
40—are suf£cient to eliminate all but 2 or 3 candidates for a particular subkey. A more
ef£cient attack would simply try each candidate, an approach we did not implement.

We implemented the known-plaintext attack on MultiSwap, but since this attack
involves repeating the same attack on the two halves of the cipher, we only attacked
the latter half. The attack worked as described in Section 6; however, on some trials
there were too few right pairs to perform the analysis. Nonetheless, 70 out of 100 runs
using 222 known plaintexts were able to successfully recover the key. Increasing the
number of plaintexts to 5000000 increased the success rate to 99%. Recall that the
attack required guessing the correct value of k11 from a list sorted by likelihood. The
average position of the correct k11 in this list was 2.
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9 Conclusion

In this paper we have de£ned the concept of a multiplicative differential. We described
several particular differentials and analyzed how they interact with standard operations
used in cryptography such as xor and bit permutations. We then used these differentials
to cryptanalyze two existing ciphers and variants of IDEA.

Our results demonstrate that the modular multiplication operation by itself is in-
suf£cient to prevent differential attacks. Further, multiplicative differentials can be sur-
prisingly resilient in the presence of incompatible group operations. Therefore, multi-
plication needs to be carefully combined with other group operations to destroy these
differential properties. We are hopeful that this paper will help further the understanding
of how to use the multiply operator to build secure cryptographic algorithms.
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