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Abstract. Prediction algorithms assign numbers to individuals that are
popularly understood as individual “probabilities”—what is the probabil-
ity that an applicant will repay a loan? Automated predictions increas-
ingly form the basis for life-altering decisions, and this raises a host of
concerns. Concerns about the fairness of the resulting predictions are
particularly alarming: for example, the predictor might perform poorly
on a protected minority group. We survey recent developments in for-
malizing and addressing such concerns.
Inspired by the theory of computational indistinguishability, the recently
proposed notion of Outcome Indistinguishability (OI) [Dwork et al., STOC
2021] requires that the predicted distribution of outcomes cannot be dis-
tinguished from the real-world distribution. Outcome Indistinguishabil-
ity is a strong requirement for obtaining meaningful predictions. Happily,
it can be obtained: techniques from the algorithmic fairness literature
[Hebert-Johnson et al., ICML 2018] yield algorithms for learning OI pre-
dictors from real-world outcome data.
Returning to the motivation of addressing fairness concerns, Outcome In-
distinguishability can be used to provide robust and general guarantees
for protected demographic groups [Rothblum and Yona, ICML 2021].
This gives algorithms that can learn a single predictor that “performs
well” for every group in a given rich collection G of overlapping sub-
groups. Performance is measured using a loss function, which can be
quite general and can itself incorporate fairness concerns.

1 Introduction

Machine learning tools are used to make and inform increasingly consequen-
tial decisions about individuals. Examples range from medical risk prediction
to hiring decisions and criminal justice. Automated risk prediction comes with
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benefits, but it also raises substantial societal concerns. First and foremost, how
meaningful are the predictions? Another prominent concern is that these al-
gorithms might discriminate against protected and/or disadvantaged groups. In
particular, a learned predictor might perform differently on a protected subgroup
compared to the general population.

In a sequence of recent works we tackle these concerns with novel tools and
perspectives. Our approach is inspired by the cryptographic and complexity-
theoretic literature on indistinguishability, as well as the burgeoning literature
on algorithmic fairness. This manuscript aims to highlight these developments,
focusing on the following contributions:

Outcome Indistinguishability: a new framework for meaningful predictions. Pre-
diction algorithms “score” individuals, mapping them to numbers in [0, 1] that are
popularly understood as “probabilities” or “likelihoods” of observable events: the
probability of 5-year survival, the chance that the loan will be repaid on sched-
ule, the likelihood that the student will graduate within four years. What do
these numbers actually mean? How can we judge a predicted probability when
the event (e.g. 5-year survival) is non-repeatable? The question of “individual
probabilities” has been studied for decades across many disciplines without clear
resolution (see Dawid [9]).

In recent work with Dwork et al. [15] we propose Outcome Indistinguishability
(OI): a novel framework for guaranteeing meaningful predictions. In a nutshell,
the predictions should be indistinguishable, given real-world outcomes, from the
true probabilities governing reality. We show that Outcome Indistinguishabil-
ity is feasible: building on a connection to the notion of multi-calibration [31],
we construct algorithms for learning OI predictors from outcome data. These
contributions are described in Section 2.

Multi-group fair learning. The literature on (supervised) learning and loss mini-
mization takes a different approach to predicting outcomes. Given an i.i.d. train-
ing set of labeled data, the goal is learning a predictor p that performs well on
the underlying distribution. Performance is measured using a loss function, such
as the squared loss or various other measures. In agnostic learning [36], the loss
incurred by the predictor p should be competitive with the best predictor in
a benchmark class H. These approaches have enjoyed tremendous success, but
they does not resolve basic questions about the meaningfulness of predictions.
Given a predictor that achieves a certain loss, how should we judge its perfor-
mance? Both at an aggregate level, over the entire population (what level of loss
is “good”?), at the level of protected subgroups, and at the level of individual
predictions. Indeed, it has been demonstrated that standard machine learning
tools, when applied to standard data sets, produce predictors whose performance
on protected demographic groups is quite poor [4].

Motivated by these concerns, in work with Yona [42] we study multi-group
agnostic learning. For a rich collection G of (potentially) overlapping groups,
our goal is to learn a single predictor p, such that the loss experienced by every
group g ∈ G (when classified by p) is not much larger than the loss of the best
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predictor for that group in the class H. This should hold for all groups in G
simultaneously. To capture a wide variety of settings, we aim to be quite general
in our treatment of different loss functions. In particular, the loss function itself
can also incorporate fairness concerns. We show that this ambitious objective
is obtainable! Multi-group fair predictors can be learned for a rich class of loss
functions. The learning procedure itself is constructed via a reduction to Out-
come Indistinguishability, demonstrating the power and the flexibility of the OI
framework. We detail these contributions in Section 3.

Further related work and recent developments. We discussed further related work
in Section 2.3 and before Section 3.1. We conclude in Section 4 with a brief
discussion of more recent developments that build on the contributions described
in this extended abstract.

2 Outcome Indistinguishability

The recently-proposed notion of Outcome Indistinguishability (OI) [15] proposes
and studies novel criteria for significant predictions. The outputs of a prediction
algorithm are viewed as defining a generative model for observational outcomes.
Ideally, the outcomes from this generative model should “look like” the outcomes
produced by Nature (the real world). A predictor satisfying outcome indistin-
guishability provides a generative model that cannot be efficiently refuted on the
basis of the real-life observations produced by Nature. In this sense, the probabili-
ties defined by any OI predictor provide a meaningful model of the “probabilities”
assigned by Nature: even granted full access to the predictive model and histor-
ical outcomes from Nature, no analyst can invalidate the model’s predictions.
This provides a computational / cryptographic perspective on the deeper dis-
cussion of what we should demand of prediction algorithms–a subject of intense
study in the statistics community for over 30 years (see, e.g., the forecasting
work in [8,20,21,44,43])—and how they should be used. For example, the study
of Outcome Indistinguishability has led to lower bound results that provide sci-
entific teeth to the political argument that, if risk prediction instruments are to
be used by the courts (as they often are in the United States), then at the very
least auditors should be given oracle access to the algorithms.

Basic notation. We focus on the fundamental setting of predicting a binary out-
come, but note that the OI framework has been extended to deal with more
general outcomes [16]. Individuals are represented by a collection of covariates
from a discrete domain X , for example, the set of d-bit strings (there might be
collisions, or it may be the case that each individual has a unique representa-
tion). We model Nature as a joint distribution, denoted D∗, over individuals and
outcomes, where y∗x ∈ {0, 1} represents Nature’s choice of outcome for individual
x ∈ X. We use x ∼ DX to denote a sample from Nature’s marginal distribu-
tion over individuals and denote by p∗x ∈ [0, 1] the conditional probability that
Nature assigns to the outcome y∗x, conditioned on x. We emphasize, however,
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that Nature may choose p∗x ∈ {0, 1} to be deterministic; our definitions and
constructions are agnostic as to this point.

A predictor is a function p̃ : X → [0, 1] that maps an individual x ∈ X
to an estimate p̃x of the conditional probability of y∗x = 1. For a predictor
p̃ : X → [0, 1], we denote by (x, ỹx) ∼ D(p̃) the random process of drawing
an individual-outcome pair, where x ∼ DX is sampled from Nature’s distribu-
tion over individuals, and then the outcome ỹx ∼ Ber(p̃x) is sampled from the
Bernoulli distribution with parameter p̃x.

Outcome Indistinguishability. Imagine that Nature selects p∗x = 1 for half of the
mass of x ∼ DX and p∗x = 0 for the remainder. If the two sets of individuals
are easy to identify then we can potentially recover a close approximation to
p∗. Suppose, however, that the sets are computationally indistinguishable, in the
sense that given x ∼ DX , no efficient observer can guess if p∗x = 1 or p∗x = 0 with
probability significantly better than 1/2. In this case, producing the estimates
p̃x = 1/2 for every individual x ∈ X captures the best computationally feasi-
ble understanding of Nature: given limited computational power, the outcomes
produced by Nature may faithfully be modeled as a random. In particular, if
Nature were to change the outcome generation probabilities from p∗ to p̃ we, as
computationally bounded observers, will not notice. In other words, predictors
satisfying OI give rise to models of Nature that cannot be falsified based only
on observational data.

Definition 1 (Outcome Indistinguishability). Fix Nature’s distribution D∗.
For a class of distinguishers A and ε > 0, a predictor p̃ : X → [0, 1] satisfies
(A, ε)-outcome indistinguishability (OI) if for every A ∈ A,∣∣∣∣ Pr

(x,y∗
x)∼D∗

[ A(x, y∗x; p̃) = 1 ]− Pr
(x,ỹx)∼D(p̃)

[ A(x, ỹx; p̃) = 1 ]

∣∣∣∣ ≤ ε.

The above definition is purposefully vague about the distinguisher’s access
to the predictor p̃: we anchor a hierarchy of OI variants around different levels
of access to p̃. The definition of Outcome Indistinguishability can be extended
in many other ways, for example to distinguishers receive multiple samples from
each distribution (this will be used in Lemma 11 below), and to the case of
non-Boolean outcomes [16].

In the extreme, when we think of A as the set of all polynomial-time distin-
guishers, outcome indistinguishability sets a demanding standard for predictors
that model Nature. Given an OI predictor p̃, even the most skeptical scientist—
who, for example, does not believe that Nature can be captured by a simple
computational model—cannot refute the model’s predictions through observa-
tion alone. This framing gives a cryptographic or computational perspective on
the scientific method, by considering p̃ as expressing a hypothesis that cannot
be falsified through observational investigation.

The OI hierarchy. In the most basic variant of the definition, the distinguisher
does not get direct access to the predicted probabilities, only to the outcomes
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(drawn by p∗ or by p̃). A predictor p̃ satisfies this most basic notion of OI if for
all A ∈ A, the probability that A accepts the sample (x, yx) is (nearly) the same
for Nature’s distribution and the predictor’s distribution. The requirement can
be strengthened by also giving the distinguisher direct access the predictor p̃
itself: either access to the predicted probability p̃x of the sample at hand, oracle
access, or even access to the code. We emphasize, however, that the distinguisher
never gets access to p∗: Nature’s true probabilities are unknowable.

These differing levels of access to the predictor produce a hierarchy of defi-
nitions, which we illustrate through an example. Imagine a medical board that
wishes to audit the output of a program p̃ used to estimate the chances of five-
year survival of patients under a given course of treatment. We can view the
medical board as a distinguisher A ∈ A. To perform the audit, the board re-
ceives historical files of patients and their five-year predicted (i.e., drawn from
D(p̃)) or actual (drawn from D∗) outcomes. The requirement is that these two
cases be indistinguishable to the board.

1. To start, the board is only given samples, and must distinguish Nature’s
samples (x, y∗x) ∼ D∗ from those sampled according to the predicted distri-
bution (x, ỹx) ∼ D(p̃). The board gets no direct access to predictions p̃x of
the program; we call this variant no-access-OI.

2. Naturally, the board may ask to see the predictions p̃x for each sampled
individual. In this extension—sample-access-OI—the board must distinguish
samples of the form (x, y∗x, p̃x) and (x, ỹx, p̃x), again for (x, y∗x) ∼ D∗ and
(x, ỹx) ∼ D(p̃).

3. Oracle-access-OI allows the board to make queries to the program p̃ on
arbitrary individuals, perhaps to examine how the algorithm behaves on
related (but unsampled) patients.

4. Finally, in code-access-OI, the board is allowed to examine not only the
predictions from p̃ but also the actual code, i.e., the full implementation
details of the program computing p̃.

2.1 Feasibility and Learnability of OI Predictors

Do efficient OI predictors always exist? In particular, can we bound the complex-
ity of OI predictors, independently of the complexity of Nature’s distribution?
The picture here is subtle, and Outcome Indistinguishability differs qualitatively
from prior notions of indistinguishability.

Beyond he question of existence, it is also important to understand whether
it is possible to learn OI predictors from outcome data (we focus on the natural
setting where outcomes are all we can hope to observe). A learning algorithm
receives outcome data drawn from D∗, with the goal of learning a predictor p̃
that satisfies OI w.r.t a given class A of distinguishers. Happily, OI predictors
can be learned from outcome data at all levels of the hierarchy, with logarithmic
sample complexity in the size of the family of distinguishers.
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The first two level of the OI hierarchy. Dwork et al. [15] show that no-access-OI
and sample-access-OI are closely related to the notions of multi-accuracy and
multi-calibration [31], respectively, studied in the algorithmic fairness literature.
Very loosely, for a collection C of subpopulations of individuals, (C, α)-multi-
calibration asks that a predictor p̃ be calibrated (up to α error) not just overall,
but also when we restrict our attention to subpopulations S ⊆ X for every set
S ∈ C. Here, calibration over S means that if we restrict our attention to in-
dividuals x ∈ S for which p̃x = v, then the fraction individuals with positive
outcomes (i.e., x ∈ S such that y∗x = 1) is roughly v. Loosely, by equivalent we
mean that each notion can enforce the other, for closely related classes C and A.
Importantly, the relation between the class of distinguishers and collection of
subpopulations preserves most natural measures of complexity; in other words,
if we take A to be a class of efficient distinguishers, then evaluating set mem-
bership for the populations in C will be efficient (and vice versa). No-access-OI
is similarly equivalent to the weaker notion of multi-accuracy, which requires
accurate expectations for each S ∈ C, rather than calibration.

Leveraging feasibility results for the fairness notions from [31], we can obtain
efficient predictors satisfying no-access-OI or sample-access-OI, by reduction to
multi-accuracy and multi-calibration. Informally, for each of these levels, we can
obtain OI predictors whose complexity scales linearly in the complexity of A
and inverse polynomially in the desired distinguishing advantage ε. The result
is quite generic; for concreteness, we state the theorem using circuit size as the
complexity measure.

Theorem 2 (Informal [15]). Let A be a class of distinguishers implemented
by size-s circuits. For any D∗ and ε > 0, there exists a predictor p̃ : X → [0, 1]
satisfying (A, ε)-sample-access-OI (similarly, no-access-OI) implemented by a
circuit of size O(s/ε2).

OI predictors can be learned using only a bounded number of observed out-
comes (x, y∗x) ∼ D∗. The learning algorithm, which leverages algorithms for
learning multicalibrated predictors, has sample complexity that is logarithmic
in the size of the distinguisher class A. The runtime for learning is linear in
the size of A and polynomial in (1/ε). Alternatively, the task of learning an OI
predictor can be reduced to an agnostic learning task on a hypothesis class that
is related to A. See [31,15] for further details.

The top two layers of the OI hierarchy. There is a general-purpose algorithm for
constructing OI predictors, even when the distinguishers are allowed arbitrary
access to the predictor in question. This shows the existence and learnability of
oracle-access-OI and code-access-OI predictors. This construction of [15] extends
the learning algorithm for multi-calibration of [31] to the more general setting
of OI. When we allow such powerful distinguishers, the learned predictor p̃ is
quantitatively less efficient than in the weaker notions of OI. For the overivew
in this manuscript we state the bound informally, assuming the distinguishers
are implemented by circuits with oracle gates (see [15] for a full and formal
treatment). As an example, if we let A be the set of oracle-circuits of some fixed



Indistinguishable Predictions and Multi-Group Fair Learning 7

polynomial size (in the dimension d of individual’s representations), and allow
arbitrary oracle queries, then p̃ will be of size dO(1/ε2).

Theorem 3 (Informal [15]). Let A be a class of oracle-circuit distinguishers
implemented by size-s circuits that make at most q oracle calls to the predictor in
question. For any D∗ and ε > 0, there exists a predictor p̃ : X → [0, 1] satisfying
(A, ε)-oracle-access-OI implemented by a (non-oracle) circuit of size s · qO(1/ε2).

We omit a discussion of the complexity of learning oracle-access-OI, as well as
the results (and definitional subtleties) of code-access-OI. We refer the interested
reader to [15]. We remark that for code-access-OI, the complexity may scale
doubly exponentially in poly(1/ε).

Hardness via Fine-Grained Complexity. Dwork et al. [15] established a con-
nection between the fine-grained complexity of well-studied problems and the
complexity of achieving oracle-access-OI. Under the assumption that the (ran-
domized) complexity of counting k-cliques in n-vertex graphs is nΩ(k), the con-
struction of Theorem 3 is optimal up to polynomial factors. Specifically, they
rule out (under this assumption) the possibility that the complexity of a oracle-
access-OI predictor can be a fixed polynomial in the complexity of the distin-
guishers in A and in the distinguishing advantage ε. Their hardness result holds
for constant distinguishing advantage ε and for an efficiently-sampleable distri-
bution D∗. This hardness results are in stark contrast to the state of affairs for
sample-access-OI (see Theorem 2). Concretely, in the parameters of the upper
bound, the result based on the hardness of clique-counting rules out any pre-
dictor p̃ satisfying oracle-access-OI of (uniform) size significantly smaller than
dΩ(1/ϵ).

Theorem 4 (Informal [15]). For k ∈ N, assume there exist α > 0 s.t. there
is no o(nα·k)-time randomized algorithm for counting k-cliques. Then, there ex-
ist: X ⊆ {0, 1}d

2

, an efficiently-sampleable distribution D∗, and a class A of
distinguishers that run in time Õ(d3) and make Õ(d) oracle queries to p̃, s.t.
for ε = 1

100k , no predictor p̃ that runs in time (dα·k · log−ω(1)(d)) can satisfy
(A, ε)-oracle-access-OI.

This lower bound is robust to the computational model: assuming that clique-
counting requires nΩ(k)-sized circuits implies a similar lower bound on the circuit
size of oracle-access-OI predictors. The complexity of clique counting has been
widely studied and related to other problems in the fine-grained and parameter-
ized complexity literatures, see the discussion in [15]. We note that, under the
plausible assumption that the fine-grained complexity of known clique counting
algorithms is tight, this result shows that obtaining oracle-access-OI is as hard,
up to sub-polynomial factors, as computing p∗. We emphasize that this is the
case even though the running time of the distinguishers can be arbitrarily small
compared to the running time of p∗.

Dwork et al. also show that, under the (milder) assumption that BPP ̸=
PSPACE, there exists a polynomial collection of distinguishers and a distribution
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D∗, for which no polynomial-time predictor p̃ can be OI. The distinction from
the fine-grained result (beyond the difference in the assumptions) is that here
D∗ is not efficiently sampleable, and the distinguishing advantage for which OI
is hard is much smaller.

2.2 Broader Context and Discussion

We highlight a few possible interpretations and insights that stem from the
technical results described above. The ability to construct predictors that satisfy
outcome indistinguishability can be viewed both positively and negatively. On
one hand, the feasibility results demonstrate the possibility of learning generative
models of observed phenomena that withstand very powerful scrutiny, even given
the complete description of the model. On the other hand, OI does not guarantee
statistical closeness to Nature (it need not be the case that p∗ ≈ p̃). Thus, the
feasibility results demonstrate the ability to learn an incorrect model that cannot
be refuted by efficient inspection. In this sense, attempting to recover the “true”
model of Nature based on real-world observations is futile: no efficient analyst
can falsify the outcomes of the model defined by p̃, agnostic to the “true” laws
of Nature.

The most surprising (and potentially-disturbing) aspect of our results may be
the complexity of achieving oracle-access-OI and code-access-OI. In particular,
for these levels, we show strong evidence that there exist p∗ and A that do not
admit efficient OI predictors p̃, even when A is a class of efficient distinguishers!
That is, there are choices of Nature that cannot be modeled simply, even if all we
care about is passing simple tests. This stands in stark contrast to the existing
literature on indistinguishability in cryptography, where the complexity of the
indistinguishable object is usually smaller than the distinguishers’ complexity,
and in complexity theory, where the object is polynomial in the distinguishers’
complexity.

Lessons for auditing predictors. The increased distinguishing power of oracle
access to the predictor in oracle-access-OI may have bearing on ongoing soci-
etal debates regarding appropriate usage of algorithms when making high-stakes
judgments about individuals, e.g. in the context of the criminal justice system.
Much of the discussion revolves around the idea of auditing the predictions,
for accuracy and fairness. The separation between oracle-access-OI and sample-
access-OI provides a rigorous foundation for the argument that auditors should
at the very least have query access to the prediction algorithms they are au-
diting: given a fixed computational bound, the auditors with oracle-access may
perform significantly stronger tests than those who only receive sample access.

The representation is central. The representation of individuals is of central
importance to the OI framework. If the representation space X contains little
information that is relevant to the prediction task at hand, then p∗ itself will
not be very informative, and neither will a predictor p̃ that is OI. It is also
important to note that a fixed representation of features may be informative
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for the general population, but lacking in pertinent information for a protected
demographic group. In any setting where automated prediction is considered for
deployment, the representation or feature space must be carefully considered.

The OI framework can be extended, allowing for the representation of individ-
uals to be augmented throughout time. Given such an enriched representation,
and an enriched class of distinguishers (which take advantage of the new rep-
resentation), the predictor p̃ can be updated to obtain an improved predictor
that fools the new class of distinguishers. A potential argument can be used to
show that each such update moves p̃ meaningfully towards the “true” individual
probabilities, and thus this representation-augmentation process cannot happen
too many times. See [15] and see also the work of [22].

2.3 Further Related Work

The framing of outcome indistinguishability draws directly from the notion of
computational indistinguishability, studied extensively in the literature on cryp-
tography, pseudorandomness, and complexity theory (see, e.g., [23,25,46,24] and
references therein).

Outcome Indistinguishability is related to the extensive literature on online
forecast testing. The latter literature focuses on an online setting where there
are two players, Nature and the Algorithm. Nature controls the data generat-
ing process (e.g., the weather patterns), while the Algorithm tries to assess, on
each Day t − 1, the probability of an event on Day t (e.g., will it rain tomor-
row?). In the early 1980s, [8] proposed that, at the very least, forecasts should
be calibrated. Later works considered more stringent requirements. A signal re-
sult in the forecasting literature, due to Sandroni [43], applies to a more general
notion of tests. A test tries to assess whether an algorithm’s predictions are
“reasonably accurate” with respect to the actual observations. It is required to
satisfy a strong completeness property: no matter what Nature’s true proba-
bilities are, the test should accept them w.h.p. (indeed, calibration tests have
this property). Sandroni’s powerful result [43], shows, non-constructively1, how
to generate probability forecasts that fool any such complete test. The compu-
tational complexity of forecasting was studied by Fortnow and Vohra [19] and
by Chung, Lui and Pass [6]. See [15] for a full comparison between the forecast
testing literature and the new notion of Outcome Indistinguishability.

Algorithmic fairness. Tests are also implicit in the literature on algorithmic
fairness, where they are sometimes referred to as auditors. One line of work,
the evidence-based fairness framework—initially studied in [31,37,14]—relates
directly to outcome indistinguishability and centers around tests that Nature
always passes. Broadly, the framework takes the perspective that, first and
foremost, predictors should reflect the “evidence” at hand—typically specified
through historical outcome data—as well as the statistical and computational
resources allow.
1 The result leverages Fan’s minimax theorem.
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Central to evidence-based fairness is the notion of multi-calibration [31],
which was also studied in the context of rankings in [14]. [33] provide algorithms
for achieving an extension of multi-calibration that ensures calibration of higher
moments of a scoring function, and show how it can be used to provide credible
prediction intervals. [45] study multi-calibration from a sample-complexity per-
spective. In a similar vein, [47] study a notion of individualized calibration and
show it can be obtained by randomized forecasters.

Evidence-based fairness is part of a more general paradigm for defining fair-
ness notions, sometimes referred to as “multi-group” notions, which has received
considerable interest in recent years [31,34,40,37,35,14,45,1,33]. This approach
to fairness aims to strengthen the guarantees of notoriously-weak group fair-
ness notions, while maintaining their practical appeal. For instance, [40,34,35]
give notions of multi-group fairness based on parity notions studied in [11] and
[30]. [1] extend this idea to the online setting. Other approaches to fairness
adopt a different perspective, and intentionally audit for properties that Nature
does not necessarily pass. Notable examples are group-based notions of parity
[30,41,34,35].

3 Multi-PAC Learning

As discussed in the introduction, one prominent concern about predictors ob-
tained via machine learning is that they might discriminate against protected
groups. With fairness in mind, the loss minimization paradigm raises a funda-
mental concern: since the predictor’s loss is measured over the entire underlying
distribution, it might not reflect the predictor’s performance on sub-populations
such as protected demographic groups. Indeed, it has been demonstrated that
standard machine learning tools, when applied to standard data sets, produce
predictors whose performance on protected demographic groups is quite poor
[4].

Motivated by these concerns, in work with Yona [42] (and building on earlier
work by Blum and Lykouris [1]) we study multi-group agnostic learning. For a
rich collection G of (potentially) overlapping groups, the goal is to learn a single
predictor p, such that the loss experienced by every group g ∈ G (when classified
by p) is not much larger than the loss of the best predictor for that group in the
class H. We emphasize that this should hold for all groups in G simultaneously.
The study of this question also differs from much of the agnostic learning liter-
ature in considering quite general loss functions. In particular, the loss function
itself may incorporate fairness considerations (see [42]). The question we ask is:
for which loss functions is multi-group agnostic learning possible?

To see how this objective is different from the standard agnostic PAC learning
setting, consider the simple example in which H is the class of hyperplanes and
we have two subgroups S, T ⊆ X . Suppose that the data is generated such that
every group g has a hyperplane hg that has very low error on it (but that these
are different, so e.g. hT has large loss on S and vice versa). This means that
there is no classifier h ∈ H that perfectly labels the data. If S is small compared
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to T , then the agnostic learning objective could be satisfied by hT , the optimal
classifier for T . For multi-group agnostic PAC, the fact that there is some other
classifier in H that perfectly labels S serves to disqualify hT (more generally, it
could be the case that no h ∈ H will be multi-PAC). This also highlights that
the multi-group objective becomes challenging when the groups in question are
intersecting (if the groups are disjoint, we can combine the optimal classifiers for
each group [13]).

Multi-group PAC learning via OI. [42] construct a “multi-PAC” agnostic learning
algorithm for any loss function that satisfies: (i) a uniform convergence property:
it should be possible to estimate the loss of a predictor (or a whole class) from
data sampled i.i.d. from the underlying distribution, and (ii) f -proper: mean-
ing that there should be a rule f for transforming Bayes-optimal predictions
(the probabilities p∗) into loss-minimizing predictions. Under these two assump-
tions, there is an algorithm that, for any specified finite collection G and finite
hypothesis class H, learns a multi-group agnostic predictor from labeled data.
The sample complexity is logarithmic in the sizes of G and H. The algorithm is
derived by a reduction to outcome indistinguishability (OI), drawing a new con-
nection between OI and loss minimization, and demonstrating the power and
the flexibility of the OI framework.

Related work. Blum and Lykouris [1] studied this question in an online setting
with sequential predictions. Our focus is on the batch setting. They showed
that (for every collection of groups and every benchmark hypothesis class) it
is possible to achieve competitive loss for all groups, so long as the loss func-
tion is decomposable: the loss experienced by each group is an average of losses
experienced by its members. On the other hand, they showed a loss function
(the average of false negative and false positive rates), for which the objective is
infeasible even in the batch setting.

See Section 2.3 for a discussion of related work in the algorithmic fairness
literature. We briefly discuss the relationship to multi-group fair learning. Many
works in the algorithmic fairness literature aim to ensure parity or balance be-
tween demographic groups, e.g. similar rates of positive predictions or similar
false positive or false negative rates [30,41]. As discussed above, other works con-
sider accuracy guarantees, such as calibration [7] for protected groups. Protec-
tions at the level of a single group might be too weak [12], and recent works have
studied extending these notions to the setting of multiple overlapping groups
[31,34].

3.1 Loss Functions

A loss function L is a mapping from a distribution D and a predictor p to [0, 1].
We use LD(p) to denote the loss of p w.r.t. a distribution D. For a sample
S = {(xi, yi)}mi=1 we use LS(p) to denote the empirical loss, calculated as LD̂(p),
where D̂ is the empirical distribution defined by the sample S. This setup is
extremely general, and assumes nothing about the loss (except that it is bounded
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and can’t depend on what happens outside D). In machine learning it is common
to consider more structured losses, in which LD(p) is the expected loss of p on
a random example drawn according to D. We refer to such structured losses as
decomposable losses.

Definition 5 (Decomposable losses). A loss function L is decomposable if
there exists a function ℓ : X × Y × [0, 1] → [0, 1] such that for every distribution
D and predictor p, LD(p) = E(x,y)∼D[ℓ(x, y, p(x))].

For example, for binary classifiers a standard decomposable loss is the 0-
1 loss, in which ℓ(x, y, p(x)) = 1[p(x) ̸= y]. For predictors, an example of a
standard decomposable loss is the squared loss, in which ℓ(x, y, p(x)) = (p(x)−
y)2.

Beyond decomposable losses. While decomposable losses are standard and com-
mon, there are many loss functions of interest that don’t have this form – es-
pecially in the literature on algorithmic fairness. For this reason, we focus on a
general notion of loss functions in our exploration of multi-group agnostic PAC
learning. Two prominent examples of such losses are:

– Calibration. [41,5,31,45] As discussed above, a predictor is calibrated if
for every value v ∈ [0, 1], conditioned on p(x) = v, the true expectation
of the label is close to v. This is a fundamental requirement in forecasting
[7,20]. This loss is not decomposable because it is a global function of the
predictions, not a property of the prediction for a single x ∈ X .

– One-sided error rates [30,5,1,2,34]: The false positive rate (similarly, false
negative rate) measures the probability of a random example being labeled
as p(x) = 1, conditioned on the true label being y = 0. This isn’t a de-
composable loss because the exact contribution of a single misclassification
depends on the frequency of the negative labels, which is a global property.

See [42] for further examples and discussion. In this manuscript we focus
on loss functions with two additional properties: uniform convergence and f -
properness.

Uniform Convergence. We begin by recalling uniform convergence for hypotheses
classes:

Definition 6 (Uniform Convergence for hypotheses classes). We say that
a hypothesis class H has the uniform convergence property (w.r.t. a domain X×Y
and a loss function L) if there exists a function mUC

H : (0, 1)2 → N such that
for every ε, δ ∈ (0, 1) and for every probability distribution D over X × Y , if S
is a sample of m ≥ mUC

H (ε, δ) examples drawn i.i.d. according to D, then, with
probability of at least 1− δ, ∀h ∈ H : |LS(h)− LD(h)| ≤ ε.

In our context, we are interested in uniform convergence as a property of the
loss function. A loss L has uniform convergence (w.r.t finite classes) with sample
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complexity mUC
L : (0, 1)2 × N → N if every finite class H has the uniform con-

vergence property w.r.t L with sample complexity mUC
H (ε, δ) ≤ mUC

L (ε, δ, |H|).
Specifically, we will be interested in losses that have the uniform convergence
property with sample complexity that depends polynomially on 1/ε, 1/δ and
log |H|. This gives rise to the following definition:

Definition 7 (Uniform convergence for loss functions). A loss L has the
uniform convergence property (w.r.t finite classes) with sample complexity mUC

L :
(0, 1)2 × N → N if there exists a polynomial f : R3 → N such that for every
ε, δ ∈ (0, 1) and k ∈ N,

mUC
L (ε, δ, k) ≜ max

H: |H|=k
mUC

H (ε, δ) ≤ f(1/ε, 1/δ, log(k))

The uniform convergence property is satisfied by any decomposable loss func-
tion. This follows by a combination of Heoffding’s bound (for a single h) and a
union bound to get a simultaneous guarantee for every h ∈ H. For calibration,
uniform convergence follows as a special case of the bounds in [45]. However, the
loss that takes a convex combination of the false positive and the false negative
rates does not satisfy uniform convergence. See [1] and [42]) for further details,
examples and discussion.

f -proper loss functions. Recall that proper losses (or proper scoring functions)
are losses that are minimized by the Bayes optimal predictor p∗, i.e. conditional
expectation predictor x 7→ ED[y|x] [3]. The f -proper condition is a relaxation:
it says that for every distribution, a minimizer can be obtained as some local
transformation of this predictor (i.e. that does not depend on the rest of the
distribution).

Definition 8 (f-proper). For a function f : X × [0, 1] → [0, 1], we say that
a loss L is f -proper if for every distribution D on X × Y , the classifier hD
given by hD(x) = f(x, p∗(x) = ED[y|x]) minimizes the loss w.r.t D: hD ∈
argminh LD(h).

The L2 loss is a well-known example of a proper loss function (f simply
outputs its second argument). The 0-1 loss is another well-known example, where
the loss is minimized by f(x, z) = 1 [z ≥ 0.5].

3.2 Multigroup PAC Learnability via OI

The objective of agnostic PAC learning is outputting a predictor p that satisfies
LD(p) ≲ LD(H). Multigroup (agnostic) PAC learning [42] asks for a predictor
that satisfies the above, but simultaneously for every group g in a collection
G: LDg

(p) ≲ LDg
(H), where Dg denotes the restriction of D to samples from

g. Moreover, a learning algorithm should be able to find such a solution in
sample complexity that is inverse-polynomial in the parameters in question and
polylogarithmic in the sizes of H and G.
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Definition 9 (Multi-PAC learnability). A loss L is multi-PAC learnable
with sample complexity mgPAC

L : (0, 1)3 × N2 → N if there exists a learn-
ing algorithm with the following property: For every ε, δ, γ ∈ (0, 1), for ev-
ery finite hypothesis class H, for every finite collection of subgroups G ⊆ 2X

and for every distribution D over X × Y , when running the learning algo-
rithm on m ≥ mgPAC

L (ε, δ, γ, |H| , |G|) i.i.d. examples generated by D, the al-
gorithm returns p such that, with probability at least 1 − δ (over the choice
of the m training examples and the coins of the learning algorithm) g ∈ Gγ ,
LDg (p) ≤ LDg (H) + ε, where Gγ ⊆ G is the subset of groups whose mass under
D is at least γ: Gγ = {g ∈ G : PrD[x ∈ g] ≥ γ}.

Additionally, the sample complexity mgPAC
L should be polynomial in (1/ε),

in (1/δ), in (1/γ), in (log(|H|)), and in log(|G|)).

When G consists of intersecting groups, it is not immediately clear that this
objective is remotely feasible: it might not be satisfied by any predictor p : X →
[0, 1]! For a simple (but contrived) example, let h0, h1 denote the all-zeroes and
all-ones predictors, and consider a loss L that specifies that LDS

(h0) = 0 and
LDT

(h1) = 0 (and for any other classifier p, the loss of every distribution is
always 1). Then the multi-group objective w.r.t G = {S, T} requires that we
label the intersection S ∩ T as both 1 and 0, which is impossible. See [1,42] for
further discussion and natural examples of infeasible loss functions.

Rothblum and Yona [42] show that multi-PAC predictors exist and can be
learned for every loss function satistfying the uniform uniform convergence and
f -proper conditions.

Theorem 10 (Multi-PAC Learning [42]). If L is f -proper (Definition 8)
and has the uniform convergence property (Definition 7), then L is multi-group
learnable (Definition 9).

The Theorem is proved by a reduction to Outcome Indistinguishability. For a
loss function L satisfying the theorem conditions, for and group g and hypothesis
h, [42] show how to construct a sample-access-OI distinguisher AL,g,h s.t. if a
predictor p̃ is OI w.r.t the distringuisher, then applying f to p̃ gives a predictor
whose loss is competitive with h (f is the post-processing function for which L
is a proper loss function). This is the crux of the proof of the reduction, and a
powerful demonstration of the power of the Outcome Indistinguishability frame-
work. With this reduction in place, multi-PAC learning can be performed using
any OI learning algorithm (e.g. the algorithm of Theorem 2): i.e., by learning
a predictor p̃ that is OI w.r.t. the class of distinguishers (AL,g,h)g∈G,h∈H. The
predictor h̃(x) = f(x, p̃(x)) will be competitve with H for all groups g ∈ G
simultaneously. The heart of the argument is in constructing the distinguishers:

Lemma 11 (Loss Minimization via OI[42]). Let L be an f -proper loss func-
tion that has the uniform convergence property. For a predictor p̃, define the
hypothesis h̃(x) = f(x, p̃(x)).

Let D be a distribution, g ⊆ X a subgroup s.t. DX [g] ≥ γ, h : X → [0, 1] a
hypothesis, and α ∈ [0, 1] a desired error parameter. There exists a multi-sample
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sample-access-OI distinguisher AL,g,h s.t. if p̃ is ({AL,g,h}, Θ(α))-sample-access-
OI then:

LDg
(h̃) ≤ LDg

(h) + α.

The distinguisher AL,g,h operates on k = Õ((mUC
L (Θ(α), Θ(α), 1))/γ) samples

(where mUC
L is the sample complexity for uniform convergence). Its complexity

is polynomial in k, in the complexity of determining group membership in g, and
in the complexity of the classifier h.

Proof. We want to guarantee that the loss of the hypothesis h̃(x) = f(x, p̃(x)) is
competitive with the loss of h, where both losses are measured on the distribution
Dg over members of the group g. We begin by observing that this is true when
the labels are drawn by p̃(x) (as in the distribution D̃). We will use OI (with
an appropriately constructed distinguisher) to ensure that it is also true for the
“real” distribution Dg.

In more detail, since L is an f -proper loss function, we have:

LD̃g
(h̃) ≤ LD̃g

(h),

because in D̃ the labels are indeed generated by p̃, i.e. p̃(x) = ED̃[y|x]. By
uniform convergence, this will remain true—up to an additive Θ(α) slack—even
if we consider the empirical loss over a (sufficiently large) i.i.d. sample from
D̃g. We now define the distinguisher AL,g,h, which takes as input k samples
{(xi, yi, p̃i)} and checks whether, for the samples where xi ∈ g, it is true that
the loss obtained by predicting f(xi, p̃i) for each xi is competitive with the loss
obtained by h on those samples (up to an additive factor of Θ(α)). By the above
discussion, when the outcomes yi are drawn by Ber(p̃i), and assuming that there
are sufficiently many samples in g to guarantee uniform convergence for the loss
L, the distinguisher will accept with high probability.

Now, if p̃ is OI w.r.t. the distinguisher Ak
g,h,α, then the distinguisher should

accept with similar probabilities whether the labeled examples are drawn by D̃
or by D (where in both cases the predictions are by p̃i). I.e., AL,g,h should also
accept w.h.p. when the examples are drawn by D. By uniform convergence, this
can only happen if the predictor h̃ is competitive with the hypothesis h w.r.t.
the distribution Dg: exactly the guarantee we wanted from h̃!

The above reduction, together with the OI learning algorithm of Theorem 2,
gives the multi-group agnostic learning algorithm of Theorem 10. The sample
complexity of the learning algorithm is governed by the sample complexity of
OI learning, which is logarithmic in the number of distinguishers. The reduction
includes |G| · |H| multi-sample distinguishers. The OI learning algorithm can be
modified to handle multi-sample distinguishers, or we can further reduce (a class
of) multi-sample distinguishers to (a class of) single-sample distinguishers using
a hybrid argument. This all results in sample complexity that is logarithmic in
|G| and in |H|. We note that we need G and H to be finite because the known
OI learning algorithm works for finite collections of distinguishers.
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Even more general losses. Rothblum and Yona [42] separate the questions of
multi-group feasability: i.e. does a multi-group predictor always exist for a given
loss function, from the question of learnability. They show a loose characteriza-
tion of the loss functions for which multi-PAC learning is feasible, and use the
connection to OI to construct a learning algorithm for any such loss function
that also satisfies uniform convergence.

4 Recent Developments

Several recent works have refined, developed and extended the Outcome Indistin-
guishability and multi-calibration frameworks. The literature has been growing
rapidly—we briefly mention some notable examples. Gupta et al. [29] consider
real-valued predictions and the meaningfulness of the predictor’s confidence in-
tervals and moments. As noted above, the study was extended to large outcome
spaces in [16], see also [28]. Dwork et al. [17] show connections between the liter-
ature on multi-calibration and Outcome Indistinguishability, regularity in graph
theory and the leakage simulation lemma in cryptography.

An emerging and exciting body of work shows that multi-calibration and
Outcome Indistinguishability open the door to machine learning that is quite
flexible and robust. An omni-predictor, as proposed and studied by Gopalan et
al. [27], is a single predictor that can be trained once and then adapted to dif-
ferent loss functions. They show that multi-calibration for a collection of sets
implies omni-prediction w.r.t. a hypothesis class that is directly related to the
collection of sets, and a broad range of loss functions. A similar statement holds
for OI, because of the equivalence between OI and multicalibration. We view this
as further demonstration of the power and flexibility of the multi-calibration and
Outcome Indistinguishability frameworks. Subsequent works (e.g. [26]) sharpen
this connection, and use it in the context of optimization under fairness con-
straints [32]. At a very high level, these results leverage properties of OI (or
multicalibration) that are similar in spirit to the “loss minimization to OI” re-
duction of Lemma 11. There are differences in the types of loss functions that
are considered, but the main difference is on the conceptual level: the focus in
omni-prediction is on training a predictor that can later be used to handle many
loss functions, whereas [42] only use the reduction in the context of a fixed loss
function.

Several other works leverage multi-calibration or OI to achieve robustness
or adaptability to changes that might be encountered after training. The work
of Kim et al. [38] on universal adaptability shows this in the context of propen-
sity scoring in statistical analysis, where the goal is adapting an analysis to a
new target population. Diana et al. [10] show a result of this flavor for down-
stream post-processing of predictions, whereas Kim and Perdomo [39] consider
a prediction setting where individuals might exhibit performative behavior.

Finally, Outcome Indistinguishability aims to obtain predictions that cannot
be refuted based on real-world outcome data. The real world itself, however,
does not treat all demographic groups similarly. In recent work with Dwork and
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Reingold [18], we consider corrective transformations τ that aim to map proba-
bilities p∗ in the real world to a better world τ(p∗). We study the goal of learning
a predictor that is indistinguishable from the better world, and characterize the
transformations for which this goal is achievable.
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