Weighted Oblivious RAM, with Applications to
Searchable Symmetric Encryption

Léonard Assouline and Brice Minaud

Ecole Normale Supérieure, PSL University, CNRS, Inria, Paris, France

Abstract. Existing Oblivious RAM protocols do not support the stor-
age of data items of variable size in a non-trivial way. While the study
of ORAM for items of variable size is of interest in and of itself, it is also
motivated by the need for more performant and more secure Searchable
Symmetric Encryption (SSE) schemes.

In this article, we introduce the notion of weighted ORAM, which sup-
ports the storage of blocks of different sizes. We introduce a framework
to build efficient weighted ORAM schemes, based on an underlying stan-
dard ORAM satisfying a certain suitability criterion. This criterion is ful-
filled by various Tree ORAM schemes, including Simple ORAM and Path
ORAM. We deduce several instantiations of weighted ORAM, with very
little overhead compared to standard ORAM. As a direct application,
we obtain efficient SSE constructions with attractive security properties.

1 Introduction

When sensitive data is stored in an untrusted environment, encryption is not
enough. The pattern of memory accesses to encrypted data can reveal a great
deal about its contents. In some settings, observing the pattern of memory ac-
cesses can allow a honest-but-curious host server to fully reconstruct the contents
of an encrypted database [14]; in others, measuring cache misses can enable an
attacker to recover secret key material [32]. Untrusted environments where an
adversary may be able to observe memory accesses, partially or completely, arise
in many common scenarios. These include private information stored in an exter-
nal cloud service, trusted enclaves running on an untrusted computer, or even
public clouds where memory caches are shared across multiple tenants. In all
these settings, security requires to hide not only the contents of each data item,
but also which item is accessed.

Oblivious RAM (ORAM) protocols provide a powerful tool to fully hide
memory access patterns. The notion of ORAM was introduced by Goldreich
and Ostrovsky [12], motivated by a scenario where a processor accesses untrusted
memory. The processor operates in a RAM model of computation: it wishes to
access memory words at arbitrary addresses. Naturally, memory words have a
fixed size. In line with its historical motivation, ORAM is normally viewed as
storing items of fixed size.

However, in many potential applications of ORAM, it is natural to consider
items of variable size. Suppose for instance that a client wishes to store private



files on an external cloud storage service. Different files may have different sizes;
it may also be the case that the size of a file varies with time. This motivates
the idea of ORAM for variable-size items.

Of course, it is possible to generically emulate the storage of variable-size
files using a memory allocation scheme for fixed-size items. In our case, using an
ORAM for items of fixed size B, the most natural approach is to split each file
into chunks of size B. Each chunk is then stored as a separate data item (called a
block) within the ORAM, on the server side. To retrieve a file, the client simply
queries all chunks corresponding to the desired file.

This simple variable-size-to-fixed-size reduction is not always satisfactory. A
first issue relates to padding. Before files can be split into chunks of size B, they
must be padded to a multiple of the block size B. If many files are much smaller
than the block size, padding becomes expensive. Both motivating applications
given below show examples where padding would be prohibitive.

To reduce the cost of padding, it may be tempting to reduce the block size B.
However, this increases the ORAM overhead (i.e. the ratio between the commu-
nication cost of the ORAM scheme, and the cost of an insecure exchange), since
it scales with the number of blocks. For example, an ORAM storing N blocks of
size 1 typically has an overhead in polylog N; whereas with N/B blocks of size B,
the overhead becomes polylog(N/B). In later applications such as length-hiding
ORAM, or zeroSSE in Section 6.2, B can be very large, which makes the dif-
ference significant. In theory, larger block sizes are also preferable: for instance,
Path ORAM achieves optimal O(logn) overhead if the block size is £2(A\?) bits,
but its overhead is O(log® n) if the block size is @(\) bits (where A is the security
parameter).

In practice, setting the block size to be very small, say a single memory
word of 128 bits, has a deeper impact that is easy to overlook, but much more
impactful in practice that the asymptotic difference above. Modern computers
can only fetch memory from disk at the granularity level of a page, typically
4kB. This is enforced at all levels: by the operating system, in caches, and at
the physical disk layer (both for HDDs and SSDs). When fetching many 128-bit
words at random locations in the ORAM scheme, the server actually fetches the
entire page for each. In each of those pages, only a fraction 1/256 of the data in
the page is actually useful (128 bits out of 4kB). This results in very poor 1/O
efficiency, which correlates directly with disk throughput [4]. The issue is easy
to overlook because it is not reflected in the simple Random-Access Machine
model of computation that is used to compute asymptotics, where all memory
accesses have unit cost. But it has a very large impact in practice. This is well-
known in SSE literature, where an entire branch of the area studies memory
efficiency [2,23,4,24]. In ORAM literature, the PHANTOM implementation of
Path ORAM uses blocks of size one page, likely for the same reason [21]. Reading
many tiny items at random memory locations is extremely inefficient, losing a
factor up to B in throughput (when the bottleneck in throughput does not come
from bandwidth limitations).



If one thinks of storing entire documents in the context of a private online
storage service, having many documents much smaller than the page size is
rather unlikely. But in other applications, it is quite realistic. A case in point is
the use of ORAM for Searchable Symmetric Encryption (SSE).

Motivating Application 1: Searchable Symmetric Encryption (SSE).
The goal of SSE is to enable a client to outsource the storage of an encrypted
database to an untrusted server, while being able to securely search the data.
At minimum, the client is able to issue search queries asking for all entries that
match a given keyword. To realize this functionality, for efficiency reasons, virtu-
ally all modern SSE constructions rely a reverse index. The reverse index records,
for each keyword, the list of identifiers of entries that match the keyword.

The majority of SSE solutions accept to leak the search pattern and access
pattern of the client: that is, they leak to the server the repetition of queries, and
the identifiers of documents matched by the queries. This allows those construc-
tions to trade off privacy for efficiency and scalability. Nevertheless, revealing
access patterns to the server can be quite damaging, and has led to a number of
attacks [7,14]. Those attacks have in turn motivated SSE approaches that rely
on ORAM [11,18].

The most natural way to avoid leaking the search pattern is to store the
reverse index in an ORAM. In that scenario, the “files” to be stored on an
ORAM are actually the list of matches for a given keyword in an SSE scheme.
For some databases, there may be many keywords that uniquely identify a file,
or that match only a few files. In other words, there may be many lists much
smaller than the block size B of the ORAM.

In practice, this is actually a major roadblock. As argued earlier, it is desirable
to have a relatively large ORAM block size, at least one memory page. On the
other hand, the identifier of an entry can be set to 64 bits, or even less. This
means that a single ORAM block is 512 times larger than the minimal list size. If,
say, many keywords match less than 10 entries in the database, padding those
lists to the block size blows up their storage by a factor more than 50. More
generally, if we set p to be the page size, measured in number of identifiers per
page, then padding means that server storage grows at least in O(pN), where
N is the size of the plaintext reverse index; whereas we would like to achieve
linear storage O(N). Of course, with p = 512 as earlier, the practical difference
is quite large.

Addressing that problem is not an easy task. In SSE literature, avoiding the
cost of padding to the page size has been the focus of several recent works [4,24].
Those works have motivated the creation of weighted memory allocation schemes,
that can accommodate items of variable size, including weighted cuckoo hash-
ing [4], and weighted two-choice allocation [24]. However, there is no weighted
ORAM. This means that in order to use ORAM with SSE, current options are
either to choose a block size much smaller than the page size, or to suffer a
prohibitive padding overhead for some data distributions—both of which are
undesirable.



Motivating Application 2: Length-Hiding ORAM. Let us go back
to the scenario where a client wishes to store private files of various sizes on a
honest-but-curious cloud server. As noted earlier, the simplest way to hide access
patterns is to store the files in an ORAM. Each file is split into chunks of size
B, and each chunk is stored in a separate ORAM block. In order to fetch a file,
the client queries all chunks of the file to the ORAM. When a file is queried, the
only information leaked to the server is the number of chunks of the file.

In some settings, even that much information may be too much information.
For instance, the number of chunks of a file might be enough information to
uniquely identify the file [7]. In that case, repeated accesses to the file are leaked
to the server. This reveals the access pattern of the client to the files, defeating
the purpose of ORAM. More subtly, the length of answers to certain types of
database queries can be enough to infer the contents of encrypted data [13].
Traffic analysis attacks are another example of using length information to infer
sensitive data [10]. Attacks based on length information can be particularly
insidious, because traditional encryption does not attempt to hide length.

If leaking the lengths of the files is judged to be too damaging, the client
may wish to use additional mechanisms to protect their privacy. Going back
to our running example about private file storage, the simplest and most secure
protection is to mandate that, whenever a file is accessed, the client should query
as many chunks as the size of the largest file. In that case, only the number of
chunks of the largest file is leaked to the server—or an upper bound on that
number.

Let N be the total size of the files to be stored on the remote server. Let B be
the ORAM block size, and let U be an upper bound on the size of the largest file
(all quantities are counted in number of memory words). The overhead of ORAM
constructions typically scales in Polylog(n), where n is the number of blocks
stored in the ORAM. Setting aside padding issues for a moment, with block size
B, we have n = N/B. In order to minimize the overhead, it would be attractive
the simply set B = U. But here again, we would run into padding issues: most
files might be much smaller than the largest file. The optimal solution would be
a weighted ORAM able to accommodate files of arbitrary size up to U, with an
overhead Polylog(N/U), or optimally, log(N/U).

1.1 Owur Contributions

The discussion so far leads to the following question: can we devise a weighted
ORAM—that is, an ORAM that natively accommodates items of variable size?
Beside the motivating applications given in the introduction, the existence of
weighted ORAM may be viewed as a natural question: it fits within a long line of
work on weighted allocation mechanisms, both within and outside cryptography,
such as [28,29,3,2,4,24].

We will answer the previous question in the affirmative, and build a weighted
ORAM. Our construction naturally handles not only items of different sizes, but
items whose size varies with time, without the need for padding. To state the
result precisely, let us introduce some notation. In the remainder, an atomic item



stored within the ORAM is called a block. Let B denote an upper bound on the
block size. Unlike traditional ORAMs, blocks can take any size in [1, B]. We will
sometimes call the size of a block its weight. Let w; € [1, B] denote the weight of
the i-th block. Let m be the total number of blocks. Let N be an upper bound on
the total weight >, w;. We want to build and ORAM that can accommodate
any vector w = (w;);<m of weights, as long as the following two conditions are
fulfilled.

Condition 1. Every block w; has weight at most B;
Condition 2. The total weight > w; is at most N.

For ease of exposition, we will assume that the number of blocks m is fixed, but
our constructions can be easily adapted to a variable number of blocks, so long
as the previous two conditions continue to hold. The parameters of our ORAM
constructions will depend only on B and N; crucially, they do not depend on
the distribution of the weight vector w.

The interface of our weighted ORAMs is identical to standard ORAM: to
retrieve a block, the client queries an identifier of the block (e.g. a virtual memory
address). When writing a block, the client also inputs new data for the block.
This data need not be of the same size as the data originally associated to the
block identifier. The client can freely change the size of a block with every access,
so long as Conditions 1 and 2 are respected.

As our main contribution, we build a weighted ORAM in the sense given
above. In fact, we show a significantly stronger result. Many standard Tree-
based ORAM algorithms admit a natural extension to handle blocks of variable
size: at setup, the ORAM is dimensioned as if to accommodate N/B blocks
of size B, but instead receives an arbitrary number of blocks of variable size
bounded by B, with total size N. These blocks are read and written through the
ORAM in essentially the same way as in the original, fixed-block size ORAM,
except for minor alterations to reflect the fact that blocks do not have the same
size.

The main obstacle with that approach is technical. While Path ORAM is one
of the most attractive solutions for practical Tree ORAM [27], its correctness
proof is notoriously difficult—prompting the introduction of Simple ORAM as
a less efficient variant that allows for a simpler correctness proof [9]. Our main
result is to show that the natural weighted extensions of several existing Tree-
ORAM schemes, including Path ORAM and Simple ORAM, are in fact correct.
For that purpose, we introduce a general framework: we prove that as long as
a Tree ORAM fulfills a certain structural property, its weighted extension pre-
serves correctness. The centerpiece of the proof is a Schur-convexity argument,
which ultimately reduces the correctness of the weighted extension to that of
the original ORAM. (An overview of the proof argument is given in Section 4.4,
before the formal proof.) Practical experiments show that our weighted ORAM
construction behaves in line with the previous analysis.

As an application of weighted ORAM, we build two SSE schemes, ZeroSSE
and BlockSSE. Unlike most of SSE literature, both constructions completely hide
access patterns. To our knowledge, ZeroSSE is the only construction that leaks



neither the access pattern nor the size of retrieved objects, with full correctness.
(The only other construction that we are aware of, in [18], pays the price of
having a non-negligible correctness failure probability.) BlockSSE hides access
pattern, but not the size of retrieved objects. To our knowledge, it is the only
ORAM-based SSE with worst-case server storage O(N), rather than O(BN),
where B is the ORAM block size.

Our main result builds on Tree ORAMs, because of their higher practical
efficiency compared to hierarchical ORAMs. This makes tree-based construc-
tion currently more attractive for applications such as SSE. Nevertheless, it is
worth remarking that the position map of a weighted Tree-based ORAM, as we
have built, has blocks of fixed size. Hence, it can be stored using any standard
ORAM scheme, not necessarily tree-based. In particular, from a more theoretical
perspective, the position map can be stored using an optimal ORAM with loga-
rithmic overhead, following the groundbreaking result of Asharov et al. [1]. This
results in a weighted ORAM with logarithmic overhead. The case of building
weighted hierarchical ORAM schemes is discussed in the full version.

As another direct application of our construction, setting the block size B of
our weighted ORAM to be equal to an upper-bound bound U on the size of the
largest item to be stored in the ORAM, we immediately obtain an ORAM with
communication overhead O(log®(N/U)). If we use an optimal standard ORAM
for the position map, as indicated above, we obtain a length-hiding ORAM with
communication overhead log(N/U). This overhead is optimal, since such a goal
includes as a special case the setting where all blocks have size U, and is thus
subject to known ORAM lower bounds [12,19] for an ORAM storing N/U blocks.

1.2 Related work

While there is a rich literature on ORAM, surprisingly little of it deals with
objects of variable size. To the best of our knowledge, only two articles mention
this subdomain of ORAM.

In [26], Roche et al. present the first ORAM that stores objects of variable
size. Their goal is to build a remote data structure that satisfies the security
requirements of ORAM, and in addition allows for secure deletion of items and
history independence. In other words, in the case of a total leakage of the struc-
ture (such an event is referred to as a catastrophic attack):

— Items that have been deleted by the client can never be recovered through
leaked data.

— The internal structure does not reveal information about which elements
were last accessed.

The data structure is built on top of a weighted ORAM. However, their con-
struction for such an ORAM is limited: obliviousness and correctness (i.e. the
client-side stash overflows with negligible probability) can be proven only if the
size of the blocks follow a geometric probability distribution. In comparison, al-
though we assume that block sizes are bounded by B, we do not need to assume



anything on the distribution of block sizes. In more detail, there are two lim-
itations to the assumptions of [26]. First, many common distributions are not
upper-bounded by a geometric distribution, for instance Zipf distributions. Sec-
ond and more fundamentally, the ORAM user has no reason in general to pick
item sizes independently, or to pick them from the same distribution. The con-
struction of [26] was designed with a specific use case in mind; its applicability
beyond that use case is limited.

Another construction of ORAM for objects of variable size may be found
in [20]. Their construction is also based on Tree ORAMs. The idea is to allow
block size to be equal to a multiple of some value s (padding up to a multiple if
needed), and to store all “splinters” of size s of a block along the same path from
root to leaf. This construction has the strong requirement of a trusted proxy that
shuffles blocks during certain operations. Moreover, the construction is flawed
(see the full version for further information).

1.3 Organization of the paper

In Section 3 we recall the definitions of ORAM, SSE, and Schur convexity, a
tool we will use in our proof. Section 4 is where we state our generic criterion
for converting a standard ORAM into one that supports objects of variable size
and prove our main result. Concrete examples of known ORAM schemes that we
can turn into weighted ORAM are shown in Section 5. We discuss applications
to the field of SSE in Section 6.

2 General Preliminaries

Throughout this work, memory size will be counted as a number of memory
words. It is assumed that a memory word is large enough to store any address
in memory. In practical applications, one may think of 64-bit or 128-bit words.
Algorithms will be considered in the RAM model, where accessing an arbitrary
memory word costs O(1) operations.

The security parameter is denoted by A. A quantity is said to be negligible,
denoted negl()), if it is O(A™°) for every constant ¢. A probability is said to be
overwhelming if it is 1 —negl(A). It is always assumed that the number of blocks
N stored in the ORAM satisfies N > A, so that any quantity negl(N) is also
negl()).

When an algorithm A with input x is probabilistic, we may sometimes ex-
plicitly write the random coins used by A as an input of A, separated by a
semicolon, as in A(x;r).

2.1 Majorization and Schur Convexity

Given a vector v in R™, we denote by v+ € R™ the vector with the same
components, sorted in decreasing order.



Definition 1 (Majorization order). Let v, w be two vectors in R™ such that
S vi = >t w;. The vector w is said to majorize v, written v < w, if:

k k
Vk € [1,m], Zvli < Zwi
i=1 i=1

Definition 2 (Schur convexity). Let f : R™ +— R. The map f is said to be
Schur-convex if it is non-decreasing for the majorization order. That is, for any
two vectors v, w with Y ;" v; = > " w;,

v=<w= f(v) < f(w).

Definition 3 (Convexity). Let f : R™ — R. The map f is said to be convex
if for any two vectors v, w in R™, and any « in [0,1] C R, it holds that:

flav+ (1 —a)w) <af(v)+ (1 —a)f(w).

Definition 4 (Symmetry). Let f : R™ — R. The map f is said to be symmet-
ric if for any vector v.€ R™, and any permutation matriz P over m elements,

f(v) = f(Pv).
The link between convexity and Schur convexity is visible in the next lemma.

Lemma 1. Let f : R™ — R. If f is symmetric and convex, then it is Schur-
conver.

We refer the reader to [22] for a detailed presentation of the theory of ma-
jorization, including a proof of Lemma 1.

3 ORAM Preliminaries

3.1 Weighted Oblivious RAM

A weighted ORAM, also written wORAM, is a pair of client-server protocols
(Setup, Access), defined as follows.

— Setup(N, B, D) takes as input a number of blocks N, a block size B, and
a set D of pairs of the form (a;, data;), where the a;’s are pairwise distinct
addresses, and data; is arbitrary data of size at least 1 and at most B memory
words. Setup outputs an initial client state and initial server state.

— Access(op, a, data) takes as input an operation op € {read, write}, an ad-
dress a, and some data data of size at least 1 and at most B. If op = read,
Access outputs the data last written to address a. If op = write, Access
replaces the data written at address a by data. Access may also update the
client and server states.



We say that Setup(N, B, D) is legal if the total amount of data in D (i.e.
the sum of the sizes of the data;’s) is at most NB. Likewise, we say that
Access(op, a, data) is legal if address a was defined during setup, and in the
case that op = write, if the total amount of data contained in the database
after replacing the data at address a by data remains of size at most NB. On
the other hand, it is not required that the size of data matches the size of the
data previously written at a, as long as data is of size at most B, and the total
amount of data remains at most NB.

Definition 5 (Correctness). A wORAM scheme is said to be correct if, given
a legal setup and any sequence of legal access operations, a read access at address
a outputs the data last written at address a, except with negligible probability.

Definition 6 (Security). A wORAM scheme is secure if, given any two legal

sequences of operations (Setup(N, B, D), Access(op1, a1, datay ), . . ., Access(opy, ak, datay,))
and (Setup(N, B, D'), Access(op}, ay, data}), ..., Access(opy, &, datay,)) of the

same length, the views of the server arising from each sequence are computation-

ally indistinguishable.

A few remarks are in order. First, although we have defined Setup and Access
as general client-server protocols, it is common in ORAM to ask that the server
performs behaves like a memory allowing only read and write accesses. That is,
the client only ever asks the server to read or write specific data at a specific
address: and the server performs no computation if its own. Although this is not
required in the previous definition, the wORAM schemes in this work are in that
model.

Second, it is assumed that the contents of all memory locations on the server
are encrypted using IND-CCA encryption, with a key known only to the client.
Whenever the client accesses a memory location, they can reencrypt the data
at that location, so that the server cannot learn the contents of any memory
location, or whether it was changed during the access. As a result, the only way
the server can infer information is by observing which locations the client queries
in server memory. That is why the security definition of wORAM (following that
of ORAM) focuses only on memory locations.

Finally, note that a standard ORAM scheme is the special case of a wORAM
where all addresses store data of the same size B.

3.2 Tree ORAM

We build wORAM by altering standard ORAM schemes following the 7Tree
ORAM paradigm. In this section, we provide a high-level algorithmic view of
that paradigm. That view is purposefully designed to accomodate several exist-
ing Tree ORAM schemes. It will also lay the groundwork for the construction of
wORAM in the next section.

Existing Tree ORAM schemes are standard ORAMs, designed to store items
of fixed size. In a Tree ORAM, to store IV items of size B, the server creates



a full binary tree with N leaves. (From now on, we assume N is a power of 2,
increasing to the next power of 2 if necessary.) Throughout the article, the root
of the tree is viewed as being at the top, and leaves as being at the bottom of
the tree. Given a leaf [ of the tree, the path from the root to the leaf [ is denoted
by P(1).

Each node of the tree, also called a bucket, can store up to Z data blocks of
size B. Nodes are always padded to be of size Z B before being stored (encrypted)
on the server.

In addition to the tree, the server may also store a stash, which may contain
additional data blocks that could not fit in the tree. In the remainder, we view the
stash as a special node directly above the root. This is relevant in two situations.
First, there may be cases where a node is full (i.e it contains Z items), and where
additional items need to be pushed to the parent node; if this happens at the root
level, overflowing items are pushed to the stash. Second, whenever we consider
the path P(1) from some leaf [ to the root in the tree, we implicitly (and slightly
abusively) also consider the stash to be part of the path. The stash is always
padded to some upper bound RB, before being stored (encrypted) on the server.

To each item with address a is associated a leaf of the tree pos(a). The array
mapping each address a to the corresponding leaf pos(a) is called a position map.
For now, we will assume the position map is stored by the client. By design, Tree
ORAMSs maintain the following invariant at all times: the item at address a is
stored in one of the nodes on the path P(pos(a)) from the root to leaf posa
(including the stash, as noted earlier).

During setup, each item with address a is stored in the leaf pos(a); or if it
is full, in the lowest parent of pos(a) that is not yet full. To access item a, the
client retrieves pos(a) from the position map, then reads the path P(pos(a)) on
the server. Thanks to the invariant, that path contains the item a. Item a is then
assigned a new uniformly random leaf. Finally, a special eviction procedure is
called, which re-inserts item a somewhere on the path to its newly assigned leaf,
and may also move other items.

Pseudo-code for the Evict procedure is given in Algorithm 1, with addi-
tional parameters Z (the number of blocks per bucket, specifided by the Tree
ORAM scheme; to reflect the fact that Z is an internal parameter of the ORAM
construction, and not part of its interface, it is written between brackets), and
random coins r. It makes use of the following subroutines:

— ReadBucket (bucket retrieves a set of pairs (a;, data;) from the tree node
bucket.

— RemoveBlock (bucket, a removes the item with address a from the tree node
bucket.

— ChooseEvictionPath outputs a path for eviction, which differs depending
on the specific Tree ORAM scheme.

Pseudo-code for the Access procedure is given in Algorithm 2, with addi-

tional parameters Z (the number of blocks per bucket, specifided by the Tree
ORAM scheme), and random coins r. It makes use of the following subroutines:

10



Algorithm 1 Access algorithm of a Tree-ORAM.
Access[Z;r](op, a, newdata):

1: leaf + pos[a]

2: pos[a] + uniformly random leaf
3: for bucket in P(leaf) do

4 if (a, data) € ReadBucket(bucket) then
5: RemoveBlock(bucket, a)

6: if op = write then

7 data = newdata

8: stash < stash U {(a, data)}

9: path + ChooseEvictionPath(leaf)
10: Evict[Z; r](path)

11: return data

— SizeX returns the number of items |X| in X.

— ChooseNextBlock(stash, bucket, path) pops an item from the stash, to be
stored in the bucket, or outputs L.

— WriteBucket(bucket,X,Z) writes the items in X to the node bucket, padding
the node to size Z if needed.

Algorithm 2 Generic eviction algorithm.
Evict[Z; r](path):
1: Move all blocks in path to the stash

2: for bucket in path do
3: X<+—0o

4: while Size(X) < Z do

5: block + ChooseNextBlock(stash, bucket, path)
6: if block = L then

7 break

8: else

9:

X < X U {block}
10: WriteBucket(bucket, X, Z)

11: return

We will discuss in Section 5 how several existing Tree ORAM schemes are
captured by the above paradigm.

Correctness of Tree ORAM Since Tree ORAM is a special case of ORAM,
the correctness definition remains the same (Definition 5). However, because of
the specificities of Tree ORAM, it can be reformulated in a more convenient
manner. That is, the only correctness failure that can occur in a Tree ORAM
scheme is that the stash overflows. (The reader familiar with Tree ORAM may

11



object that some Tree ORAM schemes do not use a stash; that case will be
handled in Section 5).

Recall that the stash is always padded to size RB, i.e. it can store up to R
items. Hence, correctness amounts to the following statement: at the outcome of
any sequence of legal accesses (Setup, Accessy, ..., Accessy), it holds that

Pr[Size(stash) > R] = negl(\).

3.3 o00o-ORAM

Consider a Tree ORAM instantiation ORAM?% < Setup[Z] (N, B, D), with
bucket capacity Z. If s is a sequence of accesses, we call st(ORAMZ[s]) the
stash usage, that is, the number of items in the stash at the outcome of the
accesses.

In Path ORAM and many Tree ORAM schemes derived from it, the proof
of correctness follows similar steps:

— Consider an infinite ORAM structure ORAM°, which is the same protocol,
except buckets have infinite capacity.

— Define a post-processing algorithm Gz that moves items in the tree produced
by running ORAM®® (arranging in particular that each tree node contains
at most Z items). Denote the stash usage of the post-processed co-ORAM
by stZ?(ORAM®[s]).

— Prove that st(ORAM?[s]) = st?(ORAM™|s]) when using the same random
coins on both sides.

— Prove that Pr[st?(ORAM™>]s]) > R] = negl(N).

The last two points imply that Pr[st(ORAMZ[s]) > R] = negl(N), i.e. the
original ORAM scheme is correct. We say that such a protocol admits a proof
via infinite ORAM.

4 Generic Construction of wORAM from Tree ORAM

4.1 Transformation Overview

Our goal is to give a generic way to transform an existing standard tree ORAM
design into one that handles objects of variable size with no added cost. To
achieve this, we modify the protocols used to interact with the ORAM so that
when an object is added to a bucket, it is allowed to “spill out” of it, as long
as the size of this spilling out is small. For the correctness proof to hold, we
increase the bucket size from Z to Z + 1 (and Z = 5). (Practical experiments in
Section 4.5 suggest that this increase can be heuristically dispensed with.)

12



4.2 Translation Function

We define a general transform TransVar that takes as input a standard Tree
ORAM scheme ORAM? = (Setup,Access) following the framework of Sec-
tion 3.2, and outputs a wORAM scheme TransVar(ORAM?) = ORAM*Z =
(Setup*, Access™).

Let us first consider the setup. We say that the starting scheme ORAMZ has
a regular setup if its setup procedure is equivalent to creating an empty tree
with all items in the stash, then doing repeated evictions towards every leaf in
the tree from left to right. Here, by “equivalent” we mean that the output of this
process and the output of the normal setup process are identically distributed.
In our main theorem, we will require that the starting Tree ORAM ORAM?Z
has a regular setup. Although that notion of regularity is unusual, it has the
benefit that the behavior of the setup process can be deduced from that of the
eviction process. For our purpose, this means it will be enough to explain how
to transform the eviction process to handle blocks of variable size.

ORAM*Z is defined in the following way, making only minimal modifications
to ORAMZ to handle items of variable size.

— Setup*(N, B, D) initializes a tree with N leaves, whose nodes can hold data
of size (Z+1) B bits each, and a stash of the same size RB bits as the standard
instance ORAMZ. Tt initializes a position map where each address a in D
is mapped to a uniformly random leaf. Finally, it performs a regular setup:
that is, all items in D are placed in the stash, and the Evict* procedure is
called on the path from the root to each leaf, from left to right.

— Access™ is identical to Access, except that it calls the modified subroutine
Evict*.

— Evict™® is identical to Evict, except that it calls the modified subroutines
Size* and WriteBucket®.

— Size™(X) returns the sum of the sizes of all items in X divided by B, instead
of the number of items in X.

— WriteBucket®(bucket, X, Z) still writes the items in X to node bucket, the
only difference is that it pads the bucket to size Z + 1 instead of Z.

4.3 Suitable Tree ORAM Schemes

For a Tree ORAM scheme to be suitable to build wORAM from, it must satisfy
certain conditions. This section serves to define those conditions.

Given a sequence of accesses s, some fixed random coins r used during those
accesses, and a subset S of nodes in an co-ORAM scheme ORAM*, define the
usage of S, written u”(ORAM**[s;7]), to be the total number of items assigned
to the nodes in S. For a wORAM scheme, the usage of S is defined to be the
total size of the items assigned to nodes in S, divided by the block size B.

As discussed in Section 3.2, a correctness failure for a Tree ORAM scheme
ORAM occurs if and only if, at the outcome of a series of accesses s with random
coins r, the stash receives strictly more than R elements. Using the notation from

13



Section 3.3, this translates to st(ORAM?[s;r]) > R. We say that a subset S of
nodes witnesses the failure if, in the corresponding co-ORAM scheme ORAM*
when performing the same sequence of accesses using the same random coins (viz.
the choices of fresh uniformly random leaves for the position of any accessed item
remain the same), u”(ORAM*7"[s]) > |S|- Z + R, where L = [log(N)] is the
tree height. Intuitively, since the nodes in S can store at most |S| - Z items, it
is clear that more than R items must be reassigned to the stash in the original
ORAM: that is why we say that S witnesses the failure.

Definition 7 (F = W, W = F). We say that ORAM satisfies the F =
W property (read: “failure implies witness”) with respect to a set . of sub-
set of nodes, iff for all access sequences s and all choices of random coins r,
st(ORAMZ[s;7]) > R implies 3S € .7, u®(ORAM*°[s]) > |S|- Z + R. We say
that ORAM satisfies the W = F (read: “witness implies failure”) property if the
converse s true.

Moreover, we say that ORAM satisfies the F = W (resp. W = F) property
with union bound if the scheme also satisfies that y_ g . o, Pr[u®(ORAM*[s]) >
|S]- Z + R] = negl(\). Informally, this means the statement “the probability that
a failure witness exists is negligible” can be proved via a union bound over all
possible witnesses S € .

The definitions remain the same for a wORAM scheme. In particular, for a
wORAM scheme ORAM™, a subset S witnesses a failure if u“(ORAM*7 [s]) >
|S| - Z + R (and not |S| - (Z + 1) + R, even though, looking forward to our
construction of wORAM, we will use buckets of size (Z + 1)B).

Definition 8 (Suitable Tree ORAM). We say that a Tree ORAM scheme is
suitable if it satisfies the following conditions.

1. It admits a proof via infinite ORAM. That is, for all access sequence s and
random coins r, stf(ORAM?Z[s;r]) > R iff st?(ORAM™]s;7]) > R.

2. ORAM satisfies the W = F property with respect to some set ., with union
bound.

3. TransVar(ORAM) satisfies the F'= W property with respect to the same % .

4. ORAM allows free evictions. That is, if the client is allowed to trigger evic-
tions on uniformly random leaves at will during a sequence of accesses, cor-
rectness still holds.

Requiring all those properties may seem demanding, but they naturally hold
for several existing Tree ORAM schemes, including Path ORAM and Simple
ORAM. This will be shown in more detail in Section 5. Intuitively, this is be-
cause many schemes admit a proof via infinite ORAM, either explicitly (in the
case of Path ORAM), or trivially (in the case of Simple ORAM, where the
ORAM and its infinite variant are identical up to correctness failures). Sim-
ilarly, the F = W property is either already known, or trivial; and the free
eviction property is immediate. The only property that requires some care is to
show that TransVar(ORAM) satisfies the F = W property. However, it is much

14



more tractable than trying to analyze the correctness of a wORAM scheme di-
rectly (even without having to contend with variable size blocks, the correctness
analysis of Tree ORAM schemes such as Path ORAM is notoriously complex).

4.4 Main Result

Theorem 1 (Main Theorem). Let ORAM be any suitable Tree ORAM scheme.
If ORAM is a correct ORAM scheme, then TransVar(ORAM) is a correct wORAM

scheme.

Before diving into the proof proper, we sketch the underlying approach. Be-
cause of the F = W and W = F properties required by the suitability assump-
tion, showing the the wORAM scheme is correct essentially amounts to showing
that no set S € ¥ witnesses a failure. We wish to analyze the function that
maps the sizes of items to the usage of S (i.e. the sum of sizes of all items in .5).
Ultimately, we want to show that the probability that the usage of S exceeds
|S| - Z + R is negligible, regardless of item sizes.

The proof strategy is to upper-bound the previous probability by a Schur-
convex function, and show that this function is negligible. The idea behind this
strategy is that if a function of item sizes is Schur-convex, then in order to upper
bound the function for all possible vectors of item sizes, it is enough to upper-
bound it for a set of maximal vectors for the majorization order. Luckily, due to
the requirement that item sizes are of size at most B, and that the sum of items
sizes are at most N B, a single weight vector majorizes all others, namely the
vector (B,...,B,0,...,0). Hence, it is enough to upper-bound the function for
that specific vector. But this is actually quite easy, because this weight vector
essentially amounts to having all items be of the same size, which reduces to the
correctness of the original (unweighted) ORAM instance.

Thus, the core of the proof is to find a suitable Schur-convex function. This
is done via a first-moment argument (Lemma 2), which allows us to work with
expectancies instead of probabilities. Expectancies are much better behaved with
respect to convexity (due to the linearity of expectation). Eventually, we massage
the upper bound into a suitable Schur-convex function (in the proof, this is the
map w — E[X; 1, s(w)]), and show it is convex essentially by showing that it is
structured as a composition of convex maps. Using Lemma 1, we deduce that it
is Schur-convex.

Proof. First, we show a simple self-contained technical lemma.

Lemma 2. Let X be an integral random variable defined over [0,t] C N* with
t € Poly(\). Then Pr[X > R] = negl(\) if and only if E(max(0,X — R)) =
negl(\).

Proof. First, recall that the expectation of a positive integral variable Y can be
written as:
E(Y) =Y Pr[X > .

i>0

15



As a corollary, for any integral variable Y satisfying 0 <Y < ¢
Pr[Y > 0] <E(Y) < tPr[Y > 0]. (1)

Observe that the event X > R is equivalent to max(0,X — R) > 0. Using
that observation, and applying (1) to the variable max(0, X — R), we get:

Pr[X > R] < E(max(0,X — R)) < tPr[X > R].
Since ¢ € Poly(\), we are done. |

Let ORAM be a suitable and correct Tree ORAM scheme. Let ORAM™ <+
TransVar(ORAM). Let s be a legal sequence of accesses for ORAM™. We need to
show that Pr[st(ORAM*[s]) > R] = negl(A).

Since ORAM satisfies the F = W property with respect to some set ., it
suffices to show that the probability that there exists S € . witnessing the
failure is negligible, i.e. Pr[3S € ., uS(ORAM*[s]) > [S|- (Z + 1) + R] is
negligible.

Let us fix S € .. We want to show that Pr[u®(ORAM*7"[s]) > |S| - (Z +
1)+ R] is negligible. (This is not enough to imply that the probability that there
erists such an S is negligible, since . may have superpolynomial cardinality;
we will come back to this point later.) A crucial observation is that in ORAM*7,
the sizes of data items plays no role. In particular, given an access sequence s
and associated random coins r, the location of each item in the tree is entirely
determined independently of the size of the data items.

Given an access sequence s with m items in total, and a size allocation vector
w = (w;)i<m € [0,1]™, define s(w) to be the access sequence s, modified such
that at the outcome of the sequence the i-th item has size w;. Let II be the set of
permutation matrices of size m. Let X5 1, s(W) = maxpe 7 (max(0, uS (ORAM*°[s(Pw)])—
(|S|-Z+R))). By Lemma 2, E[ X 1,.s(W)] is an upper bound on Pr[u® (ORAM*7"[s]) >
|S]-(Z 4+ 1) + R], so it is enough to show that E[X; 1 s(w)] is negligible. This
will follow from the next lemma. While the lemma is not difficult to prove, we
view it as the core of the argument.

Lemma 3. Let s be a legal sequence of accesses, and let S € .. Then the map
f:w e E[Xs L.s(wW)] is Schur-convet.

Proof. First, we show that X 1 s is convex when the random coins used in the
ORAM construction are fixed. Until further notice, we assume that all random
coins are fixed. Only w varies. Let A € [0,1], and let v, w be two size allocation
vectors. We begin by observing that the map g : w > v (ORAM* ¥ [s(Pw)] is
linear. This is because, as already noted, whether an item is stored in a node
from S or not is independent of the weight of the items. As a consequence, g(w)
is equal to the sum of the weights of items stored in S, i.e. it is a fixed linear
combination of w;’s (with binary coefficients). Since g is linear, it is trivially
convex.

Now we observe that for any constant C', the map h:z — max(0,z — C) is
increasing and convex. Since the composition of an increasing convex function

16



with a convex function is convex, we deduce that the map h o g is convex. Since
Xs,1,s(W) = maxpeg h o g(Pw), it is a maximum of convex maps, so it is also
convex.

On the other hand, X 1 ¢(w) is symmetric by construction, since it takes
the maximum over all permutations of w. By Lemma 1, since X 1 s(w) is both
symmetric and convex, it is Schur-convex.

It remains to show that Schur convexity still holds when considering the
expectation of Xg 1 g(w). (From now on, we no longer assume that random
coins are fixed.) However, it is easy to see that if a probabilistic map is Schur-
convex for every fixed choice of random coins (sometimes called stochastical
Schur-convexity), then its expectation is also Schur-convex [22]. We conclude
that w — E[X 1, s(w)] is Schur-convex. |

Corollary 1. Lets be a legal sequence of accesses with weight vector w, and let
S e .. E[Xs 1,5(w)] is negligible.

Proof. For an access sequence to be legal, its weight vector w must satisfy that
w; < Bforall i, and Y w; < NB. Observe that all such vectors are majorized by
the vector v = (B,...,B,0,...,0) containing N initial B’s. Since E[Xs 1 s(W)]
is Schur-convex, it follows that E[Xs 1 s(w)] < E[Xs .s(V)]: in order to upper
bound E[X; 1, s(w)], it suffices to focus on the weight vector v. (This is the point
of using a Schur-convexity argument.)

But in the case of the vector v, all items are of the same size B, or of size 0.
In that case, ORAM™ behaves exactly like ORAM, except that accesses to items
of size 0 translate to evictions without any prior item access. In particular, The
usage of S is the same for ORAM™ and ORAM. Since we assume that ORAM has
the free eviction property, it remains correct when allowing eviction queries by
the client. Since it is also assumed to be correct and to satisfy W = F| it follows
that the usage of S cannot exceed |S|-Z + R except with negligible probability,
hence the same holds for ORAM*, and we are done. O

So far, we have shown that the probability that any given S witnesses a
failure in ORAM™ is negligible. To conclude the proof, it remains to show that
the probability that there exists an S € . witnessing a failure is negligible. This
does not follow immediately from the previous statement, because || may be
superpolynomial. However, looking at the proof of Lemma 2, we see that when
switching from expectation to probability and back, we only lose a factor ¢. In
our case, the stash size is a random variable bounded by N B, so we have that
for every S,

Pr[u® (ORAM*¥[s(v)]) > |S| - Z + R] < NBPr[u®(ORAMY[s]) > |S|- Z + R).

! The reader may observe that items of size 0 are not technically legal per the ear-
lier definition of wORAM, which asks that items are of size at least 1; however,
TransVar(ORAM) remains well-defined even for items of size 0, so nothing stops us
from using them within the proof —the reason we forbade items of size 0 is that
they would allow for an unbounded number of items, which would require a position
map of unbounded size, but this is irrelevant for the current line of reasoning.

17



Since ORAM is assumed to satisfy W = F with union bound, and N B € poly(}),
we know that the sum of the latter quantity over all S € . is negligible, hence
ORAM™ inherits the same union bound property. It follows that the probability
that there exists a failure witness S for ORAM™ is negligible. Since ORAM*
satisfies the F = W property, we conclude that ORAM* is correct. O

4.5 Experimental Results

To test empirically the correctness of our weighted ORAM, we implemented a
Path ORAM structure and performed simulated accesses. We did two experi-
ments: one with N object of the same size (which simulates the standard case)
and one with objects of variable sizes (the sizes are uniformly random, but sum
to N). Our results are presented as graphs in Figure 1.

We took inspiration from the experiment in Section 7 of [27]. The experiment
went as follows:

— We generated ORAM structures for N objects, with N = 2% and L €
{10,11,...,22}. The bucket size is Z € {3,4}

— We chose the maximum block size to be B = 512.

— For the standard ORAM simulation, all blocks were of size B. For the vari-
able ORAM simulation, blocks were taken uniformly at random in [B], with
the total sum of the sizes being NV - B. The number m of blocks generated is

roughly 2 - N.
— We start with the Path ORAM loaded randomly with the objects at its
leaves, and perform between 10-m and 50-m accesses in the order {1,2,...,m,1,2,...}.

Figure 1 suggests that objects of variable size are even less prone to stash
overflows than the standard case. Path ORAM seems to be much more resilient,
and able to handle different sets of objects than what the correctness proof
shows.

Regarding bucket size, we make an observation similar to that of [27]: even
though the correctness of the ORAM was proved for Z +1 = 6, the construction
appears resilient enough to work correctly even when Z + 1 = 4. In [27], the
empirical results suggest that Path ORAM can be used when Z is as low as 4.
Thus we have reasons to believe that our method does not lead to a blowup in
the server storage.

5 Application to Existing Tree ORAMs

In this section we present several concrete constructions: a weighted Simple
ORAM, based on Chung and Pass’s Simple ORAM [9], and a weighted Path
ORAM, based on the seminal work by Shi et al. [27]. The construction for
Path-ORAM can be easily adapted to build a weighted Random-Index ORAM
from the one presented in [16], as the block-holding structure is virtually the
same. We also sketch the application to Circuit ORAM [30] and OPRAM [8].
By Theorem 1, in each case, it suffices to show that the scheme is suitable. The
weighted variant is then obtained by applying TransVar.

18



Maximum Observed Overflow

Maximum Observed Overflow

—3— Standard ORAM
—a— Weighted ORAM

65 -
60 -

55 -
50 -
45 -
40 -
35
30 -
25 -
20 -
15
10 -

L such that N = 2%
For Z =4

22 T T T T
—3— Standard ORAM

200 | | —a— Weighted ORAM

18 |- 1
16 |- 1
14 |- 1
12 1

N s O
I

L such that N = 2%

Fig. 1. Experimental results when Z € {3,4}



5.1 Weighted Simple ORAM [9]

Let SimpleOram = (SimpleOram.Setup,SimpleOram.Access) In the original
paper, each bucket has a capacity of Z = O(log(N)) and the ORAM overflows iff
there is a bucket with more than Z items: there is no stash. From the perspective
of the Tree ORAM framework from Section 3.2, a stash does exist, however, it
is required that it is empty at the outcome of any (legal) sequence of accesses.
That is, we set the stash bound R to 0.

In SimpleOram:

— The ChooseEvictionPath(leaf) method is implemented by choosing a path
uniformly at random (the leaf argument is ignored).

— The ChooseNextBlock(stash, bucket, path) method is implemented by re-
turning the first item among items whose position is such that its meet
with the current path is exactly bucket. (In other words, all items are stored
as low as possible along the eviction path.) The correctness of SimpleOram
relies on the fact that all such items will fit in the current bucket; items are
never pushed somewhere else in case a bucket is full.

We want to show that SimpleOram is suitable. Define . to be the set con-
taining the singleton {bucket} for each tree node bucket. The fact that the cor-
rectness of SimpleOram is equivalent to the fact that no element of . witnesses
a failure is immediate, since the correctness of SimpleOram requires precisely
that no node overflows. Hence, SimpleOram satisfies W = F (and F = W) with
respect to .. The fact that TransVar(SimpleOram) satisfies F = W is immedi-
ate for the same reason. SimpleOram also satisfies the union bound requirement,
because its analysis in [9] relies on just such a union bound. The fact that it
supports free evictions is also follows directly the analysis in [9] (additional evic-
tions translate to more success chances in the dart game argument at the center
of the analysis). We conclude that SimpleOram is suitable.

Theorem 2. TransVar(SimpleOram) is a correct wWORAM scheme.

5.2 Weighted Path ORAM [27]

Let ORAMZ +« PathOram.Setup(N,Z) be an instance of Path ORAM. In

PathOram, the bucket capacity Z is a small constant (the scheme is proven cor-

rect for Z = 5, we shall use this value). The stash capacity R is a O(log(N)).
In PathOram:

— The ChooseEvictionPath(leaf) method is implemented by returning P (leaf).

— The ChooseNextBlock(stash, bucket, path) method is implemented by re-
turning an item from the buffer such that the its associated position is
below bucket, and the meet between the position of the item and path is
lowest among the items in buffer. (In other words, the scheme tries to store
each item as low as possible along the eviction path.)

Theorem 3. TransVar(PathOram) is a correct wWORAM scheme.

20



Proof. Define . to be the set of all subtrees of the ORAM tree, where a subtree
is a subset of nodes closed for the parent relation (i.e. if the set contains a node,
it also contains its parent). The analysis of [27] proves that PathOram satisfies
both F = W and W = F with respect to ., via a union bound. The fact that
PathOram supports free evictions also follows from the analysis. In the remainder,
we focus on showing that PathOram* <— TransVar(PathOram) satisfies F = W.

For that purpose, we follow a similar approach to the initial part of the
analysis in [27]. Let us define a post-processing algorithm Gz, which is applied
to ORAM* 7 after a sequence of accesses. This is an virtual algorithm used only
to analyze stash usage, so we can alow it to do things that are not possible within
the normal wORAM framework. In particular, we let Gz “split” any object of
size w in two objects of sizes wy and ws such that wy + we = w, storing the two
chunks at distinct locations. Gz repeats the following process, as long as there
are overfull buckets (i.e. whose size is strictly more than Z—to avoid cluttering
the notation, all sizes are implicitly divided by the block size B):

1. Select a bucket that has load of more than Z. Let’s say that this bucket is at
level h on some path P to the root. Remove blocks from the bucket (splitting
one if needed) so that it ends up having a load of exactly Z.

2. Find the highest level ¢ < h such that the bucket at level ¢ on the path P
has a load < Z. If such a bucket exists, store as many blocks as possible
there until the load is Z (making a split if needed). Keep going upwards,
any blocks that remain are stored in the stash.

First, let us prove that the stash usage (i.e. the cumulated size of the objects
in the stash) of the post processed co-ORAM is greater than the stash usage of
ORAM*%:

st?(ORAM*°[s]) > st(ORAM*Z[s]). (2)

Start by noticing that the order in which blocks are processed by Gz does
not matter in the end: the blocks are now “continuous” since we can split them,
so the size of the blocks get distributed in the same way towards the same
blocks, regardless of origin. So st?(ORAM*{°[s]) is unique. We can generalize
the argument from [27]: assume that Gz processes blocks from the bucket 8 at
level I; on path pi, then blocks from the bucket 8y at level I on path py. We
want to show that the loads in the buckets in p; U po do not change if we let
Gz process 33 before 8; (We can see the stash as being the parent of the root,
i.e. at level —1.) Without loss of generality, we can assume that those buckets
are siblings (i.e. Iy = ly = [), since only p; N ps will be affected by a change in
the order. Assume that the post-processed blocks from 3; are of total size W7,
Wy for those from Py. Gz first distributes a “mass” of size W7 in the buckets
from level [ — 1 to —1 in p; N p2, and then a mass of size W5 in those same
buckets. Before the distribution, let us call V; the available space in the bucket
at level 1 € {—1,0,...,1— 1} on path p; Nps. When distributing a mass W, Gz
performs Algorithm 3 (we assume that V_; = c0): The {V;} are the same after
a successive application of Algorithm 3 on W; then W5 or after its application
on W then Wj.

21



Algorithm 3 Distribution of mass of blocks

Distribution(W):

1: 11

2: while W > 0 do

3: 11—1

4: if V; > W then
5: Vi Vi—-W
6: W<+ 0

7 else

8: Vi< 0

9: W<+ W-V;

Remark 1. We wish to attract the reader’s attention on one point: in what pre-
cedes, we consider for simplicity that blocks are taken in bulk from the buckets,
whereas in what follows it is more convenient to assume that Gz processes them
individually. It doesn’t make a difference for the same reason that the order
doesn’t matter.

We can finally prove Statement (2). Informally, we can see that during the
accesses, ORAM *f stores blocks in buckets and in the stash in a more lenient
way than Gz, since it allows blocks to “stick out” of the buckets. More precisely,
after the accesses of s in ORAM*7°[s], there exists a way to move blocks from
the buckets they reside in to their final destination from ORAM*Z[s] (in another
bucket or the stash). Since the order in which we post-process blocks from the
buckets does not matter, we can assume that this particular order is accessed by
Gz. If that is the case, after the processing of each block, Gz puts that block in
the bucket where it belongs according to ORAM*Z [s]. However, should a part of
the block (or its entirety) stick out of the bucket (i.e. causes the load to become
> Z), this part will be moved to a higher block or the stash. Thus the processing
of each block by GGz causes the stash size to either stay the same or to increase.
Thus at the end of the processing, st?(ORAM*¥[s]) > st(ORAM*%]s]).

Second, let us prove that the stash usage st?(ORAM*{°[s]) in the post-
processed co-ORAM is > R if and only if there exists a subtree T'in ORAM*¥°
such that ul (ORAM*¥°[s]) > n(T) - Z + R:

—:

If there is such a T, the behavior of GGz makes it so that the stash must hold
more than R objects.

=

Let us define T' to be the maximal subtree that contains all buckets of size
at least Z after the post-processing. If a bucket b is not in T, it has an ancestor
b’ that has a used space of strictly less than Z, so the blocks of b cannot go
to the stash. Thus all blocks in the stash came from buckets in T', and thus
uT(ORAM*$°[s]) > n(T) - Z + R.

This shows that PathOram is suitable. O

22



5.3 Weighted Oblivious Parallel RAM [8]

Boyle, Chung, and Pass’s protocol [8] is based on Simple ORAM. Their frame-
work present ORAM protocols to parallel algorithms, i.e. with multiple proces-
sors (clients). The TransVar function is not impacted by the fact that there are
several clients: The modifications to the subroutines still capture this case, the
correctness analysis holds. The only new component is the broadcast routine,
where one of the CPUs broadcasts information about a certain block to the
others CPUs. These messages are bounded by the size of the block. That could
lead to a leakage, however because of the need to index the blocks, which will
take a size of at least log(m) > log(N).Thus, we can lower bound the size of the
messages by O(log(N)): their size will not leak information on the block. This
yields a correct weighted OPRAM.

5.4 Weighted Circuit ORAM [30]

Circuit ORAM is a variant of Path ORAM, where the client only needs local
space to hold one block. To achieve this, the eviction algorithm is slightly differ-
ent and the stash is stored by the server (as the parent of the root node) instead
of locally.

The correctness analysis of this scheme is based on the same principles as
the one for Path ORAM. The function TransVar yields a correct ORAM here
too. To prove this, we only need to show how we can adapt for the fact that
the stash is stored on top of the tree. Figuring out which way to do this is not
obvious since, because of the varying block size, the client cannot simply stream
the content of the stash block by block: it would leak block size information. We
propose a simple fix, which we also use when dealing with Trivial ORAM:

— We allow the client to store an additional space of size B (the maximal size
of a block). This gives the client a local space of at least 2 - B.

— Whenever the client needs to access the stash, the client streams the content
of the stash chunk by chunk, where each chunk is of size B. That way, since
a block must always reside inside at most 2 chunks (see Figure 2), the client
will read every object at the end of the stash stream.

— When the client wishes to write back a block, it is done locally among two
chunks.

This way, the scheme stays correct and secure even with objects of variable size.
The application of the generic criterion shows that Circuit ORAM is compatible
with blocks of variable size.

6 Searchable Encryption from Weighted ORAM

With Searchable Symmetric Encryption (SSE), a client can delegate the storage
of a database to a honest-but-curious server. The client is then able to perform
searches on the database by issuing Search queries to the server. In the case

23



Chunks

Object /

Stash

Fig. 2. A block of size < B in 2 chunks

of dynamic SSE, the client may also update the database by issuing Update
queries to the server. The security goal is that the information leaked to the
server during these different operations should be limited, in a sense that will
be defined soon.

Here, we focus on the case of single-keyword search. In that setting, the
client’s database DB consists of a collection of documents, and Search queries ask
to retrieve all documents that contain a given keyword. In modern SSE schemes,
this functionality is realized efficiently by building a reverse index: For each
keyword w, a list of the identifiers of documents matching the keyword, written
DB(w), is maintained on the server side in some encrypted form. Response-
revealing SSE allows the server to learn the list of document identifiers, while
response-hiding SSE does not: they are sent back to the client in encrypted
form. Once having retrieved the desired document identifiers, the client may
perform some additional computation, such as intersecting the results with other
queries, or may fetch the documents on the same or a different server. In the
case of response-revealing SSE, if the same server stores the reverse index and
the documents, the server can immediately send back the documents without
the need of an additional roundtrip, at the cost of possibly leaking additional
information to the server. We note that the documents could be stored in an
ORAM to avoid additional leakage, and that a weighted ORAM would reduce
the performance cost of this approach. However, as in most SSE literature, we
focus on the reverse index.

For efficiency reasons, SSE typically does not seek to have minimum leakage,
but rather to strike a compromise between security and performance by allowing
a controlled amount of leakage. In the security model, the leakage allowed by
the scheme is expressed by a leakage function £ = {Lsetup, Lsearcns Lupdate }-
The security model asks that during a Setup operation (resp. Search, Update)
with input z, the information leaked to the server is included in Lgetyp() (resp.
Lsearch(), Lupgate()). More formally, it is required that there must exist a
simulator S such that the view of the server during Setup(z) (resp. Search(z),
Update(x)) should be indistinguishable from S(Lsetup()) (resp. S(Lsearen()),
S(‘CUpdate(x)))-

24



Response-revealing SSE schemes leak the access pattern: That is, the server
learns the identifiers of all documents matched by a query. In some use cases,
access pattern leakage can be quite damaging, and allow the server to infer a
sizable amount of information about the database [7,14]. Even in the case of
response-hiding SSE, the server can typically learn the query pattern: that is,
the server can learn whenever the client repeats the same query. In many cases,
the server can learn the volume of the answer: that is, the number of documents
matched by the query.

In some use cases, these different types of information leakage can be quite
damaging, as shown by so-called leakage-abuse attacks [7,15]. To thwart those
attacks, recent works have developed various protections: such as volume-hiding
SSE [17,25], and the line of work on leakage suppression [18]. The strongest form
of protection, considered for instance in [11,23,18], involves the use of ORAM, or
specialized variants of ORAM. This raises some questions about how to optimize
the use of ORAM, in order to preserve the high efficiency goal of SSE. In partic-
ular, as discussed e.g. in [11], since reverse indexes contain lists that can greatly
vary in size, it is not obvious how to fit them into a (fixed-block size) ORAM.
Our main point in this section is that weighted construction introduced here fit
this setting perfectly. Concretely, we propose two SSE constructions based on
weighted ORAM: ZeroSSE and BlockSSE. A brief overview is given Figure 3.
We note that the main point of TWORAM, not reflected in the table, is to re-
duce the number of roundtrips in the iterative version of Path ORAM, thanks
to a clever use of garbled circuits. However garbled circuits add a considerable
overhead in practice.

Scheme client storage|bandwidth overhead
TWORAM [11]|O(1) O(\log® N)

ZeroSSE ow) O(log(N/U))

ZeroSSE’ o(1) O(log?> W 4 log(N/U))
BlockSSE ow) O(log(N/B))
BlockSSE'’ o(1) O(log®> W + log(N/B))

Fig. 3. Overhead of ORAM-based SSE constructions. U is an upper bound on the
longest list size, W < N is the number of keywords, B is the ORAM block size.

6.1 Preliminaries

We follow the standard definition of SSE. A dynamic SSE scheme X' consists of
four protocols, defined as follows.

— Y .KeyGen(1*): Takes as input the security parameter . Outputs the master
secret key K.

— XY.Setup(K, N, DB): Takes as input the client secret key K, an upper bound
on the database size N, and a database DB. Outputs an encrypted database
EDB.

25



— X.Search(K, w, st; EDB): The client receives as input the secret key K, and
keyword w. The server receives as input the encrypted database EDB. Out-
puts updated encrypted database EDB’ for the server.

— XY.Update(K, (w, e); EDB): The client receives as input the secret key K, and
a pair (w,e) of keyword w and document identifier e. The server receives
as input the encrypted database EDB. Outputs updated encrypted database
EDB’ for the server.

The security model expresses that the view of the server can be simulated by
an efficient simulator, receiving as input only the output of the leakage function.
In more detail, we define two games, SSEReal and SSEldeal. First, the adversary
chooses a database DB. In SSEReal, the encrypted database EDB is generated
by Setup(K, N, DB), whereas in SSEldeal, the encrypted database is simulated
by a (stateful) simulator S on input Lsetup(DB, N). After receiving EDB, the
adversary can issue search and update queries. In SSEReal, queries are answered
using the real-world protocol. In SSEldeal, the Search queries (resp. Update,
Setup) on input z are simulated by S on input Lsearcn(z) (resp. Lypdate(Z),
Lsetup(2)). Finally, the adversary outputs a bit b.

The scheme is said to be L-secure (i.e. secure with respect to the leakage
function £) if for all PPT adversaries, there exists a PPT simulator such that
the transcripts in the real and ideal world are computationally indistinguishable.

6.2 ZeroSSE

A line of recent work has aimed to hide volume leakage: that is, to hide the
number of identifiers matching a given query [17,25]. Hiding volume leakage
seems sensible when using ORAM technique to hide the query pattern, since
volume leakage reveals information about the repetition of queries. This leads to
the question of building on ORAM that also hides volume. For that purpose, an
upper bound U is assumed on the volume of the longest list (that is, the longest
query answer). As discussed in [11], the first approach one may think of is to
use an ORAM with block size U; however, this would require padding all lists
to U, which would be prohibitive in many use cases, since the longest list may
be several orders of magnitude larger than the average list size. In the worst
case, the blowup in storage is 2(U), even before considering ORAM overheads.
Another approach would be to use a smaller block size, at the cost of a larger
ORAM overhead.

The idea of ZeroSSE is simply to use the weighted variant of Path-ORAM,
TransVar(PathOram) with U as the upper bound on block size. Relative to the
previous two approaches, this minimizes both the overhead due to padding,
which is nonexistent since no padding is necessary, and the overhead due to
ORAM, since we use the largest block size possible. In fact, since our main result
is that Path ORAM can handle items of variable size at essentially no overhead,
we contend that this is both the most natural and most efficient solution to build
SSE with minimum leakage.

26



We define ZeroSSE in more details as follows. We note that Setup takes as
input additional parameters U, which is an upper bound on the longest list size,
and W, and upper bound on the number of keywords.

— ZeroSSE.Setup(K, N, DB, U): Initializes TransVar(PathOram) with block size
U and number of leaves [N/U7, containing as (variable-size) blocks DB(w)
for each keyword w. The position map, of size O(W') memory words, is stored
on the client side.

— ZeroSSE.Search(K, w; EDB): The client queries the ORAM for keyword w to
retrieve DB(w).

— ZeroSSE.Update(K, (w, ¢); EDB): The client queries the ORAM for keyword
w to retrieve DB(w), and simply writes back DB(w) U {e}. (Recall that our
weighted construction allows modifying the size of blocks on the fly.)

ZeroSSE uses the non-iterative variant of Path-ORAM. This is because a
client storage of O(W), while undesirable in general, is often accepted in forward-
secure SSE [6]. Alternatively, we define ZeroSSE’ to use the fully iterative version
of Path-ORAM, which reduces the client storage to O(1) memory words, at
the cost of additional roundtrips, and an additional O(W log® W) bandwidth
overhead.

Theorem 4 (Security of ZeroSSE). Assuming Path-ORAM is a correct and
secure ORAM scheme, ZeroSSE is L-secure with respect to the leakage function
L= {£Setup7 ['Sea'rchy LUpda.te}; with ‘CSetup = {N, U} and £Sea,’r‘ch = ‘CUpdate =g.

See the full version for a proof of Theorem 4.

6.3 BlockSSE

An interesting peroperty of ZeroSSE is that updates are indistinguishable from
searches. In fact, addition and deletion of an arbitrary number of documents
in a list can be performed in a single interaction at no additional cost. How-
ever, this also means that adding a single document to a keyword incurs an
(’)(Ulog2 U) bandwidth cost. If cheaper updates for single documents are desir-
able, an alternative solution is to use a smaller blocks size. A smaller block size
(linearly) reduces the cost of updates, while (logarithmically) increasing the cost
of searches. While this is an attractive trade-off in update-heavy use cases, from
a security standpoint, the fact that searches and updates are indistinguishable,
regardless of the number of documents added or deleted during an update, is
lost. BlockSSE also does not support deletions by default, although they can be
added generically at some additional cost, as in [5].

An interesting feature of BlockSSE is that we can choose the block size B such
that the size of a Path-ORAM tree node Z B is one memory page (or an integral
number of memory pages). This optimizes the IO-efficiency of the resulting SSE,
as discussed e.g. in [4].

To reduce the size of the position map, we use the pointer idea introduced in
[31]. Namely, each block belonging to the same list DB(w) contains the position

27



of the previous block. This allows the position map, stored on the client, to only
store the position of the last block, resulting in O(W) storage.

We define BlockSSE in more details as follows. Note that Setup takes as
input additional parameters B, which is the desired block size, and W, and
upper bound on the number of keywords. Update takes as additional parameter
U, which is an upper bound on the longest list size.

— BlockSSE.Setup(K, N, DB, U): Initializes TransVar(PathOram) with block size
B and number of leaves n = [ N/B]. For each keyword w, the list DB(w) is
split into [DB(w)/B] chunks of size at most B — [logn], with no padding.
The i-th chunk for keyword w is inserted into the ORAM at a random po-
sition, together with the position of the (i — 1)-th chunk. The position I,, of
the last chunk is stored on the client side.

— BlockSSE.Search(K, w, U; EDB): The client queries the ORAM at position
ly, retrieves the last chunk DB(w) togther with the position of the penul-
timate chunk, and iteratively retrieves the position of each previous chunk
in the same manner. Each chunk ¢ is assigned a new position uniformly at
random, updating the position stored together with the next chunk accord-
ingly.

— BlockSSE.Update(K, (w, e); EDB): If [,, is not a multiple of B — [logn], the
client accesses the ORAM at position p,,, adds e to the data, replaces p,
by a new uniformly random position, and updates the ORAM according to
this new data and position. If [,, is a multiple of B — [logn], a new block is
inserted at a new uniformly random position, containg as data {e} together
with the position p,, of the previous last block. On the client side, p,, is
updated to the position of the newly inserted block.

Theorem 5 (Security of BlockSSE). BlockSSE is L-secure with respect to the
leakage function £ = {Lsetup, Lsearchs Lupdate}, With Lsetup = {N, B}, Lsearcn(w) =
HDB(U})VB—‘ ’ and ‘CUpdate =d.

See the full version for a proof of Theorem 5. BlockSSE’ is the same as
BlockSSE, except the iterative variant of Path-ORAM is used.
Acknowledgments. This work was supported by the ANR project SaFED.

References

1. Asharov, G., Komargodski, I., Lin, W.K., Nayak, K., Peserico, E., Shi, E.: Op-
tORAMa: Optimal oblivious RAM. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020, Part II. LNCS, vol. 12106, pp. 403-432. Springer, Heidelberg (May
2020). https://doi.org/10.1007/978-3-030-45724-2_14

2. Asharov, G., Naor, M., Segev, G., Shahaf, I.: Searchable symmetric encryption:
optimal locality in linear space via two-dimensional balanced allocations. In: Wichs,
D., Mansour, Y. (eds.) 48th ACM STOC. pp. 1101-1114. ACM Press (Jun 2016).
https://doi.org/10.1145/2897518.2897562

3. Berenbrink, P., Friedetzky, T., Hu, Z., Martin, R.: On weighted balls-into-bins
games. Theoretical Computer Science 409(3), 511-520 (2008)

28


https://doi.org/10.1007/978-3-030-45724-2_14
https://doi.org/10.1145/2897518.2897562

10.

11.

12.

13.

14.

15.

16.

17.

18.

Bossuat, A., Bost, R., Fouque, P.A., Minaud, B., Reichle, M.: SSE and SSD:
Page-efficient searchable symmetric encryption. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021, Part III. LNCS, vol. 12827, pp. 157-184. Springer, Heidelberg,
Virtual Event (Aug 2021). https://doi.org/10.1007/978-3-030-84252-9_6

Bost, R.: Yogos: Forward secure searchable encryption. In: Weippl, E.R., Katzen-
beisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 1143—
1154. ACM Press (Oct 2016). https://doi.org/10.1145/2976749.2978303

Bost, R., Fouque, P.A.: Security-efficiency tradeoffs in searchable encryption.
PoPETs 2019(4), 132-151 (Oct 2019). https://doi.org/10.2478/popets-2019-0062
Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015. pp.
668-679. ACM Press (Oct 2015). https://doi.org/10.1145/2810103.2813700
Chan, T.H.H., Chung, K.M., Shi, E.: On the depth of oblivious parallel RAM.
In: Takagi, T., Peyrin, T. (eds.) ASTACRYPT 2017, Part I. LNCS, vol. 10624,
pp. 567-597. Springer, Heidelberg (Dec 2017). https://doi.org/10.1007/978-3-319-
70694-8_20

Chung, K.M., Pass, R.: A simple ORAM. Cryptology ePrint Archive, Report
2013/243 (2013), https://eprint.iacr.org/2013/243

Dyer, K.P., Coull, S.E., Ristenpart, T., Shrimpton, T.: Peek-a-boo, i still see you:
Why efficient traffic analysis countermeasures fail. In: 2012 IEEE Symposium on
Security and Privacy. pp. 332-346. IEEE Computer Society Press (May 2012).
https://doi.org/10.1109/SP.2012.28

Garg, S., Mohassel, P., Papamanthou, C.: TWORAM: Efficient oblivious RAM in
two rounds with applications to searchable encryption. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 563-592. Springer, Heidelberg
(Aug 2016). https://doi.org/10.1007/978-3-662-53015-3_20

Goldreich, O., Ostrovsky, R.: Software protection and simula-
tion on oblivious RAMs. J. ACM 43(3), 431473 (May 1996).
https://doi.org/10.1145/233551.233553, https://doi.org/10.1145/233551.
233553

Grubbs, P., Lacharité, M.S.,; Minaud, B., Paterson, K.G.: Pump up the volume:
Practical database reconstruction from volume leakage on range queries. In: Lie,
D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 315-331. ACM
Press (Oct 2018). https://doi.org/10.1145/3243734.3243864

Grubbs, P., Lacharité, M.S., Minaud, B., Paterson, K.G.: Learning to reconstruct:
Statistical learning theory and encrypted database attacks. In: 2019 IEEE Sympo-
sium on Security and Privacy. pp. 1067-1083. IEEE Computer Society Press (May
2019). https://doi.org/10.1109/SP.2019.00030

Grubbs, P.; Sekniqi, K., Bindschaedler, V., Naveed, M., Ristenpart, T.: Leakage-
abuse attacks against order-revealing encryption. In: 2017 IEEE Symposium on
Security and Privacy. pp. 655-672. IEEE Computer Society Press (May 2017).
https://doi.org/10.1109/SP.2017.44

Halevi, S., Kushilevitz, E.: Random-index oblivious ram. Cryptology ePrint
Archive, Paper 2022/982 (2022), https://eprint.iacr.org/2022/982

Kamara, S., Moataz, T.: Computationally volume-hiding structured encryption.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477,
pp. 183-213. Springer, Heidelberg (May 2019). https://doi.org/10.1007/978-3-030-
17656-3_7

Kamara, S., Moataz, T., Ohrimenko, O.: Structured encryption and leakage sup-
pression. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol.

29


https://doi.org/10.1007/978-3-030-84252-9_6
https://doi.org/10.1145/2976749.2978303
https://doi.org/10.2478/popets-2019-0062
https://doi.org/10.1145/2810103.2813700
https://doi.org/10.1007/978-3-319-70694-8_20
https://doi.org/10.1007/978-3-319-70694-8_20
https://eprint.iacr.org/2013/243
https://doi.org/10.1109/SP.2012.28
https://doi.org/10.1007/978-3-662-53015-3_20
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/3243734.3243864
https://doi.org/10.1109/SP.2019.00030
https://doi.org/10.1109/SP.2017.44
https://eprint.iacr.org/2022/982
https://doi.org/10.1007/978-3-030-17656-3_7
https://doi.org/10.1007/978-3-030-17656-3_7

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

10991, pp. 339-370. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-
3-319-96884-1_12

Larsen, K.G., Nielsen, J.B.: Yes, there is an oblivious RAM lower bound! In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 523-542. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-
96881-0-18

Liu, Z., Huang, Y., Li, J., Cheng, X., Shen, C.: DivORAM: Towards a prac-
tical oblivious RAM with variable block size. Information Sciences 447, 1-11
(2018). https://doi.org/https://doi.org/10.1016/j.ins.2018.02.071, https://www.
sciencedirect.com/science/article/pii/S0020025518301427

Maas, M., Love, E., Stefanov, E., Tiwari, M., Shi, E., Asanovic, K., Kubiatowicz,
J., Song, D.: PHANTOM: practical oblivious computation in a secure processor.
In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013. pp. 311-324.
ACM Press (Nov 2013). https://doi.org/10.1145/2508859.2516692

Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: theory of majorization and
its applications, vol. 143. Springer (1979)

Miers, 1., Mohassel, P.: IO-DSSE: Scaling dynamic searchable encryption to mil-
lions of indexes by improving locality. In: NDSS 2017. The Internet Society
(Feb / Mar 2017)

Minaud, B., Reichle, M.: Dynamic local searchable symmetric encryption. In:
Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology — CRYPTO 2022. Lecture
Notes in Computer Science, Springer (2022)

Patel, S., Persiano, G., Yeo, K., Yung, M.: Mitigating leakage in secure cloud-
hosted data structures: Volume-hiding for multi-maps via hashing. In: Cavallaro,
L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 79-93. ACM Press
(Nov 2019). https://doi.org/10.1145/3319535.3354213

Roche, D.S.; Aviv, A.J., Choi, S.G.: A practical oblivious map data structure
with secure deletion and history independence. In: 2016 IEEE Symposium on
Security and Privacy. pp. 178-197. IEEE Computer Society Press (May 2016).
https://doi.org/10.1109/SP.2016.19

Stefanov, E., van Dijk, M., Shi, E., Fletcher, C.W., Ren, L., Yu, X., Devadas,
S.: Path ORAM: an extremely simple oblivious RAM protocol. In: Sadeghi, A.R.,
Gligor, V.D., Yung, M. (eds.) ACM CCS 2013. pp. 299-310. ACM Press (Nov
2013). https://doi.org/10.1145/2508859.2516660

Talwar, K., Wieder, U.: Balanced allocations: the weighted case. In: Johnson,
D.S., Feige, U. (eds.) 39th ACM STOC. pp. 256-265. ACM Press (Jun 2007).
https://doi.org/10.1145/1250790.1250829

Talwar, K., Wieder, U.: Balanced allocations: the weighted case. In: Proceedings
of the thirty-ninth annual ACM symposium on Theory of computing. pp. 256-265
(2007)

Wang, X., Chan, H., Shi, E.: Circuit ORAM: On tightness of the Goldreich-
Ostrovsky lower bound. Cryptology ePrint Archive, Report 2014/672 (2014),
https://ia.cr/2014/672

Wang, X.S., Nayak, K., Liu, C., Chan, T.H.H., Shi, E., Stefanov, E., Huang, Y.:
Oblivious data structures. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014.
pp. 215-226. ACM Press (Nov 2014). https://doi.org/10.1145/2660267.2660314
Weif3, M., Heinz, B., Stumpf, F.: A cache timing attack on AES in virtualization
environments. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 314-328.
Springer, Heidelberg (Feb / Mar 2012)

30


https://doi.org/10.1007/978-3-319-96884-1_12
https://doi.org/10.1007/978-3-319-96884-1_12
https://doi.org/10.1007/978-3-319-96881-0_18
https://doi.org/10.1007/978-3-319-96881-0_18
https://doi.org/https://doi.org/10.1016/j.ins.2018.02.071
https://www.sciencedirect.com/science/article/pii/S0020025518301427
https://www.sciencedirect.com/science/article/pii/S0020025518301427
https://doi.org/10.1145/2508859.2516692
https://doi.org/10.1145/3319535.3354213
https://doi.org/10.1109/SP.2016.19
https://doi.org/10.1145/2508859.2516660
https://doi.org/10.1145/1250790.1250829
https://ia.cr/2014/672
https://doi.org/10.1145/2660267.2660314

	Weighted Oblivious RAM, with Applications to Searchable Symmetric Encryption
	Introduction
	Our Contributions
	Related work
	Organization of the paper

	General Preliminaries
	Majorization and Schur Convexity

	ORAM Preliminaries
	Weighted Oblivious RAM
	Tree ORAM
	Correctness of Tree ORAM

	-ORAM

	Generic Construction of wORAM from Tree ORAM
	Transformation Overview
	Translation Function
	Suitable Tree ORAM Schemes
	Main Result
	Experimental Results

	Application to Existing Tree ORAMs
	Weighted Simple ORAM EPRINT:ChuPas13b
	Weighted Path ORAM CCS:SvSFRY13
	Weighted Oblivious Parallel RAM AC:ChaChuShi17
	Weighted Circuit ORAM circuit

	Searchable Encryption from Weighted ORAM
	Preliminaries
	ZeroSSE
	BlockSSE



