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Abstract. The KECCAK hash function was selected by NIST as the
winner of the SHA-3 competition in 2012 and became the SHA-3 hash
standard of NIST in 2015. On account of SHA-3’s importance in theory
and applications, the analysis of its security has attracted increasing
attention. In the SHA-3 family, SHA3-512 shows the strongest resistance
against collision attacks: the theoretical attacks of SHA3-512 only extend
to four rounds by solving polynomial systems with 64 times faster than
the birthday attack. Yet for the SHA-3 instance SHAKE256 there are no
results on collision attacks that we are aware of in the literatures.
In this paper, we study the collision attacks against round-reduced SHA-3.
Inspired by the work of Dinur, Dunkelman and Shamir in 2013, we pro-
pose a variant of birthday attack and improve the internal differential
cryptanalysis by abstracting new concepts such as differential transition
conditions and difference conditions table. With the help of these tech-
niques, we develop new collision attacks on round-reduced SHA-3 using
conditional internal differentials. More exactly, the initial messages con-
strained by linear conditions pass through the first two rounds of internal
differential, and their corresponding inputs entering the last two rounds
are divided into different subsets for collision search according to the
values of linear conditions. Together with an improved target internal
difference algorithm (TIDA), collision attacks on up to 5 rounds of all
the six SHA-3 functions are obtained. In particular, collision attacks on
4-round SHA3-512 and 5-round SHAKE256 are achieved with complexity
of 2237 and 2185 respectively. As far as we know, this is the best collision
attack on reduced SHA3-512, and it is the first collision attack on reduced
SHAKE256.
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1 Introduction

The KECCAK hash function [4], designed by Guido Bertoni, Joan Daemen,
Michaël Peeters, and Gilles Van Assche [5], was selected as the winner of
the SHA-3 competition by the National Institute of Standards and Tech-
nology of the USA. In 2015, it was published as the new SHA-3 standard
by NIST [11]. The SHA-3 family has four instances with fixed digest sizes,
namely SHA3-224, SHA3-256, SHA3-384 and SHA3-512, which correspond to
KECCAK[c] , KECCAK[r = 1600 − c, c], where c ∈ {448, 512, 768, 1024}. There
are two eXtendable-Output Functions (XOFs) named SHAKE128 and SHAKE256 of
the SHA-3 family, which can generate digests with any expected length. In Post-
Quantum Cryptography competition (PQC), the two XOFs are applied to all
candidate algorithms (CRYSTALS-KYBER, CRYSTALS-Dilithium, FALCON,
SPHINCS+) identified by NIST for standardization and all the fourth round
candidate KEM algorithms (BIKE, Classic McEliece, HQC, SIKE) [1]. Among
them, SPHINCS+ [3] is a stateless hash-based signature scheme including three
different versions. One of them is obtained by instantiating the SPHINCS+ con-
struction with SHAKE256.

KECCAK uses a sponge construction, which ensures that messages of any
length can be taken as inputs of the hash function. The message is padded and
divided into some message blocks with the same length. The size of message
block depends on the expected number of output bits. The 1600-bit initial state
of KECCAK is XORed the first message block. Then, the state is updated by
applying 24-round permutation KECCAK-f to it and XORing another message
block, until all blocks are absorbed. In the end, the state is updated again by
using 24-round KECCAK-f , and some bits of the state are output as the digest.

Since its publication in 2008, KECCAK has become one of the most important
hash functions and received extensive security analysis [2,9,10,6,14,20,16,12,13].
There are two important security criteria for cryptographic hash functions
namely, preimage resistance and collision resistance.

The main focus of this paper is on the security of SHA-3 family against
collision attacks. The purpose of a collision attack is to find a pair of different
messages such that their digests are the same. In the matter of collision attacks
on round-reduced SHA-3 (KECCAK), Dinur, Dunkelman and Shamir [8] presented
practical attacks on 4-round KECCAK[448]/KECCAK[512] in 2012, where the au-
thors developed the target difference algorithm to link a 1-round connector to
a 3-round high probability difference characteristic. Following the basic frame-
work of [8], Qiao et al. completed the connection of 2-round connectors and
3-round difference characteristics using the linearizaion technique and obtained
actual collisions for 5-round SHAKE128 [19]. In [20,12], the connectors were im-
proved to 3-round connectors by non-full linearization technique. As a result, the
practical collision attacks on 5-round SHA3-224/SHA3-256 were implemented re-
spectively. Almost at the same time as this paper, Huang et al. [15] developed
new techniques to try to solve the problem of insufficient degrees of freedom, and
proposed a collision attack on SHA3-384 with time complexity of 259.64. In [13],
with the SAT-based automatic search tool and improved connector construction
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algorithms, Guo et al. presented the first quantum collision attacks on SHA-3
instances. More specifically, they extended the classical attacks on SHAKE128 to
6-round and proposed 6-round quantum attacks on SHA3-224 and SHA3-256. For
internal differentials, Dinur, Dunkelman and Shamir [9] completed practical col-
lision attacks on 3-round KECCAK[768]/KECCAK[1024] and proposed theoretical
attacks on 4-round KECCAK[768] and 5-round KECCAK[512] by using generalized
internal differentials. In addition to differential and internal differential, Dinur [7]
devised a polynomial method-based algorithm for solving multivariate equation
systems and formulated the problem of finding a collision as a non-linear equa-
tion system. With the help of this technique, the author obtain a theoretical
collision attack on 4-round SHA3-512, where the complexity (2263) is 64 times
faster than the birthday attack (2269) considering the bit operations.

Our Contribution. Following the framework of Dinur, Dunkelman and Shamir
[9], we improve the generalized internal differentials and present theoretical at-
tacks on all the six SHA-3 variants up to 5 rounds. In detail, the attacks on
4-round SHA3-512 and 5-round SHAKE256 are the best attack results at present
as far as we know. Our results and comparison with the related previous work
are listed in Table 1. The main contributions with respect to techniques are
summarized as follows.

1. A variant of birthday attack Since an internal difference produces
distinct output internal differences after non-linear operation, collision search is
actually carried out in several disjoint subsets. We abstract it as a variant of
birthday attack. On one hand, it is more convenient for parallel computation.
On the other hand, the size of each subset is much smaller than the number of
messages, which greatly saves the space of the hash table using in the attack.

2. Improved generalized internal differentials We introduce the tran-
sition condition number to estimate the transition probability of internal differ-
ential more accurately. We can construct conditional internal differential char-
acteristics for collision attacks on up to 5 rounds of SHA-3 by adding differential
transition conditions to the initial message spaces and their corresponding in-
ternal states. This further reduces the time complexity of internal differential
cryptanalysis.

3. Improved target internal difference algorithm We link an internal
differential characteristic starting from the second round to the initial state of
SHA-3 by solving a linear equation system. With the use of 2-block messages,
we change the value of the first block instead of changing an affine subspaces of
input internal differences to make the system consistent. And since any affine
subspace of the input difference can be selected, in the improved TIDA, we can
select a specific set of affine subspaces to obtain internal difference characteristics
with high probability.

Conditional Internal Differential Attacks. The technique of internal dif-
ferential cryptanalysis was developed by Peyrin [18] in the cryptanalysis of the
Grøstl hash function and generalized by Dinur et al. [9] in collision attacks on
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Target Rounds Complexity Attack method Reference

SHA3-224
5 2105 Internal differential Sec 6.3
5 Practical Differential [20]

SHA3-256
5 2115 Internal differential [9]
5 2105 Internal differential Sec 6.3
5 Practical Differential [12]

SHA3-384

3 Practical Internal differential [9]
4 2147 Internal differential [9]
4 276 Internal differential Sec 6.1
4 259.64 Differential [15]

SHA3-512
3 Practical Internal differential [9]
4 2237 Internal differential Sec 6.2
4 2263† Solving polynomial systems [7]

SHAKE128
5 2105 Internal differential Sec 6.3
5 Practical Differential [19]
6 2123.5 Differential [13]

SHAKE256
4 276 Internal differential Sec 6.1
5 2185 Internal differential Sec 6.3

† The complexity is calculated by bit operations.
Table 1. Comparison of the best collision attacks against the SHA-3 family

SHA-3. This technique resembles standard differential attacks but it uses internal
differentials, which consider differences between different parts of a state and fol-
low their statistical evolution, rather than a difference between two states. In [9],
Dinur et al. proposed the definitions of the weight of internal differences, which
can be used to estimate the transition probability of the internal differences with
low weight, and obtained internal differential characteristic with probability 1
for the first round by using algebraic methods.

In this paper, we develop an improved variant of internal differential crypt-
analysis to launch collision attacks on SHA-3. We introduce several new tech-
niques such as differential transition conditions of the KECCAK Sbox, which
allow us to estimate the transition probability of internal differences more accu-
rately and use conditional internal differentials to reduce more complexity. And
since the non-zero internal difference input to χ produces several output internal
differences, we can launch a variant of birthday attack. Namely, one or multiple
output internal differences will result in a collision subset, so that we can search
for collision in each subset.

Improved Target Internal Difference Algorithm. The target internal dif-
ference algorithm [9] is a generalization of the target difference algorithm [8],
which enables internal differentials to be used to launch collision attacks on 5-
round SHA-3. In [9], the output of TIDA is a subspace of the initial messages
whose dimension is not enough to produce a collision. Therefore, in the attack
on SHA3-256, the TIDA is run multiple times to output enough messages.

The TIDA has two phases, where in the first phase (called the difference
phase) it solves a system E composed of linear equations about capacity and all
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Sboxes to fix the initial internal difference, and in the second phase (called the
value phase) it outputs the affine subspace of the initial message by solving a lin-
ear system. If 1-block messages are used as the initial messages, in the difference
phase, the algorithm will change affine subspaces of the input differences until
E is consistent. In our attacks on 5-round SHAKE256, we input 2-block messages
into the sponge function as the initial messages. Thus, we just need to change
the value of the first block to make E consistent. Since the affine subspaces
corresponding to the input differences of Sboxes will lead to distinct transition
probabilities of internal differences, after introducing 2-block messages, we select
a specific set of affine subspaces which maximize the expected transition prob-
ability so that the number of characteristics to launch collision attacks could
be reduced. We combine the two phases in the improved TIDA, and reduce the
number of iterations for the second phase by using the partial solutions of E.
By using the internal differentials with our techniques, we can launch collision
attacks on all variants of SHA-3. Our attacks on each variant can reach the most
number of rounds at present, except for SHAKE128, though in some cases other
attacks reaching the same number of rounds are faster. Specially, the complexity
of our attack on 4-round SHA3-512 is 2237, and it is the best result at present.
For 4-round SHA3-384, the complexity of our attack is 276, which is much lower
than the result of 2147 using the same type of cryptanalysis in [9]. The collision
attack on SHAKE256 reaches to 5 rounds for the first time.

Organization. The rest of the paper is organized as follows. In Section 2,
we describe the SHA-3 hash function. In Section 3, some notations used in this
paper are given, followed by the overview of our collision attacks and a variant of
birthday attack. In Section 4, we give the basic concepts of internal differentials
and some new concepts. Section 5 presents the framework of attacks and detailed
explanations over our techniques. In Section 6, the details and results of our
attack are given. We conclude the paper in Section 7. The internal difference
characteristics are postponed to Appendix.

2 Description of SHA-3

In this section, we give a brief description of the sponge construction and the
SHA-3 hash function, i.e., the KECCAK hash function. The sponge construction
proceeds in two phases: absorbing phase and squeezing phase, as shown in Fig-
ure 1. The message is firstly padded by appending a bit string of 10*1, where 0*
represents a shortest string of 0’s so that the length of padded message is multi-
ple of r, and cut into r-bit blocks. The b-bit internal state is initialized to be all
zeros. In absorbing phase, each message block is XORed into the first r bits of
the current state, and then it is applied a fixed permutation to the entire b-bit
state. The sponge construction switches to the squeezing phase after all message
blocks are processed. In this phase, the first r bits of the state are returned as
output and the permutation is applied in each iteration. This process is repeated
until all d digest bits are produced. The four instances of SHA-3 family named
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Fig. 1. The sponge construction

SHA3-d are defined from KECCAK[c] by appending a two-bit suffix ‘01’ to the
message, where b = 1600, c = 2d and d ∈ {224, 256, 384, 512}. After that, the
padding of KECCAK is applied. SHAKE128 and SHAKE256 are two instances with
the capacity c = 256 or 512 and any output length d, and the original message
M is appended with an additional 4-bit suffix ‘1111’ before applying the padding
rule, for any output length. The suffixes “128” and “256” indicate the security
strengths that these two functions can generally support. We summarize security
strengths of the SHA-3 functions in Table 2.

Function Output Size Security Strengths in Bits
Collision Preimage 2nd Preimage

SHA3-224 224 112 224 224
SHA3-256 256 128 256 256
SHA3-384 384 192 384 384
SHA3-512 512 256 512 512
SHAKE128 d min(d/2, 128) ≥ min(d, 128) min(d, 128)

SHAKE256 d min(d/2, 256) ≥ min(d, 256) min(d, 256)
Table 2. Security strengths of SHA-3 functions

The KECCAK permutation has 24 rounds, which operates on the 1600-bit
state s that can be viewed as a 3-dimensional array of bits. One bit of the state
at position (x, y, z) is noted as A[x][y][z], where 0 ≤ x, y < 5 and 0 ≤ z < 64.
The mapping between the bits of s and those of A is s[64(5y+x)+z] = A[x][y][z].
Defined by the designers, A[·][y][z] is a row, A[x][·][z] is a column, and A[x][y][·]
is a lane; A[x][·][·] is a sheet, A[·][y][·] is a plane, and A[·][·][z] is a slice.

There are five mappings in each round of the permutation:

θ :A[x][y][z]← A[x][y][z] +

4∑
y′=0

A[x− 1][y′][z] +

4∑
y′=0

A[x+ 1][y′][z − 1].

ρ :A[x][y][z]← A[x][y][z + T (x, y)],where T (x, y) is a predefined constant.

π :A[x][y][z]← A[x′][y′][z],where
(
x
y

)
=

(
0 1
2 3

)
·
(
x′

y′

)
.
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χ :A[x][y][z]← A[x][y][z] + (¬(A[x+ 1][y][z])) ∧A[x+ 2][y][z].

ι :A← A+RC[nr],where RC[nr] is the round constants.

The addition and multiplication are in GF (2). Since we analyse round-
reduced variant with at most 5 rounds, we only give the first five round constants:
0000000000000001, 0000000000008082, 800000000000808a, 8000000080008000,
000000000000808b (given in hexadecimal using the little-endian format).

3 Overview of the Attack

3.1 Notations

We summarize the major notations to be used in this paper in Table 3. In this
paper, the addition operation of KECCAK’s state is performed on GF (2) or the
linear space over GF (2).

Notation Description
c Capacity of a sponge function
r Rate of a sponge function
b Width of a KECCAK permutation in bits,b = r + c
d Length of the digest in bits
p Number of fixed bits in the initial state due to padding
i Period of a symmetric state or an internal difference

θ, ρ, π, χ, ι The five mappings that comprise a round.
L Composition of θ, ρ, π and its inverse denoted by L−1

Rj(·) KECCAK permutation reduced to the first j rounds
S(·) 5-bit Sbox operating on each row of KECCAK state

δin, δout 5-bit input and output differences of an Sbox
M Padded message of M . Note that M is the last block in our attack

M0||M1 Concatenation of strings M0 and M1

α
(j−1)
i Input internal difference of the j-th round function with period i

β
(j−1)
i Input internal difference of χ in the j-th round with period i

A(j−1)
i Bit value vector before θ in the j-th round with period i

B(j−1)
i Bit value vector before χ in the j-th round with period i
∆(·) Internal difference of one state
v(j−1) Canonical representative state of the internal difference in the j-th round

Table 3. The Major Notations in Our Attack

3.2 Overview of the Attack

In this section, we give an overview of our collision attacks. Based on the frame-
work of Dinur et al. [9] and a variant of birthday attack, our collision attack
consists of two parts, i.e., a high probability internal differential characteristic
and several collision subsets generated by the characteristic for finding collisions.

Given an (nr − 1.5)-round internal differential characteristic, there are three
stages in our nr-round collision attacks:
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• Stage 1 — Selecting messages stage: Obtain linear conditions from the 2-
round internal differential characteristic and get several subspaces of mes-
sages passing the first 2 rounds.

• Stage 2 — Collecting messages stage: Compute the outputs after (nr −
1.5) rounds functions from the subspaces found in Stage 1, and store these
outputs into different sets.

• Stage 3 — Brust-force searching stage: By brust force, find a collision from
the outputs after target round of each set in Stage 2.

The collecting messages stage and the brute-force searching stage are simple,
although they take up the main time complexity. Therefore, the core step of our
attack is selecting messages to reduce the complexity of the collision searching
stage. In [9], Dinur et al. use an algebraic method to reduce the workload of
finding messages conforming to the first χ transition. In Section 5, we show a
new method to select messages passing the first two rounds functions, which
saves even more time complexity.

3.3 A Variant of Birthday Attack

When searching for collisions among the outputs of a hash function H, the
birthday attack is the simple technique of selecting distinct inputs xj for j =
1, 2, . . . randomly and checking for a collision among the H(xj) values. The
probability that no collision is found after 2t inputs is

(1− 1/2n)(1− 2/2n) · · · (1− (2t − 1)/2n) ≈ e−2t(2t−1)/2n+1

(1)

where 2n is the cardinality of the range of H [17]. A collision can be found with
high probability for t = n/2. If t is much smaller than n/2, the probability of a
collision being found is close to zero. But by repeating the process of selecting 2t

inputs randomly many times, we can also find a collision with high probability.
This is a variant of birthday attack, which is reformulated as follows. Assume
that the hash function H maps 2k input subsets S1, . . . , S2k into output subsets
D1, . . . , D2k (called collision subsets) and is a random function when it is con-
fined to any set Sj , where Sj (j = 1, . . . , 2k) and Dj (j = 1, . . . , 2k) are both
pairwise disjoint respectively, |Sj | = 2l, |Dj | = 2m (m > 2l). If a collision is
found with a probability P for t = n/2 in Eq. (1), the expected number of the
collision subsets to be searched is 2w (w ≤ k) with the same success probability
P . The relationship between l,m and w is shown as follows:

1− P ≈ (e−2l(2l−1)/2m+1

)
2w

(2)

= e−2l+w(2l−1)/2m+1

(3)

then
2l + w = m. (4)

For the randomly selected input x in the union of all Sj (denoted as S′), assume
that we can determine which output subset H(x) belongs to, but cannot deter-
mine the input subset corresponding to x. So the probability of H(x) in subset
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Dj is 2−k for any j ∈ {1, . . . , 2k}. In order to ensure that each collision subset
has at least two values on average, the number of randomly selected inputs is at
least 2k+1. Therefore, the total number N of inputs we need can be expressed
as

N =

{
2(m+w)/2 k < m,

2k+1 k ≥ m.
(5)

In the attack on 3-round SHA3-512, we use the internal differential character-
istic (k = 20,m = 40) given in [4] for finding collisions. With 233 random input
messages, we can calculate l = 33 − 20 = 13, w = 40 − 2 · 13 = 14. This means
that we need to search 214 collision subsets to find a collision with probability
(1− P ) ≈ 0.4. When w = 15, we can find a collision with a probability close to
1 according to Eq. (2). In this experiment, about 25 collision subsets produced
collisions, which means that we will get one collision for every 215 collision sub-
sets searched. It can be seen that the experimental value of the collision subset
number (w) is very close to the theoretical value.

Assume that H maps a set S of possible inputs into a set D of possible
outputs and S′ =

⋃2k

j=1 Sj , D′ =
⋃2k

j=1 Dj . In our attack, take 4-round SHA3-512
as an example (Figure 2). |S| = 21600, |D| = 2512, |S′| = 2252, |Dj | = 2320. There
are 2156 output subsets Dj , and the size of their union D′ is 2156+320 = 2476.
By using conditional internal differentials, the probability of transition from S′

to D′ is 1. We construct the hash table based on the size of Dj instead of D
for collision search, and the search can be performed simultaneously in multiple
collision subsets. The expected number of inputs to find a collision is 2238.

S : 21600 states

2252 states

D : 2512 outputs

2156 subsets

Collision

2320 outputs

2k∪
j=1

Sj

Dj

Fig. 2. A variant of birthday attack
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4 Description of Internal Difference

In this section we first review the concepts proposed by Dinur et al. [9] in their
generalization of internal differential, and then define a new metric that can
be used to calculate the transition probability of the internal differential more
accurately.

4.1 Internal Difference Sets and Representatives

An important property of KECCAK is that if one state has period i in the z-axis
(i.e., satisfies A[x][y][z] = A[x][y][(z+ i) mod 64], for all (x, y, z)), then applying
to it any of the θ, ρ, π, χ operations, still maintains the period. This state is called
a symmetric state. Since the fundamental period corresponding to i is gcd (i, 64),
we can redefine i ∈ {1, 2, 4, 8, 16, 32}. For i = 16, a symmetric state A[x][y][z]
is composed of four repetitions of slices 0–15. Each such sequence of slices (0–
15, 16–31, 32–47, 48–63) is called a consecutive slice set or CSS in short. This
definition can extend naturally to any i ∈ {1, 2, 4, 8, 16, 32}.

Note that the ι operation disturbs the symmetry because all round constants
are not periodic. Namely, the round constants are not the same among the CSS.

In an internal differential characteristic, unlike standard differential analysis,
the round constant affects the characteristic by introducing a difference between
all CSS’s. This difference then propagates through the other operations, and
its development has to be further studied and controlled. To characterize the
difference between general states and symmetric states, the internal difference is
defined as follows. Given a period i, the set {v + u|u is symmetric} obtained by
adding all symmetric states with period i to a single state v is called the internal
difference, recorded as [i, v]. The zero internal difference [i,0] is exactly the set
of all symmetric states, and other internal differences [i, v] are cosets of [i,0]
(satisfies [i, v] = [i,0] + v). The state v is called the representative state, and
all of [i, v] can be regarded as the representative state. In this paper, we choose
v satisfying v[x][y][z] = 0 (z ∈ {64 − i, . . . , 63}) as the canonical representative
state (exists uniquely in each internal difference). Since the internal difference is
an affine space on GF (2), the action of linear mappings on [i, v] is determined
by their action on the representative state. Namely, θ([i, v]) = [i, θ(v)], ρ([i, v]) =
[i, ρ(v)], π([i, v]) = [i, π(v)], ι([i, v]) = [i, ι(v)].

4.2 Transition Probability of Internal Difference

As in standard differential cryptanalysis, the output difference of the internal
difference applying χ depends on the actual input, only if the input difference
is zero internal difference, the output difference is unique and also a zero inter-
nal difference. In other words, we randomly select several states from the same
internal difference as the inputs of χ, and the outputs may belong to different
internal differences. As in standard differential analysis, when an internal differ-
ence is identified as an input to χ, we need to calculate its all possible output
internal differences and the transition probability to a possible output internal
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difference. For this purpose, we propose the concept of differential transition
conditions in combination with the properties of the KECCAK Sbox.

Property 1. Given the input difference δin = (δ0, . . . , δ4)
T of the 5-bit

KECCAK Sbox, the output difference δout is determined by q (2 ≤ q ≤ 4) lin-
ear conditions with respect to the actual input x = (x0, . . . , x4)

T . The q linear
conditions {lt(x)}q−1

t=0 (without constant terms) are called differential transition
conditions. Equivalently, δout = S(x)⊕ S(x⊕ δin) = C · x⊕ η, where C ∈ F5×5

2 is
a matrix (rank(C) ∈ {2, 3, 4}) and η ∈ F5

2 is a constant vector. It can be easily
verified that C and η can be represented by δin as

C =


δ2 δ1

δ3 δ2
δ4 δ3

δ4 δ0
δ1 δ0

 , η = S(δin) =


δ0 ⊕ (δ1 ⊕ 1)δ2
δ1 ⊕ (δ2 ⊕ 1)δ3
δ2 ⊕ (δ3 ⊕ 1)δ4
δ3 ⊕ (δ4 ⊕ 1)δ0
δ4 ⊕ (δ0 ⊕ 1)δ1

 .

Remark 1. Property 1 holds for the KECCAK Sbox due to its algebraic degree of
2, and a similar property applies to any Sbox with algebraic degree of 2.

Take δin = 0x3 as an example, the output difference is

δout =


0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
1 1 0 0 0



x0

x1

x2

x3

x4

⊕

1
1
0
1
0

 .

The differential transition conditions are {l0 = x4, l1 = x2, l2 = x0 + x1}, and
their corresponding output differences are recorded in Table 4. We call the table
containing differential transition conditions difference conditions table (DCT) of
the Sbox. The new table constructed by assigning the differential transition
conditions in DCT and recording their resulting output differentials is called values
of difference conditions table (VDCT).

δout 0x0b 0x1b 0x0a 0x1a 0x03 0x13 0x02 0x12

(l0, l1, l2) (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)
Table 4. The differential transition conditions of δin = 0x03

In internal differential cryptanalysis, we call the set E composed of all differ-
ential transition conditions obtained from the canonical representative state of a
internal difference as the differential transition conditions of the internal differ-
ence. The rank of E is called the transition condition number, and the transition
condition number of the i-th round is denoted as ki. If the transition condition
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number of [i, v] is k, there are 2k possible output internal differences and the
upper bound of transition probability is 2−k. In procedure IDTC , we show the
details of calculating transition condition number.

Procedure IDTC(A,A′, i,DCT, V DCT,E)
Input: The input internal difference A before χ, the output internal difference

A′ of A, period i, DCT, VDCT, a linear equation system E.
Output: The updated linear equation system E.

1 for each integer j ∈ [0, 320) do
2 Obtain the input difference δin of the j-th Sbox from A.
3 Obtain the output difference δout of the j-th Sbox from A′.
4 if δin ̸= 0 then
5 Obtain differential transition conditions E0 = {lj(W )}q−1

j=0 from
DCT[δin], where W is a 25i-bit variable vector.

6 Obtain value of conditions (ε0, . . . , εq−1) from VDCT[δin][δout].
7 Update E0 = {lj(W ) = εj}q−1

j=0 .
8 E = E ∪ E0.
9 end

10 end
11 return E

5 The Framework and Basic Techniques

In this section, we first present the basic framework of collision attacks on the
SHA-3 hash functions with reduced rounds. Then we show the details of tech-
niques and some optimizations for improving our attack.

5.1 The Framework of the Attack

Following the variant of birthday attack, we adopt the strategy of first collecting
messages and storing them in different sets, and then performing collision search
in each set in turn. Figures 3 and 4 show the basic framework of our attack.

In Stage 1, the probability of the first two rounds in Figure 3 can be increased
to 1 by algebraic methods (as described in next section), while losing exactly
(k1+k2) degrees of freedom. In the collecting messages stage, the messages after
two round functions and linear operations of the third round (i.e., the first 2.5
rounds) are stored in different sets according to certain rules for the third stage.
In Stage 3, the internal difference after 2.5 rounds results in 2k3 different internal
differences after the χ operation, and the set generated by the j-th internal
difference after another round function is denoted as D(j). Since the probability
of collision in the same D(j) is much higher than between different sets, we search
for collisions in each D(j) in sequence. But in most cases, we conduct collision
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search on subsets one by one before χ operation of the last round. In this case,
the subsets can be regarded as collision subsets and are pairwise disjoint. Note
that all the messages selected in Stage 1 enter a certain collision subset in Stage
3, so we establish an internal differential with probability 1.

[i, v(0)]
R−−−−−→

p=2−k1

[i, v(1)]
R−−−−−→

p=2−k2

[i, v(2)]
L−−→ [i, v(2.5)]

χ,ι−−→


[i, v

(3)
1 ]

R−−→ D(1)

[i, v
(3)
2 ]

R−−→ D(2)

· · · R−−→ · · ·
[i, v

(3)

2k3
]

R−−→ D(2k3 )

Selecting messages Collecting messages Searching

Fig. 3. The framework of 4-round collision attack

M0
R5

−−→ ⊕ −→ [i, v(0)]
R−−−−−→

p=2−k1

[i, v(1)]
R−−−−−→

p=2−k2

[i, v(2)]
L◦R−−−−−−→

p=2−k3

[i, v(3.5)]
χ,ι−−→


[i, v

(4)
1 ]

R−−→ D(1)

[i, v
(4)
2 ]

R−−→ D(2)

· · · R−−→ · · ·
[i, v

(4)

2k4
]

R−−→ D(2k4 )

Selecting messages Collecting messages SearchingTIDA

[i,M1]

Fig. 4. The framework of 5-round collision attack

In the framework of collision attack on 5-round SHA-3, we select 2-block mes-
sages as inputs and use improved target internal difference algorithm (TIDA).
The internal differential characteristic used in the attack is given in Character-
istic 3 in Appendix A, which covers 2.5 rounds starting from the second round.
TIDA is used to find the initial internal difference and the first messages to con-
struct a complete internal differential characteristic with high probability. The
full details and analysis of the attack are given in Section 5.5.

5.2 Finding Messages Conforming 2-round Internal Differential
Characteristic

In this section, we present an algorithm for finding messages conforming to
the first two χ transitions as depicted in Algorithm 1. For a known internal
differential characteristic, as shown in Figure 3, let the states with period i in
the internal difference be expressed as follows:

u(0) = v(0) +A(0)
i , u(0.5) = v(0.5) + B(0)i , u(1) = v(1) +A(1)

i , u(1.5) = v(1.5) + B(1)i ,
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Algorithm 1: Finding Messages Passing 2-round Internal Differential
Input: An internal differential characteristic, and a period i.
Output: Initial messages conforming 2-round internal differential

1 Ej = ∅, j ∈ {0, 1, 2, 3, 4, 5}
2 Set A(0)

i ,B(0)
i ,A(1)

i ,B(1)
i to being 25i-variable vectors.

3 Add constraints on A(0)
i such that the symmetric state generated by A(0)

i

satisfies the padding rule and equal to 0 in the capacity part.
4 Obtain the input internal difference v(1.5) and the output internal difference

v(2) +∆(RC[2]) of the second χ from the given characteristic.
5 IDTC(v(1.5), v(2) +∆(RC[2]), i, DCT, VDCT, E1).
6 Transform E1(b

(1)
0 , . . . , b

(1)
25·i−1) to E1(a

(1)
0 , . . . , a

(1)
25·i−1).

7 for each a
(1)
j appearing in E1(A(1)) do

8 E2 = E2 ∪ {b(0)⌊j/5i⌋·5i+[(j+i) mod 5i] = xt}.
9 t = t+ 1.

10 end
11 Obtain the input internal difference v(0.5) and the output internal difference

v(1) +∆(RC[1]) of the first χ from the given characteristic.
12 IDTC(v(0.5), v(1) +∆(RC[1]), i, DCT, VDCT, E0).
13 E4 = E0 ∪ E2.
14 Transform E4(b

(0)
0 , . . . , b

(0)
25·i−1) to E4(a

(0)
0 , . . . , a

(0)
25·i−1).

15 Reduce E4.
16 do
17 Randomly assign values to the free variables in {xj}t−1

j=0.
18 Obtain E3 by subsituting E2 into E1.
19 Transform E3(b

(0)
0 , . . . , b

(0)
25·i−1) to E3(a

(0)
0 , . . . , a

(0)
25·i−1).

20 E5 = E3 ∪ E4.
21 while E5 is not consistent;
22 Solve E5 and obtain the initial messages.
23 return initial messages

where u(j+0.5) and v(j+0.5) are the state and the internal difference before the
(j + 1)-th χ transition respectively, A(0)

i ,B(0)i ,A(1)
i ,B(1)i are all symmetric state

with period i and they have the following vector form (determined by their CSS):

A(t)
i = (a

(t)
0 , . . . , a

(t)
25·i−1),B

(t)
i = (b

(t)
0 , . . . , b

(t)
25·i−1),

where (a
(t)
j·i , . . . , a

(t)
j·i+i−1) are the first i bits of the j-th lane of A(t), and A(0)

i

satisfies the padding rule and equals to 0 in the capacity part. In order to pass
the χ operations of the first two rounds with probability 1, we should find A(0)

i

such that B(0)i and B(1)i satisfy the respective differential transition conditions
(denoted as E0(B(0)i ) and E1(B(1)i ) appearing in Algorithm 1). E0(B(0)i ) and
E1(B(1)i ) can be transformed into E0(A(0)

i ) and E1(A(1)
i ) by the linear operation

(L(A(0)
i ) = B(0)i , L(A(1)

i ) = B(1)i ). Since A(1)
i = χ(B(0)i ), a(1)j = b

(0)
j ⊕ (b

(0)
j+i ⊕ 1) ·
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b
(0)
j+2i, we regard b

(0)
j+i as a variable x, then

a
(1)
j =

{
b
(0)
j ⊕ b

(0)
j+2i , x = 0,

b
(0)
j , x = 1.

In general, all bits b
(0)
j+i corresponding to the bits a

(1)
j appearing in E1(A(1)

i ) are
set as intermediate variables {xt}t∈I (I is index set), and the system composed
of b(0)j+i = xt is E2. Noting that each xt is the value of a bit b

(0)
j , it is actually

a linear equation about A(0)
i . So {xt}t∈I may be linearly independent. We call

the variables in the maximal linearly independent system of {xt}t∈I are the
free variables (short for free intermediate variables). After assigning a value to
{xt}t∈I , E1 can be expressed as a linear system of B(0)i , which is also a linear
system of A(0)

i , denoted as E3. For the convenience of calculation, we combine
the transition conditions of the first round and assignment conditions (E0∪E2).
Then, by solving the linear system E0∪E2∪E3 and XORing each solution with
v(0), the message M conforming 2-round internal differential characteristic is
obtained. In fact, all messages M satisfying the first two χ transitions can be
found in this way, because we can traverse all possible values of {x}t∈I . Therefore,
we lose (k1 + k2) degrees of freedom in total. We need to remove linear related
conditions in the linear system and {xt}t∈I , the details of algorithm are shown
in Algorithm 1. As a simple example, in Figure 5, we set k1 = 3, k2 = 2, and the
number of free variables is t = 3. If the total number of initial messages is 2n,
the differential transition conditions of the first round divides the message spaces
into eight subspaces, one of which (named S1) conforms the first χ transition.
Each assignment of the free variables divides the space S into 2k3 = 8 subspaces,
and also divides S1 into 2t = 8 parts (named S2). The second round differential
transition conditions divide each S2 into 2k2 = 4 subspaces, one of which (named
S3, as shown by the shadow) conforming the second χ transition. The expected
size of S3 is 2n−8. After all possible values of the free variables are retrieved,
about 2n−5 messages will conform the first two χ transitions.

S :

|S2| = 2n−6 |S3| = 2n−8

S1 :

|S1| = 2n−3

Fig. 5. Message subspaces S and S1
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5.3 Collecting Messages Belonging to Different Internal Difference

We give the details of Stage 2, which collect and store messages into different
sets to determine which internal difference the state belongs to after the last
linear operation.

For 4-round collision attacks, the values of differential transition conditions
of the third round are denoted as E(B(2)i ) = {lt(B(2)i )}

k3−1

t=0 , where B(2)i =

R(2.5)(M)⊕ v(2.5) (M is the message output by Algorithm 1). Then M is stored
in D(index) with index =

∑k3−1
t=0 lt ·2t, where D(j) corresponds to the j-th output

internal difference. In 5-round collision attacks, we calculate the corresponding
data for the 4-th round instead. The details of this step for 4-round collision at-
tacks are shown in Algorithm 2. In order to apply the variant of birthday attack
and reduce complexity, in most cases, we will search collisions before the last χ
operation, where D(j) is the internal difference of (nr−0.5) rounds for nr-round
collision attacks.

Algorithm 2: Store Messages into Set D(i)

Input: Message M output from Algorithm 1, subset family
D = {D(0), . . . , D(2k3−1)}, 2.5-round internal differential characteristic.

Output: Subset family D = {D(0), . . . , D(2k3−1)}.
1 Compute B(2)

i = R(2.5)(M)⊕∆(R(2.5)(M)) and set E = ∅.
2 for each integer j ∈ [0, 320) do
3 Get the input difference δin of the j-th Sbox from ∆(R(3.5)(M)).
4 if δin ̸= 0 then
5 Get differential ransition conditions E1 from DCT[δin].
6 E = E ∪ E1.
7 end
8 end
9 Reduce E = {l0, . . . , lk3−1}.

10 Compute (η0, . . . , ηk3−1) = (l0(B(2)
i ), . . . , lk3−1(B(2)

i )).

11 index =
k3−1∑
j=0

ηj · 2j .

12 D(index) = D(index) ∪ {M}.
13 return D

5.4 Bounding the Size of Collision Subset

In the variant of birthday attack, the size of the collision subset determines the
time complexity. We use the method in [9] to bound the size of the collision
subset.

The collision subset is essentially the output of ι◦χ, and the subset of internal
difference is the input of χ. Obviously, operation ι can be ignored since it does
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not affect the size of the collision subset. A property of χ is that it is applied
independently on each plane of the state and in particular, maps each plane to
itself. When the output is the first d bits of the final state, we bound the number
of its possible values by computing the size of which the internal difference is
projected onto its first 320⌈n/320⌉ bits. For d = 384 and d = 448, the size
of collision subset can be bounded more accurately: each output bit A[x][y][z]
of χ depends on the 3 input bits A[x][y][z], A[x + 1][y][z] and A[x + 2][y][z].
Therefore, each output lane A[x][y][·] of χ only depends on the 3 input lanes
A[x][y][·], A[x + 1][y][·] and A[x + 2][y][·]. In the case of d = 384, the first 5
lanes are mapped to themselves by χ, and the remaining lane depends on only
3 consecutive lanes. For d = 448, the 7 output lanes depend on 9 input lanes.

For d-bit collision subset, given that it depends only on the first d′ bits
before the χ mapping. As the period is i, each lane can assume at most 2i

values. Thus, for 256 ≤ d ≤ 320 (d′ = 320) we obtain a basic bound of 25i and
for 512 ≤ d ≤ 640 (d′ = 640) we obtain a basic bound of 210i. For d = 384
(d′ = 512) and d = 448 (d′ = 576), the computation can be divided into two
parts: the first 5 lanes of the output can assume at most 25i values, and the
remaining bits can assume at most min(264, 23i) and min(2128, 24i) values. From
the previous analysis, we obtain a bound of 25i ·min(264, 23i) for d = 384 and a
bound of 29i for d = 448. Clearly, the bound only depends on i and d′ (which
determined by d).

5.5 The Target Internal Difference Algorithm

Dinur et al. [8] explored the target difference algorithm (TDA) to link a dif-
ferential characteristic to the initial state of the KECCAK permutation. In [9],
they generalized this method as a variant for internal differential cryptanaly-
sis, which is called target internal difference algorithm (TIDA). Analogously, the
TIDA is used to link an internal differential characteristic to the initial state,
using one permutation round. The initial internal difference of the internal dif-
ferential characteristic is called the target internal difference, denoted by ∆T∗ .
The outputs of the algorithm are single-block messages whose internal difference
after one permutation round is ∆T∗ .

In this section, we focus on ∆T = ∆T∗ ⊕∆(RC[1]) and set it as the target
internal difference. We modify the output of the algorithm to 2-block messages
and apply it to our 5-round collision attack. Namely, given a target internal
difference ∆T , we use TIDA (Algorithm 3) to find 2-block messages (M0||M1)
such that

∆[χ ◦ L(R5(M0||0c)⊕ (M1||0c))] = ∆T . (6)

The first step in constructing the algorithm is to choose period i = 32 (and
all operations of internal difference are performed on the state that the length of
each lane is 32) so that the equations in the algorithm will have enough degrees
of freedom. Then, according to a property of χ provided in [8] (as shown in
Property 2), the input internal differences corresponding to ∆T span several
affine subspaces.
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Property 2 ([8]). For a non-zero 5-bit output difference δout to a KECCAK Sbox,
the set of possible input differences, {δin|DDT (δin, δout) > 0}, contains at least
5 (and up to 17) 2-dimensional affine subspaces.

Algorithm 3: Target Internal Difference Algorithm (TIDA)
Input: Target internal difference ∆T , target transition condition number kT ,

and target number of rounds nr.
Output: 2-block message (M0,M1), initial internal difference ∆I , k1 of L(∆I)

1 Set E∆ = ∅ and ∆⋆
I = L−1(W ) with a variable vector W = (w0, . . . , w799).

2 for each non-active Sbox of ∆T do
3 E∆ = E∆ ∪ {w5j = 0, . . . , w5j+4 = 0}, for the j-th Sbox.
4 end
5 for each active Sbox of ∆T do
6 Select one 2-dim affine subspace from δin according to ∆T .
7 Add 3 affine equations to E∆ according to the 2-dim affine subspace.
8 end
9 do

10 Randomly select M0 and compute ∆(Rnr (M0)).
11 Ec = {∆⋆

I [j] = ∆(Rnr (M0))[j]}799j=800−p−c/2

// ∆⋆
T [j] is the j-th bit of ∆⋆

T , the same in ∆(Rnr (M0))

12 while E∆ ∪ Ec is not consistent;
13 Randomly select a solution ∆I of E∆ ∪ Ec.
14 Calculate k1 corresponding to ∆I .
15 if k1 < kT then
16 Set E0 = ∅.
17 IDTC(L(∆I),∆T , 32, DCT, VDCT, E0).
18 if E0 is consistent then
19 Break.
20 end
21 end
22 M1 = Rnr (M0)⊕∆I ⊕ sym, where sym is a random symmetric state

satisfying padding rule and equals to 0 in the capacity part.
23 return (M0,M1),∆I , k1

We select an 800-dimension subspace (named W ) and map it to the initial
internal difference ∆⋆

I = L−1(W ). The first block M0 is randomly selected until
it satisfies that there is a internal difference ∆I in L−1(W ) equal to the internal
difference of R5(M0||0c) on the padding and capacity bits. Note that the internal
difference ∆I is obtained after the first block M0 is determined, we can calculate
the transition condition number k1 of L(∆I). In order to obtain smaller k1, we
select more M1 to get several ∆I and choose the best input internal difference.
The remaining bits of ∆I can be satisfied by modifying the value of the second
block M1. However, due to the insufficient degrees of freedom of the second
block, Eq.(1) may not have a solution. In other words, if the transition condition
number of L(∆I) is k1, it results in 2k1 different output internal differences. But
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the degree of freedom of M1 is less than 1600, not all Sboxes have enough inputs
to generate all possible outputs. The number of actual output internal differences
may be less than 2k1 , and ∆T may not be among them. When this occurs, we
need to redefine the first block M0. The details are given in Algorithm 3, and
the above process is equivalent to solving equation systems.

6 Results and Complexity Analysis

In this section, we present the details and experimental results of our collision
attack on different versions of SHA-3. Given an internal differential characteristic
spanning (nr − 1.5) rounds of the KECCAK permutation, a collision attack on
nr-round SHA-3 consists of the following steps:

1. Construct linear equation systems according to the differential transition
conditions of the first two rounds and solve them to get enough initial mes-
sages.

2. Pick an arbitrary message obtained in Step 1 and calculate its internal dif-
ference after (nr − 1.5) rounds. If the internal differential characteristic is
satisfied, store the message into the corresponding subset. Otherwise, discard
the message and go back to Step 2 until collect enough states.

3. Choose an unselected subset.
(a) Pick a state and store its output after the nr-th round in a hash table

(along with its initial message) and check for a collision.
(b) If a collision is found, stop and output it. Else if all states are chosen

and there is no collision, go back to Step 3. Otherwise, go back to (a).

6.1 Collision Attacks on 4-round SHA3-384 and SHAKE256

For 4-round SHA3-384 and SHAKE256, we use the same 2.5-round characteristic
(Characteristic 1 in Appendix A). We choose i = 8 and use the techniques
of Section 5.1-5.3. The transition condition numbers of the characteristic are
(k1, k2, k3) = (11, 8, 78). The size of {xt}t∈I is 80. There are 59 free variables in
SHA3-384 and 72 free variables in SHAKE256. Therefore, in Stage 1, the number
of assignments to {xt}t∈I will not exceed 272.

For SHA3-384 and SHAKE256 (d ≤ 448), the size of each collision subset is
less than k3. In order to launch collision attack, we need to ensure that there are
at least two messages in each collision subset on average. So in the first stage we
select 279 messages conforming to the first two χ transitions. For d = 448, we
can find a collision with good probability by searching 271 collision subsets, and
we need fewer collision subsets for smaller d. So the complexity is mainly caused
by the first two stages, and it can be reduced by placing eight messages in each
state. More specifically, if the initial state can be expressed as u(0) = A(0)+v(0),
where A(0) is a fully symmetric state with period i = 8 and v(0) is the initial
internal difference in Characteristic 1. Rewrite A(0) as follows:

A(0) = (A(0)
8 ,A(0)

8 ,A(0)
8 ,A(0)

8 ,A(0)
8 ,A(0)

8 ,A(0)
8 ,A(0)

8 ),
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where A(0)
8 is a CSS of A(0), and A = (A1, . . . ,Aj) means each lane of the

state A is the concatenation of the lane corresponding to Ak (k = 1, . . . , j). The
linear operation L acting on the (5 × 5 × 8)-bit state is denoted by L[8]. Due
to the property of KECCAK mentioned in Section 4.1, L(A(0)) has the following
expression:

L(A(0)) = (L[8](A
(0)
8 ), . . . , L[8](A

(0)
8 )).

In Characteristic 1, the canonical representative states of the first two rounds are
fixed-points of θ. Namely, the states are in the CP-kernel. As a result, The first
2.5 rounds of operation of the messages u(0) selected in Stage 1 can be simplified:

L(u(0)) = L(A(0)) + L(v(0)) = (L[8](A
(0)
8 ), . . . , L[8](A

(0)
8 )) + L(v(0))

u(0.5) = B(0) + v(0.5) = (B(0)8 , . . . ,B(0)8 ) + v(0.5)

ι ◦ χ(u(0.5)) = χ(B(0) + v(0.5)) +RC ′[1] = (A(1)
8 , . . . ,A(1)

8 ) + v(1).

Since the last 8 bits in each lane of the canonical representative states are zero,
the last CSS of B(0) + v(0.5) is B(0)8 which means A(1)

8 = χ(B(0)8 ). In the second
round:

L(u(1)) = L(A(1)) + L(v(1)) = (L[8](A
(1)
8 ), . . . , L[8](A

(1)
8 )) + L(v(1))

u(1.5) = B(1) + v(1.5) = (B(1)8 , . . . ,B(1)8 ) + v(1.5)

ι ◦ χ(u(1.5)) = χ(B(1) + v(1.5)) +RC ′[2] = (A(2)
8 , . . . ,A(2)

8 ) + v(2),

where A(2)
8 = χ(B(1)8 ), RC ′[j] = ∆(RC[j]), j ∈ {1, 2}. And in the third round,

B(2)8 = L[8](A
(2)
8 ). Therefore, in the collecting messages stage, we can simul-

taneously calculate eight messages u
(0)
0 , . . . , u

(0)
7 and calculate their transition

conditions of the third round in the following way:

L ◦ χ ◦ L ◦ χ ◦ L(A(0)
8,0, . . . ,A

(0)
8,7)

= (L[8] ◦ χ ◦ L[8] ◦ χ ◦ L[8](A
(0)
8,0), . . . , L[8] ◦ χ ◦ L[8] ◦ χ ◦ L[8](A

(0)
8,7))

= (B(2)8,0,B
(2)
8,1,B

(2)
8,2,B

(2)
8,3,B

(2)
8,4,B

(2)
8,5,B

(2)
8,6,B

(2)
8,7),

where A(0)
8,j is a CSS of the symmetric state of u(0)

j . From each B(2)8,j we can obtain
the transition conditions and calculate the index wj of its internal difference, then
store it into the set D(wj) (the wj-th output internal difference after the third
χ).

After collecting messages stage, we compute the outputs of each set after L◦χ
(the state also can be divided into eight parts to simultaneously calculate eight
symmetric states) and find a collision. According to the analysis in Section 5.4,
in order to produce the final collision, the location of the collision needs to be
determined. For 256 ≤ d ≤ 320, we have to find collisions on the first 5 lanes
before the last χ. For d = 384, the collision location is the first 8 lanes. And
for d = 448 and 512 ≤ d ≤ 640, the number is 9 and 10. Taking d = 320
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as an example, if there is a collision (B(3)8,p,B
(3)
8,q) on the first 5 lanes, then for

any internal difference ∆ = (∆0, . . . , ∆7), ι ◦ χ(B(3)8,p + ∆0, . . . ,B(3)8,p + ∆7) and
ι◦χ(B(3)8,q +∆0, . . . ,B(3)8,q +∆7) will be equivalent on the first 320 bits. Therefore,
we can calculate their initial symmetric states A(1)

8,p and A(1)
8,q, and get the initial

messages Mp and Mq by XORing with the initial internal difference. After the
previous analysis, we can find a collision R4(Mp) and R4(Mq) on the first 320 bits.
Note that this technique can be extended naturally to any i ∈ {1, 2, 4, 8, 16, 32}.
And for d > 448, we also need 279 messages to launch attack from the Eq. (1).
In all cases, the expected complexity is 279−3 = 276. This is 271 times faster than
the internal differential attack by Dinur et al. [9] for 4-round SHA3-384.

6.2 A Collision Attack on 4-round SHA3-512

For 4-round SHA3-512, we choose i = 32 and used the 2.5-round internal differ-
ence characteristic given in Characteristic 2 in Appendix A. The transition condi-
tion numbers of the characteristic are (k1, k2, k3) = (16, 16, 170). For k3 = 170,
there are 2170 different internal differences after the χ mapping of the third
round. These internal differences actually compose a 170-dimensional affine space
(denoted as U) over GF (2). The projection of the affine space L◦ι(U) on the first
10 lanes consists of internal differences which are projected to the first 10 lanes,
and its dimension is 156. For d = 512, we collect the messages with the same
internal difference in the first 10 lanes into a set. Then we need fewer messages
for generating collisions.

In selecting messages stage, the size of the variable set {xt}t∈I is 172, and
there are 138 free variables. Therefore, we obtain 2284−(138+16+16) = 2114 ex-
pected messages after the variables of {xt}t∈I are assigned each time. Since the
size of collision subset is 210·32 = 2320, we need to choose 2(320+156)/2 = 2238

messages, which conforming the first two rounds internal differential character-
istic, in order to find a collision with high probability. In order to obtain enough
messages, we make 2238−114 = 2124 different assignments to {xt}t∈I .

In the next stage, we compute the outputs after 3.5 rounds functions from
the subspaces found in Stage 1. Then collect the outputs with the same internal
difference in the first 10 lanes into a set.

In searching stage, the sets obtained from the previous step are considered
as collision subsets, and we search for collisions on the first 10 lanes in each
collision subset in turn. If there is a collision (B(3)32,0,B

(3)
32,1) in a collision subset

with ∆ (projection of the canonical representative state on the first 10 lanes), it
will result in a collision χ(B̃(3)32,0, B̃

(3)
32,0 ⊕∆) = χ(B̃(3)32,1, B̃

(3)
32,1 ⊕∆) after 4-round,

where B̃(3)32,j is the projection of B(3)32,j on the first 10 lanes for j = 0, 1. In fact, the
value of this internal difference does not need to be calculated. We can use the
inverse operation to obtain the initial messages corresponding to B(3)32,0 and B(3)32,1,
and then calculate the outputs after 4-round function, following Section 6.1.

Since period i = 32 is half the lane size, we can put the first CSS of two
completely symmetric states in each state to represent the corresponding message
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for calculation (as in Section 6.1). The expected time complexity of calculating
the output of all messages after 4-round permutation is bounded by 2238−1 =
2237, and the complexity caused by assignment to {xt}t∈I can be ignored. This
is 219 times faster than the general birthday attack.

6.3 A Collision Attack on 5-round SHAKE256

In this section, we present a collision attack on 5-round SHAKE256. Our attack
uses internal differential characteristic given in Characteristic 3 in Appendix A,
which covers 2.5 rounds satrting from the second round. The transition condition
numbers of the characteristic are (k2, k3, k4) = (21, 18, 16). For [32, ι−1(v(1))],
there 129 active Sboxes and 31 non-active Sboxes. Each active Sbox provides 3
linear equations, each non-active Sbox provides 5 linear equations, and the first
message block provides 262 linear equations. The size of the linear system used to
solve the input internal difference L(∆I) is 804, and the rank is 779. Therefore,
we can obtain a consistent linear system E∆∪Ec by randomly select 225 the first
blocks on average. Since the number of variables in the linear system is 800 and
the rank is 779, each consistent linear system E∆ ∪ Ec has 221 solutions (∆I).
For i = 32, the internal differential transition conditions number is the sum of
the transition condition numbers of all Sboxes of the canonical representative
state. Let k(Sj) be the transition condition number of the j-th Sbox for ∆T ,
then we can calculate the expectation of k1:

E(k1) =
159∑
j=0

E(k(Sj)). (7)

Assume that δ
(j)
out is the output difference of Sj and the 2-dimension affine sub-

space of its possible input differences we choose is {δ0, δ1, δ2, δ3}. For input dif-
ference δ

(j)
in , its transition condition number is the rank of the subspace formed

by all possible output differences. So the expectation of k(Sj) is expressed as:

E(k(Sj)) =
1

4

3∑
j=0

(5− log2 DDT(δ(j)in , δ
(j)
out)). (8)

The expected transition condition number of ∆I is 410.5, so we can easily obtain
massive characteristics with k1 < 400 to get enough messages. The smallest k1 we
have found is 375. We also use the technique in Section 6.1 to put two messages
in the same state when performing the attack, which reduces the complexity on
average by half. In selecting messages stage, the size of {xt}t∈I is 224 and there
are 93 free variables for the characteristic. In collecting messages stage, we store
the states after 3.5 rounds in different subsets, which are the output internal
differences of states after the fourth χ operation. In searching stage, for d = 384,
the collision subsets are the outputs after 5-th round of subsets in Stage 2. In
this case, the size of each collision subset is bounded by 232·5+64 = 2224 and the
collision subsets are pairwise disjoint. Actually, due to χ acting on the first 5 lanes
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is bijection, the projection of any collision subset and its internal difference before
the last χ is one to one on the first 320 bits. It can be seen from Characteristic
3 that there are 2k3 = 216 different internal differences, and their projections on
the first 5 lanes can be verified to be different from each other. When conducting
collision search, we need to calculate the complete state. So the time complexity
in total is 218+(224+16)/2 = 2138. If we take the internal difference of 4.5-round as
the collision subset, in order to produce a collision after 5-round, we need to find
a collision of the first 8 lanes before the last χ. The size of each collision subset
is 28·32 = 2256, which will lead to more time complexity 218+(256+16)/2 = 2154.
For other d, we still search collisions before the last χ and use the techniques in
Section 6.1 to reduce time complexity. In addition, since p = 6 and c = 512 in
SHAKE256, we can obtain full-bit (1600-bit) collisions by searching for the last
(p + c)-bit collisions. Assume that the outputs N and N ′ of 2-block messages
(M0||M1) and (M ′

0||M ′
1) are equal in the last 518 bits. We can introduce the third

block messages M2 and M ′
2 satisfying N ⊕ (M2||0c) = N ′ ⊕ (M ′

2||0c) to obtain
the full-bit collision R5(N ⊕ (M2||0c)) = R5(N ′ ⊕ (M ′

2||0c)). And the complexity
of searching for full-bit collisions is the same as the case of d ≤ 640.

The number of messages for collision attack and attack complexity are listed
in Table 5 for different d. Note that the same internal differential characteristic
is also applicable to the collision attacks on SHA3-224, SHA3-256 and SHAKE128,
where attack complexities are both the complexity corresponding to d = 256.

d
Number of

characteristics Complexity (log2)

256 ∼ 320 1 106− 1 = 105

384 1 138
448 263 170− 1 = 169

≥ 512 279 186− 1 = 185
Table 5. The parameters of characteristics and complexity

6.4 Summary of Collision Attacks

We summarize different versions of collision attacks in Table 6. For 4-round
SHA-3, the first two canonical representative states of Characteristics we used is
in CP-kernel. Since ι brings about extra internal differences, we do not find the
characteristics where the canonical representative states of the first three rounds
are all in CP-kernel. For 5-round SHA-3, we first determine the internal difference
of the third round and then search for the appropriate target internal difference.
Too few active Sboxes of the target internal difference will make it difficult to find
the first block message M0, and too many will make the differential transition
probability of the first round too small, which will consume many degrees of
freedom. Therefore, the number of active Sboxes for target internal difference is
preferably between 128 and 135.
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Target nr i DF† k1 k2 k3 k4 Complexity (log2)
SHA3-384 4 8 104− 4 = 100 11 8 78 - 79− 3 = 76

SHA3-512 4 32 288− 4 = 284 16 16 170 - 238− 1 = 237

SHAKE256 4 8 136− 6 = 130 16 8 78 - 79− 3 = 76

SHA3-224/SHA3-256/SHAKE128 5 32 ≥ 540 - 21 18 16 106− 1 = 105

SHAKE256 5 32 544− 6 = 538 - 21 18 16 ≤ 185
† Degree of freedom of the initial message space.

Table 6. The parameters of characteristics and complexities

7 Conclusions

In this paper, we presented collision attacks on up to 5 rounds of all the six SHA-3
functions by developing conditional internal differential cryptanalysis. We intro-
duced the differential transition conditions to describe the evolution of internal
differences and estimate the transition probability more accurately. By solv-
ing the linear systems constructed with the difference transition conditions of
two rounds, we obtained the messages that conform 2-round internal differential
characteristic. According to the linear conditions on their middle states, these
messages were divided into different subsets. We described a variant of birthday
attack and applied it to these subsets for getting the collisions.

Compared with differential cryptanalysis, searching for internal differential
characteristics in CP-kernel might be more difficult because ι cannot be ignored
in internal differential cryptanalysis, while the length of internal differential char-
acteristic used in the collision attack is shorter. It seems that standard differential
cryptanalysis is more effective for reduced versions of SHA-3 with a low security
strength and a large rate, while internal differential has advantages for higher se-
curity strengths since the collision is easier produced for a longer digest. In spite
of this, our collision attack on each variant of SHA-3 expect SHAKE128 can reach
the most rounds at present. For 4-round SHA3-512, our collision attack outper-
forms the best known attacks, and the collision attack on 5-round SHAKE256 is
presented for the first time.

We stress that our attack does not threaten the security of the full SHA-3.
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A Internal Differential Characteristics for the Attacks

The internal difference [i, v] is represented by its canonical representative state
defined in Section 4.1. Each state is given as a matrix of 5× 5 lanes of 64 bits,
order from left to right, where each lane is given in hexadecimal using the little-
endian format. The symbol ’-’ is used in order to denote a zero 4-bit value.

|---------------1|----------------|----------------|------8---------|----------------|
|----------------|----------------|---------1------|------8---------|----------------|
|---------------1|----------------|---------1------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|

|---------------1|----------------|---------------8|----------------|----------------|
|---------------8|----------------|---------------8|----------------|----------------|
|----------------|--------4-------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|--------4-------|----------------|----------------|----------------|

|---------------1|----------------|---------------8|----------------|----------------|
|----------------|----------------|---------------8|----------------|----------------|
|----------------|--------4-------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|--------4-------|----------------|----------------|----------------|

|----------------|----------------|---------------8|----------------|----------------|
|----------------|----------------|---------------8|----------------|----------------|
|----------------|--------4-------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|--------4-------|----------------|----------------|----------------|

|----------------|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|-------------2--|----------------|----------------|----------------|
|----------------|----------------|-----1----------|----------------|----------------|
|---------------2|----------------|----------------|----------------|-------1--------|

|----------------|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|-------------2--|----------------|----------------|----------------|
|----------------|----------------|-----1----------|----------------|----------------|
|---------------2|----------------|----------------|----------------|-------1--------|

|------------8-82|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|-------------2--|----------------|----------------|----------------|
|----------------|----------------|-----1----------|----------------|----------------|
|---------------2|----------------|----------------|----------------|-------1--------|

|-------1----8482|-----8-8-828-8-8|--1-------------|--6-2-2-2-2-2-2-|----4---4-4-----|
|--2-2-2-2-2-2-3-|------1-1-------|-------8----2---|----1-1-1-5-1-1-|--------------4-|
|-----4-----1-1--|------------8---|---4-4-4-4-4-4-6|---------1-1----|---4----1--8----|
|-----8-8--------|----4---------1-|---8-----2-a----|--8------1------|-------1-2------|
|--------------8-|--------81------|--8-8-----------|---8---------2--|-----8-----2-2--|

L

χ (p = 2−11)

ι

L

χ (p = 2−8)

ι

L

R0

R1

R2

R2.5

The characteristic has a period of i = 8 for the 4-round attack on SHA3-384
and SHAKE256, as described in Section 6.1.

Characteristic 1: The 2.5-round internal differential characteristic with
probability 2−19 and (k1, k2, k3) = (11, 8, 78).
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|----------------|----------1---1-|----------------|---------2---2--|----------------|
|----------------|----------1---1-|----------------|---------2---2--|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|

|----------------|-----------1---1|----------------|----------------|----------------|
|----------2---2-|----------------|----------------|----------------|----------------|
|----------2---2-|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|-----------1---1|----------------|----------------|----------------|

|---------------1|-----------1---1|----------------|----------------|----------------|
|----------2---2-|----------------|----------------|----------------|----------------|
|----------2---2-|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|-----------1---1|----------------|----------------|----------------|

|----------------|-----------1---1|----------------|----------------|----------------|
|----------2---2-|----------------|----------------|----------------|----------------|
|----------2---2-|----------------|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|----------------|-----------1---1|----------------|----------------|----------------|

|----------------|----------------|----------------|----------------|----------------|
|----------------|----------------|---------1---1--|----------------|----------------|
|-----------2---2|----------------|----------------|----------------|----------------|
|----------------|---------2---2--|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|-----------4---4|

|----------------|----------------|----------------|----------------|----------------|
|----------------|----------------|---------1---1--|----------------|----------------|
|-----------2---2|----------------|----------------|----------------|----------------|
|----------------|---------2---2--|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|-----------4---4|

|------------8-82|----------------|----------------|----------------|----------------|
|----------------|----------------|---------1---1--|----------------|----------------|
|-----------2---2|----------------|----------------|----------------|----------------|
|----------------|---------2---2--|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|-----------4---4|

|---------4-48486|--------2828--2-|----------1---1-|--------21--21--|--------4-41----|
|--------8-1-8-1-|--------1-----5-|--------2-3-2-3-|--------5-1-----|----------4---4-|
|---------4-5-5--|--------c---c---|--------1--21--2|---------5-1----|--------1-1-1-1-|
|------------28-8|--------4-4-4-4-|---------a-a---8|---------1---1--|---------8-1-8-1|
|----------8---8-|--------84--84--|---------28-8---|---------8-8-8-8|---------8-a-a--|

L

χ (p = 2−16)

ι

L

χ (p = 2−16)

ι

L

R0

R1

R2

R2.5

The characteristic has a period of i = 32 for the 4-round attack on
SHA3-512, as described in Section 6.2.

Characteristic 2: The 2.5-round internal differential characteristic with
probability 2−32 and (k1, k2, k3) = (16, 16, 170).
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|--------746a-114|--------b8e2-1a-|--------624---5a|--------6d58-4fd|--------858c-255|
|--------f46a-116|--------b8f2-1e-|--------6642--5a|--------6d58-4f5|--------858c-255|
|--------f46a-116|--------b8e2-1e-|--------6242--5a|--------6d58-4f5|--------858c-255|
|--------f46a-156|--------b8e2-1e-|--------6242--5a|--------6d58--f5|--------858c-255|
|--------f46a-116|--------b8e2-1e-|--------6246--5a|--------6d58-4f5|--------858e-257|

|--------8------2|---------------1|----------------|--------8-------|--------8---8---|
|--------8-------|----------------|----------------|----------------|------------8---|
|--------------8-|---------------1|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|------------8---|----------------|----------------|------------8---|----------------|

|--------8------2|---------------1|----------------|----------------|------------8---|
|--------8-------|----------------|----------------|----------------|------------8---|
|--------------8-|---------------1|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|------------8---|----------------|----------------|----------------|----------------|

|--------8---8-8-|---------------1|----------------|----------------|------------8---|
|--------8-------|----------------|----------------|----------------|------------8---|
|--------------8-|---------------1|----------------|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|
|------------8---|----------------|----------------|----------------|----------------|

|--------8---8-8-|----------------|----------------|----------------|----------------|
|----------------|---------------8|-------------4--|----------------|----------------|
|---------------2|----------------|----------------|----------------|---------------2|
|-------------4--|---------------8|-------------4--|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|

|--------8---8-8-|----------------|----------------|----------------|----------------|
|---------------8|---------------8|-------------4--|----------------|----------------|
|---------------2|----------------|----------------|----------------|----------------|
|----------------|---------------8|-------------4--|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|

|---------------a|----------------|----------------|----------------|----------------|
|---------------8|---------------8|-------------4--|----------------|----------------|
|---------------2|----------------|----------------|----------------|----------------|
|----------------|---------------8|-------------4--|----------------|----------------|
|----------------|----------------|----------------|----------------|----------------|

|---------------a|------------8---|----------------|----------------|----------------|
|----------------|----------------|--------------1-|-----------1----|----------------|
|----------------|-----------1----|----------------|----------------|----------------|
|----------------|--------------8-|----------------|---------2------|----------------|
|----------------|----------------|----------------|----------------|----------------|

L

χ (p = 2−21)

ι

L

χ (p = 2−18)

ι

L

R1

R2

R3

R3.5

The characteristic has a period of i = 32 for the 5-round attack on
SHA3-224,SHA3-256,SHAKE128 and SHAKE256, as described in Section 6.3.

Characteristic 3: The 1-3.5 round internal differential characteristic with
probability 2−39 and (k2, k3, k4) = (21, 18, 16).
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B Appendix: Difference Conditions Table of KECCAK Sbox

Here we list the differential transition conditions of non-zero input differences.

δout Differential transition conditions
01 l0 = x4, l1 = x1

02 l0 = x0, l1 = x2

03 l0 = x4, l1 = x2, l2 = x0 + x1

04 l0 = x1, l1 = x3

05 l0 = x4, l1 = x3, l2 = x1

06 l0 = x0, l1 = x3, l2 = x1 + x2

07 l0 = x4, l1 = x3, l2 = x1 + x2, l3 = x0 + x1

08 l0 = x2, l1 = x4

09 l0 = x2, l1 = x1, l2 = x4

0a l0 = x0, l1 = x4, l2 = x2

0b l0 = x4, l1 = x2, l2 = x0 + x1

0c l0 = x1, l1 = x4, l2 = x2 + x3

0d l0 = x1, l1 = x4, l2 = x2 + x3

0e l0 = x0, l1 = x4, l2 = x2 + x3, l3 = x1 + x2

0f l0 = x4, l1 = x2 + x3, l2 = x1 + x2, l3 = x0 + x1

10 l0 = x3, l1 = x0

11 l0 = x3, l1 = x1, l2 = x4 + x0

12 l0 = x3, l1 = x2, l2 = x0

13 l0 = x3, l1 = x2, l2 = x0 + x1, l3 = x4 + x0

14 l0 = x1, l1 = x0, l2 = x3

15 l0 = x3, l1 = x1, l2 = x4 + x0

16 l0 = x0, l1 = x3, l2 = x1 + x2

17 l0 = x3, l1 = x1 + x2, l2 = x0 + x1, l3 = x4 + x0

18 l0 = x2, l1 = x0, l2 = x3 + x4

19 l0 = x2, l1 = x1, l2 = x4 + x0, l3 = x3 + x4

1a l0 = x2, l1 = x0, l2 = x3 + x4

1b l0 = x2, l1 = x0 + x1, l2 = x4 + x0, l3 = x3 + x4

1c l0 = x1, l1 = x0, l2 = x3 + x4, l3 = x2 + x3

1d l0 = x1, l1 = x4 + x0, l2 = x3 + x4, l3 = x2 + x3

1e l0 = x0, l1 = x3 + x4, l2 = x2 + x3, l3 = x1 + x2

1f l0 = x3 + x4, l1 = x2 + x3, l2 = x1 + x2, l3 = x0 + x1

Table 7. Difference Conditions Table of KECCAK Sbox
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C Appendix: Values of Difference Conditions Table of
KECCAK Sbox

Here we list the values of differential transition conditions of some input differ-
ences, and the other input differences and their differential transition conditions’
values can be obtained through cyclic shifting of existing input differences and
conditions.

01(<<< j) 09 19 01 11
l0 0 0 1 1
l1 0 1 0 1

03(<<< j) 0b 1b 0a 1a 03 13 02 12
l0 0 0 0 0 1 1 1 1
l1 0 0 1 1 0 0 1 1
l2 0 1 0 1 0 1 0 1

05(<<< j) 0c 1d 0e 1f 04 15 06 17
l0 0 0 0 0 1 1 1 1
l1 0 0 1 1 0 0 1 1
l2 0 1 0 1 0 1 0 1

0b(<<< j) 01 11 02 12 0d 1d 0e 1e
l0 0 0 0 0 1 1 1 1
l1 0 0 1 1 0 0 1 1
l2 0 1 0 1 0 1 0 1

07(<<< j) 0f 1f 0e 1e 0d 1d 0c 1c 07 17 06 16 05 15 04 14
l0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
l1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
l2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
l3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0f(<<< j) 07 17 06 16 05 15 04 14 0b 1b 0a 1a 09 19 08 18
l0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
l1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
l2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
l3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1f 1f 07 16 0e 15 0d 1c 04 13 0b 1a 02 19 01 10 08
l0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
l1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
l2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
l3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 8. Values of Difference Conditions Table of KECCAK Sbox
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D Appendix: 2D Affine Subspaces of KECCAK Sbox

Here we give the 2-dimensional affine subspaces and affine equations to the
output differences of Sbox using in TIDA.

δout 2D affine subspaces Corresponding linear equations
01 {01,11,09,19} x0 = 1, x2 = 0, x3 = 0

02 {02,12,03,13} x2 = 1, x3 = 0, x4 = 0

03 {02,12,09,19} x2 = 0, x0 + x3 = 0, x1 + x3 = 1

04 {04,06,05,07} x2 = 1, x3 = 0, x4 = 0

05 {04,06,19,1b} x0 + x2 = 1, x0 + x3 = 0, x0 + x4 = 0

06 {04,12,05,13} x3 = 0, x1 + x2 = 1, x1 + x4 = 0

07 {04,12,19,0f} x0 + x3 = 0, x2 + x4 = 0, x0 + x1 + x2 = 1

08 {08,0c,0a,0e} x0 = 0, x3 = 1, x4 = 0

09 {01,11,0e,1e} x0 + x1 = 1, x0 + x2 = 1, x0 + x3 = 1

0a {08,0c,13,17} x0 + x1 = 0, x0 + x3 = 1, x0 + x4 = 0

0b {0c,0a,19,1f} x3 = 1, x0 + x4 = 0, x0 + x1 + x2 = 1

0c {08,0c,0a,0e} x0 = 0, x3 = 1, x4 = 0

0d {0c,09,0b,0e} x3 = 1, x4 = 0, x0 + x2 = 1

0e {08,0c,1b,1f} x3 = 1, x0 + x1 = 0, x0 + x4 = 0

0f {0c,0a,15,13} x0 + x3 = 1, x0 + x4 = 0, x1 + x2 = 1

10 {10,18,14,1c} x0 = 0, x1 = 0, x4 = 1

11 {01,14,09,1c} x1 = 0, x0 + x2 = 1, x0 + x4 = 1

12 {02,03,1c,1d} x1 + x2 = 1, x1 + x3 = 1, x1 + x4 = 1

13 {02,09,1c,17} x1 + x3 = 1, x2 + x4 = 0, x0 + x1 + x2 = 1

14 {10,18,07,0f} x0 + x1 = 0, x0 + x2 = 0, x0 + x4 = 1

15 {06,05,1c,1f} x2 = 1, x3 + x4 = 0, x0 + x1 + x3 = 1

16 {18,14,13,1f} x4 = 1, x0 + x1 = 0, x0 + x2 + x3 = 1

17 {14,05,0d,1c} x1 = 0, x2 = 1, x0 + x4 = 1

18 {10,0a,15,0f} x0 + x2 = 0, x1 + x3 = 0, x1 + x4 = 1

19 {01,14,0e,1b} x0 + x2 = 1, x1 + x3 = 0, x0 + x1 + x4 = 1

1a {18,12,16,1c} x0 = 0, x4 = 1, x1 + x3 = 1

1b {12,0a,16,0e} x0 = 0, x1 = 1, x3 + x4 = 1

1c {10,18,17,1f} x4 = 1, x0 + x1 = 0, x0 + x2 = 0

1d {16,11,1b,1c} x4 = 1, x0 + x2 = 1, x0 + x1 + x3 = 1

1e {18,0b,0e,1d} x3 = 1, x1 + x4 = 1, x0 + x1 + x2 = 0

1f {14,05,0e,1f} x2 = 1, x1 + x3 = 0, x0 + x1 + x4 = 1

Table 9. 2D Affine Subspaces of KECCAK Sbox
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