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Abstract. In May 2020, Zoom Video Communications, Inc. (Zoom)
announced a multi-step plan to comprehensively support end-to-end
encrypted (E2EE) group video calls and subsequently rolled out basic
E2EE support to customers in October 2020. In this work we provide
the first formal security analysis of Zoom’s E2EE protocol, and also lay
foundation to the general problem of E2EE group video communication.

We observe that the vast security literature analyzing asynchronous
messaging does not translate well to synchronous video calls. Namely,
while strong forms of forward secrecy and post compromise security are
less important for (typically short-lived) video calls, various liveness
properties become crucial. For example, mandating that participants
quickly learn of updates to the meeting roster and key, media streams
being displayed are recent, and banned participants promptly lose any
access to the meeting. Our main results are as follows:

1. Propose a new notion of leader-based continuous group key agreement
with liveness, which accurately captures the E2EE properties specific
to the synchronous communication scenario.

2. Prove security of the core of Zoom’s E2EE meetings protocol in the
above well-defined model.

3. Propose ways to strengthen Zoom’s liveness properties by simple
modifications to the original protocol, which have since been deployed
in production.

1 Introduction

Group video communication tools have gained immense popularity both in
personal and professional settings. They were instrumental in bringing people
closer together at a time when travel and in-person interaction were severely
limited by the COVID-19 pandemic. Zoom Video Communications, Inc. (Zoom)
is one of the leading providers of video communications with millions of active
users, and aims to distinguish itself not just in ease-of-use and richness of features,
but also by offering strong security and privacy capabilities.

⋆ Research conducted while contracting for Zoom



Historically, Zoom meetings have been encrypted in transit between the clients
and the Zoom servers. This allows Zoom to offer features that require the server
to access meeting streams, such as live transcription and the ability to join a
meeting by dialing a phone number through the telephony network. In May
2020, Zoom announced a multistep plan to comprehensively support end-to-end
(E2E) encrypted group video calls [46] and rolled out basic E2EE support to the
public in October 2020 [32]. E2EE protects the privacy of attendees against any
compromise to Zoom’s infrastructure/keys.

Zoom has also published a whitepaper [11] describing its protocol, design
goals, and methodology for E2EE meetings. The whitepaper explains how the
protocol is run as part of a group call and provides intuition on the threat model
and security. Subsequent academic work has performed an initial analysis of the
protocol [29], emphasizing a number of potential attacks at the boundary of
the threat model outlined in the whitepaper. However, this security analysis is
far from comprehensive and does not include any formal security definitions or
theorems.

Group video calls E2EE group video calls have not gained any major scrutiny
from the academic community. This stands in stark contrast to related fields such
as secure text messaging, where the ubiquitously used Signal protocol [34] has
received significant attention [2,17,10]. For secure group messaging, the Internet
Engineering Task Force (IETF) has even launched the Messaging Layer Security
(MLS) working group [8] with mutual support from industry and academia,
resulting in a number of analyses [3,4,5].

A defining feature of any group video call that distinguishes it from the
asynchronous nature of text messaging is that video calls happen in real-time
with all participants online at the same time. This suggests that protocols
could achieve strong liveness properties generally deemed to be intrinsically
unattainable in messaging. First, an attacker should not be able to arbitrarily
delay communication. For example, if Alice sends a video stream at time t, then
Bob should not accept it at a time significantly later than t. Depending on the
type of content, such delays may pose a significant threat; for instance, if the
message is an instruction to buy or sell a certain stock, then the ability to delay
it might allow an attacker to front-run the transaction. Second, if the meeting
host decides on a certain management action, such as adding or removing parties,
then an attacker must not be able to delay or prevent those decisions from taking
effect. These liveness properties are new and not demanded in the (asynchronous)
group messaging setting, in which the network attacker can simply pretend that
the initiating party is offline, without any of the other parties being able to detect
the attack.

Goals of this work In this work we aim to analyze the core of Zoom’s E2EE
meetings protocol1. We follow the approach successfully used to analyze (group)

1 We analyze the Zoom E2EE meetings protocol as deployed in the Zoom meeting client
version 5.12. In this paper, we refer to this version as the current protocol/scheme.
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messaging protocols and single out the key agreement using the abstraction of
a so-called continuous group key agreement (CGKA) protocol [3], albeit with
weaker forward secrecy (FS) and post-compromise security (PCS) properties than
for secure messaging, as explained below. The CGKA abstraction establishes
a sequence of shared symmetric keys, accounting for the need to re-key when
parties join or leave the meeting (even without strong FS/PCS). The current
key — known exactly to the current members of the meeting — can then be used
with authenticated encryption with associated data (AEAD) to achieve secure
communication.

To provide the first formal security analysis of Zoom’s E2EE protocol, our
main objectives are, thus, to:

1. Propose a CGKA definition that takes Zoom’s unique aspects into account
and captures the liveness properties made possible by the online assumption.

2. Provide an analysis of the core of Zoom’s E2EE protocol in the above well-
defined model.

To the best of our knowledge, Zoom is the only E2EE group video protocol
that aims to provide stringent liveness properties. We believe our work is the
first in the realm of CGKA to formalize and analyze such assurances. As part of
this process, we observed that Zoom’s liveness assurances could be strengthened
and thus, we set out to:

3. Propose tangible strengthenings to Zoom’s liveness properties, via two simple
modifications to the protocol which offer different tradeoffs between efficiency
and security. Zoom has evaluated these modifications and deployed one of
them in production (in version 5.13 of the Zoom meetings client).

1.1 Contributions

Definition We formally define a leader-based continuous group key agreement
with liveness (LL-CGKA), which encompasses all the desired security properties
of Zoom’s core E2EE meetings protocol in a single security game1. In general
terms, an LL-CGKA protocol requires the following properties:

– At each stage of the meeting, the shared symmetric key is only known to the
set of current participants as decided by the current meeting host.

– All participants have a consistent view of the set of current meeting partici-
pants (as displayed in the UI) as well as of the key.

– Changes to the group, decided by the meeting host, are applied within a
bounded (and short) amount of time; otherwise, participants drop out of the
meeting.

Attacker model. We consider a powerful adversary that has control over the
evolution of the group, fully controls the network and Zoom’s server infrastructure,
and can passively corrupt any parties, thereby obtaining their current state. We
remark, however, that most of our guarantees hold only when the current meeting
leader and participants execute the protocol honestly, and any active attackers
previously in the meeting have been removed.
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FS and PCS. Due to the short-lived nature of video calls, our CGKA notion,
however, differs from those in realm of secure messaging by requiring neither
strong forward secrecy nor post-compromise security guarantees within a single
meeting. An attacker compromising a party’s state in an ongoing meeting may
learn both past and future content of said meeting. We do, however, require the
following properties: first, corrupting a party must not reveal any of the meeting’s
content before the party has been admitted or after it has been removed by the
meeting host. Second, compromising a party after a meeting has ended must
not compromise the meeting in any form (weak FS). Third, even if a party’s
long-term secret have been leaked, this party can still securely join meetings as
long as the adversary does not act as an active meddler-in-the-middle.

Modularization One of the contributions of this work is to distill out basic build-
ing blocks of Zoom’s protocol, which could be instantiated differently in pursuit
of improved efficiency or, e.g. to achieve post-quantum security. To this end, we
consider the intermediate continuous multi-recipient key encapsulation (cmKEM)
abstraction from which we then build the aforementioned LL-CGKA notion.
Put simply, the former naturally captures that in Zoom’s protocol a designated
party (the meeting host) chooses the symmetric key and distributes it to all
the meeting participants. The latter abstraction then models the core of Zoom’s
E2EE meetings protocol, including the unique liveness properties.

Finally, we discuss how Zoom’s overall protocol is built on top of the
LL-CGKA protocol, considering audio and video encryption. In particular, we
relate the respective confidentiality, authenticity and liveness assurances to those
of the LL-CGKA notion.

We remark that the above modularization follows Zoom’s whitepaper [11]
version 4.0, with the cmKEM notion roughly corresponding to Sections 7.6.2
- 7.6.6, the LL-CGKA notion to Section 7.6.7, and video stream encryption
discussed in Sections 7.2 and 7.11, among others.

Liveness One of the main novelties of Zoom’s E2EE protocol is its focus on
liveness properties. They assure that whenever the host adds or removes a
participant, the action cannot be withheld by an adversary for any extended
period of time. That is, if for instance the host removes a member from the
group, such as when removing a candidate at the end of an interview so that the
hiring panel can reach a decision, that member must no longer be able to decrypt
meeting contents even if they manage to compromise Zoom’s cloud infrastructure
or exert significant control over the network.

In this work, we present a simple time-based model that allows us to for-
malize and analyze those liveness properties. Our model balances simplicity and
generality by assuming that parties have access to local clocks that all run at
the same speed, but are otherwise not assumed to be synchronized. We then
formalize liveness as follows: whenever a participant is in a given state at time
t, then the meeting host has been in the same state recently, i.e., at some time
t′ ≥ t−∆ where ∆ is some protocol-dependent liveness slack. Turned around,
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whenever the host moves on to a new state (e.g., by changing the group roster)
then all participants must also move on within time ∆ (or else drop from the
meeting).

While the protocol we analyze1 achieves good liveness properties, these
assurances degrade in the number of host changes. As part of this paper we
propose two potential improvements. First, we propose a modification that strictly
improves on the liveness and yields bounds independent of the number of host
changes. This comes at the cost of increased communication by making the
protocol more interactive. As an alternative, we propose a strengthening that
does not incur any communication overhead and improves on Zoom’s properties
if parties have well-synchronized clocks; we believe this to be the common case
for modern devices. After testing, Zoom implemented the first option, which is
deployed in version 5.13 of the Zoom meetings client.

1.2 Related Work

We have already commented above on the relationship of this work to the areas
of secure messaging.

Group video calls There are numerous solutions for group video calls. The
vast majority offers transport layer encryption, with some of them [7,16,11,43,44]
offering E2EE group calls, and others offering this feature only for two-party
calls [27,34]. While some of the solutions do offer intuitive security descriptions
in the form of a whitepaper, such as Wire [44], Cisco [16], and WhatsApp [43],
to the best of our knowledge only Cisco WebEx enjoys formal security claims, as
it is directly built on top of the IETF MLS draft [8,3,4,5].

Liveness The terms liveness, liveliness, and aliveness are frequently used to
describe various authentication properties of key agreement protocols, e.g., in [33]
(and many subsequent works). Those properties, roughly speaking, guarantee
that if one party completes a run of the protocol, then its peer at some point
also has run the same protocol. (Slightly stronger variants exist.) As such most
of those definitions not only have no direct relation to physical time but also are
typically not enforced on an ongoing basis, contrary to our liveness definition.
Further, in the context of E2EE group messaging, some work previously used the
liveness as synonymous to correctness [39] — with no direct relation to actions
having to occur in a timely manner.

However, using timing is not new in the design and analysis of cryptographic
protocols. Some such works (e.g., [37,23,30]) use timing assumptions to improve
efficiency (or overcome impossibility results) for problems which do not inherently
require timing assumptions. Other works (e.g., [22,40,9,12]) use various forms
of “moderately hard function” to achieve different cryptographic properties
which critically rely on the notion of time. The type of liveness used in this
work is much more closely related to more traditional distributed computing
literature (e.g., [21,24]) on consensus and, more recently, blockchain protocols
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(e.g., [26,36]). However, the existence of a unique meeting leader, coupled with
the online assumption, makes Zoom’s protocol (and our security model) much
more lightweight. Finally, the use of heartbeats to ensure liveness is similar to
the heartbeat extension of the TLS protocols [41].

Related Notions The cmKEM notion is an extension of multi-recipient Key
Encapsulation (mKEM) [42,38,45] to the setting of dynamically changing groups.
Zoom’s scheme is based around the authenticated public-key encryption2 scheme
from the libsodium library [20]. It is very similar to one of the early authenticated
public-key encryption schemes formally analyzed by An [6] (and simpler then
the recently analyzed HPKE standard [1]).

The LL-CGKA notion is further related to Dynamic Group Key Agreement
with an extensive body of literature, notable examples including [14,28,31]. Similar
to CGKA, the Dynamic GKA notion supports changes to group membership
during a session and, in fact, in terms of FS and PCS guarantees those notions
resemble our LL-CGKA notion more closely than most prior CGKA variants. In
contrast to CGKA, Dynamic GKA schemes are designed for an interactive setting,
i.e., typically require all parties to contribute to any one operation via interactive
rounds, and / or rely on a trusted group manager. (In contrast to LL-CGKA the
group manager is, however, static and cannot be replaced mid-session.) Further,
we note that while group video calls in principle can tolerate interactive protocols,
such as [31], requiring several parties to contribute to each operation can be
nevertheless problematic, as for example parties can unexpectedly drop out.
Furthermore, we believe this simplifies extending our notion for a more advanced
group video call protocol, compared to a Dynamic GKA based one. Closely
related to Dynamic GKA are further Multicast Encryption, e.g., [35], and line of
work on Logical Key Hierarchies, e.g., [15].

Another related notion to both cmKEM and LL-CGKAis Multi-Stage Au-
thenticated Key Exchange [25]. Several variants, each with slightly different
guarantees, have been considered and the notion has e.g., been used to analyze
the Double Ratchet protocol [18]. In contrast to CGKA, Multi-Stage AKE has
exclusively been applied to the two-party setting.

2 Continuous Multi-Recipient KEM

Zoom’s protocol works by having a designated party distribute shared symmetric
key material to all the participants upon each change to the group. We abstract
this as a Continuous Multi-Recipient Key Encapsulation (cmKEM) scheme that
allows the designated party to encapsulate a stream of shared symmetric keys to
a dynamically evolving set of recipients. This results in a sequence of independent
and uniformly random keys, each only known to the authorized parties. We

2 Authenticated public-key encryption schemes are often also referred to as signcryption
schemes. The latter term is however more commonly used to denote schemes satisfying
insider security rather than outsider security, as achieved by libsodium’s scheme.
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number the states (i.e., keys) using two counters: the epoch and a sub-epoch
called period.3

In the following, we call the designated party leader.4 We assume that the
leader is told whom to add or remove, ignoring policy aspects.

The cmKEM notion distinguishes long-term identities and ephemeral users.
Each long-term identity id is assumed to have an associated public key ipk. A
party id can then create one or more ephemeral users, identified by uid, each
linked to a specific meeting. That is, each meeting will consist of a group of
ephemeral uids that just exist for the duration of that meeting. Roughly speaking,
in Zoom, each long-term identity id corresponds to a device; if a user logs into
multiple devices, each will have its own long-term key material. Note that a
device can be part of the same meeting under different ephemeral identities over
time, e.g., after leaving the meeting and then rejoining it.

To cope with the leader suddenly losing connection, leader switches are
initiated by the (untrusted) server without any hand-off. As a result, a user
uid can be asked at any point of time to become the new leader of a meeting,
with any given set of participants, as long as they are associated with the same
meeting. To simplify notation, we introduce the notion of a session that denotes
a segment of meeting between leader changes.

2.1 Syntax

For simplicity, we define the clients’ cmKEM algorithms to be non-interactive,
making all the interaction explicit by having multiple algorithms. User algorithms
moreover have implicit access to a PKI described in the next section. The server
aids the protocol execution by performing explicit message routing.

Definition 1. A cmKEM scheme consists of the following algorithms. For ease
of presentation, the client state ust is assumed to expose the current key ust.k,
epoch ust.e, and period ust.p.

User management:

– (ust, uid, sig)← CreateUser(id,meetingId) creates an ephemeral user belonging
to id and the meeting meetingId. It outputs the initial state ust, the user’s
identity uid, and credentials sig binding uid to id.

– (id, ipk)← Identity(uid) and meetingId← Meeting(uid) deterministically com-
pute uid’s long-term information, and associated meeting respectively.

3 Looking ahead, rotating the period instead of the full epoch during group additions is
more efficient. Zoom’s protocol currently does not take advantage of period rotations,
but we capture and analyze this option since it is being considered as a future
optimization.

4 Typically the leader coincides with the meeting host, but if e.g. the host is on a
low-bandwidth connection those concepts can be decoupled.
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Session management:

– (ust′,M)← StartSession(ust, {(uidi, adi, sigi)}i∈[n]) instructs the user to start
a new session with the given members. For each member, credentials sigi as
well as associated data adi (which need to match with the user’s respective
value when joining) are provided. The welcome message M is to be distributed
to the other group members by the server.

– ust′ ← JoinSession(ust, uidlead, siglead,m, ad) makes the user join the leader’s
session using their share m of the welcome message.

Group and management (leader):

– (ust′,M)← Add
(
ust, {(uidi, adi, sigi)}i∈[n], newEpoch

)
adds the users uid1 to

uidn to the group. The boolean flag newEpoch indicates whether this action
should create a new epoch or period.

– (ust′,M)← Remove(ust, {uidi}i∈[n]) removes the users uid1 to uidn from the
group.

Message processing (non-leaders):

– ust′ ← Process(ust,m) lets a participant advance to the next epoch or period.

Message passing (server):

– pub← InitSplitState() generates an initial public server state.
– (pub, {(uidi,mi)}i∈[n])← Split(pub,M) deterministically splits M into shares

mi for each recipient.

2.2 PKI

The ephemeral user id’s uid are bound to the long-term identity id via the
credentials. To this end, id has a long-term signing key isk. In order to prevent
meddler-in-the-middle (MITM) attacks, other parties must authenticate the
respective long-term public key ipk. For the sake of our analysis, we assume a
simple (long-term) public-key infrastructure (PKI). The PKI provides to each
long-term identity id their respective private signing key isk while allowing all
other users to verify that the respective public verification key ipk belongs to id.

Zoom currently does not have any such PKI but relies on the host reading
out a meeting leader security code — a digest of ipk — that all participants then
compare to ensure they have the host’s correct key. Authentication crucially
depends on the leader visually recognizing participants and vice versa. Formalizing
the exact guarantees given by this process is outside the scope of this work —
specifically because the authenticity is only established during and not before
a meeting, and because it relies on non-cryptographic assumptions such as the
host recognizing participants’ faces.

In the future, Zoom plans to build a PKI based on key transparency and
external identity providers, whose analysis is left for future work. We refer
to the full version of this work for a more in-depth discussion on how Zoom
currently verifies public keys, as well as their ongoing efforts for improving user
authentication.

8



2.3 Security Definition

The security notion for the cmKEM primitive encompasses all the desired security
properties in a single game. We next describe its the high-level workings, with
the full formal definition presented in the full version of this work.

Game overview The attacker has full control over the evolution of the group
and the network. We now sketch the various oracles the adversary may call. First,
the adversary can create a user for a provided long-term identity id and meeting
meetingId. The game ensures that the generated user id uid is unique.

The adversary can then instruct uidlead to start a session for a provided list of
participants and their respective credentials. Afterwards, they can instruct a user
uid to join uidlead’s session using a welcome message m of the adversary’s choice.
The leader can also be instructed to add or remove members. In the former case,
it is up to the adversary to specify whether this should initiate a new epoch or
period. Finally, the adversary can get a participant uid to process an arbitrary
message m. (The protocol might of course reject such malicious messages.)

The game ensures that additions and removals only succeed if the adversary
does not try to add existing members or remove nonexistent ones. Additionally,
the leader must not remove themselves from the group. (This would have to be
done by instructing another party to assume the role of the leader, excluding
the old leader from the group.) The game keeps track of, for each leader’s epoch
and period, the leader’s view of the session state, which consists of the meeting
key and participant roster. Throughout the execution, the game then ensures
consistency of the parties’ view with their leader’s respective view, which we
discuss below.

The attacker can passively corrupt long-term identities, which reveals (a)
the secret states of all still active associated ephemeral identities and (b) the
long-term identity’s signing key from the PKI.

Key confidentiality The adversary must not be able to distinguish the keys
produced by the cmKEM scheme from random ones. To this end, the adversary
may try to guess a bit b by challenging a state’s key (identified by the leader,
epoch, and period) to either receive the real key (if b = 0) or a uniform random
one (if b = 1). Additionally, the game allows the adversary to instead request the
actual key, irrespective of the bit b, which may be useful since it is not subject
to the same restrictions on compatible corruptions described below.

The game needs to rule out trivial wins stemming from the adversary being
able to compute certain keys themselves after passively corrupting parties. Since
Zoom’s scheme neither encompasses forward secrecy (FS) nor post-compromise
security (PCS) within a session, this has to be reflected in our notion. In short,
corrupting a user potentially reveals the key for all epochs and periods where he
has been a member of a given session. However, keys must remain secure in the
following situations:
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– A user must never know keys from before being added to, or after having
been removed from the group. Hence, the confidentiality of those keys must
not be affected by compromising the given user.

– Corrupting a device after a session has ended, i.e., after the respective
ephemeral identity has been deleted, must not affect the sessions’ confiden-
tiality.5

– Corrupting a long-term identity id (and thus learned isk) must not affect the
security of future sessions involving an honestly generated ephemeral identity
uid for id. (The adversary might of course impersonate id by creating a valid
ephemeral user uid′ instead, which would compromise the session’s security.)

Consistency properties Parties must agree on the key for each epoch and
period within a given session. That is, no two parties should ever output conflicting
keys, unless after an active attack in which the adversary uses either the leader’s
or the receiving party’s leaked state to tamper with the messages.6 Consistency,
moreover, takes into account at which point in time parties can reach a given
state. Our notion distinguishes between epochs and periods, among other, due to
those properties differing. Participants must only move to an epoch once their
leader arrived there, while for periods we allow participants to run ahead and,
thus, reach periods that formally are not supposed to exist. (Still, parties must
agree on the keys for those spurious periods.)

Finally, consistency must hold even if the adversary tampers with, reorders, or
replaces messages — as long as the involved parties are honest. Due to the leader-
based nature of the cmKEM primitive, a malicious leader however could always
break consistency by simply sending inconsistent messages to the respective
parties. To formalize outsider security, we thus simply deem attacks enabled by
corrupting one of the involved parties trivial and no longer enforce consistency
properties for a user uid once either uid or their leader uidlead has been corrupted.

Member authentication For many of the operations, such as adding users to
an existing session or instructing a user to join another session, the adversary
is allowed to provide the respective user identifiers. Our security notion ensures
that the adversary cannot impersonate long-term identities unless they have
been corrupted, i.e., the adversary cannot inject an ephemeral user uid unless
the associated long-term identity id has been corrupted.

2.4 Zoom’s Scheme

Zoom’s cmKEM scheme uses point-to-point encryption — i.e., does not leverage
any efficiency gains from sending the same message to multiple recipients — to
communicate fresh keys to the participants. It is based around Diffie-Hellman key

5 I.e., similar to TLS, we require FS on the granularity of sessions.
6 This formalizes an outsider notion actually achieved by Zoom. Stronger protocols
could tolerate leaking the recipient’s state.
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exchange over a cyclic group G = ⟨g⟩ with a fixed generator g. The identifier uid
mainly consists of a Diffie-Hellman public key upk ∈ G, alongside the contextual
data of the meeting identifier, the user’s long-term identity id, and the user’s
long-term public key ipk, and a signature under the user’s long-term signing key
isk binding it all together. The respective secret key usk := DLogg(upk) is stored
as part of the protocol’s state. See Fig. 1 for a formal description of the scheme.

For each epoch, the leader samples a new seed, from which the sequence
of period keys are derived by iteratively applying a PRG to derive the key
and seed for the next period of that epoch3. (Observe that this construction is
forward secure.) When removing parties, the leader initiates the next epoch and
communicates the new seed to all remaining participants, as described below.
They then all derive the first key and the seed for the second key using the PRG.
Analogously, to add participants with newEpoch = true, the leader communicates
the seed to all participants. More efficiently, however, when adding participants
with newEpoch = false, the leader only sends the seed for the next key to the
freshly joined parties and instructs the others to just ratchet forward.

To send a seed to a party, the scheme first derives for each recipient a shared
symmetric key from a Diffie-Hellman element of its own secret key usk and the
recipient’s public key upk′. The scheme uses HKDF for this derivation, which
for the purpose of the security analysis we model as an random oracle. For
efficiency reasons, this key is cached as part of the sender’s secret state and
reused for future messages to or from the same party. The seed is then encrypted
using nonce-based AEAD, for a random nonce that is transmitted as part of
the resulting ciphertext. The associated data contains the meeting and sender
identifiers, and a fixed context string.

Server protocol. The protocol works by delivering the respective AEAD-ciphertext
to each party and sending a special “ratchet period” message to parties for which
no such ciphertext is specified. For simplicity, we model that the message M =
(G,C) sent to the server includes the current set of recipients. More concretely,
each user uid′ for which C contains a share obtains m = (‘epoch′,C[uid′]), while
for other users the server delivers m = ‘period′.

Security The following theorem establishes the security of the scheme.

Theorem 1. Zoom’s cmKEM scheme is secure according to the outlined def-
inition under the Gap-DH assumption, if the AEAD scheme is secure, Hash
collision resistant, the signature scheme is EUF-CMA secure, the PRG satisfies
the standard indistinguishability from random notion, and HKDF is modeled as a
random oracle.

A full proof is presented in the full version of this work. In short, based
on the security of Gap Diffie Hellman, we can first switch to an hybrid where
we use independently generated symmetric keys, as opposed to the outputs
of the DH operation (between the leader and each participant), programming
the random oracle to make things look consistent on corruption. Then, we can
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Protocol cmKEM Client Protocol

User management

Algorithm: CreateUser(id,meetingId)
usk←$ {0, 1, . . . , |G| − 1}; upk← gusk

(isk, ipk)← PKI.get-sk(id) // id’s long-term keys
me← (meetingId, id, ipk, upk)
sig← Sig.Sign(isk, ‘EncryptionKeyAnnouncement′,me)
K[·], uidlead, G← ⊥
return (me, sig)

Algorithm: Meeting(uid)
parse (meetingId, id, ipk, upk)← uid
return meetingId

Algorithm: Identity(uid)
parse (meetingId, id, ipk, upk)← uid
return (id, ipk)

Session management

Algorithm: StartSession({(uidi, adi, sigi)}i∈[n])
G← {uid1, . . . , uidn}
req me ̸= ⊥ ∧me /∈ G
AD[·]← ⊥
for i ∈ [n] do

req *verify-user(uidi, sigi)
AD[uidi]← adi

uidlead ← me
if e ̸= ⊥ then e← e+ 1
else e← 1
p← 0 ; seed← PRG.Init(1κ)
C← *encrypt-seed(G,AD)
M← (G,C)
(seed, k)← PRG.Eval(seed)
return M

Algorithm: JoinSession(uid′lead, sig
′
lead,m, ad)

req me ̸= ⊥ ∧ uid′lead ̸= me ∧ uid′lead ̸= uidlead
req *verify-user(uid′lead, sig

′
lead)

uidlead ← uid′lead
parse (‘epoch′, c)← m
(e′, p, seed′)← *decrypt-seed(c, uid′lead, ad)
if e ̸= ⊥ then

req (e′, p′) = (e+ 1, 0)
e← e′

(seed, k)← PRG.Eval(seed′)

Group and key management (leader)

Algorithm: Add({(uidi, adi, sigi)}i∈[n], newEpoch)
req me ̸= ⊥ ∧ uidlead = me
AD[·]← ⊥
for i ∈ [n] do

req uidi ≠ me∧ uidi /∈ G∧ *verify-user(uidi, sigi)
AD[uidi]← adi

G← G ∪ {uid1, . . . , uidn}
if newEpoch then

(e, p)← (e+ 1, 0)
seed← PRG.Init(1κ)
G′ ← G

else
(e, p)← (e, p+ 1)
G′ ← {uid1, . . . , uidn}

C ← *encrypt-seed(G′,AD)
(seed, k)← PRG.Eval(seed)
return M← (G,C)

Algorithm: Remove({uidi}i∈[n])
req me ̸= ⊥ ∧ uidlead = me
for i ∈ [n] do req uidi ∈ G
G← G \ {uid1, . . . , uidn}
(e, p)← (e+ 1, 0)
seed← PRG.Init(1κ)
AD[·]← ⊥
C ← *encrypt-seed(G,AD)
(seed, k)← PRG.Eval(seed)
return M← (G,C)

Message processing (participants)

Algorithm: Process(m)
req me ̸= ⊥ ∧ uidlead ̸= ⊥ ∧ uidlead ̸= me
if m = (‘epoch′, c) then

(e′, p′, seed′)← *decrypt-seed(c, uidlead,⊥)
req (e′, p′) = (e+ 1, 0)
(e, p)← (e′, p′)
(seed, k)← PRG.Eval(seed′)

else if m = ‘period′ then
p← p+ 1
(seed, k)← PRG.Eval(seed)

Helper: *encrypt-seed(G′,AD)
C[·]← ⊥
for uid′ ∈ G′ do

parse (·, ·, ·, upk′)← uid′

nonce←$ AEAD.N
if K[uid′] = ⊥ then

K[uid′]← HKDF(upk′
usk

, ‘KeyMeetingSeed′)
ad′ ← (meetingId,me,AD[uid′])
ad′′ ← Hash(‘EncryptionKeyMeetingSeed′

∥ Hash(ad′))
c′ ← AEAD.Enc(K[uid′], nonce, (e, p, seed), ad′′)
C[uid′]← (c′, nonce)

return C

Helper: *decrypt-seed(c, uidlead, ad)
parse (·, id′, ·, upk′)← uidlead
if K[uidlead] = ⊥ then

K[uidlead]← HKDF(upk′
usk

, ‘KeyMeetingSeed′)
ad′ ← (meetingId, id′, ad)
ad′′ ← Hash(‘EncryptionKeyMeetingSeed′) ∥ Hash(ad′))
parse (c′, nonce)← c
parse (e′, p′, seed′)←AEAD.Dec(K[uidlead], nonce, c

′, ad′′)
return (e′, p′, seed′)

Helper: *verify-user(uid′, sig′)
parse (meetingId′, id′, ipk′, upk′)← uid′

return meetingId′ = meetingId
∧ Sig.Verify(ipk′, ‘EncryptionKeyAnnouncement′, uid′, sig′)
∧ PKI.verify-pk(id′, ipk′)

Fig. 1: The client protocol of Zoom’s cmKEM scheme. The protocol implicitly
maintains a state ust, which exposes the key ust.k, epoch ust.e, and period ust.p.
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argue that each of the adversary’s winning conditions in the game cannot be
triggered, based on the unforgeability of the signature scheme (credentials cannot
be forged), the authenticity of the AEAD (malicious keys cannot be injected),
and the confidentiality of the AEAD (encrypted keys cannot be distinguished
from encryptions of random messages).

According to the whitepaper [11], Zoom’s scheme performs Diffie-Hellman
over Curve25519.7 We note that the Gap-DH assumption (rather than e.g. CDH)
appears to be rather intrinsic to this kind of simple Diffie-Hellman based pro-
tocol and has been assumed for Curve25519 before [10,1]. Moreover, Zoom uses
XChaCha20Poly1305 with 192-bit nonces as the nonce-based AEAD scheme, and
HKDF for both the key-derivation as well as the PRG. (We model the latter use
as a PRG to clarify the exact required security properties.) Finally, for a signature
scheme, Zoom uses EdDSA over Ed25519 satisfying EUF-CMA security [13].

3 Leader-based GCKA with Liveness

We now abstract the core of Zoom’s E2EE meetings protocol1 as a leader-based
continuous group key agreement with liveness (LL-CGKA) scheme. On a high
level, the primitive works similarly to the previously introduced cmKEM one,
with the following differences: (1) participants are aware of the group roster
and in particular only use keys for which they know the roster, (2) as a result
participants can no longer run ahead of their leader in terms of the period, and
(3) liveness is enforced.

Liveness. To achieve liveness, the LL-CGKA primitive is time based. More
concretely (1) algorithms can depend on time and (2) in addition to event-based
actions (e.g., reacting to an incoming packet), there are also time-driven actions.
We make the following (simplifying) assumptions:

– Each party has a local clock, which all run at the same speed (constant drift).
– Local algorithms complete instantaneously, i.e., no time elapses between

invocation and completion. As a consequence, the algorithms simply take the
party’s current time as an input argument.

We remark that the vast majority of Zoom meetings last only a couple of
hours, limiting any practical clock drift significantly and, thus, justifying the
former assumption.

3.1 Syntax

The algorithms of a LL-CGKA scheme closely follow the ones of a cmKEM scheme,
with two major differences. First, client algorithms take the current local time

7 Technically, Curve25519 breaks the abstraction of cyclic groups we, for simplicity, use
for the presentation of our scheme. We refer to the analysis of the HPKE standard [1]
for an extended discussion and the formalization of nominal groups with the respective
Gap-DH assumption. Their results directly apply to our construction.
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as input. Second, there are clock ticking algorithms that allow to specify clock-
driven actions, i.e., actions that happen at a certain time rather upon receiving
a message.

As in cmKEM, the server performs message routing. Additionally, it hands
out the current public8 group state to newly joining parties, freeing the leader
from maintaining additional state.

Definition 2. A LL-CGKA scheme consists of the algorithms described in the
following, where, for ease of presentation, the client state ust is assumed to expose
the following fields:

– The user’s current epoch ust.e and period ust.p.
– For each epoch and period a key ust.k[e, p] (or ⊥ if not known yet). It is
assumed that operations do not change keys once they are defined.

– The user’s current view on the group ust.G.

User management:

– (ust, uid, sig)← CreateUser(time, id,meetingId) creates an ephemeral user for
the given identity and meeting. Outputs the user’s initial state ust, their
identity uid, and credentials sig binding uid to id.

– id← Identity(uid) and meetingId← Meeting(uid) are deterministic algorithms
that return the ephemeral user’s long-term identity and meeting, respectively.

– ust′ ← CatchUp(ust, time, grpPub) prepares the user for joining the group by
processing the current public group state grpPub provided by the sever.

Leader’s algorithms:

– (ust′,M)← Lead(ust, time, {(uidi, sigi)}i∈[n]) instructs the user to become the
new group leader with the specified participants. Outputs a message to be split
and distributed to the other group members.

– (ust′,M)← Add(ust, time, {(uidi, sigi)}i∈[n]) is used to add users uid1 to uidn
to the group.

– (ust′,M)← Remove(ust, time, {uidi}i∈[n]) is used to remove users uid1 to uidn
from the group.

– (ust′,M)← LeaderTick(ust, time) is executed on each clock tick by the leader.
Outputs the leader’s updated state and an optional messages M.

Participants’ algorithms:

– ust′ ← Follow(ust, time,m, uid′lead, sig
′
lead) instructs the user to treat uid′lead as

the new leader. Expects the first message share m from the new leader.
– ust′ ← Process(ust, time,m) is used by participants to process any incoming

message m.
– (alive, sig′)← ParticipantTick(ust, time) is executed by a participant on each
clock tick. The flag alive indicates whether the participant is still in the
meeting or dropped out (for a violation of liveness) and optionally updates
the credentials (for the server) with sig′ = ⊥ denoting no update.

8 By public, we mean known to the (untrusted) Zoom server; i.e., the current roster,
but not any keys.
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Server’s algorithms:

– pub← Init() generates an initial server state.
–

(
pub′, {(uidi,mi)}i∈[n]

)
← Split(pub,M) is a deterministic algorithm that

takes message M and splits out each user uid’s share m.
– grpPub ← GroupState(pub,meetingId) is a deterministic algorithm that re-
turns the public group state.

We discuss correctness, and in particular how it is affected by the liveness
properties, in the full version of this work.

Meeting Flow Let us briefly discuss how Zoom uses the above defined LL-CGKA
abstraction to orchestrate a meeting. To start a meeting, Zoom instructs the
initial host to invoke the Lead algorithm. For a participant to join the meeting, the
server first hands them the most recent public group state (using GroupState) that
the participant processes using CatchUp. Afterwards, the participant is instructed
of the leader (using Follow) where alongside it is given their respective message
share from the message the leader generated in the respective Add invocation.
Observe that at this point the participant might not have a usable symmetric
key yet. Instead, it might take up to the next message generated by LeaderTick
for the participant to fully join the meeting.

To switch leaders, the new one is instructed to invoke Lead and all other
participants are instructed to invoke Follow. Note that it is not required for the
new leader to have joined the meeting beforehand — the CatchUp algorithm can
directly be followed by Lead (instead of Follow) to immediately start as the new
leader.

3.2 Security Definition

Overall, the game follows closely the one of the cmKEM primitive outlined
in Section 2.3. In the following we discuss the key aspects and highlight the
differences to the cmKEM game. We refer to the full version of this work for a
formal definition.

Clocks The security game maintains a global clock time. Each honestly created
user uid maintains a local clock that is specified as an offset to the global one; that
is, all local clocks run at the same speed. (For our analysis, we do not make use
of the fact that two users uid and uid′ belonging to the same long-term identity
id, i.e. a device, typically would have the same local clock. Obviously our results
also hold for this special case.)

The adversary chooses each user’s offset and drives the global clock, i.e.,
decides whenever the clock is supposed to advance by a tick. Those ticks model
an abstract discrete unit of time, which can be thought of as milliseconds or
nanoseconds, roughly corresponding to the precision of clocks used by the various
parties. Whenever the adversary ticks the global clock, each party’s local clock
thus also advances, and their respective procedures LeaderTick or ParticipantTick
are invoked, depending on whether the party is currently a leader or not.
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Liveness An important objective of the LL-CGKA primitive is to ensure liveness:
all participants must either keep up with the current meeting’s state or drop out
of the meeting. This is formalized as follows: whenever ParticipantTick indicates
that uid is still alive, then the participant’s state must not be too outdated, which
in turn is defined as that the participant’s current leader must have been in the
same state recently. How recently exactly is a parameter of our security definition
we call the liveness slack ; we introduce the concrete slack achieved by Zoom’s
protocol as part of its description below.

Observe that this formalization essentially means that whenever the leader
makes a change to the group by either adding or removing parties — resulting in
an epoch or period change — then this change cannot be withheld by a malicious
server. We thus call this property key liveness and briefly discuss content liveness
in Section 5.

Confidentiality Group key confidentiality is formalized analogously to the
one of a cmKEM scheme. That is, upon a challenge, the security game outputs,
depending on a bit b, either the real or an independent uniform random key. We
remark that the game only allows to challenge keys for epochs and periods that
are to be used in the higher-level application, omitting those that are skipped by
the LPL mechanism and hence never output. This simplifies the notion as, in
contrast to the cmKEM security notion, each challengeable key has a well-defined
group roster associated.

Consistency, authenticity, and no-merging The game ensures both key
consistency and group consistency, meaning that for a given honest (and uncom-
promised) leader, epoch, and period, all (uncompromised) participants agree on a
key and group roster. A malicious server can cause the group to split by assigning
different leaders to different partitions of the group, in which case those partitions
will no longer agree on the key. Furthermore, two parties, say Alice and Bob,
in different partitions might both believe to have a third party Charlie in their
group, or even believe to be in the same group with the other party. (That is, the
group rosters output by different partitions are not guaranteed to be disjoint.)
However, the game ensures that after such an aforementioned (inherent) splitting
attack, the various partitions cannot be re-merged into a consistent state, which
makes the attack easier to detect.

Remark 1 (Insider security). This work focuses on outsider security, and only
formalizes limited insider security guarantees. For instance, whenever the adver-
sary performs a trivial injection, enabled by e.g. a corruption of the leader, most
security properties are (temporarily) disabled. On the other hand, we do formalize
that confidentiality and authenticity recover after switching from a malicious
leader to an honest one. While Zoom’s protocol does not aim to provide strong
guarantees in the presence of malicious insiders (as full insider security would
e.g. require asymmetric authentication for video data), a more comprehensive
analysis of the properties it does achieve would nevertheless be interesting.
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3.3 Zoom’s Scheme

We now describe Zoom’s LL-CGKA scheme. On a high-level, the protocol en-
hances the cmKEM scheme by having the leader broadcasting the group mem-
bership to the participants and regularly broadcast so-called heartbeat messages
for liveness. A formal description is presented in Fig. 2. Additional details can
be found in the full version of this work.

Leader Participant List For the participants to learn the group roster, the
session leader broadcasts the so-called leader participant list (LPL) tabulating
the members. The LPL is, for bandwidth efficiency, represented as a linked list
of differential updates containing the set of added and removed participants
since the last LPL. Each message also references the leader’s current epoch e
and period p. For efficiency reasons, an LPL message is not sent on every single
change to the group roster, but on regular intervals instead. (It is skipped if
no change to the group roster has been done in the meantime.) To ensure that
parties know to whom they speak to, the scheme only proceeds to epochs and
periods for has been certified by an LPL message. (Re-keying is nevertheless
done eagerly, potentially leading to unused keys.)

The protocol furthermore relies on the LPL to communicate the group to
newly joining parties. To avoid having new parties process the entire history
of LPL messages, thus increasing the server’s storage requirement, the leader
will from time to time use a special coalesced LPL message encoding the entire
group.9 A joining party therefore needs all the links up to and including the
latest coalesced message only. The frequency of coalesced messages is determined
by the parameter max-links.

Heartbeats The LPL messages are unauthenticated. To authenticate them, the
leader broadcasts a signature (of a hash) thereof under the leader’s long-term
identity key. Those signatures moreover form another hash chain, with each
signature including the hash of the previous one, to ensures the continuity of the
meeting. That is, while certain splitting attacks — where a malicious server might
tell subgroups to accept different leaders — are unavoidable, those diverging
meetings cannot be rejoined later.

The leader broadcasts one such signature at least at a fixed interval ∆heartbeat,
even when no LPL has been sent for lack of any change to the group membership.
Since they are regularly sent, these signatures are called heartbeat messages and
double as a mechanism to ensure liveness. To this end, the signature additionally
includes the latest epoch e, and period p. Hence, if an attacker attempts to
withhold either key rotations or updates to the membership, causing a participant
to be stuck in an old state, they would need to withhold the heartbeat message

9 In the deployed version of the protocol, the coalesced LPL also includes a list of
all participants who were in the meeting at some point in the past but have since
left. This additional information is displayed in the client’s user interface, but is not
modeled in this work.
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Protocol Zoom’s Client LL-CGKA

User management

Algorithm: CreateUser(time, id,meetingId)
(st,me, sig)← cmKEM.CreateUser(id,meetingId)
(isk, ·)← PKI.get-sk(id)
lastHb← time
uidlead ← ⊥
G← ∅
e, p, enext, pnext, v, t← 0
k[·, ·]← ⊥
δ[·]←∞
lplHash, hbHash← ⊥
return (me, sig)

Algorithm: Identity(uid)
return cmKEM.Identity(uid)

Algorithm: Meeting(uid)
return cmKEM.Meeting(uid)

Algorithm: CatchUp(ust, time, grpPub)
req uidlead = ⊥
parse (lpls′, hb′)← grpPub
// Process LPLs
while lpls ̸= ⟨⟩ do

lpl′ ← lpls′.deq()
try *receive-LPL(lpl′)

// Store Heartbeat (no verification)
hbHash← Hash(hb′)

Participants’ algorithms

Algorithm: Follow(time,m′, uid′lead, sig
′
lead)

req uidlead ̸= ⊥ ∧ uid′lead ̸= me
parse (m′

K , lpl′, hb′)← m′

try st← cmKEM.JoinSession(st, uid′lead, sig
′
lead,m

′
K ,⊥)

Key[st.e, st.p]← st.k
if lpl′ ̸= ⊥ then

try *receive-LPL(lpl′)
if hb′ ̸= ⊥ then

try *receive-heartbeat(hb′)

Algorithm: Process(time,m′)
req uidlead ̸= ⊥ ∧ uidlead ̸= me
parse (m′

K , lpl′, hb′)← m′

if m′
K ̸= ⊥ then
try st← cmKEM.Process(st,m′

K)
Key[st.e, st.p]← st.k

if lpl′ ̸= ⊥ then
try *receive-LPL(lpl′)

if hb′ ̸= ⊥ then
try *receive-heartbeat(hb′)

Leader’s algorithms

Algorithm: Lead(time, {(uidi, sigi)}i∈[n])
uidlead ← me
try (st,MK)

← cmKEM.StartSession(st, {(uidi,⊥, sigi)}i∈[n])
G← {uid1, . . . , uidn} ∪ {me}
Added,Removed← ∅
numLplLinks← max-links
lpl← *send-LPL()
hb← *send-heartbeat()
M← (me,MK , lpl, hb)
return M

Algorithm: Add(time, {(uidi, sigi)}i∈[n])
req uidlead = me
for i ∈ [n] do

req uidi /∈ G
G← G ∪ {uid1, . . . , uidn}
Added← Added ∪ {uid1, . . . , uidn}
if p ≥ pMAX then

try (st,MK)←
cmKEM.Add(st, {(uidi,⊥, sigi)}i∈[n], true)

(e, p)← (st.e, st.p)
else

try (st,MK)←
cmKEM.Add(st, {(uidi,⊥, sigi)}i∈[n], false)

return (me,MK ,⊥,⊥)

Algorithm: Remove
(
time, {uidi}i∈[n]

)
req uidlead = me
for i ∈ [n] do

req uidi ∈ G ∧ uidi ̸= me
G← G \ {uid1, . . . , uidn}
Removed← Removed ∪ {uid1, . . . , uidn}
Added← Added \ {uid1, . . . , uidn}
try (st,MK)← cmKEM.Remove(st, {uidi}i∈[n])
(e, p)← (st.e, st.p)
return (me,MK ,⊥,⊥)

Time driven

Algorithm: LeaderTick(time)
req uidlead = me
lpl, hb← ⊥
if time− lastHb ≥ ∆LPL then

if Added ̸= ∅ ∨ Removed ̸= ∅ then
lpl← *send-LPL()
hb← *send-heartbeat()

else if time− lastHb ≥ ∆heartbeat then
hb← *send-heartbeat()

return (me,⊥, lpl, hb)

Algorithm: ParticipantTick(time)
req uidlead ̸= ⊥ ∧ uidlead ̸= me
alive← (time− lastHb ≤ ∆live)
return (alive,⊥) // no updated credentials

Fig. 2: The client part of Zoom’s overall LL-CGKA scheme. The description
implicitly keeps the state ust.
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Protocol Zoom’s Client LL-CGKA Helpers

Helper: *send-LPL()
v← v + 1
if numLplLinks ≥ max-links then

lpl← (me, v, true,⊥, G,⊥, e, p)
numLplLinks← 1

else
lpl← (me, v, false, lplHash,Added,Removed, e, p)
numLplLinks← numLplLinks+ 1

lplHash← Hash(lpl)
(Added,Removed)← ∅
return lpl

Helper: *receive-LPL(lpl′)
parse (uid′lead, v

′, coalesced′, lplHash′,
Added′,Removed′, e′, p′)← lpl′

req v = ⊥ ∨ v′ = v + 1
v← v′

if ¬coalesced then
req lplHash′ = lplHash ∧ lplHash ̸= ⊥
req (Removed′ \G) = ∅
G← G \ Removed′

req (Added ∩G) = ∅
G← G ∪ Added′

else
G← Added′

lplHash← Hash(lpl′)
(enext, pnext)← (e′, p′)

Helper: *send-heartbeat()
t← t+ 1
sighb ← Sig.Sign(isk, ‘LeaderParticipantList′,

(me, t, hbHash, time, v, lplHash, e, p))
hb← (t, time, sighb)
hbHash← Hash(hb), lastHb← time
return hb

Helper: *receive-heartbeat(hb)
parse (t′, time′, sig′hb)← hb
req t = ⊥ ∨ t′ = t+ 1
t← t′

(·, ipk′)← cmKEM.Identity(uidlead)
req Sig.Verify(ipk′, ‘LeaderParticipantList′, (uidlead, t,

hbHash, time′, v, lplHash, enext, pnext), sig
′
hb)

req Key[enext, pnext] ̸= ⊥
(e, p)← (enext, pnext)
*update-drift(time′)
*update-liveness(time′)
hbHash← Hash(hb)
t← t′

Helper: *update-drift(time′)
δ[uidlead]← min(δ[uidlead], time− time′)

Helper: *update-liveness(time′)
lastHb← time′ + δ[uidlead]

Fig. 3: Helper algorithms for the client part of Zoom’s overall LL-CGKA scheme.

as well, for this to go unnoticed. As a countermeasure, participants drop out
from the meeting if they do not receive a heartbeat message for too long.

For this mechanism to not abruptly end meetings (despite potential network
hiccups), participants do not expect to receive the heartbeats in perfectly regular
intervals. Rather, each heartbeat itself contains a timestamp time′ (the sending
time) whose state it certifies. Receiving this heartbeat then prolongs the liveness
of the receiver until time time′ + δ +∆live, when the party will drop out if no
further heartbeat has been received. Here, δ denotes an estimate on the clock
drift (between the participant and their respective leader) and ∆live denotes a
protocol parameter. In a best effort to prevent this from happening, the server
will elect a new leader whenever the current one struggles to upload heartbeats.

The protocol estimates the clock drift δ as follows: Upon receiving the first
heartbeat with timestamp t′ at local time t from a given leader, the protocol
simply assumes that t− t′ is the drift, i.e., that the heartbeat has been delivered
instantaneously. Clearly, t′ + δ = t is an upper bound on the effective sending
time. Upon receiving a subsequent heartbeat, the party corrects the drift to t− t′

whenever this is smaller, and otherwise keeps it unchanged. Hence, if the network
delay, and thus the interval between received heartbeat, increases (e.g., due to a
network attacker) then each subsequently received heartbeat extends liveness by
a smaller amount, until the party eventually drops out. Conversely, if the network
delay decreases, the drift estimates and, hence, the liveness assurances improve.
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Evolving the group The protocol uses the cmKEM scheme to rotate keys
whenever the group membership changes. The participants, however, do not imme-
diately transition to the new epoch or period upon receiving such a cmKEM mes-
sage. Rather, they just store the new key. Only once the group membership is
known via receiving a corresponding LPL message and heartbeat, they transi-
tion to the new epoch and period and advertise the respective key for content
encryption to the higher-level protocol. For membership changes containing only
additions, the protocol avoids overly frequent epoch changes by rotating the
period instead, however, limiting the number of consecutive periods to a fixed
number pMAX.

Joining a meeting To join a meeting, a party needs to learn the latest key
and group roster in an authenticated manner. The former is communicated via a
cmKEM message and the latter via the sequence of LPL messages starting with
the latest coalesced one. Authentication of the LPL is achieved by verifying the
latest heartbeat message that certifies the final LPL message, as well as epoch
and period numbers. (The previous links are implicitly authenticated due to the
links forming a hash chain.)

Leader changes A newly elected leader continues the meeting by starting a
new cmKEM session and generating a coalesced LPL message and a heartbeat,
which the server then distributes to the other participants. The new leader will
continue the relevant counters (i.e., e, p, and t) and hash chains where the old
leader left off, such that they uniquely identify a meeting state. The server is
responsible to ensure that the party has the latest state the moment it becomes
the new leader.

Note that the new leader obtains the group roster from the server, rather than
deducing it from the previous LPL messages. Otherwise, they might inadvertently
revert some of the previous leader’s final changes to the group, if for instance
the previous leader added or removed a party on the cmKEM level but did not
manage to broadcast a corresponding LPL message before dropping out. Users
are shown a warning on every leader change, and are advised to manually check
whether the group roster displayed in their client matches the expected one.

The server scheme The messages the leader uploads consist of up to three
components, a cmKEM message, a LPL and a heartbeat message. If the message
contains a cmKEM message, then the server splits this using the respective
cmKEM algorithm and forwards the respective share alongside the LPL and
heartbeat (if present) to the users. Otherwise, the server forwards the LPL and
heartbeat messages to the last known roster, as derived from the cmKEM mes-
sages. See the full version of this work for details.

Security Security is summarized in our main result below, with a more detailed
proof given in the full version of this work.
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Theorem 2. Zoom’s LL-CGKA scheme is secure with the liveness slack of P
being at most

min(n ·∆live, tnow − tjoined) +∆live,

where tnow denotes the current time, tjoined the time P joined the meeting, and n
denotes the number of distinct leaders P encountered so far. Liveness holds if all
those leaders have followed the protocol, while all other properties hold as long as
the current leader is honest.

Proof (Sketch). Confidentiality and key consistency follow directly from the
underlying cmKEM scheme which is used to distribute the group keys. While
the LL-CGKA notion mandates slightly stronger properties, those additional
assurances relate directly to members only transitioning to subsequent periods
if their leader initiated this. This is ensured by parties only transitioning to
a new state once a heartbeat certified it, leveraging the unforgeability of the
employed signature scheme. Similarly, group consistency — i.e., authenticity
of each participant’s view on the group roster — is ensured by the combined
LPL and heartbeat mechanism, with the LPL distributing the group and the
heartbeat authenticating the LPL. Additionally, the hash links of the heartbeat
messages yields the no-merging property after a group-splitting attack.

Finally, observe that liveness slack is directly linked to the accuracy of each
party’s estimate on the clock drift with their respective leader: If the estimate
were precise, then each party would have a liveness slack of at most ∆live since
they would know exactly when the last heartbeat they received has been sent
allowing them to drop out ∆live after. Further, the estimate only degrades by at
most ∆live with each leader change — the maximum interval between receiving
the old leader’s last heartbeat and the new leader’s first one.

The above theorem relies on the underlying cmKEM scheme being secure
according to the respective definition, the signature scheme being EUF-CMA se-
cure, and the hash function being collision resistant. According to the whitepaper
[11], Zoom’s instantiation uses SHA256 and EdDSA (as provided by libsodium)
for the hash function and signature algorithm, respectively, satisfying those
requirements [19,13].

Concrete parameters At the time of writing, Zoom uses ∆live = 100s,
∆heartbeat = 10s,∆LPL = 2s, and max-links = 20, respectively. Moreover, pMAX = 0,
i.e., Zoom always ratchets the full epoch instead of the period3.

4 Improved Liveness

4.1 Limitations of Zoom’s Protocol

For a typical meeting with a single (honest) host that stays online for the duration
of the entire meeting — and thus is the leader for the entire meeting — Zoom’s
current scheme1 provides strong liveness properties. Indeed, to the best of our
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knowledge, Zoom is the only E2EE group video protocol that provides any such
liveness assurance. As highlighted by Theorem 2, however, there two distinct
aspects with respect to which the assurances could be further improved:

1. Zoom’s current liveness assurance degrade in the number of meeting leaders
encountered. This is sub-optimal for a protocol such as Zoom where the
(untrusted) server can initiate leader changes.10

2. While all other security properties, such as key confidentiality and authenticity,
recover after removing a malicious party from the meeting, liveness does
not.11

We particularly stress that both aspects are not merely deficiencies of our
analysis. Concrete but contrived attacks exist, even if they could be mitigated by
countermeasures relying on the end user, such as user-interface warnings.

Lemma 1. Even with all honest participants, the liveness properties of Zoom’s
LL-CGKA scheme degrade in the number of leader changes, assuming an all
powerful malicious server carefully orchestrating the meeting.

Proof. Consider a meeting with parties P1, P2, . . . , Pn, as well as a designated
party P ∗. All parties, unbeknownst to each other, have precisely synchronized
clocks. The party P1 is the one to start the meeting and act as its initial leader.
When adding the parties P2, . . . , Pn to the meeting, the network adversary delivers
the respective messages immediately. That is, the moment those parties create
their ephemeral user identities uid2, . . . , uidn, party P1 is immediately instructed
to add them to the meeting using Add producing M, and the respective shared
obtained by split are handed to the parties to execute Follow without any delay.
(To this end, assume that the heartbeat interval perfectly aligns with the moment
all those parties join.) This results in each of those parties estimating their drift
to be 0, i.e., δuidj [uid1] = 0 for j ∈ {2, . . . , n}.

In contrast, when party P ∗ joins the meeting their respective ephemeral
identity uid∗ is still handed immediately to P1, but the respective response
delayed by ∆live. Assuming P ∗ created their identity at time t and got the
LL-CGKA message at time t+∆live, but with timestamp t, then P ∗ assumes that
their clock runs ahead by ∆live, i.e., δuid∗ [uid1] = ∆live. All subsequent heartbeats
from P1 are then delivered to P ∗ with a delay of ∆live. As a result, if P1 sends a
further heartbeat at time t′, P ∗ will set lastHb← t′ +∆live and therefore extend
the time until they drop out until t′ + 2∆live (instead of the optimal t′ +∆live).

Next, consider P1 sending their last heartbeat at time t2 ≥ t+∆live (which is
delivered to all parties as previously described) and immediately afterwards the

10 This is currently remedied by the client showing a warning upon each leader change,
since the leader-authentication codes anyway require to repeat the authentication
process in this event. With the introduction of the advanced PKI replacing the
leader-authentication codes, Zoom might however consider dropping those warnings.

11 Note that Zoom does not aim to provide strong guarantees while a malicious insider
is part of the meeting. Yet, removing a malicious party should ideally reestablish
security without the need to restart the entire meeting.
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party P2 becoming the leader, still at time t2. Again, the messages derived from
the output of Lead are distributed to P3, . . . , Pn without delay, again resulting in
δuidj [uid2] = 0. For P ∗, on the other hand, P1’s last heartbeat is delivered at time
t2+∆live, extending liveness until t2+2∆live. The adversary now takes advantage
of the fact by delaying the first message from P2 as well as all subsequent ones
by 2∆live. This process can then be repeated with sequentially switching leaders
to P3, P4, . . . , Pn, leading to a liveness slack of (n+ 1)∆live. ⊓⊔
Lemma 2. If parties join a meeting that currently has a malicious leader col-
luding with a party with extensive control over Zoom’s server infrastructure, then
the liveness assurance can be arbitrarily broken even after all malicious parties
have been removed from the meeting (and a honest leader has taken over).

Proof. Consider a malicious insider attacker PM starting a meeting. Moreover,
assume that there are two honest parties PA and PB , where first PA wants to join
and at a later point PB wants to join. Assume that all have perfectly synchronized
clocks. In the meeting, attacker first adds PA to the group, without any delay, i.e.,
such that δuidA [uidM ] = 0. At time t, right when PB is about to join (e.g., once
PB advertised their ephemeral uidB) the malicious insider does the following:

1. PM creates k heartbeat messages t+ 1, t+ 2, . . . , t+ k (when t denotes the
number of heartbeats created so far) for which they pretend to be normally
spaced out by ∆heartbeat with respect to the included timestamps.

2. PM then adds PB to the meeting in state t+k, i.e., the first heartbeat signing
over the LPL containing uidB is with counter t+ k + 1.

The attacker controlling Zoom’s server infrastructure now delivers those messages
as follows:

1. Immediately deliver the welcoming message, including the (t + k + 1)-th
heartbeat, at time t to PB . As a result PB will set δuidB [uidM ] = −k ·∆heartbeat,
since to PB it looks like the clock of PM simply runs ahead.

2. Immediately make PB the new leader at time t.
3. Deliver all the k intermediate heartbeats to PA at the regular interval

∆heartbeat. At time t + k · ∆heartbeat first deliver the messages correspond-
ing to PB joining and then, immediately afterwards, the first message from
the new leader PB .

It is easy to see that PA does not drop out as they get heartbeats exactly as
if the meeting would progress normally. More concretely, to PA it looks like a
perfectly normal meeting in which PB joins at time t+ k ·∆heartbeat. At the end,
PA will still accept the message from PA, thinking that the clock of PA must run
ahead.

As a result, we now propose two alternative strengthened liveness protocols.

4.2 Additional Interaction

As a first proposal we suggest adding additional interaction in the form of sporadic
messages of each participant. This proposal has been implemented in the Zoom
meeting client since version 5.13.
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Protocol Client LL-CGKA (Improvement 1)

User management

Algorithm: CreateUser(time, id,meetingId)
(st,me, sig′)← cmKEM.CreateUser(id,meetingId)

nonce←$ N
nonce′ ← ⊥
lastNonce← time
sig← (sig′, nonce)

(isk, ·)← PKI.get-sk(id)
lastHb← time
uidlead ← ⊥
G← ∅
e, p, enext, pnext, v, t← 0
k[·, ·]← ⊥
δ[·]←∞
lplHash, hbHash← ⊥
return (me, sig)

Participants’ algorithms

Algorithm: Follow(time,m′, uid′lead, sig
′
lead)

req uidlead ̸= ⊥ ∧ uid′lead ̸= me
parse (m′

K , lpl′, hb′)← m′

st′ ← cmKEM.JoinSession(st, uid′lead, sig
′
lead,m

′
K , nonce)

if st′ = ⊥ then // joining failed
// try previous nonce
try st← cmKEM.JoinSession(st, uid′lead, sig

′
lead,

m′
K , nonce′)

else
st← st′

Key[st.e, st.p]← st.k
if lpl′ ̸= ⊥ then

try *receive-LPL(lpl′)
if hb′ ̸= ⊥ then

try *receive-heartbeat(hb′)

Algorithm: ParticipantTick(time)
req uidlead ̸= ⊥ ∧ uidlead ̸= me
alive← (time− lastHb ≤ ∆live)

if time− lastNonce ≥ ∆live then
nonce′ ← nonce
nonce←$ N
lastNonce← time
sig← (sig′, nonce)
return (alive, sig)

else
return (alive,⊥)

Leader’s algorithms

Algorithm: Lead(time, {(uidi, sigi)}i∈[n])
uidlead ← me
for i ∈ [n] do

parse (sig′i, noncei)← sigi
try (st,MK)← cmKEM.StartSession(st,

{(uidi, noncei, sig′i )}i∈[n])

G← {uid1, . . . , uidn} ∪ {me}
Added,Removed← ∅
numLplLinks← max-links
lpl← *send-LPL()
hb← *send-heartbeat()
M← (me,MK , lpl, hb)
return M

Algorithm: Add(time, {(uidi, sigi)}i∈[n])
req uidlead = me
for i ∈ [n] do

req uidi /∈ G

parse (sig′i, noncei)← sigi
G← G ∪ {uid1, . . . , uidn}
Added← Added ∪ {uid1, . . . , uidn}
if p ≥ pMAX then

try (st,MK)← cmKEM.Add(st,

{(uidi, noncei, sig′i )}i∈[n], true)

(e, p)← (st.e, st.p)
else

try (st,MK)← cmKEM.Add(st,

{(uidi, noncei, sig′i )}i∈[n], false)

return (me,MK ,⊥,⊥)

Fig. 4: The proposed changes with respect to Zoom’s scheme from Fig. 2.

The protocol Concretely, our enhancement to Zoom’s protocol is as follows:
First, each party generates an unpredictable nonce nonce (from some nonce space
N , e.g., 192-bit strings) at regular intervals. These nonces are seen as part of a
party’s credential and hence ParticipantTick outputs new credentials whenever
the nonce is update. (In practice one would of course only upload the nonce, not
the entire credentials, each time.) For simplicity, we choose the same parameter
∆live as for the overall liveness slack.
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Whenever a new leader is elected, they get each participants latest nonce from
the server. We encode this as part of the credentials sig for the Lead algorithm,
which can now be thought as some sort of time-based credentials. The new leader
then uses those nonces as associated data for the cmKEM primitive (which for
Zoom’s instantiation means it is used as associated data for the authenticated
PKE). The same mechanism is used for adding new members to the group.

Each party as part of the Follow algorithm provides their current nonce as
associated data to JoinSession, thus verifying that the new leader used the correct
one. To prevent race conditions, parties moreover stores their second latest nonce
nonce′ and try with that one if JoinSession initially fails. See Fig. 4 for a formal
description of the changes with respect to Zoom’s current scheme from Fig. 2.

Security Our proposal improves the liveness properties twofold. First, the
liveness slack no longer degrades in the number of leader changes. Second,
liveness now holds even if a past leader has been corrupted as long as the current
leader is honest.

We now state the resulting theorem. A more formal version thereof and a
proof can be found in the full version of this work.

Theorem 3. The modified LL-CGKA scheme from Fig. 4 is secure with the
liveness slack of P being at most

min
{
min(3, n) ·∆live, tnow − tjoined

}
+∆live,

where tnow denotes the current time, tjoined the time P joined the meeting, and
n denotes the number of distinct leaders P encountered so far. In contrast to
Theorem 2, liveness holds if the current leader is honest (as apposed to all leaders
encountered so far), analogous to all other properties.

4.3 Leveraging Clock Synchronicity

In this section, we explore an alternative approach towards mitigating the de-
grading liveness properties. Concretely, we propose to leverage pre-existing clock
synchronicity to achieve better liveness properties without having to introduce
additional communication. For E2EE protocols, however, it is undesirable to
simply assume synchronized clocks since this, for all practical purposes, implies
assuming a trusted reference clock (some time server) and introduces additional
friction for users on misconfigured devices (for example, with the wrong timezone
settings.).

Unfortunately, even detecting whether clocks are synchronized is non-trivial.
For instance, consider the interaction between a participant P and a leader L
depicted in Fig. 5: in one situation, L’s clock is in sync while in the other situation
L’s clock runs ahead — yet the scenarios look completely indistinguishable to
both P and L. As such, we propose the following hybrid strategy:

– For correctness, i.e., functionality of the scheme, assume clocks to be properly
synchronized. After all, Zoom is usually run on modern devices such as laptop
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computers or smartphones that generally do have well synchronized clocks.
An honest Zoom server could moreover detect erroneous time setting and
instruct the client to re-synchronize their clock (either displaying a warning
or do it automatically with a somewhat trusted external server).

– For security, well synchronized clocks should yield tight liveness assurances,
while worst case liveness should degrade to the current1 protocol’s properties.

L

P

0 1 2 3 4 5

0 1 2 3 4 5

uid
P

(4, uid
P
, . . .)

add P ’

L

P

2 3 4 5 6 7

0 1 2 3 4 5

ui
d P

(4, uid
P , . . .)

add P ’

Fig. 5: The leader L’s clock running ahead (right) negatively affects liveness as
the addition of P ’ can be withhold longer from P .

The protocol We now discuss our proposed mechanism. In a nutshell, our
proposed improvement works by each party P not maintaining a single (best-
effort) estimate δP [L] to their current leader L, but strict lower and upper bounds
δmin
P [L] ≤ offsetL→P ≤ δmax

P [L] on their respective drift offsetL→P gradually
improved over the course of the protocol execution. Analogous to the current
estimate, those bounds are derived from simple causality observations and in
turn used to adjust the timestamp indicated as part of the heartbeat messages.
See Fig. 6 for a formal description of the proposed modifications with respect to
Zoom’s current scheme.

Deriving bounds. To this end, consider the case that P receives a heartbeat
with timestamp timeL (according to L’s clock) at time tnow (according to P ’s
clock). Clearly, P knows that the heartbeat has not been sent after tnow, i.e.
timeL + offsetL→P ≤ tnow. Furthermore, assume that (for whatever reason) P
knows that this heartbeat has been sent definitively not before tthen. P can use
this to deduce the following bounds:

tthen − timeL ≤ δmax
P [L] and δmin

P [L] ≤ tnow − timeL.

P will only update a bound if it improves the current one. (At the beginning,
the protocol initializes them to δmax

P [L] = +∞ and δmin
P [L] = −∞.)

In our protocol, P will have a meaningful such lower bound tthen in the
following two situations:

– Upon joining the meeting: When P joins the meeting, the first heartbeat
they get will sign over an LPL containing their freshly generated ephemeral
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Protocol Client LL-CGKA (Improvement 2)

Algorithm: CreateUser(time, id,meetingId)
(st,me, sig)← cmKEM.CreateUser(id,meetingId)
(isk, ·)← PKI.get-sk(id)
lastHb← time
lastHbmin, lastHbmax ← ⊥
uidlead ← ⊥
G← ∅
e, p, enext, pnext, v, t← 0
k[·, ·]← ⊥
δmin[·]← −∞
δmax[·]← +∞
lplHash, hbHash← ⊥
return (me, sig)

Algorithm: CatchUp(ust, time, grpPub)
req uidlead = ⊥
parse (lpls′, hb′)← grpPub
// Process LPLs
while lpls ̸= ⟨⟩ do

lpl′ ← lpls′.deq()
try *receive-LPL(lpl′)

// Store Heartbeat (no verification)
hbHash← Hash(hb′)

lastHbmax ← time

Helper: *send-heartbeat()
t← t+ 1
elapsed← time− lastHbmax

sighb ← Sig.Sign(isk, ‘LeaderParticipantList′,

(me, t, hbHash, time, elapsed , v, lplHash, e, p))

hb← (t, time, elapsed , sighb)

hbHash← Hash(hb)

lastHb, lastHbmin, lastHbmax ← time
return hb

Helper: *receive-heartbeat(hb)

parse (t′, time′, elapsed′ , sig′hb)← hb

req t = ⊥ ∨ t′ = t+ 1
t← t′

(·, ipk′)← cmKEM.Identity(uidlead)
req Sig.Verify(ipk′, ‘LeaderParticipantList′,

(uidlead, t, hbHash, time′, elapsed′ , v, lplHash,

enext, pnext), sig
′
hb)

req Key[enext, pnext] ̸= ⊥
(e, p)← (enext, pnext)
*update-drift(time′, elapsed′)
*update-liveness(time′)
hbHash← Hash(hb)
t← t′

Helper: *update-drift(time′, elapsed′)
// Upon receiving hb with timestamp time′

if lastHbmin ̸= ⊥ then
timethen ← lastHbmin + elapsed′

else
timethen ← lastHb // time of creating uid

δmax[uidlead]← min(δmax[uidlead], time− time′)
δmin[uidlead]← max(δmin[uidlead], timethen − time′)

Helper: *update-liveness(time′)
// Updates time of last received heartbeat
if δmax[uidlead] < 0 then

// Leader’s clock definitively behind
lastHb← time′ + δmax[uidlead]

else if δmin[uidlead] > 0 then
// Leader’s clock definitively ahead
lastHb← time′ + δmin[uidlead]

else
// Unsure
lastHb← time′

lastHbmax ← time′ + δmax[uidlead]
lastHbmin ← time′ + δmin[uidlead]

Fig. 6: The proposed changes with respect to Zoom’s scheme from Fig. 2.

key. Hence, that heartbeat must have been sent after the time tjoined when P
generated the key.

– Upon receiving the first heartbeat from a new leader L′: The protocol
works by having P deducing a lower bound on when the last heartbeat of the
old leader was sent, and the new leader L′ indicating as part of the heartbeat
a lower bound on the elapsed duration elapsed between the last heartbeat of
the old leader L and their first one. Hence, upon receiving the first heartbeat
from L′, P can use timeL + δmin

P [L] + elapsed as a lower bound on the sending
time.

Observe that the new leader L’ can deduce a lower bound on elapsed based
on the last heartbeat from L as follows: If L′ has already been part of the
meeting, it can leverage their own bound δmax

L′ [L] to deduce the upper bound
timeL + δmax

L′ [L] on the prior heartbeat’s sending time. Otherwise, L′ can
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use the time they got the last heartbeat from the server as part of CatchUp
yielding at least some (very conservative) bound.

For subsequent heartbeats of the same leader, P only updates the upper
bound (if tighter than the previous one).

Correcting the drift. We then modify the “conversion” of timestamp that P
performs accordingly. That is, whenever P receives a heartbeat with timestamp
time′L, in Zoom’s protocol P assumes that this has been sent at local time
time′P := time′L+δP [L] and correspondingly delays dropping out until time′P+∆live.
Unfortunately, after a number of leader changes the uncertainty on δP [L] (and thus
in our improved protocol the difference between δmin

P [L] and offsetL→P ≤ δmax
P [L])

can become quite large. This potentially means that this “converted” timestamp
might be actually less accurate than the sent one, leading to the degradation in
provable liveness observed for Zoom’s protocol.

We, thus, want to be careful not to destroy the assurances in case the clocks
are well synchronized. Hence, the protocol conservatively adjusts the received
timestamp if and only if the leader’s clock is surely behind or ahead, respectively:

time′P :=


time′L + δmin

P [L] if δmin
P [L] > 0,

time′L + δmax
P [L] if δmax

P [L] < 0,

time′L otherwise.

Security We now state the respective security statement. A more formal version
thereof and a proof is given in the full version of this work.

Theorem 4. The modified LL-CGKA scheme from Fig. 6 is secure with the
following improved liveness slack

min
{
|offsetL→P |, n ·∆live, tnow − tjoined

}
+∆live,

where offsetL→P denotes the clock drift between P and their respective leader L,
tnow denotes the current time, tjoined the time P joined the meeting, and n denotes
the number of distinct leaders P encountered so far. Liveness holds if all those
leaders have followed the protocol, while all other properties hold as long as the
current leader is honest.

5 Meeting Stream Security

The notion of LL-CGKA formalizes the key agreement portion of Zoom’s E2EE
meeting protocol. While our formal analysis stops at the level of the key agreement,
we now comment on how these guarantees extend to the full protocol.

The symmetric meeting key that participants agree upon is leveraged in a
straightforward way to provide security guarantees for the whole meeting, by
composing it with AEAD. Concretely, given the meeting key, Zoom clients derive

28



a specific per-stream subkey by using HKDF and mixing in a specific stream
identifier which depends on the stream type as well as the participant identifier.
This subkey is used by each participant to encrypt their streams using AES-GCM.
Incrementing nonces provide protection against replay and out of order delivery.

Confidentiality and authenticity Informally, confidentiality of the meeting
key (as formalized in the LL-CGKA abstraction) implies confidentiality of the
streams, as distinguishing encrypted meeting streams from encryptions of random
noise would require breaking the AEAD scheme. Similarly, AEAD provides integrity
protection against external attackers who do not have access to the meeting
key, guaranteeing that any received ciphertexts was produced by someone with
knowledge of the meeting (sub)key. As pointed out in the whitepaper [11], it is
possible for attendees with privileged network access to tamper with each other’s
streams.

Liveness The liveness properties proven for the LL-CGKA directly guarantee
that group operations in an E2EE meeting cannot be withheld, and extend
analogously to the encrypted meeting streams, but with different parameters.
Indeed, as of version 5.13 of the Zoom meetings client, meeting participants stop
decryption using old meeting keys shortly after a newer one is advertised from
the key agreement, i.e., the LL-CGKA scheme (with a tolerance ∆stream = 10
seconds to account for network latency). In addition, meeting leaders rotate
these keys at least once every t = 5 minutes even when there is no change
in the participant list. Assuming the above, the protocol guarantees that each
packet sent by an honest participant and successfully decrypted was sent within
t + ∆stream + ∆ of its decryption, where ∆ is the liveness slack from the key
agreement protocol. Alternatively, the protocol could include the heartbeat
counter from the key agreement as associated data in the video encryption,
yielding liveness ∆+∆stream +∆heartbeat without the need to frequently re-key.12

6 Conclusions

In this work, we provided the first formal security analysis of Zoom’s E2EE
meetings protocol, which is one of the most popular group video communication
tools in the world. Our work lead to a deployed improvement of the Zoom E2EE
meetings protocol, which strengthens its security properties. Of independent
interest, our work is also the first that defines and studies liveness in the context
of end-to-end encryption, which we hope should find other applications beyond
Zoom meetings.
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