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Abstract. A broadcast, trace and revoke system generalizes broadcast
encryption as well as traitor tracing. In such a scheme, an encryptor can
specify a list L C N of revoked users so that (i) users in L can no longer
decrypt ciphertexts, (ii) ciphertext size is independent of L, (iii) a pirate
decryption box supports tracing of compromised users. The “holy grail”
of this line of work is a construction which resists unbounded collusions,
achieves all parameters (including public and secret key) sizes independent
of |L| and |N|, and is based on polynomial hardness assumptions. In this
work we make the following contributions:

1. Public Trace Setting: We provide a construction which (i) achieves
optimal parameters, (ii) supports embedding identities (from an
exponential space) in user secret keys, (iii) relies on polynomial
hardness assumptions, namely compact functional encryption (FE)
and a key-policy attribute based encryption (ABE) with special
efficiency properties, and (iv) enjoys adaptive security with respect
to the revocation list. The previous best known construction by
Nishimaki, Wichs and Zhandry (Eurocrypt 2016) which achieved
optimal parameters and embedded identities, relied on indistinguisha-
bility obfuscation, which is considered an inherently subexponential
assumption and achieved only selective security with respect to the
revocation list.

2. Secret Trace Setting: We provide the first construction with optimal
ciphertext, public and secret key sizes and embedded identities from
any assumption outside Obfustopia. In detail, our construction relies
on Lockable Obfuscation which can be constructed using LWE (Goyal,
Koppula, Waters and Wichs, Zirdelis, Focs 2017) and two ABE schemes:
(i) the key-policy scheme with special efficiency properties by Boneh et
al. (Eurocrypt 2014) and (ii) a ciphertext-policy ABE for P which was
recently constructed by Wee (Eurocrypt 2022) using a new assumption
called evasive and tensor LWE. This assumption, introduced to build an
ABE, is believed to be much weaker than lattice based assumptions
underlying FE or iO — in particular it is required even for lattice based
broadcast, without trace.

Moreover, by relying on subexponential security of LWE, both our
constructions can also support a super-polynomial sized revocation list,



so long as it allows efficient representation and membership testing.
Ours is the first work to achieve this, to the best of our knowledge.
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1 Introduction

Traitor Tracing. Traitor tracing (TT) schemes were first proposed by Chor, Fiat,
and Naor [23] to enable content providers to trace malicious users who exploit
their secret keys to construct illegal decryption boxes. More formally, a TT
system is a public key encryption system comprising /N users for some large
polynomial N. Each user i € [N] is provided with a unique secret key sk; for
decryption, and there is a common public key pk which is used by the content
distributor to encrypt content. If any collection of users attempts to create and
sell a new decoding box that can be used to decrypt the content, then the tracing
algorithm, given black-box access to any such pirate decoder, is guaranteed to
output an index ¢ € [N] of one of the corrupt users, which in turn allows to hold
them accountable. The literature has considered both public and secret tracing,
where the former requires knowledge of a secret key to run the trace procedure
and the latter does not suffer from this restriction.

Broadcast Encryption. Broadcast Encryption [26] (BE) introduced by Fiat
and Naor, is also an N user system which supports an encrypted broadcast
functionality. In BE, a content provider can transmit a single ciphertext over a
broadcast channel so that only an authorized subset S C N of users can decrypt
and recover the message. More formally, each user ¢ € [N] is provided with a
unique decryption key sk; and a ciphertext ct,, for a message m also encodes an
authorized list S so that sk; decrypts ct,, if and only if ¢ € S. Evidently, public
key encryption provides a trivial construction of BE with ciphertext of size O(N)
— thus, the focus in such schemes is to obtain short ciphertext, ideally logarithmic
in N.

Broadcast, Trace and Revoke. Naor and Pinkas [43] suggested a meaningful
interleaving of these two functionalities so that traitors that are identified by
the TT scheme can be removed from the set of authorized users in a BE scheme.
To capture this, they defined the notion of “Broadcast, Trace and Revoke” (or
simply “Trace and Revoke”, which we denote by TR) where the content provider
in a broadcast encryption scheme includes a list L of revoked users in the
ciphertext, and sk; works to decrypt cty, if i ¢ L. Moreover, it is required that
revocation remain compatible with tracing, so that if an adversary builds a
pirate decoder that can decrypt ciphertexts encrypted with respect to L, then
the tracing algorithm should be able to output a corrupt non-revoked user who
participated in building the illegal decoder. Trace and revoke systems provide a
functionality which is richer than a union of BE and TT, since the traitor traced
by the latter must belong to the set of non-revoked users for the guarantee to



be meaningful. As such, TT schemes have been challenging to construct even
given TT and BE schemes.

The Quest for Optimal Parameters. All the above primitives have been
researched extensively over decades, resulting in a long sequence of beautiful
constructions, non-exhaustively [14, 17, 15, 16, 44, 40, 33, 34, 6, 48]. A central
theme in this line of work is to achieve optimal parameters, namely optimal
sizes for the ciphertext, public key and secret key (and understanding tradeoffs
thereof), while still supporting unbounded collusion resistance. Towards this, the
powerful hammer of indistinguishability obfuscation (iO) [10] yielded the first
feasibility results for traitor tracing [16] as well as trace and revoke [44] while
multilinear maps [27, 24] led to the first construction for broadcast encryption
[15]. Though there has been remarkable progress in the construction of iO from
standard assumptions, with the breakthrough work of Jain, Lin and Sahai [38, 39]
finally reaching this goal, iO is an inherently subexponential assumption [29]
because the challenger is required to check whether two circuits are functionally
equivalent, which can take exponential time in general. Indeed, all known
constructions of iO assume subexponential hardness of the underlying algebraic
assumptions. To address this limitation, a sequence of works [29, 3, 18, 28, 41]
has sought to replace iO by polynomially hard assumptions such as functional
encryption in different applications.

Optimal TT, BE and TR from Polynomial Assumptions: For traitor tracing, the
first construction from standard assumptions was finally achieved by the seminal
work of Goyal, Koppula and Waters [33] in the secret trace setting, from the
Learning With Errors (LWE) assumption. For broadcast encryption, this goal was
achieved by Agrawal and Yamada [6] from LWE and the bilinear GGM. In the
standard model, Agrawal, Wichs and Yamada [5] provided a construction from
a non-standard knowledge assumption on pairings, while Wee [48] provided a
construction from a new assumption on lattices, called Evasive and Tensor LWE.
For trace and revoke, the only construction without iO that achieves collusion
resistance and optimal parameters is by Goyal, Vusirikala and Waters (GVW)
[36] from positional witness encryption (PWE) which is a polynomial hardness
assumption. However, their construction incurs an exponential loss in the
security proof, requiring the underlying PWE to satisfy subexponential security.
Moreover, although PWE is not an inherently subexponential assumption as are
iO and witness encryption (WE), we do not currently know of any constructions
of PWE that rely on standard polynomial hardness assumptions. In particular,
[38, 39] do not imply PWE from polynomial hardness.

Pathway via Secret Tracing. Both the iO and PWE based constructions of TR [44,
36] achieve public tracing. Taking a lesson from TT, where optimal parameters
were achieved from standard assumptions only in the secret trace setting [33],
a natural approach towards optimal TR from better assumptions is to weaken
the tracing algorithm to be secret key. This approach has been explored in a
number of works — the current best parameters are achieved by Zhandry [51]
who obtains the best known tradeoff in ciphertext, public key and secret key size.



In particular, Zhandry [51] showed that all parameters can be of size O(N'/?) by
relying on the bilinear generic group model (GGM). Note that the generic group
model is a strong assumption, and indeed a construction secure in this model
cannot be considered as relying on standard assumptions, since several non-
standard assumptions on pairings are secure in the GGM. Prior to [51], Goyal
et al. [35] provided a construction from LWE and Pairings, but their overall
parameters are significantly worse — while their ciphertext can be arbitrarily
small, O(N¢), their public key is O(N) and secret key is O(N°) for some large
constant ¢*.

Thus, a central open question in TR is:

Can we construct collusion resistant Trace and Revoke with optimal parameters
from concrete polynomial assumptions?

Embedding Identities. Traditionally, it was assumed that tracing the index
i € [N] of a corrupt user is enough, and there is an external mapping, maintained
by the content distributor or some other party which associates the number ¢ to
the identity of the user, i.e. name, national identity number and such, which is
then used to ensure accountability. The work of Nishimaki, Wichs and Zhandry
(henceforth NWZ) [44] argued that this assumption is problematic since it implies
that a user must trust the content provider with her confidential information.
Storing such a map is particularly worrisome in the setting of public tracing
since the user either cannot map the recovered index to an actual person, or the
index-identity map must be stored publicly.

NWZ provided an appealing solution to the above conundrum - they suggest
that identifying information be embedded in the key of the user, so that if a
coalition of traitors constructs a pirate decoder, the tracing algorithm can directly
retrieve the identifying information from one of the keys that was used to
construct the decoder and no one needs to keep any records associating users
to indices. Notably, the identities can live in an exponential sized space, which
introduces significant challenges in the tracing procedure. Indeed, handling
an exponential space in the tracing procedure is the key contribution of NWZ.
They also provided constructions of traitor tracing as well as trace and revoke
with embedded identities, denoted by EITT and EITR respectively, from various
assumptions.

1.1 Prior Work: Embedded Identity Trace and Revoke.

In the public trace setting, the only work that achieves embedded identity trace
and revoke (EITR) with full collusion resistance is that of NWZ. However, while it
takes an important first step, the construction by NWZ suffers from the following
drawbacks:

8 Zhandry [51] states that the secret size in [35] is O(N 2) but in fact the exponent is
much larger due to the usage of arithmetic computations in NC', which blows up the
circuit size associated with the ABE secret keys.



1. Reliance on Subexponential Hardness Assumption. The construction relies on
indistinguishability obfuscation [10], which appears to be an inherently
subexponential assumption as discussed above.

2. Selective Security in Revocation List: Despite relying on adaptive security of
functional encryption, the notion of security achieved by their construction
is selective — the adversary must announce the revocation list before making
any key requests or seeing the challenge ciphertext.

In the secret trace setting, the work of Kim and Wu [40] achieves EITR from
the subexponential Learning With Errors (LWE) assumption. However, their
construction incurs a ciphertext size that grows with the size of the revocation
list. Additionally, while they can achieve adaptive security with respect to the
revocation list, this is either by incurring an exponential loss in the security
proof, or by assuming sub-exponential security for an ingredient scheme.

1.2 Our Results

In this work, we provide the first constructions with optimal parameters from
polynomial assumptions, which additionally support embedded identities from
an exponential space. We detail our contributions below.

Public Trace Setting. We provide a construction of Trace and Revoke with public
tracing which overcomes the limitations of NWZ — (i) it relies on polynomial
hardness assumptions, namely functional encryption and “special” attribute
based encryption, both of which can be constructed using standard polynomial
hardness assumptions [13, 38, 39] (ii) it enjoys adaptive security in the revocation
list.

A detailed comparison with prior work is provided in Table 1.

Work |CT] ISK] |PK] Trace |Sel/Adp| Asspn |Identities
Space

[44] 1 1 1 Exp |Selective| Subexp | Yes
(i0)

[36] 1 1 1 Poly |Adaptive| Subexp No
(subexp
PWE)

This 1 1 1 Exp |Adaptive Poly (FE| Yes
and
Special
ABE)

Table 1. State of the art with Public Traceability.



Our Assumptions. Functional Encryption (FE) and Attribute Based Encryption
(ABE) are generalizations of Public Key Encryption. In FE, a secret key
corresponds to a circuit C and a ciphertext corresponds to an input = from the
domain of C. Given a function key skc and a ciphertext ct,, the decryptor can
learn C'(z) and nothing else. It has been shown that FE implies iO [8, 12] albeit
with exponential loss. The aforementioned work of Jain, Lin and Sahai [38, 39]
provides a construction of compact FE from polynomial hardness assumptions,
namely LPN, PRG in NCy and pairings. ABE is a special case of FE in which
the input can be divided into a public and private part (x, m) and the circuit
C in the secret key sk is only evaluated on the public part z in the ciphertext
Cty,m. The private message m is revealed by decryption if and only if C(x) = 1.
While FE implies ABE in general, we require our underlying ABE to satisfy
special efficiency properties, which is not generically implied by FE. However,
the desired ABE can be instantiated using the construction of Boneh et al. [13]
which is based on LWE.

Secret Trace Setting. In the secret trace setting, we achieve the optimal
size of O(log N) for ciphertext, public and secret key by relying on Lockable
Obfuscation (LO) [32, 50] and two special ABE schemes — one, the key-policy
scheme with special efficiency properties by Boneh et al. [13] which is based on
LWE, and two, a ciphertext-policy ABE for P which was recently constructed
by Wee [48] using the new evasive and tensor LWE assumptions. Along the
way, we show that a small modification to the TR construction by Goyal et al.
[35] yields a ciphertext of size O(log V) as against their original O(N¢), from
LWE and pairings. However, this construction retains the large public and secret
keys of their construction, which depend at least linearly on N. Our results are
summarized in Table 2.

Our Assumptions. We remark that while FE has now been constructed from
standard assumptions [38, 39], the reliance of these constructions on pairings
makes it insecure in the post-quantum regime. From lattices, constructions of
FE rely on strong, non-standard assumptions which are often subject to attack
[1, 4, 49, 30, 25, 37]. Hence, there is an active effort in the community [48, 46, 47]
to construct advanced primitives from the hardness of weaker assumptions in
the lattice regime. The new assumptions by Wee, also independently discovered
by Tsabary [46], are formulated for designing ciphertext-policy ABE which is
much weaker than FE since ABE is an all or nothing primitive in contrast to FE.
As such, these are believed to be much weaker than lattice based assumptions
that have been introduced in the context of FE or iO. In particular, based on the
current state of art, evasive LWE is required even for broadcast encryption in
the lattice regime, and is therefore necessary for the generalization of broadcast
encryption studied in this work.

Super-polynomial Revoke List. Lastly, by relying on subexponential security
of LWE, both our constructions can support a super-polynomial sized revocation
list, so long as it allows efficient representation and membership testing. Ours is
the first work to achieve this, to the best of our knowledge.



Work |CT| |SK] |PK| Trace Asspn | Identities
Space
[35] N¢ NPpoly N Poly |LWE and No
Pairings
[51] N@ NT-a NT-¢ Poly GGM No
Pairings
[40] L 1 1 Exp Subexp Yes
LWE
This 1 1 1 Exp Evasive Yes
Tensor
LWE
Modified 1 Ne¢ N Poly | LWE and No
(35] Pairings

Table 2. State of the Art with Secret Traceability. The column |CT| captures the dependence
of ciphertext size on N and L where N denotes the number of users and L denotes the
length of the revocation list. Parameters that are logarithmic in N, L or polynomial in
the security parameter are represented as 1. Here, 0 < a < 1 and € > 0 can be chosen
arbitrarily. c is a large constant.

1.3 Technical Overview

We proceed to give an overview of our techniques. We begin by defining the
notion of revocable predicate encryption (RPE) in both the public and secret
setting, then describe the ideas used to instantiate this primitive. Finally we
outline how to upgrade public/secret RPE to build trace and revoke with
embedded identities with public/secret tracing.

Revocable Predicate Encryption. NWZ introduced the notion of revocable
functional encryption (RFE) and used it to construct EITR with public tracing.
Subsequently, Kim and Wu [40] adapted this notion to the secret key setting,
under the name of revocable predicate encryption (RPE) and used it to construct
EITR with secret tracing. In this work, we extend Kim and Wu’s notion of RPE
to the public key setting and use it to construct EITR with public tracing. Our
notion of RPE in the public setting is similar to but weaker than RFE* - it only
supports “all or nothing” decryption in contrast to RFE. This weaker notion
nevertheless suffices to construct EITR and moreover admits constructions from
weaker assumptions.

In RPE, the key generation algorithm takes as input the master secret key msk,
alabel Ib € £ and an attribute z € X'. It outputs a secret key skiy, ,,. The encryption
algorithm takes as input the encryption key ek, a function f, a message m € M,
and a revocation list L C L. It outputs a ciphertext ct. Decryption recovers m
if f(z) = 1and Ib ¢ L. In the public variant of RPE, ek is a public key, while

* Syntactically, RPE is “ciphertext-policy” while RFE is “key-policy”, i.e. the function is
emdedded in the ciphertext in RPE as against the key in RFE.



in the secret variant, ek is a secret key. In the secret variant, the scheme is also
required to support a public “broadcast” functionality, i.e. there exists a public
encryption algorithm that allows anyone to encrypt a message with respect to
the “always-accept” policy, i.e. a policy that evaluates to true for all inputs. This
is analogous to the primitive of “mixed FE” introduced by [33].

In terms of security, we require RPE to satisfy message hiding and function
hiding. At a high level, message hiding stipulates that an adversary cannot
distinguish between encryptions of (f,mo) and (f,m) as long as every key
query for (lb, z) satisfies f(z) = 0 or Ib € L. Function hiding stipulates that an
adversary cannot distinguish between encryptions of (fo, m) and (f1,m) as long
as every key query for (Ib, z) satisfies fo(x) = fi(z) orlb € L.

Before we describe our constructions, we highlight the chief difficulties that
are inherent to designing RPE:

1. Independence of parameter sizes from |L|. A key requirement in TR schemes is
that the ciphertext size should be independent of the length of the revocation
list L — this constraint must also be satisfied by the underlying RPE, in both
the secret and public setting. In our work, we insist that even the public
and secret keys satisfy |L| independence. This constraint is inherited from
broadcast encryption, and is challenging to satisfy. Further, note that L must
be unbounded - its length cannot be fixed during setup, which introduces
additional difficulties.

2. Encrypted Computation. While the revocation list L need not be hidden by
the ciphertext, the function f° in the ciphertext is required to be hidden, as
formalized by our function hiding requirement. Yet, this hidden function
must participate in computing f(x) where x is provided in the key. This
requirement makes TR schemes worryingly close to collusion resistant
functional encryption, an “obfustopia” primitive which we want to avoid in
the secret trace setting.

Constructing Public Revocable Predicate Encryption. We proceed to describe
the main ideas in constructing public RPE.

Overview of NWZ. The work of NWZ addresses the challenge of making the
ciphertext size independent of |L| by using a somewhere statistically binding
(SSB) hash and hides the function f by using a functional encryption scheme,
where f is encrypted in the ciphertext. However, they must additionally rely
on iO — at a high level, this is because they require the decryptor to compute
the SSB opening 7 and then run SSB verification on it (details of how SSB
algorithms work are not relevant for this overview). In turn, the reason they
need the decryptor to compute the opening 7 is because this needs both the
set L and the label Ib, which are available only to the decryptor — note that
the encryptor has only L and the key generator has only Ib. Now, since the

5 For the informed reader, this function encodes the “index” and function hiding
corresponds to “index hiding” in the literature.



decryptor has to compute 7 and run SSB verification, and since the program
that computes SSB verification has some secrets, the decryptor is allowed to
obtain obfuscation of this program. To implement this idea, they nest iO inside a
compact FE scheme so that FE decryption outputs an iO which is then run by
the decryptor on openings that it computes.

Trading iO for ABE. Above, note that the usage of iO is caused by the usage of
SSB, which in turn is used to compress L. However, compression of a list has
been achieved by much weaker primitives than iO in the literature of broadcast
encryption — in particular, the construction of optimal broadcast encryption by
Agrawal and Yamada uses the much weaker primitive of ABE (with special
efficiency properties) to achieve this. However, ABE does not permit hiding
anything other than a message, in particular, an ABE ciphertext cannot encrypt
our function f since we desire f to participate in computation. ABE only permits
computation on public values, and using ABE to encode f would force f to be
public which we cannot allow.

In order to get around this difficulty, we leverage the power of functional
encryption (FE), which permits encrypted computation and exactly fills the gap
over ABE that we require. A natural candidate for RPE would be to simply use
FE to encrypt f, L and m, and encode z and b in the secret key for a functionality
which tests that Ib ¢ L, that f(z) = 1 and outputs m if so. Indeed, this approach
using FE is folklore, and was explicitly discussed by NWZ. Yet, they end up with
a construction that additionally uses SSB, iO, a puncturable PRF and secret key
encryption scheme because of the requirement of size independence from |L| -
we do not have candidates for FE with ciphertext size independent of the public
attributes. In short, ABE gives us L compactness (in some cases by encoding L
in the secret key [13] and in some cases by encoding L in the ciphertext [9]) but
does not hide f, whereas FE gives the opposite.

Synthesis of ABE and FE. We address this conundrum by combining the two
primitives in a way that lets us get the best of both. In particular, we use ABE to
check that Ib ¢ L and use FE to compute f(z). Evidently, the two steps cannot
be performed independently in order to resist mix and match attacks so we
use nesting, i.e. we use FE to generate ABE ciphertexts. Here, care is required,
because ABE encryption takes L as input and done naively, this strategy will
again induce a size dependence on L. We address this challenge by using the
special ABE by Boneh et al. [13] which enjoys succinct secret keys and encoding
L in the ABE secret key. In more detail, we let the RPE encryption generate
ABE.sk(C}) for a circuit C;, which takes as input Ib and checks that Ib ¢ L.
Additionally, it generates an FE ciphertext for the function f and message m.
The RPE key generator computes an FE key for a function which has (lb, z)
hardwired and takes as input a function f, checks whether f(z) = 1 and if
so, generates a fresh ABE ciphertext with attribute Ib and message m. Thus
the decryptor can first compute FE decryption to recover the ABE ciphertext
ABE.ct(lb,m) and then use ABE decryption with ABE.sk(Cy) to output m if
and only if Ib ¢ L. It is easy to verify that this construction achieves optimal




parameters — this is because ABE has optimal parameters and we used FE only
for a simple functionality that does not involve L.

Putting it all Together. The above description is over-simplified and ignores
technical challenges such as how to leverage indistinguishability based security
of FE, how to generate the randomness used for ABE encryption and such others
— we refer the reader to Section 3 for details. However, even having filled in these
details, we get only a selectively secure RPE. Substantial work and several new
ideas are required for adaptive security, as we discuss next.

Adaptive Security. Next, we outline our ideas to achieve adaptive security,
namely where the revocation list L is chosen adaptively by the adversary. Note
that to avoid complexity leveraging, we are required to rely only on the selective
security of the underling ABE — this creates multiple technical difficulties
which are resolved by very carefully using specific algebraic properties of our
ingredients.

Leveraging Late Generation of ABE. Our first observation is that full adaptive
security of ABE may be unnecessary, since in our construction of RPE, the
generation of the ABE instance is deferred until the generation of the challenge
ciphertext, at which time the set of revoked users is known. This intuition turns
out to be true, but via a complicated security proof as we outline next. Below, we
consider the case of function hiding in the RPE ciphertext, the case of message
hiding is similar.

Recall that function hiding says that two ciphertexts encoding ( f,,m, L),
where b € {0, 1} should be indistinguishable so long as for any requested key
skip - it holds that fo(x) = f1(z) or Ib € L. Note that the adversary is permitted
to query for keys that allow decryption of the ciphertexts, i.e. fo(z) = f1(x) = 1.

Embedding ABE CTs in FE keys. In order to use ABE security to prove RPE
security, a first (by now standard) step is to use the “trapdoor technique”
[20, 7, 19], which allows us to hardwire ABE ciphertexts into FE secret keys.
In the security game with the ABE challenger, the reduction submits the label
Ib associated with each RPE secret key as its challenge attribute and embeds
the returned ABE ciphertext into the FE key. Here we immediately run into
a difficulty, since in the RPE setting some ABE ciphertexts are decryptable by
the adversary and we cannot leverage ABE security. Moreover, we cannot even
hope to guess which keys will correspond to decryptable ABE ciphertexts since
there are an unbounded polynomial number of key queries in the RPE security
game. The same difficulty is faced by NWZ and is the main reason why their
construction does not achieve adaptive security in the revocation list.

Polynomial Function Space Suffices for TR. To overcome this hurdle, we leverage
the serendipitous fact that for the purpose of constructing TR, it suffices to
construct RPE whose function space (recall that functions are encoded in the
ciphertext) is only of polynomial size. This observation, which was implicitly
present in [34], is abstracted and used explicitly in our proof. In particular, we

10



can assume that the reduction algorithm knows the challenge functions ( fo, f1)
at the beginning of the game, since it can simply guess them. Now, given the
secret key query (Ib, z), the reduction checks whether fy(z) = fi(z). If yes, then
there is no need to use ABE security, for the ABE ciphertexts in this case will
encode the same message, and will hence be independent of the challenge bit.
On the other hand, if fo(x) # fi1(z), then we have by the admissibility condition
that Ib € L, even when L is not known. In this case, the reduction can use the
security of the ABE without any difficulty.

Additional Hurdles Stemming from ABE Selective Security. We now highlight an-
other challenge in the proof. For concreteness, let us consider the second key
query (Ib®, 2(?)), which we assume is a pre-challenge query, and assume that
fo(z®) # f1(z?). Hence, by the above discussion, we are required to use
ABE security for the ciphertexts with attribute Ib(®). However, according to the
selective definition, the reduction is required to choose the challenge attribute at
the very start of the game, without even seeing the public parameters. At the
same time, the reduction is required to simulate the ABE ciphertext for the first
key query, before receiving the second key query from the adversary, that is,
without seeing the ABE parameters, leading to an apparent impasse.

We address this issue by considering the following two cases separately:
for the first query (Ib™), 2(1)), we have (1) fo(z™) # f1(z™) or (2) fo(z™) =
f1(xMW). In first case, it is tempting to think that one can simply use a hybrid
argument to change the ABE ciphertext associated with each key query satisfying
fo(z®) £ f1(2®) for i € [2]. However, this does not work as is, since the ABE
ciphertext may leak information about the ABE public key. To address this, we
rely on the pseudorandomness of ciphertexts in our ABE [13] due to which we are
guaranteed that the ciphertext does not reveal any information about the public
parameters, enabling the hybrid strategy above. To handle the second case, we
change the way in which the ABE ciphertext for the first key is generated. In more
detail, we stop hardwiring the the ABE ciphertext into the first key and instead
generate it directly using ABE parameters. This removes the aforementioned
problem since we no longer need to embed the ABE ciphertext or public key into
the first FE key. To enable this idea, we introduce additional branch of trapdoor
mode for the construction to separate the paths of computation for the cases
fo(z) = fi(z) and fo(x) # fi(z). To handle post-challenge queries, we need
to address additional challenges, which we do not describe here. We refer the
reader to Section 3 for details.

Handling Super-polynomial Revocation List. Our construction (also the secret ver-
sion, described next) organically supports super-polynomially large revocation
list, something that was not known before, to the best of our knowledge. In more
detail, let L be a list of super-polynomial size, such that L can be represented
as a string of polynomial length and there exists a circuit C, of polynomial size
which takes as input some string Ib and checks whether Ib € L or not. Note that
any super-polynomially large list must have efficient representation in order to
even allow various algorithms to read it. Then, the key generation of [13] can

11



naturally encode the circuit C7, as before and the construction works as before.
A subtlety that arises with super-polynomial L is that when we deal with post
challenge key queries in the proof, we have to deal with the ABE queries in the
order of key first and ciphertext later. With polynomial size L, this does not pose
a problem because when the adversary chooses L, all the labels for which we
use ABE security are in L and we can perform a hybrid argument over these
labels. However, this is not possible for super polynomial L, which requires to
rely on subexponentially secure LWE. Please see the full version of the paper [2]
for details.

Instantiating Public RPE. Overall, armed with the above ideas, we get a public
RPE from compact FE and efficient ABE supporting exponential sized identity
space and adaptive security in the revocation list L. Currently, we only
know how to instantiate our desired ABE from LWE [13], whereas FE can be
instantiated in multiple different ways. A natural candidate would be the FE
from standard assumptions [38, 39] which relies on pairings, LPN and low depth
PRG — in this case, our RPE will require the extra assumption of LWE. Another
option is to instantiate FE with a post-quantum candidate [30, 42, 49, 1, 25] from
non-standard strengthenings of LWE — this has the advantage that the ABE does
not incur any extra assumption in the final construction. For super-polynomial
L, we need subexponential hardness of LWE in either pathway to instantiation,
as discussed above.

Alternative Construction Based on Laconic OT. Here, we sketch an alternative con-
struction of RPE based on laconic OT (LOT) [22] that works when the number
N of possible labels is polynomially bounded (i.e., the identity space is of
polynomial size). Since LOT is known to be possible from various assumptions,
this diversifies the assumptions that we need to rely on. The basic idea is to
replace ABE with LOT. In more detail, the encryptor chooses LOT parameters
instead of ABE parameters and computes the digest of the list of recipients (or
equivalently, the list of revoked users), which is represented as a binary string of
length NV with 1 for non-revoked identities. The digest, whose size is independent
of N, is then embedded into the FE ciphertext. Then, FE decryption yields LOT
encryption of the message for the label Ib € [N], which is the label associated
with the secret key, instead of ABE ciphertext. The LOT ciphertext is encrypted so
that it can be decrypted only when the Ib-th bit of the binary string representing
the list of recipients is 1. We note that this idea does not extend for identities from
exponentially large space and cannot therefore support embedded identities any
more.

Revocable Predicate Encryption in Private Setting. For private revocable
predicate encryption, our starting point is the work of Goyal et al. [35], who
show how to combine “broadcast mixed FE” (called BMFE) together with ABE to
achieve RPE (via a different abstraction which they call AugBE). They construct
BMFE by adding the broadcast functionality to the primitive of mixed FE defined
by [33]. They embed BMFE ciphertext into an ABE ciphertext to achieve RPE,
where BMFE is constructed from LWE and ABE is instantiated using pairings.
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Supporting Exponential Identity Space. To begin, we upgrade their notion of BMFE
to support an exponential space of identities (which we refer to as labels)
towards the goal of embedded identity trace and revoke. We refer to our notion
as Revocable Mixed FE (denoted by RMFE) and construct it from LWE. Both
[35] and our work start with a mixed FE scheme and add broadcast to it, but
their construction builds upon the scheme based on constrained PRFs [21]
while ours begins with the scheme based on Lockable Obfuscation (LO), also
from [21]. Our construction of RMFE deviates significantly from theirs, and
achieves significantly better secret key size — O(log N) as against O(N) — in
addition to supporting exponential instead of polynomial space. We describe
this construction next.

Mixed FE. The notion of mixed FE was introduced by Goyal, Koppula and Waters
in the context of traitor tracing [33]. Identifying and constructing this clever
primitive is the key insight that enables [33] to construct traitor tracing with
optimal parameters from LWE. Mixed FE is, as the name suggests, a mix of public
and secret key FE. Thus, it has a secret as well as a public encryption procedure.
The secret encryption procedure takes as input a function f and computes ct;.
This is decryptable by a key sk, to recover f(x). The adversary can make one
query to the encryption oracle in addition to getting the challenge ciphertext for
challenge (fo, f1). It can also make an unbounded number of key requests so
long as fo(x) = fi(z). The public encryption algorithm computes a ciphertext
for the “always accept” function, i.e. a function which evaluates to 1 for any
input z. It is required that the public ciphertext be indistinguishable from the
secret ciphertext.

One of the constructions of mixed FE suggested by [21] uses a secret key FE
scheme (SKFE) to construct the secret encryption algorithm and leverages the
power of lockable obfuscation (LO) to construct the public encryption procedure.
Recall that in a lockable obfuscation scheme [32, 50] there exists an obfuscation
algorithm Obf that takes as input a program C, a message m and a (random)
“lock value” a and outputs an obfuscated program P. One can evaluate the
obfuscated program on any input z to obtain as output m if P(z) = a and L
otherwise. Intuitively, the idea of [21] is to wrap the FE ciphertext using LO and
to define the public key encryption algorithm as outputting a simulated version
of the LO obfuscated circuit, which is publicly sampleable.

In more detail, the construction works as follows. The secret key for a user
with input z is an SKFE secret key SKFE.sk(z). The secret ciphertext of MFE for
function f is constructed as follows.

1. First, SKFE ciphertext SKFE.ct(Hy ) is generated, where « is a freshly
chosen random value and H; , is a circuit that takes as input = and outputs
aif f(z) = 0 and 0 otherwise.

2. Then, LO with lock value o and any message m # L is used to obfuscate the
circuit SKFE.Dec(SKFE.ct(Hy ), -), namely the circuit that takes as input an
SKFE secret key and decrypts the hardwired ciphertext using this.
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The decryption result of MFE is defined as 1 if the evaluation result of the LO
circuit on the given input SKFE secret key is | and 0 otherwise. Correctness
follows from correctness of SKFE and LO. In particular, if f(z) = 0, then
SKFE decryption outputs «, which unlocks the LO to give m, otherwise L.
By definition, MFE decryption will output 1 if LO outputs L which happens
when f(z) =1, and 0 otherwise.

Revocable Mixed FE. RMFE augments MFE so that the encryption algorithms
(both secret and public) now include a revocation list L and the secret key
additionally includes a label Ib. A secret key sk, . decrypts a secret ciphertext
cty 1, to recover f(x)if Ib ¢ L and 1 otherwise. For a public ciphertext cty, the
output of decryption is always 1 regardless of which secret key is being used. For
security, we need two properties: function hiding and mode hiding. For function
hiding, we require that a secret ciphertext cty, 1, is indistinguishable from cty, 1
if for all queries, either fy(z) = fi(x) or Ib € L. For mode hiding, we require that
a secret ciphertext cty z, is indistinguishable from a public ciphertext ctz,. Recall
that L is not required to be hidden, but we require that the parameters do not
depend on |L|.

To extend MFE to RMFE, we retain the idea of letting the secret ciphertext
be an LO obfuscated circuit and public ciphertext be the simulated LO. To
incorporate the list L, we must ensure that the LO lock value « is recovered only
when f(z) = 0and Ib ¢ L. To do so, we consider two subsystems such that
one system outputs partial decryption result o; only when f(z) = 0 and the
second system outputs partial decryption result az only when Ib ¢ L such that
o = a1 + az. We must ensure that a; and « are user specific decryption results
to avoid collusion attacks.

Note that the second subsystem, which entails L, should be constructed
so that the hardwired values inside the circuit do not depend on |L|, but still
control access to the value oy depending on L. To satisfy these apparently
conflicting requirements, we make use of the unique algebraic properties of the
ABE construction by Boneh et al [13], as described below. For the first subsystem,
we use SKFE.

In more detail, our candidate scheme is as follows.

1. Secret Key: The RMFE secret key consists of ABE.ct(lb, K) and
SKFE.ct((z, K,R)) where K and R are user specific random strings,
Ib is used as an attribute and K is the plaintext for ABE encryption.

2. Ciphertext: To generate RMFE ciphertext, the secret key encryption proce-
dure is as follows:

— It first generates ABE.sk(C), where C/, is a circuit that takes as input a
label Ib and outputs 1 only when |b ¢ L.

— It also generates SKFE.sk(Hy ), where Hy , takes as input (z, K, R) and
outputs K @ aif f(z) = 0and Rif f(z) = 1.

— Now, consider the circuit CC[ABE.sk(C1,), SKFE.sk(H )], which takes
as an input the pair (ABE.ct, SKFE.ct), decrypts both ABE and SKFE
ciphertexts using their respective keys, and then outputs the XOR
between the decryption results.
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— The final ciphertext is an LO of CC[ABE.sk(CL), SKFE.Enc(H/ k)] with
lock value o and any arbitrary message m # L.

By key compactness of [13], the size of ABE.sk(C,) is independent of |L|. A
subtle point here is that ABE decryption is happening inside the LO and this
depends on L. If the LO must process L, then the size of the LO and hence
ciphertext blows up with L! Fortunately, the algebraic structure of the ABE
scheme we use [13] again comes to our rescue. At a high level, ABE decryption
can be divided into an “L-dependent” step which results in a short processed
ciphertext, followed by an “L-independent” step. Importantly, the L-dependent
step does not depend on the ABE secret key which is hardwired in the LO and
hence inaccessible, and can hence be performed outside the LO by the decryptor!
The resultant short processed ciphertext can then be provided as input to the LO
preventing the problematic size blowup.

RMFE Proof Overview. Next we outline some of the ideas developed for the
security proof. For ease of understanding, we limit ourselves to the simpler
setting where the adversary does not have access to the encryption oracle. This
restriction can be removed using combinatorial tricks, similar to [21]. For security,
we must argue two properties — mode indistinguishability and function hiding.
The former can be established by relying on security of SKFE and LO analogously
to the MFE proof in [21]. Hence, we focus on function hiding for the rest of the
overview, which is subtle and requires several new ideas.

For function hiding, we must make use of the security of ABE and SKFE.
Intuitively, security of SKFE guarantees that the values encoded in SKFE
ciphertexts and secret keys are hidden, beyond what is revealed by decryption.°®
First note that given a key for (Ib, z) such that fy(z) = fi(z), no information
about the challenge bit is revealed by decryption, since the decryption results
of SKFE are the same for both cases. The case with fo(z) # fi(z) is more
challenging. Let us assume fo(z) = 0 and f1(x) = 1. In this case, the decryption
result of the challenge ciphertext is R or K @ o depending on the value of the
challenge bit. Since both are random strings, it is tempting to conclude that they
do not reveal any information of the challenge bit.

However, in reality, information about K is encoded in the ciphertext
ABE.ct(Ib, K') and creates a correlation which must be handled. Indeed, a
computationally unbounded attacker can learn the challenge bit by breaking
open the ABE ciphertext, recovering K and then correlating it with the
decryption result of SKFE. Hence, security of ABE must play a role and
fortunately, we show that security of ABE suffices to overcome this difficulty.
Recall that our security definition of RMFE requires that if fo(x) # f1(z), then
it should hold that Ib € L. This means that the ciphertext ABE.ct(lb, K) is
computationally indistinguishable from ABE.ct(lb, 0), since the only ABE secret
key available to the adversary is ABE.sk(C',). Now, in the adversary’s view, both
K @ o and R are random strings that are independent from other parameters.

® We note that we need message and function hiding security for the underlying SKFE,
while [21] only needs message hiding security.
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Therefore, the adversary cannot obtain any information of the challenge bit from
the decryption result in this case as well. For more details, please see Section 4.

Comparison with the BMFE by Goyal et al. [35]. We observe that both our RMFE
as well as the BMFE by [35] rely solely on LWE. However, our secret key is
ABE.ct(lb, K) and SKFE.ct((z, K, R)), which has optimal size, being clearly
independent of N and L. In contrast their secret key depends linearly on N.
We also observe that our RMFE can support an exponentially large space of
identities, while their BMFE does not.

Combining RMFE and ABE to get RPE. Finally, we nest our RMFE inside an outer
ABE scheme to obtain RPE. This step is very similar to [35], but we need to use
a different ABE scheme. In particular, in the construction of RPE in [35], a key
policy ABE (kpABE) is used to encrypt the message m with attributes as the
RMFE ciphertext along with the list L. The RPE secret key for (z,Ib) is a kpABE
secret key for a the RMFE decryption circuit RMFE.Dec(RMFE.sk, -, -).

An obvious difficulty here is that encoding the attribute (L, RMFE.ct) in the
ABE ciphertext can cause the ciphertext size to depend on the size of L. To avoid
this blowup, [35] use a special kpABE which has the property that the ciphertext
size is independent of the size of the attribute. They instantiate this kpABE with
the scheme [9] which uses pairings7. However, we cannot use [9, 45] because of
the following two reasons:

1. First, the ABE scheme by [9] only supports NC;. However, our circuit
RMFE.Dec(RMFE.sk, -, -) does not fit into NC,.

2. Furthermore, even if the above problem could be resolved, using [9] is
problematic since their ABE has secret and public keys at least as large as
O(|L]). While the scheme of [35] also suffers from this blow-up, our goal is
to obtain short keys, independent of |L|.

The first problem cannot be resolved even if we use the ABE schemes for
circuits [31, 13], since their ciphertext size also depends on |L|. To instantiate
our ABE, we use recent construction of compact cpABE from evasive and tensor
LWE [48], whose parameter sizes depend only on the input length of the circuit
and are independent of its size. Armed with the above ideas, we suggest the
following RPE:

1. The encryption algorithm of RPE, given m, f, L computes RMFE ciphertext
encoding ( f, L) and then computes cpABE.Enc(RMFE.Dec(RMFE.ct, -, L), m).

2. The key generation algorithm RPE given (Ib, z), computes RMFE secret key
for (Ib, z) and outputs cpABE.sk(RMFE.sk).

7 In fact, one could instead use the kpABE constructed by [45]. This enjoys the same
efficiency properties and is based on the standard DLIN assumption as against the
g-type assumption of [9].

® The informed reader may wonder whether we can solve this issue by using
preprocessing as in [35] but this does not work due to technical reasons.
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Correctness of RPE follows from correctness of cpABE and RMFE while
optimality of parameters follows from the efficiency of the underlying schemes.
In particular, observe that all parameters are independent of |L|. Also note that
evasive and tensor LWE are required only to instantiate cpABE with the desired
efficiency. If future work standardizes the assumptions underlying the cpABE,
our construction will inherit these assumptions. For more details, we refer the
reader to the full version of the paper [2, Sec. 6].

Instantiating Secret RPE. Currently, the only two suitable ABE schemes that we
know to instantiate our compiler are the LWE based kpABE by Boneh et al.
[13] and the evasive and tensor LWE based cpABE by Wee [48]. These two
ABEs give us a secret RPE scheme supporting exponential identities and with
optimal parameters, from evasive and tensor LWE. Note that this construction
does not achieve adaptive security in the revoke list. Nevertheless, it is the
first construction of optimal RPE, even without embedded identities, from
any assumption outside Obfustopia. Note that the usage of a non-standard
assumption outside of obfustopia (in particular, only from lattice techniques) is
somewhat inherent given that even broadcast encryption without tracing requires
non-standard assumption if we instantiate it only from lattices. We are hopeful
that future improvements in cpABE will yield a construction from completely
standard assumptions.

Trace and Revoke with Optimal Ciphertext from LWE and Pairings. Along the
way, we observe that the broadcast and trace construction provided by Goyal
et al. [35], without embedded identities, can be easily modified to achieve at
least optimal ciphertext size, from the same assumptions. At a high level, they
construct a broadcast mixed FE from LWE with optimal ciphertext size and then
nest this inside the kpABE by [9], which enjoys ciphertext size independent of
the attribute length, and can support computation in NC;. Since their BMFE
decryption does not fit into NC;, they preprocess the ciphertext so that part of the
decryption is performed “outside”, namely, they group log N matrix tuples into
c groups of (log N)/c tuples each. Then they precompute all possible 2(°8 N)/¢ =
N'/¢ subset-products within each group. Due to this, BMFE decryption only
needs to multiply together c of the preprocessed matrices, which can be done in
NC; so long as c is constant. Unfortunately, this step increases their ciphertext
size to O(N€) for any € > 0 though the BMFE ciphertext size was optimal.

We observe that they are “under-using” the ciphertext size independence
of [9] — in particular, while the attribute length has indeed been blown up to
O(N¥¢), this does not affect the ciphertext size of [9]. Moreover, while the attribute
must also be provided outside in the clear, this part can be compressed, i.e. the
preprocessing which expands the attribute to size N¢ can be performed by the
decryptor directly by grouping and multiplying matrices as described above,
and there is no need for the encryptor to provide this expanded form. Thus, their
scheme tweaked with this simple modification already achieves ciphertext of
optimal size, though with large secret key O(N°) for some large constant c.
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Trace and Revoke from Revocable Predicate Encryption. It remains to show
how to construct the final goal of trace and revoke with embedded identities.
As discussed earlier, we follow [44, 40] and use the abstraction of RPE to build
trace and revoke. However, to embed identities in our trace and revoke schemes,
we deviate from these works and instead build upon ideas developed by [34]
(henceforth GKW) in the context of traitor tracing.

Embedded Identity Traitor Tracing (EITT) by GKW. The work of Goyal, Koppula
and Waters [34] provided an alternative approach for embedding identities in
traitor tracing schemes. A well known approach for constructing Traitor Tracing
systems suggested by Boneh, Sahai and Waters [11] is via the intermediate
primitive of Private Linear Broadcast Encryption (PLBE), which allows to construct
a tracing algorithm that performs a linear search over the space of users to
recover the traitor. Since the number of users was polynomial, this algorithm
could be efficient. However, if we allow arbitrary identities to correspond to
user indices then the space over which this search must be performed becomes
exponential even if the number of users is polynomial, and the trace algorithm
is no longer efficient. The main new idea in NWZ that enables them to handle
exponentially large identity spaces is to replace a linear search over indices by a
clever generalization of binary search, which efficiently solves an “oracle jump
problem” which in turn suffices for tracing.

Goyal, Koppula and Waters (GKW) provided an alternate route to the
problem of embedding identities. Instead of using PLBE and generalizing
the search procedure, they instead extend the definition of PLBE to support
embedded identities, denoted by EI-PLBE, and then used this to get a full fledged
EITT scheme. This approach has the notable advantage that even if the space
of identities is exponential, it can use the fact that the number of users is only
polynomial and hence rely on only selective security of the underlying primitives.
In particular, they demonstrate a “nested” tracing approach, where the tracing
algorithm works in two steps: first, it outputs a set of indices that correspond
to the users that are traitors, and then it uses each index within this set to
recover the corresponding identity. Additionally, GKW provide a sequence of
(increasingly stronger) TT primitives with embedded identities, namely, indexed
EITT, bounded EITT and finally unbounded EITT where unbounded EITT
satisfies the most general notion of embedded identity traitor tracing. They also
provide generic transformations between these notions, which allows to focus
on the weakest notion for any new instantiation.

Embedded Identity Trace and Revoke (EITR). We adapt the approach of GKW and
show how to use their nested approach to trace embedded identities even in the
more challenging setting of trace and revoke. As in their case, this lets us use
polynomial hardness assumptions in obtaining EITR, in contrast to NWZ. We also
define indexed, bounded and unbounded EITR and provide transformations
between them. Our definitions as well as transformations are analogous to GKW
albeit care is required to incorporate the revoke list L in each step and adapt the
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definitions and proofs of security accordingly. We then construct indexed EITR
using RPE, and obtain unbounded EITR via our generic conversions.

We note that our framework unifies the approaches of Kim and Wu [40] who
used the framework of RPE in the context of TR and that of GKW who used
the framework of EI-PLBE in the context of TT, to obtain EITR. This unification
yields a clean abstraction which can be used for both public and secret key
settings. We believe this framework is of independent interest. We refer the
reader to Sections 7, 8, 9 and 10 in the full version [2] for details. An overview of
our constructions is provided in Figure 1.

Compact FE — I- -= _I I- -= _I I- -= _I
Sec. 3 Sec. 8 PK- Sec. 9 PK- Sec. 10 PK-
PK-RPE |-——— Indexed L——"=») Bounded L—=-—») unbad !
I emr 1 [ | [ |
KP-ABE w/ Key |— [ JEp— | [ JEp— | [ JEp— |
compactness -
Sec. 4
Bounded SKFE RMFE e e __ e __
-——— 1 1 1 1 1 1
sec.6 | I Sec.8 SK- Sec. 9 SK- Sec. 10 SK-
———»1 SK-RPE ———— Indexed L=-"=sd Bounded L====»! uUnbaa !
' I Emr 1 I emr | I EmrR |
Lo - CP-ABE w/ [ | [ | [ Q—
ciphertext
compactness

Fig.1. Overview of our constructions. Solid lines represent the implications shown by
our work and are based on new techniques. Dashed lines represent the implications that
are new but based on techniques developed in [34]. The constructions in dashed boxes
are provided in the respective sections of the full version of our paper [2].

Organization of the paper. We define RPE in Section 2 and construct public-
key RPE in Section 3. We provide our construction of RMFE in Section 4.
Due to space constraints, our construction of secret-key RPE using RMFE is
deferred to the full version [2]. We also refer the reader to the full version [2] for
preliminaries, definitions of indexed-EITR, bounded-EITR and unbounded-EITR
and conversions between them [2, Sec. 8, Sec. 9, Sec. 10], and the mechanism for
supporting super-polynomial sized revocation list [2, Sec. 11].

2 Revocable Predicate Encryption

We define revocable predicate encryption (RPE), in both public and secret key
setting. Since the two notions differ only in the encryption algorithm, we present
them here in a unified way.

Definition 2.1. A RPE scheme for an attribute space X = { X} e, a function
family 7 = {Fi}reny where Fy = {f : &\ — {0,1}}, a label space £ =
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{£x}xem) and a message space M = { M } e has the following probabilistic
polynomial time algorithms:

Setup(1*) — (mpk, msk). The setup algorithm takes the security parameter \ as
input and it outputs a master public key mpk and a master secret key msk.

KeyGen(msk, Ib, z) — sk ,,”. The key generation algorithm takes as input the
master secret key msk, a label Ib € £, and an attribute x € X). It outputs a
secret key skip 5.

Enc(ek, f,m, L) — ct. The encryption algorithm takes as input the encryption
key ek, a function f, a message m € M, and a revocation list L C L. It
outputs a ciphertext ct.

Dec(skip o, ct, L) — m/. The decryption algorithm takes the secret key sk ;, a
ciphertext ct, and a revocation list L and it outputs m’ € M, U {L}.

In public-key RPE, we take ek = mpk in the Enc algorithm, and in secret-key RPE,
we take ek = msk. Furthermore, there is an additional algorithm in the secret
key setting defined as follows:

Broadcast(mpk, m, L) — ct. On input the master public key, a message m, and
arevocation list L C £}, the broadcast algorithm outputs a ciphertext ct.

Definition 2.2 (Correctness). A revocable predicate encryption scheme is said to be
correct if there exists a negligible function negl(-) such that for all X € N, label Ib € L,
attributes © € X, predicates f € Fy such that f(x) = 1, all messages m € M and
any set of revoked users L C Ly such that Ib ¢ L, if we set (mpk, msk) < Setup(1*)
and sk, 5 <— KeyGen(msk, Ib, z), then the following holds

Pr[ Dec(skip,z, ct, L) =m] > 1 — negl(A),

for ct < Enc(ek, f,m, L) (Encryption correctness) and ct < Broadcast(mpk, m, L)
(Broadcast correctness).

Security. In the following security definitions, we assume for simplicity that the
adversary does not make key queries for same input (Ib, 2) more than once.

Definition 2.3 (¢-query Message Hiding). Let ¢(-) be any fixed polynomial. A RPE
scheme satisfies q-query message hiding property if for every PPT adversary A, there
exists a negligible function negl(-) such that for every \ € N, all messages m € My
and any subset of revoked users L C L, the following holds

(mpk, msk) « Setup(1%);
) (f; m07m1’L) « AKeyGen(msk,-,~),Enc(ek,-,-,~)(mpk);

1
/
= : <!
Pri B0 =55 3 10,1}  cty « Enclek, f,mp, L): < 5 +negl())
B AKeyGen(msk,:,) Bnclek, ) (ctg)
where A can make at most q(\) queries to the encryption oracle Enc(ek, -, -, -), and A

is admissible if and only if for all the key queries (Ib, z) to the KeyGen(msk, -, -) oracle,
either f(x) =0orlb € L.

? We want to point out that the secret key ski, . does not hide the corresponding label Ib
and attribute  and we assume these to be included in the secret key.
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Definition 2.4 (¢-query Selective Message Hiding). This is the same as the Def 2.3
except that A outputs the revocation list L in the beginning of the game, before the
Setup algorithm is run.

Definition 2.5 (g-query Very Selective Message Hiding). This is the same as the
Def 2.4 except that A outputs all the key queries (Ib, x) to the KeyGen(msk, -, -) oracle
in the beginning of the game, before the Setup algorithm is run.

Definition 2.6 (¢-query Function Hiding). Let q(-) be any fixed polynomial. A RPE
scheme satisfies g-query function hiding property if for every PPT adversary A, there
exists a negligible function negl(-) such that for every \ € N, all messages m € My
and any subset of revoked users L C L, the following holds

(mpk, msk) < Setup(1*);

, (.f07 fl’ m, L) — AKeyGen(msk,.7.)vEnc(ek7,7i7,)(mpk); 1
= . <1
Pr| 8'=8 B <+ {0,1};ctg < Enc(ek, fz,m, L); <3 + negl(X)
5/ — AKeyGen(msk,-,~),Enc(ek’.’.7.)(Ctﬂ)
where A can make at most g(\) queries to the encryption oracle Enc(ek, -, -, -), and A

is admissible if and only if for all the key queries (Ib, z) to the KeyGen(msk, -, -) oracle,
either fo(x) = fi(z)orlb € L.

Definition 2.7 (g-query Selective Function Hiding). This is the same as the Def 2.6
except that A outputs the revocation list L in the beginning of the game, before the
Setup algorithm is run.

The following security notion is defined only for secret-key RPE scheme.

Definition 2.8 (¢g-query Selective Broadcast Security). Let ¢(-) be any fixed
polynomial. A RPE scheme satisfies q-query selective broadcast security if there exists a
negligible function negl(-) such that for every PPT adversary A, for every A € N, all
messages m € M and any subset of revoked users L C L, the following holds

L+ A(1*);
(mpk, msk) < Setup(1*);

;oA f,m « AKeyGen(msk,-,4),Enc(msk,-,~,-)(mpk); 1
Pri 8 =5: B« {0,1}; ctg « Enc(msk, f, m, L); = 2 +negl(3)
cty <+ Broadcast(mpk,m, L);
B/ « AKeyGen(msk,‘,~),Enc(msk,-,»,~)(Ct5>
where A can make at most q(\) queries to the encryption Enc(msk, -, -, -) oracle and A

is admissible if and only if f(z) = 1,Vz € X).

Remark 2.9. In the public-key RPE scheme, the adversary A can itself simulate
the encryption oracle Enc(ek, -, -, -), as ek = mpk in this setting. Therefore, in
public-key setting, we refer to the security definitions without imposing the
g-query bound on the encryption oracle.
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Remark 2.10. We note that when the message space is binary, function space
F) is polynomially small and ¢ is a constant, the weaker security definitions
where adversary outputs the challenge function f, the challenge message m and
the SK-Enc query functions {f;},c[, at the beginning of the game, before the
Setup(1*) algorithm is run, is equivalent to the definitions where the adversary
outputs f,m, {f;}ic[y adaptively. First, the functions can be guessed with
polynomial loss. Furthermore, if we restrict the message space to be binary,
we can guess the challenge message as well. To extend the message space, we
can encrypt each bit by parallel systems.

3 Public-key RPE from FE and LWE

In this section we provide our construction of a public key RPE scheme RPE =
(RPE.Setup, RPE.KeyGen, RPE.Enc, RPE.Dec) for an attribute space X = {X)\},
a function family F = {Fy}, where 7\ = {f : &\ — {0,1}}, a label space
L = {L,}» and a message space M = {M,}, from polynomial hardness
assumptions. We assume that | F,| and | M | are bounded by some polynomial
in A. The restriction on | F,| is sufficient for our purpose and the restriction on
| M| can be removed by running the scheme in parallel.

Our construction uses the following building blocks:

1. A Sel-INDr secure key-policy ABE scheme kpABE = (kpABE.Setup,
kpABE.Enc, kpABE.KeyGen, kpABE.Dec) for circuit class Cy)an) with
parameter succinctness and key compactness ([2, Theorem 2.18]). Here ¢())
is the input length and is the length of labels in our setting and the depth
of the circuit is d(\) € w(log\) to support unbounded revocation list. The
message space of the scheme kpABE is M = { M} and CT x,age denotes
the ciphertext space. We assume that uniform sampling from C7 pagE is
efficiently possible without any parameter.

2. A (fully) compact, selectively secure, public-key functional encryption
scheme FE = (FE.Setup, FE.Enc, FE.KeyGen, FE.Dec) that supports poly-
nomial sized circuits. We assume that the message space is sufficiently large
so that it can encrypt an ABE master public key, a (description of) function
f € F, a PRF key, two secret keys of SKE, and a trit mode € {0, 1, 2}.

3. APRF F : {0,1}* x X — {0,1}* where t is the length of the randomness
used in kpABE encryption ([2, Def. 2.1]).

4. A symmetric key encryption schemes SKE = (SKE.KeyGen, SKE.Enc,
SKE.Dec) with pseudorandom ciphertexts ([2, Def. 2.3]).We let CT ske denote
the ciphertext space of SKE.!® We assume that uniform sampling from C7 ske
is efficiently possible without any parameter.

We describe our construction below.

10 We note that we use the same ciphertext space for simplicity even though messages
with different lengths are going to be encrypted. To have the same ciphertext space,
we can, for example, pad short messages to be some fixed length, which is possible
when the message length is bounded by some polynomial.
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RPE.Setup(1*) — (RPE.mpk, RPE.msk). The setup algorithm does the follow-
ing:
- Generate (FE.mpk, FE.msk) « FE.Setup(1?).
— Output RPE.mpk = FE.mpk and RPE.msk = FE.msk.
RPE.KeyGen(RPE.msk, Ib, z) — RPE.skyy ... The key generation algorithm does
the following:
— Sample random values 71, 72,6 < C7 ske.
— Construct a circuit Re-Enc[lb, z, y1, 72, 6] which has the label Ib, attribute
x, 1, 7v2 and 6 hardwired, as defined in Figure 2.
— Compute FE.sky, , < FE.KeyGen(FE.msk, Re-Enc|[lb, , 1,72, d]).
- Output RPE.Sk|b7I = FE.Sk|b’$.
RPE.Enc(RPE.mpk, f,m,L) — RPE.ct. The encryption algorithm does the
following:
— Parse RPE.mpk = FE.mpk.
- Sample a PRF key K + {0,1}*.
- Generate (kpABE.mpk, kpABE.msk) < kpABE.Setup(1*).
— Compute FE.ct + FE.Enc(FE.mpk, (kpABE.mpk, f,m, K,0, L, 1)).
— Construct a circuit C, with revocation list L hardwired defined as
follows:
Oninputalabel Ib € £,

Cr(lb) =1ifand only if Ib ¢ L. (3.1)

Compute kpABE.sky, < kpABE.KeyGen(kpABE.msk, Cr).

— Output RPE.ct = (kpABE.mpk, kpABE.sky,, FE.ct).

RPE.Dec(RPE.sky, 5, RPE.ct,L) — m'. The decryption algorithm does the
following:

- Parse RPE.ct = (kpABE.mpk, kpABE.sky,FE.ct) and RPE.sky, =
FE.Sk|b’x.

- Compute ct’ = FE.Dec(FE.sky, ;;, FE.ct).

- Construct circuit Cy, from L and compute m’ = kpABE.Dec(kpABE.mpk,
kpABE.sky,,Cp,ct’,Ib).

- Output m’.

Correctness and Security. We prove that our construction of RPE satisfies
correctness and both function hiding and message hiding security via the
following theorems.

Theorem 3.1. Suppose FE and kpABE schemes are correct. Then the above construc-
tion satisfies the encryption correctness (Def. 2.2).

Theorem 3.2. Assume that F is a secure PRF, SKE is correct and secure, FE and
kpABE are secure as per Definition [2, Def. 2.6] and [2, Def. 2.15], respectively.
Furthermore, assume |Fx| < poly(A) and | M| < poly(\). Then the RPE constructed
above is function hiding (Def. 2.6).
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Function Re-Enc|lb, z,~1, 2, d]

Hardwired values: A label Ib, an attribute z, and SKE ciphertexts 71, 72, and 9.
Inputs: A kpABE master public key kpABE.mpk, a function f € F), a message
m € M,y , a PRF key K, a trapdoor mode mode € {0,1,2} and SKE keys
SKE.key; and SKE key,.

Output : A kpABE ciphertext.

1. Parse the input as (ABE.mpk, f,m, K, mode, SKE.key,, SKE.key,).
2. Set i = {m iffle) =1
0 if f(z)=0.
Compute kpABE.ct, = kpABE.Enc(kpABE.mpk, Ib, 7; F(K, (Ib, x))).
Compute flag = SKE.Dec(SKE key,, d).
Compute out; = SKE.Dec(SKE key;, ;) for ¢ € {1, 2}.
If mode = 0, output kpABE.cty,.
If mode = 1, output out;.

NG kW

t if flag=1
8. If mode = 2, output out 1 a8
kpABE.ct), ifflag=0.

Fig. 2. Function to compute kpABE ciphertexts depending on various conditions.

Theorem 3.3. Assume that F is a secure PRF, SKE is correct and secure, FE and
kpABE are secure as per Definitions [2, Def. 2.6] and [2, Def. 2.15], respectively.
Furthermore, assume | Fy| < poly(X) and | M| < poly(\). Then the construction for
RPE satisfies message hiding property as defined in Def. 2.3.

Due to space constraints, we provide the proofs in the full version.

Efficiency. Here we argue that our construction achieves optimal parameters.
Namely, we show that the size of each parameter is independent of |L|. For
details, please see the full version.

3.1 Alternate Construction using LOT

The construction is similar to the above except that we use LOT in place of ABE,
which brings in the following changes in the KeyGen, Enc, and Dec algorithms:

— We use LOT = (LOT.crsGen, LOT.Hash, LOT.Send, LOT.Receive) instead of
kpABE.

— The function in Figure 2, for which FE key is generated now takes as input
LOT objects crs and digest, instead of kpABE.mpk and computes LOT.cty, =
LOT.Send(crs, digest, Ib, 0, m; F(K, (Ib, z))), instead of kpABE.cty.
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— The encryption algorithm changes as follows:
RPE.Enc(RPE.mpk, f,m,L) — RPE.ct. The encryption algorithm does the
following:

e Parse RPE.mpk = FE.mpk and sample a PRF key K « {0,1}*.

e Generate crs < LOT.crsGen(1%).

e Compute (digest, D) «— LOT.Hash(crs, D), where D is a binary vector
of length IV (the no. of users) and is 1 at positions corresponding to
non-revoked labels, i.e. D[Ib'] = 1iff Ib" ¢ L.

o Compute FE.ct < FE.Enc(FE.mpk, (crs, digest, f,m, K,0, L, 1)).

o Output RPE.ct = (crs, FE.ct).

— The algorithm for decryption also changes accordingly as follows:
RPE.Dec(RPE. sk, 5, RPE.ct, L) — m/. The decryption algorithm does the
following:

e Parse RPE.ct = (crs, FE.ct) and RPE.sky, , = FE.skip ;.

e Define D from L as described in the encryption algorithm and compute
(digest, D) < LOT.Hash(crs, D).

e Compute LOT.ct’ = FE.Dec(FE.sk ,, FE.ct).

e Compute m’ = LOT.Receive” (crs, LOT.ct’, Ib).
e Output m/.

We provide the proofs for correctness and security in the full version.

4 Revocable Mixed Functional Encryption

4.1 Definition

A revocable mixed functional encryption (RMFE) scheme with input domain
X = {X\}rem, a function family F = {Fix} e where Fy = {f : &y — {0,1}},
a label space £ = {£)} e has the following syntax.

Setup(1*) — (mpk, msk). The setup algorithm takes as input the security
parameter A and outputs a master public key mpk and a master secret key
msk.

KeyGen(msk, Ib, z) — sk ;. The key generation algorithm takes as input the
master secret key msk, a label Ib € £, and an input z € &X). It outputs a
secret key skip 5.

PK-Enc(mpk, L) — ct. The public key encryption algorithm takes as input the
master public key mpk and a revocation list L C £ and outputs a ciphertext
ct.

SK-Enc(msk, f, L) — ct. The secret key encryption algorithm takes as input the
master secret key msk, a function f € F, and a revocation list L C L3, and
outputs a ciphertext ct.

Dec(skip s, L, ct) — {0, 1}. The decryption algorithm takes the secret key skip ,
arevocation list L C £ and a ciphertext ct and outputs a bit.
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Definition 4.1 (Correctness). A RMFE scheme is said to be correct if there exists
negligible functions negl, (-), negly(+) such that for all A € N, the following holds

(mpk, msk) < Setup(1*);
Pr[ Dec(skip ., L, ct) = 1 : skyp ,, < KeyGen(msk, Ib, z); ] >1—negly(A).
ct « PK-Enc(mpk, L)

(mpk, msk) < Setup(1*);
b¢ L= Pr[ Dec(skip 4, L, ct) = f(z) : sk, < KeyGen(msk, Ib, ); 1 > 1—negly(N).
ct < SK-Enc(msk, f, L)

Security. Here we define the security requirements of RMFE scheme.

Definition 4.2 (¢-query Mode Hiding). Let ¢(-) be any fixed polynomial. A RMFE
scheme satisfies g-query mode hiding security if for every PPT adversary A, there exists
a negligible function negl(-) such that for every A € N,

(mpk, msk) < Setup(1*);
f. L « AKeyGen(msk,,). SK-Ene(msk.-.)) (mpk):
Pr Bl = 6 : ﬁ — {07 1}7 Cty SK—EnC(mSka fa L)7 <
ct; ¢ PK-Enc(mpk, L);
B« AKeyGen(msk,.,:) SK-Enc(msk,+.) (ct ;)

+ negl(\)

N =

where A can make at most q(\) queries to the SK-Enc(msk, -, -) oracle and is admissible
only if for all the key queries (Ib, x) to the KeyGen(msk, -, -) oracle, f(x) = 1.

Definition 4.3 (g-query Selective Function Hiding). Lef ¢(-) be any fixed polyno-
mial. A RMFE scheme satisfies q-query selective function hiding security if for every
PPT adversary A, there exists a negligible function negl(-) such that for every A € N,

L+ A(1Y);
(mpk, msk) ¢ Setup(1*); 1
Pr IBI — ﬂ . (anfl) — AKeyGen(msk,',~),SK-Enc(msk,-,~)(mpk); < 5 + negl()\)
B« {0,1}; ctg < SK-Enc(msk, f3, L);
6/ <;.Al'(eyGen(msk,-,4),SK7Enc(msk,-,-)(Ctﬁ)

where A can make at most g(\) queries to the SK-Enc(msk, -, -) oracle and for all the
key queries (Ib, x) to the KeyGen(msk, -, -) oracle, either fo(x) = fi(x)or Ib € L.

Remark 4.4. We note that when the function space F) is polynomially small
and ¢ is a constant, a variant of Definition 4.3 where the adversary outputs
the challenge functions (fy, f1) and the SK-Enc query functions {f;};c[y at the
beginning of the game, before the Setup(1*) algorithm is run, is equivalent to
Definition 4.3 where the adversary adaptively outputs the challenge functions
(fo, f1) and can make SK-Enc queries adaptively, with polynomial loss. Similar
comment also applies to Definition 4.2. We will use these simplifications in the
security proofs.
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4.2 Construction

In this section we give a construction of 1-query secure RMFE scheme, with input
space X = {X)},, a function family F = {F,}, where F) = {f : X\ — {0,1}}
and a label space £ = {£,},. We assume that the size of |F,| is bounded by
some polynomial in A, which will suffice for our purpose.

Our scheme uses the following building blocks:

1. A 2-bounded semi-adaptive simulation based function-message private
([2, Def. 2.11]) SKFE scheme SKFE = (SKFE.Setup, SKFE.KeyGen, SKFE.Enc,
SKFE.Dec) that supports the function class . This can be instantiated from
one-way functions ([2, Lemma 2.12]).

2. A key-policy ABE scheme kpABE =  (kpABE.Setup, kpABE.Enc,
kpABE.KeyGen, kpABE.Dec) for the circuit class Cy(y),qn) With message
space {0,1}* satisfying Sel-IND security ([2, Def. 2.14]) and efficiency
properties described in [2, Theorem 2.18]. We set £(\) = 4, + log(A\) + 1 and
d()\) = w(log \), where /;, is the label length.!! This can be instantiated from
the LWE assumption ([2, Theorem 2.18]).

3. A lockable obfuscation scheme LO = (LO.Obf,LO.Eval) with lock space
{0,1}* that supports circuits of the form CC defined in Fig. 3. As we will
analyze later, the circuit is of fixed polynomial size in A and |f|, where | f| is
the description size of the function f € F. This can be instantiated from the
LWE assumption ([2, Theorem 2.25].).

Below we describe our construction of a 1-query secure RMFE scheme RMFE =
(RMFE.Setup, RMFE.KeyGen, RMFE.PK-Enc, RMFE.SK-Enc, RMFE.Dec).

RMFE.Setup(1*) — (RMFE.mpk, RMFE.msk). The setup algorithm does the
following:
— Generate SKFE.msk < SKFE.Setup(1?).
- Generate (kpABE.mpk, kpABE.msk) <+ kpABE.Setup(1*).
— Output RMFE.mpk = kpABE.mpk and RMFE.msk =
(SKFE.msk, kpABE.mpk, kpABE.msk).
RMFE.KeyGen(RMFE.msk, Ib, ) — RMFE.sk, .. The key generation algorithm
does the following:
— Parse RMFE.msk = (SKFE.msk, kpABE.mpk, kpABE.msk).
- Forall j € [A\],b € {0,1}, sample K ;, Rj;, < {0,1}*.
Denote K = {K’,b}je[)\],be{o,l} and R = {R‘,b}je[/\],be{o,l}-
- Compute

SKFE.ct < SKFE.Enc(SKFE.msk, (z, K, R)).
- Forall j € [A],b € {0,1}, compute
kpABE.cti, ; » < kpABE.Enc(kpABE.mpk, (Ib, 5, b), K 1).

! Concretely, we can choose d()\) = ©(log A log log \) for example.
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- Output RMFE.Sku)J = (SKFE.Ct, kpABE.mpk, {(|b,j, b), kpABE-Cth,j,b}je[/\],be{O,l})-

RMFE.PK-Enc(RMFE.mpk, L) — RMFE.ct. The public key encryption algo-
rithm does the following:
- Computes a simulated code RMFE.ct «+ LO.Sim(1%, 1/€¢/)12,
— It outputs RMFE.ct as the ciphertext.
RMFE.SK-Enc(RMFE.msk, f, L) — RMFE.ct. The secret key encryption algo-

rithm does the following:

- Parse RMFE.msk = (SKFE.msk, kpABE.mpk, kpABE.msk), and sample a
tag z + {0,1}* and a lock value a + {0, 1}*.

— Forall j € [A], compute kpABE.sky, ; ., < kpABE.KeyGen(kpABE.msk,Cr ;..),
where the function Cp ; ., has L, j and z; hardwired and is defined as
follows : '

On input (Ib,4,b) € £y x [A] x {0,1},

1 if(lbg L)A(i=j)A(b=2)

. 4.1)
0 otherwise.

CL.j,z (Ib,i,b) = {
- Compute SKFE.sk <— SKFE.KeyGen(SKFE.msk, Py , ), where the func-
tion Py, o has f,z, o hardwired and is defined as follows :
Oninputz € &\, K = {Kj,b}je[)\],be{o,l}a R = {Rj,b}je[/\],be{O,l}r

D, Kj- ®a iffz)=0
@j Rj,Zj if f(l’) =1

- Construct function CC[SKFE.sk, {kpABE.skr, ; ., } je[x]], with SKFE.sk and
{kpABE.skr j,-, } je[n hardwired and is defined as in Figure 3.
— Output RMFE.ct « LO.Obf(CC[SKFE.sk, {kpABE.sky ; .. }ici], @)-

RMFE.Dec(RMFE.sk, ,,, RMFE.ct, L) — {0, 1}. The decryption algorithm does
the following:
— Parse RMFE.sky, , = (SKFE.ct, kpABE.mpk, {(Ib, j,b), kpABE.ctib j s } je[r],be{0,1})

and RMFE.ct = CC, where CC is regarded as an obfuscated circuit of LO.
- Forall j € [\],b € {0,1}, compute

Pt oz, K,R) = { (4.2)

kpABE.offyp, j , < kpABE.Dec® (kpABE.mpk, Cy, 4, (Ib, 5, D).

- Compute

Yy = LOEV3|(€6, (SKFE.Ct, {kpABE.Ct|b7j7b, kpABE.Off|b7j,b}je[)\]71,6{0,1})).
— Output 1 if y = 1, else output 0.

Remark 4.5. We note that by performing the part of the ABE decryption
that uses C, ; 5, outside of CC, we do not need to provide C7, ;; (or L) as
input to CC. Instead, we provide {kpABE.offi j 5} je[r],be{0,13 Whose size is
independent of the size of C ;; (and thus that of L). This helps us in getting
succinct ciphertext.

12 Here, CC represents the maximum possible size of CC[-, -] circuit defined in Figure 3.
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Function CC[SKFE.sk, {kpABE.skz ;.. }c ]

Hardwired values: A SKFE secret key SKFE.sk and kpABE keys
{kpABE.SkL7j7zj}je[)\].

Inputs: A SKFE ciphertext SKFE.ct and kpABE ciphertexts
{kpABE.Cthjyb7 kpABE.Off|bJ7b}j€[A],be{o’l}.

Output : A binary string o* € {0,1}*.

1. Forall j € [A], compute m; = kpABE.Dec®" (kpABE.skp, ;. ., kpABE.ctyy ..,
kpABE.Ofﬂb’j)zj).

Let MO = @j m;

Compute M; = SKFE.Dec(SKFE.sk, SKFE.ct).

3. Output M1 b Mo.

N

Fig.3. Compute and Compare function CC

Correctness and Security. We prove the correctness and security via the
following theorems.

Theorem 4.6. Suppose kpABE, LO and SKFE are correct and LO is secure, then the
above construction of RMFE satisfies correctness as defined in Definition 4.1.

Theorem 4.7. Assume that SKFE and LO are secure as per Definitions [2, Def. 2.11]
and [2, Def. 2.24], respectively. Furthermore, assume |Fy| < poly(\). Then the RMFE
construction satisfies 1-query mode hiding security as per Definition 4.2.

Theorem 4.8. Assume SKFE is secure ([2, Def. 2.11]), kpABE satisfies Sel-IND
security ([2, Def. 2.14]). Furthermore, assume |Fy| < poly(A). Then, the RMFE
construction satisfies 1-query function hiding as defined in Definition 4.3.

Due to space constraints, we prove these theorems in the full version.

Efficiency. Here we argue that our construction achieves optimal parameters.
Namely, we show that the sizes of the parameters are independent of |L|. For
details, please see the full version.
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