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Abstract. In this work, we will give new attacks on the pseudorandom-
ness of algebraic pseudorandom number generators (PRGs) of polyno-
mial stretch. Our algorithms apply to a broad class of PRGs and are in
the case of general local PRGs faster than currently known attacks. At
the same time, in contrast to most algebraic attacks, subexponential time
and space bounds will be proven for our attacks without making any as-
sumptions of the PRGs or assuming any further conjectures. Therefore,
we yield in this text the first subexponential distinguishing attacks on
PRGs from constant-degree polynomials and close current gaps in the
subexponential cryptoanalysis of lightweight PRGs.
Concretely, against PRGs F : Zn

q → Zm
q that are computed by polyno-

mials of degree d over a field Zq and have a stretch of m = n1+e we give

an attack with space and time complexities nO(n
1− e

d−1 ) and noticeable
advantage 1 − O(n1− e

d−1 /q). If q lies in O(n1− e
d−1 ), we give a second

attack with the same space and time complexities whose advantage is

at least q−O(n
1− e

d−1 ). If F is of constant locality d and q is constant,
we construct a third attack that has a space and time complexity of

exp(O(n
1− e′

(q−1)d−1 )) and noticeable advantage 1 − O(n
− e′

(q−1)d−1 ) for
every constant e′ < e.

1 Introduction

A pseudorandom number generator (PRG) is a deterministic algorithm F :
{0, 1}n → {0, 1}m that stretches a given string of bits i.e. m > n. We expect
a PRG to expand a uniformly drawn string to a longer string of bits that suf-
ficiently simulates randomness. More formally, for a PRG F its output – when
evaluated on a short uniformly random string – should be for a certain class of
computational models indistinguishable from a longer uniformly random string,
even if the algorithm F is publicly known.

PRGs are an important tool in the toolbox of cryptography besides one-way
functions [1, 27], pseudorandom permutations and pseudorandom functions. Fur-
ther, in complexity theory, the existence of PRGs implies the derandomization
of certain complexity classes [38]. For example, it is known that the existence of
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so-called high-end PRGs implies that P equals BPP [29]. Additionally, PRGs
have the real world task of simulating cryptographic pseudorandomness in de-
terministic software applications.

Of particular interest are PRGs that can be efficiently evaluated. Very promi-
nent examples are local PRGs [26]. Each output bit of a local PRG depends on
only a constant number of input bits. Besides their simplicity, local PRGs are
an important building block in advanced cryptographic constructions, e.g. two-
party protocols for computing circuits with constant overhead [30] or indistin-
guishability obfuscation [31, 32]. Assuming additionally the pseudorandomness
of arithmetic PRGs F : Zn

q → Zm
q where each output value is computed by a

polynomial of constant degree over Zq leads to arithmetization of such primitives,
like e.g. arithmetic two-party protocols [4].

Since PRGs play such a crucial role in cryptography, cryptoanalysis of PRGs
is of general importance. In particular, local PRGs F : {0, 1}n → {0, 1}m of
poly-stretch, i.e. m ≥ n1+e for some constant e > 0, have been the subject of
various attacks, and it could be shown that such PRGs can be distinguished by
subexponential-size 1 circuits, or even poly-size circuits if e > 0.5 [3, 5, 11, 18,
39, 41].

PRGs of constant degree, i.e. PRGs that can be computed by polynomials
of constant degree over some finite field, can be seen as a generalization of lo-
cal PRGs. However, constant-degree PRGs have received much less attention
in cryptoanalytic literature than local PRGs. While there is a huge collection
of algebraic attacks on refuting and inverting constant-degree PRGs like F4/F5
and the XL-algorithms [12, 16, 17, 23, 24, 36, 44], we do not know of any attacks
whose time-complexity for poly-stretch constant-degree PRGs is guaranteed to
be subexponential even in the worst case. We intend to close this gap by introduc-
ing a new algebraic attack that is provably subexponential against poly-stretch
PRGs of constant degree.

1.1 Contribution

In this text, we will introduce new algebraic attacks on PRGs and prove upper
bounds for their complexities and lower bounds for their advantage in the worst
case. Let F : Zn

q → Zm
q with m ≥ n1+e. Then, we give the following attacks on

the pseudorandomness of F :

– If F is of degree d over Zq, we have an attack with subexponential space

and time complexities nO(n
1− e

d−1 ). The advantage of this attack is 1 −
O(n1− e

d−1 /q), which is noticeable if q is large enough.
– If q should be small (e.g. q ∈ O(n1− e

d−1 )), then we give a second attack in
the above case with the same space and time complexities for which we can
guarantee a subexponentially small advantage of q−O(n

1− e
d−1 ).

1 The notion of subexponentiality is ambiguous in literature. Here, we denote by subex-
ponential a function that is contained in

⋃
c<1 2

O(nc).
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– If q is constant and F is of locality d, we give for each constant e′ ∈ [0, e) a

third attack with subexponential space and time complexities 2O(n
1− e′

(q−1)d−1 ).
For this attack, we will prove a noticeable advantage of 1−O(n−

e′
(q−1)d−1 ).

To the best of our knowledge, we give the first distinguishing algorithms on
constant-degree PRGs that are provably subexponential in the worst case for
sufficiently large moduli. Additionally, our second and third attack algorithms
are faster than the attacks of Bogdanov & Qiao [11]. Hence, these attacks give
new baselines for the cryptoanalysis of local PRGs.

1.2 Technical Overview

We want to motivate and explain here the ideas behind our new attacks. Let q
be a prime, Zq be the finite field of size q and F : Zn

q → Zm
q be a PRG of degree

d. I.e., the i-th output value of F is computed by a polynomial fi ∈ Zq[X] :=
Zq[X1, . . . , Xn] of total degree ≤ d. Now, assume we would know a non-zero
polynomial h ∈ Zq[Y ] := Zq[Y1, . . . , Ym] that vanishes on the image of F i.e.

h(F (x)) = 0 (1)

for all x ∈ kn. Let D be the total degree of h. Since h is not the zero polynomial,
we have according to the famous Schwartz-Zippel lemma [40]

Pr
y←Zm

q

[h(y) = 0] ≤ D

q
. (2)

I.e., while h will always be zero on the image of F , the probability that h vanishes
on a random point can be controlled by D/q. If D is sublinear and q is sufficiently
large, q ≥ n for example, h gives us a strong indicator for distinguishing image
points of F from random points of Zm

q . In fact, by using h we can distinguish
the distribution (F (x))x←Zn

q
from (y)y←Zm

q
with advantage at least 1− D

q .
However, the following two questions remain:

1. For which degrees D can we guarantee the existence of a non-zero polynomial
h of degree D that vanishes on the image of F?

2. Even if we know that such a polynomial h must exist, how can we algorith-
mically compute it?

Finding Algebraic Relations. The set of polynomials h that vanish on each F (x)
has a specific algebraic structure. To explore this structure, we consider the
following morphism of Zq-algebras:

ϕ : Zq[Y1, . . . , Ym] −→ Zq[X1, . . . , Xn] (3)
g(Y1, . . . , Ym) 7−→ g(f1(X), . . . , fm(X)). (4)

ϕ maps polynomials in Zq[Y ] to polynomials in Zq[X] by substituting each vari-
able Yi by the polynomial fi(X). Denote by kerϕ the kernel of ϕ, i.e.

kerϕ = {g ∈ Zq[Y ] | ϕ(g) = 0} . (5)
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If g lies in kerϕ, we have ϕ(g) = g(f1(X), . . . , fm(X)) = 0. In particular, we
have for each x ∈ Zn

q then

g(f1(x), . . . , fm(x)) = ϕ(g)(x1, . . . , xm) = 0. (6)

This means, the kernel of ϕ contains polynomials h that are of interest for us.
Therefore, we can restate our questions as follows:

1. For what D can we guarantee the existence of a non-zero element of kerϕ?
2. How can we compute all elements of kerϕ up to degree D?

To answer the first question, we define the following Zq-vector spaces for ℓ ∈ N:

Zq[X]≤ℓ := {g ∈ Zq[X] | deg g ≤ ℓ} , (7)

Zq[Y ]≤ℓ := {g ∈ Zq[Y ] | deg g ≤ ℓ} . (8)

The vector spaces Zq[X]≤ℓ and Zq[Y ]≤ℓ contain all elements of Zq[X] resp.
Zq[Y ] of total degree ≤ ℓ. They are spanned by all monomials in the X- resp.
Y -variables of degree ≤ ℓ. Therefore, we have

dimZq Zq[X]≤ℓ =

(
n+ ℓ

ℓ

)
and dimZq Zq[Y ]≤ℓ =

(
m+ ℓ

ℓ

)
. (9)

Now, we want to restrict ϕ on Zq[Y ]≤ℓ. Remember that F is a PRG of degree
d, i.e., each fi is a polynomial of degree d. It is easy to see that ϕ stretches
the degree of each polynomial by at most a factor of d. I.e., we have for each
g ∈ Zq[Y ]

deg ϕ(g) = deg g(f1(X), . . . , fm(X)) ≤ d · deg g. (10)

So, by restricting ϕ on Zq[Y ]≤ℓ, we get a linear map

ϕℓ : Zq[Y ]≤ℓ −→ Zq[X]≤d·ℓ (11)

for each ℓ. For linear maps, it is quite easy to guarantee the existence of non-
trivial kernel elements. In fact, by dimension formulas, we have

dimZq
kerϕℓ ≥dimZq

(Zq[Y ]≤ℓ)− dimZq
(Zq[X]≤d·ℓ) (12)

=

(
m+ ℓ

ℓ

)
−
(
n+ d · ℓ
d · ℓ

)
. (13)

Therefore, it suffices to find the smallest D s.t.(
m+D

D

)
>

(
n+ d ·D
d ·D

)
. (14)

As we already stated, we are interested here in PRGs of poly-stretch, so let
e > 0 be constant s.t. m ≥ n1+e. We claim that inequality Eq. (14) holds for
D ∈ Ω(n1− e

d−1 ). To see this, note that we have(
m+D

D

)
>

(
n+ d ·D
d ·D

)
(15)
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⇐⇒ (m+D) · · · (m+ 1)

D · · · 1
>

(n+ dD) · · · (n+ 1)

(dD) · · · 1
(16)

⇐⇒ (m+D) · · · (m+ 1) · (dD) · · · (D + 1) > (n+ dD) · · · (n+ 1). (17)

To show Eq. (17), we lower bound the LHS terms (dD) · · · (D + 1) > D(d−1)D

and (m+D) · · · (m+1) > mD. Further, for the simplicity of this exposition, we
approximate (n+ dD) · · · (n+ 1) by ndD. We then get roughly

(m+D) · · · (m+ 1) · (dD) · · · (D + 1) (18)

>mD ·D(d−1)D (19)

≥n(1+e)D · n(1− e
d−1 )·(d−1)D (20)

=n(1+e)D+(d−1−e)D (21)

=ndD ≈ (n+ dD) · · · (n+ 1). (22)

This shows that the degree D ∈ Ω(n1− e
d−1 ) is a plausible bound for non-trivial

elements in kerϕ. In Section 3, we will show that we can choose any D ≥ c·n1− e
d−1

for a constant c ∈ (2, 4] that depends on d.
The above considerations also give us a straight-forward algorithm for com-

puting a non-zero element h ∈ kerϕ: For each ℓ = 1, . . . , D, we compute a matrix
representation of the linear map

ϕℓ : Zq[Y ]≤ℓ −→ Zq[X]≤d·ℓ. (23)

By using Gaussian elimination, we can then check if this matrix has a non-trivial
kernel vector. Such a non-trivial kernel vector corresponds to a non-trivial kernel
element h ∈ kerϕ of degree ℓ. By our observations above, we know that for
ℓ = D = c · n1− e

d−1 , this algorithm must eventually find a non-zero polynomial.
The space and time complexities of this algorithm is in each step dominated

by computing the Gaussian elimination of a matrix of shape Mℓ × Nℓ where
Mℓ =

(
m+ℓ
ℓ

)
∈ O(n(1+e)ℓ) and Nℓ =

(
n+dℓ
dℓ

)
∈ O(ndℓ). Therefore, we need to

store MD ·ND ∈ nO(n
1− e

d−1 ) field elements and perform D·MD ·N2
D ∈ nO(n

1− e
d−1 )

arithmetic operations in Zq.

Evaluating h on a point y ∈ Zm
q costs D ·MD ∈ nO(n

1− e
d−1 ) field operations.

The advantage of using h in distinguishing a random point from an image point
of F is at least 1 − D/q. Hence, for q ∈ ω(n1− e

d−1 ) and m ≥ n1+e, we have
an attack algorithm with noticeable advantage, which is subexponential in the
worst case.

We give a detailed description of the algorithms sketched here and formal
proofs for their correctness in Section 3 and Section 4.

Handling Small Moduli. Note, that we cannot guarantee any advantage of the
above algorithm if q ≤ D = cn1− e

d−1 . In fact, it may be that the above algorithm
will retrieve the kernel element h(Y ) = Y q

1 −Y1 ∈ kerϕ in this case, which is not
helpful since the polynomial Y q

1 − Y1 vanishes on each point y ∈ Zm
q .
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We can prevent the appearance of trivial polynomials in the kernel of ϕ as
follows: instead of Zq[X] and Zq[Y ] we consider the rings

Rq[X] :=Zq[X]/(Xq
1 −X1, . . . , X

q
n −Xn) (24)

Rq[Y ] :=Zq[Y ]/(Y q
1 − Y1, . . . , Y

q
m − Ym). (25)

On these rings, we have a morphism

ϕq : Rq[Y ] −→ Rq[X] (26)
g(Y1, . . . , Ym) 7−→ g(f1(X), . . . , fm(X)) (27)

that again maps each variable Yi to the polynomial fi. The non-zero elements
of kerϕq are now exactly the polynomials h that vanish on the image of F , but
not everywhere on Zm

q . If we restrict ϕq to Rq[Y ]≤ℓ we get again a linear map

ϕℓ
q : Rq[Y ]≤ℓ −→ Rq[X]≤dℓ, (28)

and it can be shown again that we have for D ≥ c · n1− e
d−1 for some constant c

dimZq
Rq[Y ]≤D > dimZq

Rq[X]≤dD. (29)

Therefore, kerϕq must contain a non-zero element h of sublinear degree D that
is not contained in the ideal (Y q

1 − Y1, . . . , Y
q
m − Ym). For such an element,

it can be shown that its probability to not vanish on a random point can be
subexponentially bounded, even if D > q. I.e.

Pr
y←Zm

q

[h(y) ̸= 0] ≥ q−D. (30)

This gives us an algorithm of subexponential complexity with a subexponentially
small advantage in distinguishing between random points and images of the PRG
F .

In a multi-challenge setting, where the adversary can query multiple values
y1, . . . , yQ that either are all uniformly and independently random or are all
values in the image of F , the above attack can be amplified to have a noticeable
advantage for a subexponential number Q ∈ qΩ(n

1− e
d−1 ) of challenges.

Local PRGs of Constant Moduli. While the advantage of the above attack may
be much higher in practice (since the probability that h vanishes on a random
point may be higher than q−D), from a theoretical point of view the postulated
subexponential advantage is not satisfying.

Fortunately, in the case where the modulus q is constant and F is of constant
locality, we can use a little trick to noticeably boost the advantage of our attack.
For simplicity, we will assume here that q is 2, however the following approach
works for each constant modulus:

Let F : Zn
2 → Zm

2 be of locality d. This means, the i-th bit of the output of
F is computed by a function fi : Zn

2 → Z2 that only depends on d of its inputs.
Choose a prime number p ∈ [n, 2n] and note that – due to the locality of F – for
each fi we can find a polynomial f ′i ∈ Zp[X] of degree d that coincides2 with fi on
2 Note, that in the case q > 2, the degree of the polynomials f ′

i that coincide with fi
on the set {0, . . . , q − 1}n will be (q − 1)d instead of d.
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{0, 1}n, i.e., we have f ′i(x) = fi(x) for each x ∈ {0, 1}n. So, instead of attacking
the pseudorandomness of F , we can focus on the pseudorandomness of the map
F ′ : Zn

p → Zm
p of degree d that consists of the polynomials f ′1, . . . , f

′
m. However,

distinguishing a random point y ← Zm
p from F ′(x) = F (x), for x ← {0, 1}n,

is obviously simple, since the latter will always lie in {0, 1}m. To come up for
that, we set m′ := m

3 log p and draw a uniformly random matrix A ← Zm′×m
p .

According to the Leftover Hash Lemma, the distributions

(A,Ay)y←{0,1}m and (A, y′)y′←Zm′
p

(31)

are statistically very close. Therefore, if F : Zn
2 → Zm

2 is pseudorandom, then the
map G : Zn

p → Zm′

p of degree d that maps x to A·F ′(x) must be, too. However, we
can apply our first attack against G. Since m ≥ n1+e, we have m′ ≥ n1+e′ for any

constant e′ < e and therefore an attack of time and space complexity 2O(n
1− e′

d−1 )

and noticeable advantage 1−O(n1− e′
d−1 )/p ≥ 1−O(n−

e′
d−1 ). Going back to F , we

get an algorithm of subexponential complexity that has a noticeable advantage
in distinguishing images of F from random bit strings y ← {0, 1}m. We detail
this attack in Section 5.

1.3 Related Work

We try to give here a short survey of the current cryptoanalytic literature on
PRGs.

Linear Tests and Low-Degree Correlation. A linear test for a PRG F : Zn
q → Zm

q

is a degree-1 polynomial L ∈ Zq[Y ] that has a noticeable advantage∣∣∣∣ Pr
x←Zn

q

[L(F (x)) = 0]− Pr
y←Zm

q

[L(y) = 0]

∣∣∣∣ (32)

in distinguishing random points from image points of F . While linear tests form
a very simple class of attacks against PRGs, it can be shown that they are a good
sanity check in the case of local PRGs: a local random PRG that is secure against
linear tests also fools other classes of distinguishers like e.g. AC0, l-wise tests
and degree-2 threshold functions [2, Proposition 4.10]. Mossel et al. [37] shows
that there exist PRGs of constant locality s.t. each linear test only has negligible
advantage against those PRGs, even if the PRG is of polynomial stretch m =
n1+e. Their construction is based on the famous tri-sum-and predicate

X1X2 +X3 +X4 +X5 (33)

that gets applied on random subsets of the input to compute the output bits of
the PRG.

If we allow the degree of L to be greater than 1, we get a polynomial test
of higher degree. Viola [43] showed that for each constant d a PRG can be con-
structed that cannot be distinguished by degree-d tests with noticeable advan-
tage (his constructions allows non-constant values for d, however such d reduce
the stretch of the PRG substantially).
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Groebner Basis-Based Attacks. A huge class of attacks against PRGs of constant
degree constitute of algebraic attacks [12, 16, 17, 23, 24, 36, 44]. These attacks
aim to invert the potential image of a PRG by computing a Groebner basis or
something similar in the case of XL-algorithms.

These algorithms work well in practice, and it has been suspected that they
give subexponential attack algorithms against PRGs of polynomial stretch [9].
However, computing a Groebner basis can be a task of double exponential com-
plexity in the worst case, and therefore those algorithms do not give us provable
subexponential attacks.

In the full version [45] of this text, we will give a deeper comparison of our al-
gorithms with Groebner basis-based algorithms, draw new insights for Groebner
basis-based algorithms and construct a Macaulay matrix-based algorithm that
is provable subexponential in the worst case when distinguishing the images of
poly-stretch PRGs.

Random Local Functions. A random local function is a PRG F : {0, 1}n →
{0, 1}m where each output bit is computed by a fixed predicate P : {0, 1}d →
{0, 1} that is applied on a random subset of bits of the input string. The notion of
random local functions has been put forth by Goldreich [26] and was the subject
of a great body of cryptoanalytic literature. For exhaustive surveys and studies
on the security of random local functions, we refer the reader to the works of
Applebaum [2] and Couteau et al. [18]. We will only review here some attacks
on random local functions, which we think are the most relevant for the context
of this work:

1. It is known that F can be inverted in polynomial time and with high prob-
ability if m ∈ Ω(log(n) · n

⌊2d/3⌋
2 ) [2]. First note, that F can be efficiently

inverted by linearization of the corresponding polynomial equation system
if it is of stretch m ∈ Ω(ndegP ), where degP denotes the degree of P as a
polynomial over Z2.
This means, the degree of P must be greater than d/3 if we want to avoid
the above attack for m ≥ n

d
3 . However, if degP ≥ d/3, then P is correlated

with the sum of c ≤ d− d
3 of its variables [41]. I.e., P can be written as

P (Z1, . . . , Zd) = Z1 + . . .+ Zc +N(Z1, . . . , Zd) (34)

where N is a biased predicate i.e. Prz←{0,1}d [N(z) = 0] ̸= 1
2 . When solving

the system F (x) = y, one can see the N predicates as dependent noise
added to linear equations. This constrained noisy linear equation system
can be solved efficiently if m ∈ Ω(nc/2) [15, 25].

2. There is a subexponential inversion attack [2, 11] on F (x) that utilizes ap-
proximations of the correct inverse and has a runtime complexity of 2O(n1− e

2d )

(if m ≥ n1+e). The idea is to assign random bits to the first (1−2n−
e
2d ) bits

of an approximate solution. By iterating over all possible x′ ∈ {0, 1}n with
the given prefix, one will find an approximation that coincides with x on at
least ( 12 +n−

e
2d )n of its bits with probability at least 1

2 . This approximation
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can now be used to find efficiently and with high probability the correct
solution x.
Note, that the time complexity 2O(n1− e

2d ) of this algorithm is worse than the

time complexity 2O(n
1− e′

d−1 ), for any constant e′ < e, of the algorithm we
sketched against d-local PRGs of stretch n1+e.

3. Couteau et al. [18] constructed a guess-and-determine-style attack on PRGs
F : {0, 1}n → {0, 1}n1+e

of constant locality. Their attack guesses – in an
intelligent way – a portion of the bits of x and tries to extract a linear
equation system from the system F (x) = y for the unguessed input bits. If
the predicate P for F is of the form

P (X1, . . . , Xr) = X1X2 +X3 + . . .+Xr, (35)

they can prove that their attack will succeed in distinguishing random points
from images of F and has a time complexity of 2O(n1−e). Note, that r does
not need to be constant.
They even generalize their attack to work with general predicates

P (X1, . . . , Xr) = M(X1, . . . , Xd) +Xd+1 + . . .+Xr, (36)

for any predicate M : {0, 1}d → {0, 1} and get an attack algorithm of time
complexity 2O(n

1− e
d−1 ). However, to prove a high success probability of the

generalization of their attack they need to assume a special conjecture that
depends on M .

4. While there are a lot of efficient attacks against local PRGs of sufficient
stretch, it is known that algebraic attacks against d-local PRGs of stretch
n1+e will have a time complexity of at least nO(n

1−32 e
d−2 ) in the worst case [2,

Theorem 5.5]. This means, up to some constants in the exponent, the time
complexities we achieve with our attacks are optimal for algebraic attacks.

Attacks Based on Sum-of-Squares. Sum-of-Squares attacks are a special class of
SDP-based attacks. These attacks were discovered recently and used to refute
several candidate light-weight PRGs of polynomial stretch for indistinguishabil-
ity obfuscation schemes [7, 8]. While these attacks are efficient, they need to
make special assumptions about the PRGs they attack, which limits the gener-
ality of those attacks. We will list below some PRGs for which a sum-of-squares
attack can successfully distinguish PRG images from random points:

1. Let F : {0, 1}nb → {0, 1}m be two block-local, i.e., the input is partitioned
into n blocks of size b and each output depends on two blocks. If m ∈
Ω(22b · log2(n) · n) is big enough, then there is an efficient attack on F [7].

2. Let c > 0 be a constant and let Y be a distribution over R s.t. we have
Pry←Y [y /∈ [a, a + c]] ≥ 1

10 for each a ∈ R. Let F : {0, 1}n → Rm be a
PRG of degree d over the reals s.t. the polynomials in F have at most s
monomials. If m ∈ Ω(log2(n) · s · n⌈d/2⌉) is big enough and if we assume a
special assumption for the polynomials f1, . . . , fm, there is an efficient attack
that can successfully distinguish images of F from points y ← Y m [7].
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3. Let t ∈ poly(n) and let Q be a distribution of quadratic polynomials in R[X]
with some special properties. If m ∈ log(n)Ω(1) · n is big enough, there is an
efficient algorithm that can extract with high probability the input x from
(F, F (x)) where we sample x← [−t, t]n and F ← Qm [8].

1.4 Organization of this Text

In Section 2, we will introduce some algebraic and cryptographic preliminaries.
In Section 3, we will give an algorithm that finds non-trivial polynomials that
vanish on the images of PRGs F : Zn

q → Zm
q of constant degree d and prove

that one can find such polynomials of sublinear degree if F is of polynomial
stretch m = n1+e. In Section 4, we will give a distinguishing attack on F of
time and space complexity nO(n

1− e
d−1 ) and prove that it has an advantage of at

least 1−O(n1− e
d−1 /q). In Section 5, we will investigate the case of small constant

moduli q. For simplicity, we will only treat the representative case q = 2, however
all results shown for q = 2 can be generalized for any small or constant prime
q. We will show in this section, that one can find a polynomial of sublinear
degree that vanishes on the image of F , but does not vanish everywhere on Zm

q .
This leads to a second attack on degree-d PRGs F : Zn

q → Zm
q of complexity

nO(n
1− e

d−1 ) and subexponential advantage q−O(n
1− e

d−1 ). Additionally, we will in
this section give an attack on d-local PRGs F : Zn

q → Zm
q that has a time and

space complexity of 2O(n
1− e′

(q−1)d−1 ) and noticeable advantage O(n−
e′

(q−1)d−1 ) for
every constant e′ < e. In Section 6, we will derive some insights for the design
of PRGs that shall be secure against subexponential adversaries.

In the full version of this text [45], we will give an exhaustive comparison
between our algorithms and Groebner basis-based algorithms, derive some in-
sights for Groebner basis-based algorithms, give a new attack algorithm against
PRGs of constant degree and polynomial stretch, which is also Groebner basis- or
rather Macaulay matrix-based, and prove that it is subexponential in the worst
case. Additionally, we will formally prove some claims that were only sketched
and give some algebraic background.

2 Preliminaries

2.1 Notation

Denote by N = {1, 2, 3, . . .} the set of natural numbers and by N0 = N∪ {0} the
set of natural numbers plus zero.

For the rest of this text, by k we will always denote a field and by k[X1, . . . , Xn]
resp. k[Y1, . . . , Ym] the corresponding polynomial ring, for n,m ∈ N. Since the
numbers of X and Y variables will always be n resp. m, by abuse of notation,
we will write k[X] resp. k[Y ] instead of k[X1, . . . , Xn] resp. k[Y1, . . . , Ym].

Let f ∈ k[X]. When we speak of f ’s degree we always mean its total de-
gree that is the minimum number d ∈ N0 s.t. f can be written as a k-linear
combination of monomials that are the product of ≤ d variables.
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If S is a finite set, we denote by x← S the fact that the random variable x
is drawn uniformly and independently at random from S.

For a number q ∈ N, we define the finite ring Zq := Z/qZ.
We will denote by n the security parameter in this text. The parameter

m = m(n) will in most cases be dependent on n. For this to be consistent, we
assume in those cases that m is time-constructible.

We call a function ϵ : N→ [0, 1] negligible, if we have limn→∞ ϵ(n) · nd = for
each d ∈ N. By poly(n) :=

{
f : N→ N | ∃c, d ∈ N : f(n) ≤ nd + c

}
we denote

the set self-maps of the natural numbers that are upper-bounded by constant-
degree polynomials.

Given two discrete distributions X and Y, we define their statistical distance
as ∆(X ,Y) := 1

2

∑
x |X (x)− Y(x)|.

Given two vector spaces V,W over the same field, we denote by V ⊕W their
direct sum.

2.2 Mathematical Preliminaries

We will introduce now some basic facts and notions for the polynomial ring k[X]:

Remark 1. Let n ∈ N. Let k be any field and consider the polynomial ring
k[X] = k[X1, . . . , Xn]. The ring k[X] is graded and can be written as

k[X] =

∞⊕
ℓ=0

k[X]ℓ (37)

where k[X]ℓ is the finite-dimensional k-vector space generated by all monomials
of total degree = ℓ, i.e.

k[X]ℓ = spank {X
a1
1 · · ·Xan

n | a1, . . . , an ∈ N0, a1 + . . .+ an = ℓ} . (38)

By k[X]≤ℓ we denote the space generated by all monomials of degree ≤ ℓ, i.e.

k[X]≤ℓ :=

ℓ⊕
i=0

k[X]i. (39)

The dimensions of k[X]ℓ and k[X]≤ℓ are given by

dimk k[X]ℓ =

(
n+ ℓ− 1

ℓ

)
and dimk k[X]≤ℓ =

(
n+ ℓ

ℓ

)
. (40)

Sometimes, we will use the notion Xα1 , Xα2 , . . . to denote monomials

X
a1,1

1 · · ·Xa1,n
n , X

a2,1

1 · · ·Xa2,n
n , . . . . (41)

In those cases, the α1, α2, . . . ∈ Nn
0 are multi-indices given by

αi = (ai,1, . . . , ai,n). (42)

11



In the case of k = Zq for a small prime q, it might be necessary to include
the field equations Xq

1 −X1, . . . , X
q
n −Xn when considering k[X]. In this text,

we will only treat the case q = 2, which is representative for all cases of constant
moduli q:

Remark 2. Let k = Z2 and denote by I ⊂ Z2[X] the ideal generated by the field
equations of Z2, i.e.

I := (X2
1 −X1, . . . , X

2
n −Xn). (43)

The ring Z2[X]/I is not graded any more, since I is not a homogenous ideal.
However, it is still filtrated where the filtration steps are given by the vector
spaces

Z2[X]≤ℓ/(I ∩ Z2[X]≤ℓ). (44)

A basis for Z2[X]≤ℓ/(I ∩Z2[X]≤ℓ) is given by the set of all monomials of degree
≤ ℓ where each variable occurs at most once. Therefore, we have for ℓ ≤ n

dimZ2
(Z2[X]≤ℓ/(I ∩ Z2[X]≤ℓ)) =

ℓ∑
i=0

(
n

i

)
. (45)

In particular, we have for ℓ ≤ n

ℓ∑
i=0

(
n

i

)
= dimZ2

(Z2[X]≤ℓ/(I ∩ Z2[X]≤ℓ)) ≤ dimZ2
(Z2[X]≤ℓ) =

(
n+ ℓ

ℓ

)
.

(46)

Definition 1 (Dual Morphisms). Let k be any field and k[X] = k[X1, . . . , Xn].
Let f1, . . . , fm ∈ k[X] and k[Y ] = k[Y1, . . . , Ym]. The function

F : kn −→ km (47)
x −→ (f1(x), . . . , fm(x)) (48)

gives us a geometrical map that is continuous in the Zariski topology. It has a
dual morphism of k-algebras

ϕ : k[Y ] −→ k[X] (49)
Yi −→ fi(X) (50)

that maps each polynomial h ∈ k[Y ] to a polynomial h(f1(X), . . . , fm(X)) in
k[X] by substituting each appearance of Yi in h by fi for each i ∈ [m].

Definition 2 (Algebraic Independence). In the situation of Definition 1,
we call f1, . . . , fm algebraically independent if ϕ is injective.

If ϕ is not injective, we call a non-zero element h ∈ kerϕ of its kernel an
algebraic relation of the elements f1, . . . , fm.

12



When working with polynomials over k = Zq for q sufficiently large, the
Schwartz-Zippel Lemma is a helpful tool to lower bound the probability that a
fixed polynomial vanishes on a random point of Zm

q .

Lemma 1 (Schwartz-Zippel [40]). Let q ∈ N be a prime and let m, d ∈ N.
Let h ∈ k[Y ] be a polynomial of degree d. Then, we can bound the probability of
h vanishing on a random point of Zm

q by

Pr
y←Zm

q

[h(y) = 0] ≤ d/q. (51)

2.3 Cryptographic Preliminaries

In this subsection, we will introduce the notion of pseudorandom number gen-
erators, and define a simple security game for them.

Definition 3 (Pseudorandom Number Generators). Let m : N → N be
a time-constructible function and let k be any field. A pseudorandom num-
ber generator (PRG) is a family of functions F = (Fn)n∈N s.t. each Fn is a
deterministic function

Fn : kn −→ km. (52)

We call m the stretch of the PRG. If there is a constant e > 0 s.t. m ≥ n1+e,
we say that (Fn)n∈N is a poly-stretch PRG.

Remark 3. If F = (Fn)n∈N is a PRG, we will, by abuse of notation, just write

F : kn → km. (53)

For a given n, we will further write F when we actually mean Fn.
The adversaries in this text are always given a description of Fn (which we

will simply denote by F ) that allows the adversary to efficiently evaluate Fn

on points of kn. We assume that this description of Fn always contains binary
representations of the numbers n,m and a description of the field k that allows
the adversary to perform arithmetic operations over k. Additionally, if F is of
locality or degree d ∈ N (in the sense of Definition 4), we expect the description
of F to contain a binary representation of d.

Definition 4 (Locality and Degree of PRGs). Let F = (Fn)n be a PRG of
stretch m over k. Let d ∈ N. For n ∈ N and i ∈ [m], we denote by fn,i : k

n → k
the function of the i-th output of Fn. I.e., fn,1, . . . fn,m are uniquely determined
by

F (x) = (fn,1(x), . . . , fn,m(x)) (54)

for all x ∈ kn.
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1. We say that F is d-local if each of its output values depends on only d input
values. I.e. for each n ∈ N and i ∈ [m] there is a function g : kd → k and
indices l1, . . . , ld ∈ [n] s.t. we have for each x ∈ kn

fn,i(x1, . . . , xn) = g(xl1 , . . . , xld).

2. We say that F is of degree d if each fn,i can be computed by a polynomial
of degree d. I.e., for each n ∈ N and i ∈ [m] the function fn,i : kn → k
coincides with a polynomial in k[X] of degree ≤ d. In this case, by abuse of
notation, we will directly interpret fn,i as an element of k[X]≤d.

For a given n, we will simply write f1, . . . , fm instead of fn,1, . . . , fn,m to
denote the partial functions of F . We will usually say in those cases that F is
made up of or consists of f1, . . . , fm.

Definition 5 (Security Game for PRGs). Let k be finite now and let F :
kn → km be a PRG. We describe here a non-interactive security game between
a probabilistic challenger C and a (potentially probabilistic) adversary A. The
game is parametrized by n and proceeds in the following steps:

1. C draws a bit b← {0, 1}. If b = 0, it samples a preimage x← kn uniformly
at random, computes F (x) and sends (F, F (x)) to A. If b = 1, it samples
y ← km and sends (F, y) to A.

2. A receives (F, y∗) for some y∗ ∈ km and must decide which bit b has been
drawn by C. It makes some computations on its own without interacting with
C and finally sends a bit b′ to C.

A wins an instance of this game iff b = b′ holds at the end. We define A’s
advantage against F by

advF (A) := 2Pr[A wins]− 1 = Pr
x←kn

[A(F, F (x)) = 0] + Pr
y←km

[A(F, y) = 1]− 1

(55)

where we take the probability over the randomness of A and C.
We define A’s space complexity to be the number of bits and elements of k it

stores simultaneously in step 2, and we define its time complexity by the number
of bit-operations and arithmetical operations over k it performs in step 2.

Definition 6. We say that an algorithm is subexponential if there is a con-
stant e ∈ [0, 1) s.t. its time and space complexities lie in 2O(ne).

Lemma 2 (Leftover Hash Lemma (Matrix Version) [21]). Let q ∈ N be
a prime and let m,m′ ∈ N be natural numbers.

If we draw A1, A2 ← Zm×m′

q , y1 ← {0, 1}m, y2 ← Zm′

q , we have

∆((A1, A1y1), (A2, y2)) ≤
1

2

√
2m′·log q−m. (56)
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3 Finding Algebraic Relations

In this section, we introduce an algorithm B1 that – given a set of polynomials –
finds an algebraic relation among these polynomials. Further, we will prove upper
bounds for the degree of this relation and for the complexity of the algorithm.

Now, let n,m, d ∈ N and let k be any field in this section. Let F : kn → km be
a polynomial mapping of degree ≤ d that is given by polynomials f1, . . . , fm ∈
k[X] of degree ≤ d.

Denote by ϕ : k[Y ] → k[X] the dual morphism to F . Note, that ϕ expands
the degrees of its inputs by a factor of at most d, i.e., we have for each ℓ ∈ N0

ϕ(k[Y ]≤ℓ) ⊆ k[X]≤d·ℓ. (57)

Let kerϕ = {h ∈ k[Y ] | ϕ(h) = 0} be the kernel of ϕ. Our aim is to compute a
non-trivial element of kerϕ.

We will propose a straight-forward approach for this task: For ℓ = 1, 2, . . .,
the algorithm B1 will compute a monomial basis for k[Y ]≤ℓ and check – by linear
algebra – if the vector space k[Y ]ℓ ∩ kerϕ is non-trivial. If k[Y ]ℓ ∩ kerϕ contains
a non-trivial element eventually, B1 will output it and terminate. Formally, B1
is given by:

Algorithm 1. The algorithm B1 gets as input numbers n,m, d ∈ N, a descrip-
tion of k and a description of a polynomial map F : kn → km. It has to output
a non-zero element of kerϕ.
B1 sets an iteration variable ℓ := 1 and proceeds in the following steps:

1. B1 computes N :=
(
n+dℓ
dℓ

)
and M :=

(
m+ℓ
ℓ

)
2. B1 computes a finite list (Y a1

1 · · ·Y am
m | a1, . . . , am ∈ N0, a1 + . . .+ am ≤ ℓ) =

(Y α1 , . . . , Y αM ) of all monomials in k[Y ] of degree ≤ ℓ.
3. B1 applies ϕ to each Y αi and computes a second list (ϕ(Y α1), . . . , ϕ(Y αM ))

of polynomials in k[X] of degree ≤ dℓ.
4. Let Xβ1 , . . . , XβN be the set of all monomials in k[X] of degree ≤ dℓ. Then,

Xβ1 , . . . , XβN is a basis of k[X]≤dℓ and for each ϕ(Y αi) there is a unique
column-vector wi = (wi,1, . . . , wi,N ) ∈ kN s.t.

ϕ(Y αi) =

N∑
j=1

wi,j ·Xβj . (58)

B1 computes for each Yαi
the corresponding vector wi and writes down the

matrix

Wℓ :=
(
w1| . . . |wM

)
∈ kN×M . (59)

5. B1 uses Gaussian elimination to compute a basis for the vector space

Kℓ :=
{
r ∈ kM | Wℓ · r = 0

}
. (60)

6. If Kℓ is the trivial null-space, B1 increases ℓ by one and goes back to step 2.

15



7. Otherwise, B1 chooses an arbitrary non-zero vector r ∈ Kℓ, computes the
polynomial

h := r1 · Y α1 + . . .+ rM · Y αM ∈ k[Y ] (61)

of total degree ≤ ℓ and outputs it.

We will show the following properties for B1:
Lemma 3. Let n,m, d ∈ N s.t. m > n. Let F : kn → km be a polynomial map
of degree ≤ d. Let y ∈ km. We have the following:

1. On input n,m, d and F , B1 will always terminate after a finite number of
steps and output a polynomial h.

2. The polynomial h outputted by B1 will always lie in kerϕ and be non-zero.

Proof. 1. Note that m > n. The first claim of the lemma is equivalent to stating
that m elements of k[X] must be algebraically dependent and ϕ : k[Y ] →
k[X] cannot be injective. This is a well-known fact in algebra and is easy to
prove, however writing down a formally correct proof will make the notions of
transcendency bases and function fields necessary. A proof of this statement
can be found in the full version [45] of this text.

2. Assume that B1 stops after D iterations and outputs h. Then, h is a poly-
nomial in k[Y ] of degree D and can be written as

h := r1 · Y α1 + . . .+ rM · Y αM ∈ k[Y ] (62)

where M =
(
m+D
D

)
and r is a non-zero kernel element of RD. I.e., we have

M∑
i=1

ri · wi = 0. (63)

Since the entries of wi are exactly the coefficients of ϕ(Y αi), we have

ϕ(h) = ϕ

(
M∑
i=1

ri · Y αi

)
=

M∑
i=1

ri · ϕ (Y αi) = 0. (64)

Ergo, h ∈ kerϕ.

Lemma 4. Assume that B1 terminates after D iterations. Then, its space com-
plexity can be bounded by O(NM) and its time complexity can be bounded by
O(DN2M) for N =

(
n+d·D
d·D

)
and M =

(
m+D
D

)
.

Proof. In each iteration step, B1 computes a matrix of shape at most N ×
M over k. Therefore, the number of bits and elements of k it needs to store
simultaneously can be bounded by O(NM).

We can bound the time complexity of each iteration step from above by the
time complexity of the D-th iteration step. In this step, B1 performs Gaussian
elimination on an N ×M -matrix which needs O(N2M) arithmetical operations
over k. Therefore, the number of bit-operations and arithmetical operations B1
needs to do in each step can be bounded by O(N2M), and B1’s total time
complexity can be bounded by O(DN2M).
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Note, that B1 starts at ℓ = 1 and increases ℓ by one subsequently. Since B1
terminates only if it finds a non-trivial element in k[Y ]ℓ ∩ kerϕ, this means that
the number D of iterations B1 has to perform is exactly the lowest total degree
of non-zero elements of kerϕ.

Lemma 5. B1 terminates after D iterations iff D = min {deg h | h ∈ kerϕ, h ̸= 0}.

3.1 Bounding D for Poly-Stretch PRGs

We have seen in the last subsection that the time and space complexity of B1
is substantially influenced by D. Since D is the minimal degree of a non-trivial
element of kerϕ, our aim in this subsection is to bound the degree of algebraic
relations for all sets of polynomials f1, . . . , fm of degree ≤ d.

Since we are interested in the case of poly-stretch PRGs, we introduce an
additional constant e > 0 and assume that m is always larger than n1+e.

Let ϕℓ be the restriction of ϕ on k[Y ]≤ℓ. Then, each ϕℓ is a linear map of
type k[Y ]≤ℓ → k[X]≤d·ℓ. We can guarantee that ϕℓ has a non-trivial kernel, if
the dimension of k[Y ]≤ℓ exceeds the dimension of k[X]≤d·ℓ. Now, the dimensions
of k[Y ]≤ℓ and k[X]≤d·ℓ are given by

dimk(k[Y ]≤ℓ) =

(
m+ ℓ

ℓ

)
and dimk(k[X]≤d·ℓ) =

(
n+ d · ℓ
d · ℓ

)
. (65)

Therefore, we get for algorithm B1:

Lemma 6. Let D be the number of iterations of B1. Then, we have

D ≤ min

{
ℓ ∈ N |

(
m+ ℓ

ℓ

)
>

(
n+ d · ℓ
d · ℓ

)}
. (66)

Inequality Eq. (66) gives us a tool to compute a worst-case bound for B1’s
complexity for each possible case of polynomials f1, . . . , fm. In the next lemma,
we will show that we can bound D by O(n1− e

d−1 ). While n1− e
d−1 is non-constant

for e < d−1, it implies that we can bound the complexity of B1 subexponentially
by nO(n

1− e
d−1 ).

Lemma 7 (Main Inequalities). Let d ∈ N, d ≥ 2 and e ∈ (0, d − 1]. Let
m : N → N be a function with m(n) ≥ n1+e and set c = 2

d
d−1 . Then, we have

for all integers n ≥ (2dc)
d−1
e(

m(n) + L(n)

L(n)

)
>

(
n+ dL(n)

dL(n)

)
(67)

where L(n) =
⌈
cn1− e

d−1
⌉
.

Proof. In the proof, by abuse of notation, we write m = m(n) and L = L(n).
We first prove the inequality dL ≤ n. In fact, we have

dL = d
⌈
cn1− e

d−1
⌉
≤ d(c · n1− e

d−1 + 1) = dc · n1− e
d−1 + d. (68)
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Since n ≥ (2dc)
d−1
e , d must be smaller than n/2. For dc · n1− e

d−1 , we have the
equivalent inequalities

dc · n1− e
d−1 ≤ 1

2
n ⇐⇒ dc ≤ 1

2
n

e
d−1 (69)

⇐⇒ 2dc ≤ n
e

d−1 (70)

⇐⇒ (2dc)
d−1
e ≤ n (71)

where the last inequality is exactly the requirement in our lemma for n. There-
fore, we get

dL ≤ dcn1− e
d−1 + d ≤ n

2
+

n

2
= n. (72)

Now, for the claimed inequality of the lemma, we have the following chain of
equivalent inequalities(

m+ L

L

)
>

(
n+ dL

dL

)
(73)

⇐⇒ (m+ L) · · · (m+ 1)

L!
>

(n+ dL) · · · (n+ 1)

(dL)!
(74)

⇐⇒ (m+ L) · · · (m+ 1) · (dL) · · · (L+ 1) > (n+ dL) · · · (n+ 1). (75)

Note, that we have for all n the inequalities

(m+ L) · · · (m+ 1) > mL, (76)

(dL) · · · (L+ 1) > L(d−1)L. (77)

For the right-hand side, we have

(n+ dL) · · · (n+ 1) ≤ (n+ dL)dL ≤ (2n)dL = ndL · 2dL. (78)

By using the inequalities Eqs. (76) to (78), we see that Eq. (75) is implied by
the inequality

mL · L(d−1)L ≥ ndL · 2dL. (79)

By reducing Eq. (79) to the L-th root, we get the equivalent inequality

m · L(d−1) ≥ nd · 2d. (80)

Now, it is easy to show that this inequality holds:

m · L(d−1) ≥ n1+e ·
(
c · n1− e

d−1
)(d−1)

= n1+e+(d−1)−e · cd−1 = nd · 2d. (81)

This completes the proof.

Lemmas 3 to 7 now implies the following theorem:

Theorem 1. Let d ∈ N, e > 0 be constants and m ≥ n1+e. Let f1, . . . , fm ∈
k[X] be polynomials of degree ≤ d.

Then, B1 in Algorithm 1 outputs a non-trivial element of kerϕ of degree
O(n1− e

d−1 ). Its space and time complexities lie in nO(n
1− e

d−1 ).
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4 Attacks on Constant-Degree PRGs over Large Moduli

In this section, we will focus on the case k = Zq for a prime q that is sufficiently
high (e.g. q ∈ Ω(n)). We claim that in this case B1 from Algorithm 1 gives us a
subexponential attack on each PRG of constant degree over Zq and poly-stretch.
In this section, we will prove:

Theorem 2. Let d ∈ N, e > 0 be constants. Let m ≥ n1+e and let F : Zn
q → Zm

q

be a PRG of degree d over Zq.
Then, there is an attack algorithm A1 whose time and space complexities are

bounded from above by nO(n
1− e

d−1 ). Further, there exists a constant c > 0 s.t.
A1’s advantage in the security game Definition 5 is lower bounded by

advF (A1) ≥ 1− c · n1− e
d−1 /q. (82)

The attack A1 on F is defined as follows:

Algorithm 2. A1 receives as input a description of F that includes the numbers
n,m, q, d ∈ N and an element y∗ ∈ Zm

q . The goal of A1 is to output 0, if y∗ lies
in the image of F , and 1, otherwise.
A1 proceeds in two simple steps:

1. A1 executes the algorithm B1 from Algorithm 1 on the input n,m, d, q, F
and receives a non-zero polynomial h ∈ Zq[Y ] as output.

2. A1 outputs 0 if h(y∗) = 0. Otherwise, A1 outputs 1.

The bound on the time and space complexities of A1 follows now from Theo-
rem 1. The advantage of A1 can be bounded as follows:

If b = 0 in the security game of Definition 5, then the challenger C samples
x← Zn

q and gives the pseudorandom image y∗ = F (x) to A1. The polynomial h
outputted by B1(F ) lies in the kernel of ϕ, i.e., we have the equality h(F (X)) = 0
of polynomials in Zq[X]. In particular, we have h(F (x)) = 0 for each x ∈ Zn

q .
Therefore, A1 always outputs 0 if b = 0.

If b = 1 in the security game in Definition 5, then the challenger C samples
a uniformly random y ← Zm

q and gives y∗ = y to A1. Since h is non-zero and of
degree O(n1− e

d−1 ), the probability that h vanishes on y can be bounded by

Pr
y←Zn

q

[h(y) = 0] ≤ O(n1− e
d−1 )/q (83)

according to Lemma 1. Therefore, A1 will output 1 in this case with probability
at least 1−O(n1− e

d−1 )/q.
For the overall advantage of A1, we get

advF (A1) = Pr
x←Zn

q

[A1(F, Fn(x)) = 0] + Pr
y←Zm

q

[A1(F, y) = 1]− 1 (84)

≥1 + 1−O(n1− e
d−1 )/q − 1 = 1−O(n1− e

d−1 )/q. (85)
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Remark 4. Algorithm A1 proceeds in two steps: in its first step, it uses B1 to
compute an algebraic relation h of F , and in its second step, it uses h to decide
if the given image y∗ ∈ Zm

q is truly random.
However, since the PRG F is fixed and publicly known, the attack A1 can

be interpreted as an attack with preprocessing: In a first phase, the so-called
preprocessing or offline phase, A1 uses B1 to compute an algebraic relation h of
F of degree D (without seeing the value y∗ ∈ Zm

q ).
In a second phase, the so-called online phase, A1 receives y∗ ∈ Zm

q and only
needs to evaluate h on y∗.

If m ≥ n1+e, then the degree of h is bounded by D ≤ cn1− e
d−1 for some

constant c. The evaluation of h requires (D + 1) ·
(
m+D
D

)
arithmetic operations

over Zq which will be much less than the time B1 needs (since B1 needs to reduce
a matrix of shape

(
m+D
D

)
×
(
n+d·D
d·D

)
).

Therefore, from a practical point of view, it makes more sense to interpret
A1 as an attack with preprocessing, where we invest a big one-time cost to
find a relation h of F in the preprocessing phase, and then a smaller, but still
subexponential, cost of (D + 1) ·

(
m+D
D

)
to decide challenges of F .

5 Attacks on Binary PRGs

We want to focus on the case q = 2 in this section. Note, that Theorem 2 does
not give us a meaningful attack for small values of q like 2. In fact, if we were
to use naively algorithm B1 from Algorithm 1 on m polynomials over Z2, B1
may return a field equation Y 2

i − Yi for some i ∈ [m]. This field equation will
not help us in distinguishing pseudo-random images from random images, since
it will vanish on each y ∈ Zm

2 .
To avoid trivial relations over Z2, we will present here a modified version of

B1 – that we will call B2 – that will always find a non-trivial algebraic relation
of polynomials over Z2. For this sake, we set by abuse of notation

R2[X] := Z2[X1, . . . , Xn]/(X
2
1 −X1, . . . , X

2
n −Xn), (86)

R2[Y ] := Z2[Y1, . . . , Ym]/(Y 2
1 − Y1, . . . , Y

2
m − Ym). (87)

As explained in Remark 2, the rings R2[X] and R2[Y ] are filtrated. For ℓ ∈ N,
we have

R2[X]≤ℓ = Z2[X]≤ℓ/
(
Z2[X]≤ℓ ∩ (X2

1 −X1, . . . , X
2
n −Xn)

)
, (88)

R2[Y ]≤ℓ = Z2[Y ]≤ℓ/
(
Z2[Y ]≤ℓ ∩ (Y 2

1 − Y1, . . . , Y
2
m − Ym)

)
. (89)

Now let F be a PRG of degree d over Z2 and let f1, . . . , fm ∈ Z2[X] be
the polynomials that make up F . Without loss of generality, we can assume that
f1, . . . , fm are reduced modulo the field equations X2

1 −X1, . . . , X
2
n−Xn. There-

fore, by abuse of notation, we interpret f1, . . . , fm as elements of R2[X]. Now,
the dual map ϕ : Z2[Y ]→ Z2[X] descends well-defined to a ring homomorphism

ϕ2 : R2[Y ] −→ R2[X] (90)
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Yi 7−→ fi(X). (91)

For the kernel of ϕ2, we have

kerϕ2 = (kerϕ+ (Y 2
1 − Y1, . . . , Y

2
m − Ym))/(Y 2

1 − Y1, . . . , Y
2
m − Ym). (92)

I.e., kerϕ2 contains all algebraic relations of kerϕ modulo the trivial ones from
the field equations of Z2. In particular, a non-zero element of kerϕ2 is now
guaranteed to not vanish everywhere on Zm

2 .
To find a non-zero element of kerϕ2, the algorithm B2 will proceed similarly

as B1: For increasing ℓ = 1, . . . ,m, the algorithm B2 computes a basis of the
Z2-vector space kerϕ2 ∩ R2[Y ]≤ℓ. If kerϕ2 ∩ R2[Y ]≤ℓ is non-zero, B2 returns a
non-zero element of it and terminates. Otherwise, B2 increments ℓ and repeats
these computations. Formally, B2 is given by:

Algorithm 3. The algorithm B2 gets as input numbers n,m, d ∈ N, and a
description of a polynomial map F : Zn

2 → Zm
2 . It has to output a non-zero

element of kerϕ2.
For ℓ = 1, . . . ,m, B2 does the following:

1. B2 computes N := dimZ2

(
R2[X]≤dℓ

)
=
∑min(dℓ,n)

i=0

(
n
i

)
and M := dimZ2

(
R2[Y ]≤ℓ

)
=
∑ℓ

i=0

(
m
i

)
.

2. B2 computes a finite list (Y a1
1 · · ·Y am

m | a1, . . . , am ∈ {0, 1}, a1 + . . .+ am ≤ ℓ) =
(Y α1 , . . . , Y αM ) of all monomials in R2[Y ] of degree ≤ ℓ.

3. B2 applies ϕ2 to each Y αi and computes a second list (ϕ2(Y
α1), . . . , ϕ2(Y

αM ))
of polynomials in R2[X] of degree ≤ dℓ.

4. Let Xβ1 , . . . , XβN be the set of all monomials in R2[X] of degree ≤ dℓ where
each variable appears at most once. For each ϕ2(Y

αi) let wi = (wi,1, . . . , wi,N ) ∈
ZN
2 be the unique column-vector s.t.

ϕ2(Y
αi) =

N∑
j=1

wi,j ·Xβj . (93)

These vectors give us the matrix

Wℓ :=
(
w1| . . . |wM

)
∈ ZN×M

2 . (94)

5. B2 uses Gaussian elimination over Z2 to compute the kernel of Wℓ

Kℓ :=
{
r ∈ ZM

2 | Wℓ · r = 0
}
. (95)

6. If Kℓ is the trivial null-space, B2 increases ℓ by one. If ℓ ≤ m, B2 goes back
to step 1. Otherwise, if ℓ = m+ 1, B2 has exhausted the whole vector space
R2[Y ] = R2[Y ]≤m. In this case, B2 aborts, since now ϕ2 must be injective.

7. If Kℓ is not the null-space, B2 chooses an arbitrary non-zero vector r ∈ Kℓ,
computes the polynomial

h := r1 · Y α1 + . . .+ rM · Y αM ∈ R2[Y ] (96)

of total degree ≤ ℓ and outputs it.
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We have for B2 similar time and space bounds as for B1:

Lemma 8. Assume that B2 terminates after D iterations. Then, its space com-
plexity can be bounded by O(NM) and its time complexity can be bounded by
O(DN2M) for N =

∑min(dD,n)
i=0

(
n
i

)
and M =

∑D
i=0

(
m
i

)
.

Similarly, as in Section 3, one can show that B2 will return an algebraic relation
of minimal degree, if such a relation exists:

Lemma 9. Let n,m, d ∈ N. Let f1, . . . , fm ∈ R2[X] be polynomials of degree
≤ d. Assume that the corresponding morphism

ϕ2 : R2[Y ] −→ R2[X] (97)
Yi 7−→ fi (98)

is not injective and set D := min {deg h | h ∈ kerϕ2, h ̸= 0}. Then, B2 termi-
nates after D iterations and outputs a non-zero element of kerϕ2 of degree D.

Now, let e > 0 and d ∈ N be constants and assume m ≥ n1+e. The inequality
in Lemma 7 has a pendant that states that for almost all n we have

L∑
i=0

(
m

i

)
>

dL∑
i=0

(
n

i

)
(99)

where L =
⌈
c · n1− e

d−1
⌉
. We give a formal proof of this inequality in the full ver-

sion [45] of this text. However, its proof is very similar to the proof of Lemma 7.
It follows that B2’s complexity is subexponential for m ≥ n1+e polynomials
f1, . . . , fm:

Theorem 3. Let d ∈ N, e > 0 be constants and m ≥ n1+e. Let f1, . . . , fm ∈
R2[X] be polynomials of degree ≤ d.

Then, B2 in Algorithm 3 outputs a non-trivial element of kerϕ2 of degree
O(n1− e

d−1 ). Its space and time complexities lie in nO(n
1− e

d−1 ).

5.1 Binary PRGs of Constant Degree

B2 gives rise to the following attacker A2 on degree-d PRGs over Z2:

Algorithm 4. The algorithm A2 receives as input a description of a PRG F :
Zn
2 → Zm

2 of degree d, which includes the numbers n,m, d ∈ N, and an element
y∗ ∈ Zm

2 . The goal of A2 is to output 0, if y∗ lies in the image of F , and 1,
otherwise.
A2 proceeds in two simple steps:

1. A2 executes B2 from Algorithm 3 on the input n,m, d, F and receives a
non-zero polynomial h ∈ R2[Y ] as output.

2. A2 outputs 0 if h(y∗) = 0. Otherwise, A2 outputs 1.
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It is clear that A2’s space and time complexities are comparable to the space
and time complexities of B2. However, since the degree D of h will be much
higher than the cardinality of Z2, we cannot apply the Schwartz-Zippel Lemma
any more. Since h is not zero in R2[Y ], we can only guarantee that h vanishes
on at most 2m− 2m−D points of Zm

2 (we show this in the full version [45]). This
gives us the following theorem:

Theorem 4. Let d ∈ N, e > 0 be constants. Let F : Zn
2 → Zm

2 be a PRG of
degree d and stretch m ≥ n1+e.

Then, there is an attack algorithm A2 whose time and space complexities are
bounded from above by nO(n

1− e
d−1 ). Further, there exists a constant c > 0 s.t.

A2’s advantage in the security game in Definition 5 against F is lower bounded
by

advF (A2) ≥ 2−cn
1− e

d−1
. (100)

Theorem 4 is unsatisfying, since A2’s advantage can only be guaranteed to
be at least subexponential. One solution for this problem is to look at a multi-
challenge security game for the PRG F where the adversary receives Q challenges
y∗1 , . . . , y

∗
Q ∈ Zm

2 and has to guess if all y∗1 , . . . , y∗Q have been drawn uniformly
and independently at random from Zm

2 or if all y∗1 , . . . , y∗Q lie in the image of F .

If the number of challenges is Q ∈ 2Ω(n
1− e

d−1 ), then the advantage of A2 can
be amplified to a positive constant. We give here an informal theorem for this
observation and flesh out the details in the full version [45] of this text:

Theorem 5 (Multi-Challenge Attack (Informal)). Let d ∈ N, e > 0 be
constants and let F : Zn

2 → Zm
2 be a PRG of degree d and poly-stretch m ≥ n1+e.

Then, there is an attack algorithm whose time and space complexities are
bounded from above by nO(n

1− e
d−1 ) and whose advantage in breaking the pseudo-

randomness of F when given Q ∈ 2Ω(n
1− e

d−1 ) challenges is a constant greater
than zero.

5.2 Binary PRGs of Constant Locality

Now, let F : Zn
2 → Zm

2 be a poly-stretch PRG of constant locality d ∈ N,
i.e., each output bit of F is determined by at most d input bits. In case of a
PRG of constant locality we can perform a subexponential attack (for a single
challenge value) where we can guarantee a much better advantage than for A2
in Theorem 4.

Theorem 6. Let d ∈ N and e > 0 be constants. Let F : Zn
2 → Zm

2 be a PRG of
locality d with poly-stretch m ≥ n1+e.

There is an attack A3 on F and a constant c > 0 s.t. A3’s space and time

complexities are bounded by 2O(n
1− e′

d−1 ) for each constant e′ ∈ (0, e) and whose
advantage in the security game of Definition 5 is at least

advF (A3) ≥ 1− cn−
e′

d−1 . (101)
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The idea of A3 is to convert F to a PRG G : Zn
q → Zm′

q of degree d over Zq

with stretch m′ = ⌊m/(3 log(q))⌋ for a prime q ≥ n.
Let f1, . . . , fm ∈ R2[X] be the polynomials that make up F . Since each fi

is d-local, there are polynomials f ′1, . . . , f
′
m ∈ Zq[X] of degree ≤ d that coincide

with f1, . . . , fm on {0, 1}n. In fact, for i ∈ [m], let j1, . . . , jd ∈ [n] and ui :
{0, 1}d → {0, 1} s.t. for all x ∈ {0, 1}n

fi(x) = ui(xj1 , . . . , xjd). (102)

Then, the polynomial f ′i ∈ Zq[X] is given by

f ′i(X) :=
∑

z∈{0,1}d
ui(z) · (1− z1 −Xj1 + 2z1Xj1) · · · (1− zd −Xjd + 2zdXjd).

(103)

However, the image of the f ′1, . . . , f
′
m does not look random over Zq, since it is

contained in {0, 1}m (if the input is chosen from {0, 1}n). To compensate for
that, we use the Leftover Hash Lemma. Let F ′ = (f ′1, . . . , f

′
m) : Zn

q → Zm
q be the

collection of all f ′i . A3 samples now a random matrix A = (ai,j)i,j ← Zm′×m
q

and defines a PRG G : Zn
q → Zm′

q by

G(X) := A · F ′(X). (104)

I.e., if G consists of the polynomials g1, . . . , gm′ , each gi is given by

gi =

m∑
j=1

ai,j · f ′j . (105)

Now, G is a degree-d PRG over Zq. According to Lemma 2, the image of G

will look random (relative to Zm′

q ) if the image of F looks random (relative to
{0, 1}m). Finally,A3 can useA1 from Theorem 2 to break the pseudorandomness
of G (and break therefore the pseudorandomness of F ).

We will now formally define how A3 proceeds:

Algorithm 5. Let F : Zn
2 → Zm

2 be a PRG of locality d consisting of polyno-
mials f1, . . . , fm ∈ R2[X]. The algorithm A3 receives as input a description of
F , which includes the numbers n,m, d ∈ N, and an element y∗ ∈ Zm

2 . The goal
of A3 is to output 0, if y∗ lies in the image of F , and 1, otherwise.
A3 proceeds in the following steps:

1. A3 searches for a prime number q ∈ {n, n+1, . . . , 2n}. Because of Bertrand’s
postulate we know that such a prime must exist.

2. A3 sets m′ := ⌊m/ (3 log q)⌋
3. A3 computes polynomials f ′1, . . . , f

′
m ∈ Zq[X] that coincide with f1, . . . , fm

on {0, 1}n.
4. A3 draws a random matrix A← Zm′×m

q and sets

G(X) := A · F ′(X). (106)

Now, G : Zn
q → Zm′

q is a polynomial map of degree d.
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5. A3 interprets y∗ as a binary vector in {0, 1}m ⊆ Zm
q and computes

y′
∗
:= A · y∗ ∈ Zm

q . (107)

6. A3 runs algorithm A1 on (G, y′
∗
) and returns the output of A1.

Now, let e′, e′′ be constants s.t. 0 < e′ < e′′ < e and assume that A3 found the
prime number q. Since q ≤ 2n, we have m′ ≥ m

3 log q − 1 ≥ n1+e

3 log(n)+3 − 1. The
term on the right-hand side becomes greater than n1+e′′ for n big enough. Ergo,
we have m′ ≥ n1+e′′ for almost all n. It is easy to see that the time and space
complexities of A3 are dominated by the complexities of A1, which are upper-

bounded by nO(n
1− e′′

d−1 ). For n large enough, A3 will therefore have complexities

upper-bounded by 2O(n
1− e′

d−1 )

To bound the advantage of A3, we first distinguish two cases:

1. If y∗ = F (x) for some x ∈ Zn
2 , then y′

∗ will be of the form

y′
∗
= Ay∗ = AF ′(x) = G(x). (108)

In those cases, A1 will always output zero.
2. If y∗ is a random element of {0, 1}m, then Lemma 2 states that the statistical

distance of the distributions

(A, y′
∗
) and (A, r) (109)

for r ← Zm′

q is less than 1
2

√
2m′ log(q)−m ≤ 1

2q
−m′

. Therefore, the probability
that A1 outputs 1 in this case can be lower bounded by

1− O(n1− e′
d−1 )

q
− 1

2
q−m

′
≥ 1− O(n1− e′

d−1 )

n
− 1

2
n−m

′
(110)

≥ 1−O(n−
e′

d−1 ). (111)

Now, we can bound the advantage of A3 in the security-game of Definition 5 as
follows:

advF (A3) ≥ Pr
y←{0,1}m

[A3(F, y) = 1] + Pr
x←{0,1}n

[A3(F, F (x)) = 0]− 1 (112)

≥1−O(n−
e′

d−1 ) + 1− 1 ≥ 1−O(n−
e′

d−1 ). (113)

6 Avoiding Subexponential Attacks

Finally, we want to discuss three counter-measures in the design of PRGs that
help to avoid the attacks presented in this paper:
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Rational Functions. In case of a large modulus q ≥ n, the algorithm A1 in
Theorem 2 gives a subexponential attack on constant-degree PRGs with non-
negligible advantage.

To avoid A1, one can consider PRGs F : Zn
q → Zm

q that incorporate ra-
tional functions of constant degree i.e. where each output value is computed by
fi(X) := g1(X)

h1(X)+. . .+ gℓ(X)
hℓ(X) for polynomials g1, . . . , gℓ, h1, . . . , hℓ ∈ Zq[X] of con-

stant degree d. The functions f1, . . . , fm are still algebraically dependent, since
m > n. However, we cannot bound the degree of the relation outputted by B1,
since the set

{
f
g | f, g ∈ Zq[X]≤d, g ̸= 0

}
is not contained in a finite-dimensional

vector space any more.
We conjecture that if ℓ grows polynomially with n, then this kind of PRGs

could even be resistant against Groebner basis-based attacks like F4/F5 and XL,
since these algorithms need to multiply the equality fi(X) = yi with h1 · · ·hℓ to
get a polynomial equality of non-constant degree d · ℓ.

As a concrete challenge, we propose a PRG – parametrized by n – where q
is the smallest prime in [2n, 2n+1], ℓ equals n, each gi is one and each hi is a
random sum of two variables of X1, . . . , Xn. For m ∈ Ω(n2), there is a trivial
attack on this PRG. However, for smaller m, let’s say m = n1.9, we don’t know
a subexponential attack on this PRG with provably non-trivial advantage.

Non-Constant Locality. In the case of binary poly-stretch PRGs of constant
degree, we gave two attacks A2 and A3. For A2, we can only guarantee a subex-
ponentially small advantage. However, this is only a pessimistic lower-bound and
does not exclude that A2 may perform much better in praxis.
A3 is guaranteed to have a high advantage, however it can only be applied

on binary PRGs of constant locality. This means, that all PRG candidates in
NC0 with poly-stretch are susceptible to subexponential attacks.

To avoid subexponential attacks for binary PRGs, the only option seems to
be to design PRGs of non-constant locality.

Small Non-Constant Modulus. The attack A1 needs that the modulus, over
which the PRG is evaluated, is large enough, while the attack A3 needs that the
modulus is constant (since otherwise the PRG constructed by A3 will not have
constant degree).

One can try to avoid both attacks by setting q to a number between both
extremes (for example q = Θ(

√
n) for e < 0.5). For such moduli q, neither A1 nor

A3 can be applied and the attack A2 must be used. If B2 uses the appropriate
field equations Y q

i − Yi, it will find a non-trivial algebraic relation of sublinear
degree, however it is hard to show in such cases that this relation will not vanish
on a non-negligible portion of Zm

q , since the Schwartz-Zippel Lemma cannot be
applied.
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