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Abstract. Laconic cryptography is an emerging paradigm that enables
cryptographic primitives with sublinear communication complexity in
just two messages. In particular, a two-message protocol between Alice
and Bob is called laconic if its communication and computation com-
plexity are essentially independent of the size of Alice’s input. This can
be thought of as a dual notion of fully-homomorphic encryption, as it en-
ables “Bob-optimized” protocols. This paradigm has led to tremendous
progress in recent years. However, all existing constructions of laconic
primitives are considered only of theoretical interest: They all rely on
non-black-box cryptographic techniques, which are highly impractical.
This work shows that non-black-box techniques are not necessary for
basic laconic cryptography primitives. We propose a completely alge-
braic construction of laconic encryption, a notion that we introduce in
this work, which serves as the cornerstone of our framework. We prove
that the scheme is secure under the standard Learning With Errors as-
sumption (with polynomial modulus-to-noise ratio). We provide proof-of-
concept implementations for the first time for laconic primitives, demon-
strating the construction is indeed practical: For a database size of 259,
encryption and decryption are in the order of single digit milliseconds.
Laconic encryption can be used as a black box to construct other laconic
primitives. Specifically, we show how to construct:

— Laconic oblivious transfer

— Registration-based encryption scheme

— Laconic private-set intersection protocol
All of the above have essentially optimal parameters and similar practical
efficiency. Furthermore, our laconic encryption can be preprocessed such
that the online encryption step is entirely combinatorial and therefore
much more efficient. Using similar techniques, we also obtain identity-
based encryption with an unbounded identity space and tight security
proof (in the standard model).



1 Introduction

Laconic cryptography [17,40,22,20] is an emerging paradigm to securely compute
on large amounts of data in just two messages, while incurring very small com-
munication. Specifically, in the laconic setting the receiver Alice has an input of
very large size, whereas we typically think of the sender Bob’s input as smaller
in size. In the first message, Alice publishes a succinct hash h of her input D,
which may be thought of as a large database D € {0,1}". Such a compressing
hash function cannot be unkeyed, therefore laconic protocols also rely on public
parameters, which are typically also required to be succinct®. Given the hash h,
Bob can encrypt his input x with respect to h, obtaining a succinct ciphertext
ctxt. Importantly, the workload of Bob should also be independent of n. Such
a ciphertext ctxt enables Alice to compute a joint function of her input D and
Bob’s input x, while Bob has the guarantee that Alice learns nothing but the
legitimate function output. The specific choice of the function f computed by
such a protocol leads to different laconic primitives:

— In laconic OT [17], Bob’s input consists of an index ¢ and two messages
mg and my. The function f is given by f(D, (i,m0,m1)) = (i,mpp), i-e.
Alice learns the index i, and if the i-th bit of the database D is 0 she learns
mg, otherwise my. The setting of laconic OT typically imposes an additional
efficiency requirement concerning Alice. Concretely, we require Alice’s second
phase to have a runtime essentially independent of n.

— In laconic function evaluation (LFE) [40], Alice’s input D is a (large) boolean
circuit C, and the function computed by an LFE protocol is f(C,x) = C(z).
The construction provided in [40] satisfies a somewhat relaxed succinctness
guarantee: While the size of the communication does not scale with the size
of the circuit C, it scales polynomially with the depth of C. Furthermore,
the runtime of the second phase of Alice scales linearly with the size of C.

Implications. The notion of laconic OT in particular has had broader impli-
cations: The core-ideas underlying laconic OT led to a series of constructions of
identity-based encryption (IBE) from weaker assumptions [19,18,21,15] and gave
rise to the notion of registration-based encryption (RBE) [24,25,33]. These con-
structions make essential use of the above-mentioned more stringent efficiency-
property of the laconic OT constructions they are based on. Consequently, these
primitives are not known to be generically constructible from LFE.

Furthermore, the techniques developed in the context of laconic cryptography
were key to making progress on a broad range of problems: trapdoor functions
from the computational Diffie-Hellman assumption [23], private-information re-
trieval (PIR) from the decisional Diffie-Hellman assumption [22], two-round
multi-party computation protocols from minimal assumptions [26,28,8], adap-
tively secure garbled circuits [27], laconic conditional disclosure of secrets [20],
and laconic private set intersection [3,7].

5That is, independent or at least sublinear in n.



Reverse Delegation. Laconic cryptography can be seen as enabling reverse
delegation without requiring additional rounds of communication. In a standard
delegation scheme, a user outsources its computation to an untrusted server
with the goal of learning the output while keeping its input private. The canon-
ical cryptographic tool that enables delegation is fully-homomorphic encryption
(FHE) [29], since it allows the server to perform the computation without know-
ing the user’s input. Reverse delegation allows a user (Bob, in our previous
example) to delegate the computation completely to the server (Alice) while
also letting her learn the output of the computation and nothing beyond that.
For instance, [17] provided a protocol to let Bob reverse-delegate RAM compu-
tations to Alice, such that Bob’s overhead and the size of the communication
scales only with runtime of the RAM program, but not with the size of Alice’s
(large) input. Likewise, the laconic function evaluation scheme of [40] allows to
reverse-delegate circuit computations to Alice, while incurring a communication
overhead that only scales with the depth of the circuit.

A Non-Blackbox “Barrier” for Practicality. So far, the aforementioned
progress in designing new cryptographic primitives has been almost exclusively
of theoretical interest. In essence, the lack of practicality of these new solutions
can be explained by their non-blackbozx use of underlying cryptographic building
blocks. For example, essentially all known constructions of laconic OT involve a
re-encryption step, also called deferred encryption [15], which gives the receiver
Alice the ability to produce ciphertexts under keys that were not known to the
sender Bob at the time of encryption. In the above-mentioned constructions,
this re-encryption step is implemented using garbled circuits [42] for circuits
which perform public-key cryptographic operations. The non-black box use of
cryptographic primitives is such a grave source of inefficiency that, to the best
of our knowledge, not even the basic laconic OT has ever been implemented
as a proof of concept. On a slightly different note, we remark that while the
LFE scheme of [40] does not make use of garbled circuits, it relies on a different
non-blackbox mechanism based on FHE to bootstrap a weaker notion called
attribute-based LFE into fully-fledged LFE.

In summary, the present state of affairs sees laconic cryptography as a pow-
erful theoretical tool for enabling new cryptographic primitives and realizing
powerful notions from weaker assumptions. However, the resulting schemes are
practically inefficient, thus calling into question the relevance of this framework
beyond theoretical feasibility results. Motivated by this gap, we ask:

Can we realize truly efficient laconic cryptography?

Towards a positive resolution to this question, it seems insufficient to optimize
existing techniques. Instead, a conceptual reworking of basic laconic primitives
will be required.

1.1 Owur Results

This work shows that garbled circuits (and other non-black box cryptographic
techniques) are not needed to construct laconic cryptography. We establish a



new paradigm for constructing concretely efficient laconic cryptographic schemes
based on the hardness of the standard learning with errors (LWE) problem with
a polynomial modulus-to-noise ratio. In contrast to prior works, we show that our
schemes are practical with a proof of concept implementation. In the following,
we discuss our contributions in more detail.

Laconic Encryption. We propose the notion of laconic encryption as the cen-
tral abstraction of our framework. Laconic encryption allows Alice to construct
a binary tree whose leaves are public keys (pky, ..., pk, ) and sends the root of
the tree to Bob. Given only the root of the tree and an index ind, Bob can
then encrypt a message with respect to pk;,q, which can only be decrypted with
the corresponding secret key sk;,q. Such a scheme is called laconic since Alice’s
message is independent of n, as she only sends the root of the tree.

We then show how to construct laconic encryption efficiently and with (asymp-
totically) optimal parameters without relying on garbled circuits or other non-
black box cryptographic techniques. At a technical level, our construction relies
on the algebraic properties of the SIS-based hash tree. It exploits the gadget ma-
trix to efficiently re-encrypt the message layer-by-layer. In order to demonstrate
the security of the scheme, we introduce a new variant of the (ring/module)
LWE problem, in which the adversary is also given a leakage on the error. Then
we prove that this problem is as hard as the standard (ring/module) LWE prob-
lem, with an essentially tight reduction. Our proof relies on spectral analysis of
positive definite matrices, a subject of independent interest.

Applications. We show how laconic encryption enables a wide range of laconic
cryptographic primitives with minimal overhead. The following constructions use
laconic encryption in a black-box sense, and the additional methods required are
combinatorial. That is, all of the resulting schemes are concretely efficient and
have near-optimal parameters. Specifically, we show how to construct:

— Laconic OT: As an immediate application of laconic encryption, we con-
struct a laconic OT protocol with essentially optimal parameters.

— Registration-Based Encryption: Registration-based encryption (RBE)
is a notion recently introduced in [24] to solve the key-escrow problem for
identity-based encryption (IBE) while preserving the “encrypt with respect
to identity” functionality. Laconic encryption enables the first concretely
efficient RBE construction that the size of the public parameters scales log-
arithmically with the number of users.

— Laconic Private-Set Intersection: Private-set intersection (PSI) allows
Alice and Bob to check whether they have a common item in their database
without revealing anything about other items. Laconic encryption allows
us to construct an efficient laconic PSI protocol where the communication
complexity is independent of the size of Alice’s database.

Optimizations and Extensions. We explore a number of optimizations and
extensions for our laconic encryption construction. First, we show that the en-
cryption algorithm can be pre-processed: In an input-independent offline phase,



the encryptor can prepare auxiliary information at essentially the same cost as
the encryption algorithm. In an online phase, where the message msg and the
index ind are known, the encryptor can use the auxiliary information prepared
earlier to produce a correctly-formed ciphertext. Importantly, the online phase is
entirely combinatorial, and all public-key operations happen in the offline phase.

Second, we explore the possibility of plugging-in different encryption schemes
in our construction. Natively, our laconic encryption supports only dual-Regev
ciphertexts [30], whereas for some applications it may be desirable to use support
other encryption schemes. We show how our scheme can be adapted to support
a large class of algorithms, which includes LPN-based encryption [5] and re-
cently NIST-standardized lattice-based schemes [10]. To solve this challenge, we
develop a new special-purpose randomized encoding scheme, which may be of
independent interest.

Finally, we show that our construction of laconic encryption can be turned
into that of identity-based encryption (IBE) [9] with similar efficiency properties.
Our IBE is the first scheme that simultaneously achieves: (i) Constant-size public
parameters, (ii) an unbounded identity space, (iii) a tight proof of (adaptive)
security against a standard assumption (specifically, LWE).

Implementation and Benchmark. To demonstrate the practicality of our
laconic encryption scheme, we implemented a proof of concept in Go (see the
full version for more details). We ran the benchmarks for the scheme with a
database size/index space of 259 and achieved encryption and decryption times
below 10 milliseconds on a personal computer. We believe these times can be
improved using further optimizations, which are beyond the scope of this work.

1.2 Related Work

We mention prior works that study practical variants of laconic cryptographic
primitives. In [7] the authors show a variant of laconic private-set intersection
that is practically efficient and leads to substantial improvements in real-world
protocols. However, the variant that is implemented has a long common reference
string, linear in the size of Alice’s database D; thus it is not fully laconic.

In [35] the authors propose the notion of registered attribute-based encryp-
tion, as an extension of the notion of RBE, and they show a constructions based
on bilinear pairings. Compared to our work, their scheme has a long common
reference string (in fact, quadratic in n), the runtime of the key generation and
registration algorithms is linear in n, and they have an a-priori bound on the
number of users. On the flip-side, they achieve the attribute-based functionality,
that we do not consider in this work.

Another recent work [31] proposes the first practically efficient registration-
based encryption scheme, and shows the first proof of concept implementation.
Contrary to this work, their scheme is asymptotically only sublinear in the size
of D (specifically, v/n as opposed to polylog(n)), and requires an a-priori bound
on n. Furthermore, they rely on the hardness of problems over bilinear pairings
and thus their scheme is immediately insecure in the quantum settings.



2 Technical Overview

We give a brief overview of the new ideas and the technical innovations intro-
duced in this work. We start by describing the new notion of laconic encryp-
tion, how to construct it efficiently from the standard LWE assumptions, and
the challenges that arise during the security proofs. Then we outline the new
cryptographic schemes that are enabled by this new notion and possible opti-
mizations and extensions. In favor of a more intuitive description, the following
outline considers the special case of Z-lattices; however, in the technical sections,
we prove all of our statements for the more general R-module settings.

2.1 Laconic Encryption

Before delving into the description of our scheme, we introduce the syntax of
laconic encryption, and we recall how prior work (implicitly) addresses the chal-
lenges needed to build this notion.

Syntax and Properties. A laconic encryption scheme allows Alice to (itera-
tively) construct a digest (e.g., via a Merkle hash tree) of public keys (pkq, ...,
pk,,) where (pk;,sk,) < KGen(pp) and pp can be thought of as a uniformly ran-
dom string, which is common to all participants. We denote by st the message
that Alice sends to Bob, which consists of the digest (e.g., the root of the Merkle
tree). Importantly, the size of pp and st is only polynomial in the security param-
eter, and in particular, it does not depend on n. On input a message msg and an
index ind € [n], Bob can then compute a ciphertext ctxt < Enc(pp, st, ind, msg).
Correctness requires that anyone possessing the corresponding secret key can
decrypt ctxt, more specifically:

msg = Dec(sk;,q, Witind, Ctxt)

where witjg is some (public) auxiliary information, whose size is logarithmic in
n. The reader can think of this information as being the Merkle tree opening,
i.e., the root-to-leaf path, of the key pk;,4. For security, we require that if the
adversary does not know the secret key associated with index ind (or if no key
is added to the tree at that particular index), then:

Enc(pp, st, ind, msg,) ~ Enc(pp, st, ind, msg; ).

In fact, we will require (and prove) a slight strengthening of this property, i.e.,
that ciphertexts should look pseudorandom to anyone who cannot decrypt them.

Prior Works. To gain some intuition on why constructing laconic encryption is
a challenging problem, it is useful to recall how prior works [17] (implicitly) build
this cryptographic primitive. Loosely speaking, their main leverage is a construc-
tion of a structured two-to-one hash function Hash (which can be constructed
from a variety of computational assumptions) that supports an encryption func-
tionality. More specifically, given a digest d < Hash(D), Bob can compute a



ciphertext ctxt « Enc(d,ind, (msg,, msg;)) that allows Alice (who knows the
database D) to recover msgp, , whereas the message msgp, . remains compu-
tationally hidden. While this looks like a promising start, it should be noted that
the hash function is only two-to-one, and therefore the size of the digest d is only
half that of the original database D. If one were to naively recurse this scheme,
the encryption algorithm would quickly start running in exponential time.

To circumvent the runtime issue, the strategy of [17] is to rely on garbled
circuits [42]. More specifically, to boost the compression of the hash function,
they define a binary tree of hash values and use garbled circuits to (asymptot-
ically efficiently) implement a re-encryption gadget from one layer to another.
Given a digest d; < Hash(D;41), where D;11 = (dit1,0,di41,1) are the digests
at a lower layer, the encryption algorithm uses the above procedure to encrypt
the labels of a garbled circuit, that internally runs the encryption Enc for the
layer below. Crucially, the size of the labels is independent of the size of the
garbled circuit (except for its input) and therefore this encryption strategy can
be recursed without incurring an exponential blow-up. Although this framework
achieves asymptotically optimal parameters, it is prohibitively expensive to use
garbled circuits for public-key operations. In contrast, our strategy (described
below in detail) will bypass this barrier by leveraging the algebraic properties of
a particular hash function.

Our Approach. As hinted above, a strategy of constructing laconic encryption
is to design a mechanism allowing to “encrypt with respect to a Merkle tree open-
ing”, and successfully executing this strategy requires an “encryption-friendly”
hash function. Our starting point is the following variant of Ajtai’s [2,32] collision-
resistant hash function based on the short integer solution (SIS) assumption:

f(Xo,Xl) = AQ(—G_l(Xo)) + Al(—G_l(Xl)) mod q

where Ag, Ay € Zy*™ are uniformly random matrices with m ~ n log ¢, o, X1 €
Zq are vectors, and G~! denote the binary-decomposition operator (so that
for any x € Z? we have G - G™'(x) = x). A very similar hash function was
used in [36] to build lattice-based Merkle-tree accumulators, ring signatures,
and group signatures. At first glance, it may seem that the hash function f is
not encryption-friendly since the binary-decomposition operation G~ is highly
non-linear. What enables us to encrypt with respect to a Merkle tree opening is
the crucial observation that a hash chain formed by f induces a linear relation.
More concretely, consider the Merkle tree built using the hash function f
where the node indexed by str € {0,1}* is labeled by yg,. Suppose that us, =
—~G7L(y,) for each str € {0,1}*. Closing into the top of the tree, we observe
that (up,uy) is a short (in fact binary) vector satisfying the linear relation:

Ao A\ () [ ¥y,
(&%) () = (5,) moaa



Where y, is the node denoting the root of the tree. In other words, the vector
(ug, uy) is a valid solution to the (inhomogeneous) SIS instance

((&%)(5))

Likewise, (ug,uy) is also a valid solution to the (inhomogeneous) SIS instance

((58)-(3)
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Dual-Regev Encryption. It turns out that this structure synergizes remark-
ably well with the dual-Regev encryption scheme [30]. Recall that in the dual-
Regev encryption scheme [30], whose security is based on the standard LWE as-
sumption, a public key is a SIS instance and the corresponding secret key is the
SIS solution. Specifically, in the following assume that the matrix A = (Ag Aq)
is part of the public parameters. Further assume that y, and y; are dual-Regev
public keys with respect to A. That is, for b € {0,1} we generate y, by choosing
a uniformly random w;, € {0,1}?™ and set y, = A - w;, mod q. Here, wy, is the
secret key corresponding to y,. By the leftover-hash-lemma [34,41], the y, are
statistically close to uniform. To encrypt a message msg under y;, we choose an
LWE secret r; and compute a ciphertext (c1,d;) via

c1 ~r]-Amod g,

dy ~ r] -y, + Encode(msg) mod q.
Here, we use the ”a” notation to omit the LWE error. The function Encode(-)
protects the message msg against small errors, a popular choice is to encode a
message bit msg in the most-significant bit, i.e. Encode(-) = 4 - msg. To decrypt
a ciphertext (c1,d;) using a secret key w;, we compute

dy —c] -wy ~ 1] -y, + Encode(msg) — r] - A - w;, = Encode(msg) mod ¢,
——

=Y

from which the message msg can be efficiently recovered.

Encrypting to Hash Values. Now assume that we are not given y, and y,
but only their hash value

y=A- (_gigﬁb mod g.

Our goal is to produce a ciphertext “for the key y,” given only the hash value y.
Towards this goal, let us examine what happens when we generate a dual-Regev
encryption scheme with respect to the “public key”

= ((@%9)6)



Choosing LWE secrets rg and r; we compute a ciphertext ctxt = (¢, d) by
c' =~ (rg,r]) - <A§] %1> =r;-A+r] (G 0)modgq
d~ (rf,r]) - G;) + Encode(msg) = r{ - y + Encode(msg) mod gq.

If we “decrypt” the ciphertext using (ug = —G~!(y,),u1 = —G~!(y,)) as the
secret key, we obtain

d—c’- (30) ~r( -y + Encode(msg) — rf - (Ag Ay) - (30) -7 - (G 0)- (uo)
1 1

u;

=y =—Yo

=r] - ¥, + Encode(msg) mod gq.

Consequently, this “decryption operation” has produced (part of) a ciphertext
encrypted under the public key y,! Analogously, if we use the public key

= ((58)6)

the above decryption operation would result in a ciphertext component rl -y, +
Encode(msg) mod ¢. Thus, decryption of such ciphertext with (ug = —G~(y,),
u; = —G71(y,)) is effectively a re-encryption to either public key y, or y;.

To make such a ciphertext decryptable under one of the corresponding secret
keys, we add an additional ciphertext component ¢f = rT. A 4+e; mod ¢ to ctxt.
Then, a ciphertext ctxt for y, comprises of

c"=ri-A+r] - (1-b)-Gb-G)modgq

cl ~r]-Amodgq

d ~ r( -y + Encode(msg) mod q.
Finally, observe that it doesn’t matter if the y, are actually dual-Regev public
keys or itself a hash value, the ciphertext structures are identical! Hence, for
a larger tree we can apply this mechanism recursively, which results in one

additional ciphertext component ¢} ~r7- A +r]-((1—-0;) -G b;- G) mod q per
level of the tree, where the b; define the path through the tree.

Security of the Construction. We will now focus on establishing the security
of this construction with the goal of basing security on the LWE assumption. For
this purpose, we need to consider the error terms in our construction explicitly.
Let A = (Ap A;). A ciphertext ctxt = (c,c¢q,d) for b = 0 is computed by
c'=r)-A+r] (GO0)+emodq
ci=r]-A+e modg

d =1} -y + €* + Encode(msg) mod g,



where e, e; and e* are short error vectors.

On the face of it, this looks almost like a classical LWE encryption. Hence,
one might try to reduce security directly to the LWE problem. That is, given
LWE samples (A,vT =r]- A +e" mod ¢) and (y,v =rf -y + €* mod ¢q) we can
simulate a ciphertext by computing

c'=v'+r] (G 0)mod q
ci=r;-A+e; modg

d = v + Encode(msg) mod gq.

By replacing vT and v by uniformly random values, as per the LWE assumption,
the term d now hides msg and security follows.

However, upon closer inspection there is a problem with this approach: The
matrix A and the vector y!T are not independent from the view of an adversary.
Specifically, the adversary knows an explicit relation between A and y*, namely

' = Ag- (<G (yo)) + Ao (<G~ (y,) = A -z mod g,

-1
as yo and y; are known to the adversary. Here z := (—glgfg) is a binary

(and thus short) vector (denoted (ug,u;) above). For this reason, vi =rf - A +
e’ mod ¢ and v = r} - y + €* mod ¢ are easily distinguishable from uniformly
random values: It holds that v — v! -z = e* — eT - z mod ¢ is short, whereas for
uniformly random vT and v this expression is, with high probability, not short.

Drowning Out Correlations. However, there is a fairly routine solution to
this issue using a technique called drowning. The idea is, given LWE samples
(A, vT =1l - A+ emod q), to simulate v from v and z by computing it via

vaviz=(rp-A+e’) - z=r-A-z+e -z=r)-y+e -zmodq.

Yet, now the error terms in v’ and v are obliviously correlated. To get rid of
this correlation, we can opt to drown it out: If e* is chosen from a suitable short
distribution which produces super-polynomially larger values than e' - z, then it
holds that eT -z + e* =, e*, i.e. €T -z + ¢* and e* are statistically close. Hence,
we can simulate v by computing v = vT - z + ¢* mod q.

Hence, our security proof now proceeds as follows. Given LWE samples
(A, vl =r] - A + e’ mod q) we can simulate a ciphertext ctxt = (c,cy,d) by
sampling e* and setting

c"=v'+r] (G 0)modgq
ci=r]-A+e modg

d=v"-z+e* + Encode(msg) mod gq.
If (A,v) are well-formed LWE samples, then by the above discussion,

d=v"-z+e* + Encode(msg)

10



=ry-y+e’ z+e* + Encode(msg)
~, 1)y + e + Encode(msg) mod g,
i.e. such a ctxt = (c,c1,d) is statistically close to a real ciphertext. Under the
LWE assumption, we can now replace v with a uniformly random v’ and get
' =v"+r7- (G 0)mod ¢
d=v""-z+ e* + Encode(msg) mod g.

Now, since v’ is uniformly random, we can equivalently choose it by computing
v/T = v"T —rT(G 0), where v” is also chosen uniformly random. That is, we
compute ctxt = (¢, c1,d) by

CT:V//T
T _ T
ci=r;-A+e modg
d=(v

T, r; - (G 0) -z + e* + Encode(msg)

nT

—1] - (G 0)) -z + e* + Encode(msg)

=v'"" .z 4+ r] - yo + ¢ + Encode(msg) mod g,

as (G 0) -z = —y, mod ¢q. Going a step further, we can compute d by d =
v'". z + di mod g, where d; = r] -y, + e* + Encode(msg) mod q is the payload
part of an encryption of msg under the public key y,. In other words, we are
now in a situation where we can simulate a ciphertext ctxt = (c,c1,d) given
and encryption (ci,d;) of msg under the public key y,! Hence, we can now
immediately appeal to the fact that, from the view of the adversary, y, looks
indeed uniformly random to argue security: Via the LWE assumption, (A,r] -
A + e; mod q) and (y,,r] -y, + €f mod ¢) are indistinguishable from uniform.
Thus, from the adversary’s view d; looks uniformly random, and therefore d =
v"" .z 4+ d; mod ¢ also looks uniformly random. In fact, from the adversary’s
view all ciphertext components look uniformly random and independent.

LWE with Error-Leakage. Drowning is, however, a rather heavy-handed ap-
proach that, for all intents and purposes, ruins the LWE parameters. Specifically,
to use this approach we need to assume the security of LWE with superpolyno-
mial modulus-to-noise ratio. This means, in turn, that the underlying worst-to-
average case reduction of LWE [41] reduces LWE to worst-case lattice problems
with super-polynomial approximation factors. Moreover, it forces us to use a
superpolynomially large modulus q.

We will now look a bit closer at the above drowning step. Specifically, given
z and vI =1l - A + e mod ¢ we computed

v=vl-z+te*=rp-A-z+e zt+e=r)-y,+e -z+e modg.

Our main observation is the following: If we were somehow given an advice 1 =
—eT-z+e* about e and e*, we could use 1 to switch the correlated error term e’ -z

11



in vT-z to a fresh and uncorrelated e*. Namely by computing v = vT-z+1mod gq.
Then it holds that

v=v.z+l=r)-y,+e -z—e -z+e" =r) y,+e* modgq.

Thus, such an advice 1 is sufficient to make the security argument in the last
paragraph work. Our hope now is that the advice | = —e” -z + e* does not fully
reveal e and e*, i.e. that e and e* mutually conceal one another, even if the
parameters of these error terms are way below the drowning regime.

This motivates the definition of Learning with Errors with Error-Leakage,
elLWE for short. As the name suggests, in this variant of the LWE problem
the adversary gets a leak or advice about the LWE error term. To make this
definition useful for our purposes, we will allow the leak to depend on the LWE
matrix A. Consequently, we will define elLWE similarly to the regular LWE
assumption, but via an interactive experiment. The security experiment of elLWE
is given as follows, where we assume that a modulus ¢, dimensions n, m and error
distributions y, x* are parametrized by the security parameter.

The elLWE Security Experiment:

— In the first step, the experiment chooses a uniformly random matrix A <s$
Zy*™ and provides A to the adversary.

— Given the matrix A, the adversary now chooses a short vector z € Z™ and
provides z to the experiment.

— The experiment samples e < x1 and e* < y* and sets 1 = e - z + e*.

— Now the experiment flips a random bit b +s {0,1}. If b = 0 it chooses a
uniformly random r «s Zj and sets vi=rT-A+e"modq If b =1 it
chooses v < Z;" uniformly at random.

— The experiment now provides (A, v,1) to the adversary. The adversary then
produces a guess b’ € {0,1} for the bit b

— If ¥ = b the adversary wins, and loses otherwise.

As usual, we say that elLWE is secure if no PPT adversary has non-negligible
advantage in this experiment. Now, via the above discussion we can routinely
reduce the security of our construction to elLWE.

We remark that the elLWE problem generalizes the extended LWE prob-
lem [38,6]. Specifically, in the extended LWE problem the vector z is chosen at
random from a Gaussian distribution instead of adversarially (as in the case of
the elLWE problem).

From LWE to elLWE. As an additional technical contribution of this work,
we provide a hardness result for el LWE. Specifically, we show that the security of
elLWE can be based on standard LWE with polynomial modulus-to-noise ratio. In
this paragraph, we will sketch the main ideas underlying this result. In a nutshell,
the main idea of our approach is to choose the leakage term 1 independent of the
LWE error, and then adjust the LWE error in such a way that it conforms with
the leakage. More precisely in the case of Gaussian e and e*, we will show the
following. There is a (sufficiently wide) Gaussian distribution &, such that for
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every (short) vector z there is an efficiently sampleable pair of correlated random
variables (f,, f2) (independent of &), such that

(e, e’z + e*) ~ (éT + fg, fz)-

In other words, f, simulates the leakage e - z + e*, whereas f, can be used to
additively adjust an independent Gaussian € to have the same distribution as
e given the leakage e - z + e¢*. Equipped with such an efficiently sampleable
pair (f4, f2), reducing elLWE to LWE is almost straightforward: Given an LWE
instance (A, vT) we run the elLWE adversary on A, who returns z. The reduction
now samples (f,, f,), provides (A, v + fL, f,) to the adversary, and outputs
whatever the adversary outputs.
On one side, if vT is an LWE sample, i.e. vT = rT- A 4+ & mod ¢, then

(A, vI+fL f,) = (A, r"- A+ é+fl mod q, f,)
~; (A,rT- A +e"mod g, e’ z+e"),

is statistically close to a correctly formed elLWE sample for b = 0.

On the other hand, if v is chosen uniformly random, then v’ := v+f, mod ¢ is
also uniformly random. Consequently (A, v +f, mod q, f,) ~; (A, V', e’z + e*),
i.e. it is statistically close to an elLWE sample for b = 1. The claim follows.
Notice that this reduction is tight, i.e. it does not (substantially) degrade the
adversary’s runtime or advantage. Further notice that this reduction is agnostic
of the structure of the matrix A and the secret r. Consequently, it is applicable
to any structured LWE variant [14].

Constructing the Leakage Simulator. We will now briefly discuss how such
a pair (f,, fz) can be constructed. For simplicity, assume that e and z are scalars,
i.e. e = e and z = z. To further simplify matters, assume first that e and
e* are continuous Gaussians instead of discrete Gaussians. In this perspective,
(e,ez + €*) is a pair of correlated Gaussians, i.e. a 2-dimensional Gaussian with
(possibly) non-diagonal covariance matrix. If e ~ D, and e* ~ Dy, then a
routine calculation shows that the covariance matrix C of (e, ez + €*) is

c_ o? 0%z
" \o2z 0222+ 0%2) "
Our idea now is, basically speaking, to find an alternative way to represent
this distribution. Specifically, we want to alternatively compute (e, ez + €*) via
(é + wel,et), where é ~ Ds and ef ~ D, are independent Gaussians and w

is fixed (depending on o,c* and z). Again, a routine calculation finds that the
covariance matrix C’ of (é + we', el) is

, 52+ ot w? 0w
C - _i_2 TQ .
g w g

"We denote the continuous Gaussian distribution with parameter o by D, i.e. the

m2
probability density function of D, is proportional to e " o2
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Now, two centered multivariate Gaussians are identically distributed, if and only
if they have the same covariance matrix. Consequently, setting C = C’ and
solving for 42,0t and w yields

2 2
ol =522 + o2,

o2z o2z
w= =

ot? 0222 4 ¥’

4.2
. 2 oz 1
02:0'2_0'—‘-w2:0'2_ﬁ: 1—7*2 0'2. (1)
o°zc+o 1+a”222

That is, for these parameters of 4,0 and w it holds that (e,ez + e*) = (é +
we', el), i.e. the two pairs are identically distributed. Thus, we can define (f., f.)
by f, = wel and f, = ef.

Now, recall that in our reduction é corresponds to the error-term in the
underlying LWE-instance. Thus, we should choose ¢* so as to ensure that é ~ Ds
is a sufficiently wide Gaussian, while ¢* should not be too large. A reasonable
choice for o* (which simplifies calculations) is to choose it such that o* > o - 3,
where /5 is an upper bound for |z| (recall that z is adversarially chosen but
short). For this choice of *, it holds by (1) that & > ¢/+/2. In other words, for
this parameter choice ¢* is only a factor 8 bigger than o, whereas & is only a
factor 1/4/2 smaller than o. In essence, this means that the reduction roughly
preserves the LWE parameters, up to small factors.

The final piece of our reduction is to make this leakage simulator work for
discrete Gaussians instead of continuous Gaussians. For this, we will make use of
Peikert’s randomized rounding approach [39]. That is, a discrete Gaussian can be
computed as the randomized rounding of a continuous Gaussian. This, together
with Regev’s discrete-to-continuous Gaussian smoothing lemma [41], allows us
to adapt the simulator for continous Gaussians to discrete Gaussians. While the
simplified analysis above only uses simple arithmetic, the actual analysis in the
full version, while similar in spirit, relies on more involved concepts from singular
value analysis to deal with high-dimensional multivariate Gaussians.

2.2 Applications

Laconic OT. As a warm-up application, it is easy to see that laconic encryption
immediately implies laconic OT. Alice can construct a binary tree of keys with
the following procedure: For each index pair (2ind, 2ind — 1), Alice inserts in the
tree a uniformly sampled public key either in the even position if D;,g = 0, or in
the odd position if Djng = 1. Bob can then simply encrypt msg, with respect to
the index 2ind and msg; with respect to index 2ind—1. Since Alice is semi-honest,
the security of laconic encryption immediately carries over.

Registration-Based Encryption. Laconic Encryption almost implies RBE:

Each user ind generates a key-pair and sends her pk;,q for registration to an
(untrusted) Key Curator, which is added to the database D <— D U {pk;}. Then
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the digest d (the root of the tree) and the witnesses wit; of all users are updated
accordingly. Encryption and decryption with respect to ind work exactly as in
laconic encryption. The crucial caveat is that in RBE, being highly dynamic, it’s
unrealistic to consider that the users are receiving an updated wit each time a
new user registers. Therefore, there is an additional strict efficiency requirement:
No user’s witness should change more than log N times throughout the lifetime
of the system (N being the total number of users). This requirement minimizes
the interaction between a user and the key curator.

Garg et.al [24] achieve this requirement by providing a direct construction
based on Merkle trees. In a nutshell, to accumulate the public keys, there are
multiple Merkle trees with an increasing number of leaves. A new public key
enters a (degenerate) tree that consists of a single leaf. Then, as soon as the
number of its leaves is the same with the next tree, the two trees are merged. This
means that a tree (and therefore its corresponding paths-witnesses) is changing
only when its leaves are doubled. Overall, this translates to log N number of trees
and thus at most log N number of updates per user’s witness. We generalize this
idea and show a generic transformation from any laconic encryption scheme to
a registration-based encryption scheme. A more detailed overview and a formal
description can be found in the full version.

Laconic PSI. We present a semi-honestly secure laconic PSI from laconic en-
cryption. Here the receiver who owns a large database chooses a message for the
sender to encrypt, and then it checks whether the ciphertext can be decrypted
correctly with respect to the indices registered on the receiver’s side.

We first need to have a hash function H : {0,1}* ~ {0,1} to map elements
into the universe of indices. For simplicity, we assume the sender’s set is a sin-
gleton set Ss = {y}. Besides sampling a hash function H, the setup phase is the
same as the laconic encryption. Then the receiver constructs a binary tree with
the freshly generated public keys with respect to the indices where the elements
in Sg are mapped. In the meantime, the receiver generates the witnesses. Then
the receiver sends the updated st and a random message msg. Next, the sender
encrypts msg with st with respect to the index H(y), and sends the ciphertext
ctxt to the receiver. Finally, upon receiving the ciphertext, the receiver will check
for all x;, € Sr, whether it holds that Dec(skj,, witg, ctxt) = msg. If it finds such
a k, xp will be output as the intersection of Ss and Sg. The actual protocol
will be obtained by running the above for every element in the senders set. Cor-
rectness and security of this protocol follows from the guarantees of the laconic
encryption scheme. For more details, we refer the reader to the full version.

Identity-Based Encryption. We also show that our laconic encryption scheme
can be modified to construct an IBE. The basic idea is simple: Instead of con-
structing a tree of public keys iteratively, the key authority implicitly defines
an exponentially large tree by sampling the root of the tree at random. The
key difference is that now the authority must choose the matrices in the public
parameters with a trapdoor. This way, when the user ind wants to register to
the system, the authority can provide it with the appropriate root-to-leaf path
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(which will function as the secret key) by sampling pre-images, starting from the
root and all the way down to the corresponding leaf.

Compared with other LWE-based constructions [16,1,13,21,18], our IBE sup-
ports an unbounded identity space, and has a tight security reduction of full
(adaptive) security in the standard model. This is achieved with a new simu-
lation strategy that relies on two alternating pairs of matrices (B even, B1,even)
and (Bo,odd, B1,0dd), for left and right children and for even and odd layers, re-
spectively. In the security proof, the simulator can “forget” the trapdoor of any
one of the four matrices, and it can still issue decryption keys using the remain-
ing trapdoors. This way, one can substitute ciphertext components one-by-one
with uniformly sampled vectors. Proceeding until the last layer completes the
security proof. A more detailed overview can be found in the full version.

Pre-Processing and Other Extensions. To increase the efficiency of our
laconic encryption even further, we also construct a pre-processing variant of
our scheme. Informally, the encryption algorithm Enc is split into an offline
part (OfflineEnc), which is input-independent, and an online part (OnlineEnc).
Crucially, the online algorithm is much more efficient and does not perform
any public-key operation. The main observation is that each element of the
ciphertext ¢; depends only on a single bit of the corresponding index/identity.
Thus, we can let the OfflineEnc algorithm computing both possible ciphertexts
for each bit of the index (making sure to use the randomness consistently), and
output two commitments. The OnlineEnc algorithm is on the other hand given
the index ind, so it can complete the encryption by simply revealing the openings
of the commitments corresponding to (indy,...,indg). As for the message, the
OfflineEnc algorithm can simply encrypt a random bit r, and when the message
msg is given to the OnlineEnc algorithm, it can simply output msg ®r. This way,
the OnlineEnc is entirely combinatorial, and all the public-key operation happen
in an offline and input-independent phase.

We also explore a number of other extensions of laconic encryption: We de-
scribe how we can make the encryption algorithm compatible with other encryp-
tion schemes (possibly not even lattice-based), and we present an alternative la-
conic encryption construction that offers different efficiency trade-offs. We refer
the reader to the full version for more details.

3 Preliminaries

Let (n,p,q) = (n,p,q)(\) with p < g. Let m:=n- ﬂogp q]. Define the (p, ¢)-ary
gadget matrix

G=1,® <1p,,,p|.10gqu)

and denote the (balanced) p-ary decomposition by G~!(-). For a bit b € {0, 1},
denote b :=1—b.
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3.1 Lattices

Let K = Q(¢) be a cyclotomic field and R = Z[(] its ring of integers, where
¢ € C is a root of unity. Write dg for the degree of (the cyclotomic polynomial
defining K and) R. The (infinity) norm ||-|| of an element a = 2;12071 a;i(teER
is defined as the norm of its coefficient vector (ao,...,aq4,_1) € Z9%, i.e. |la| =
max?fofl |a;|. For a vector x = (xg,...,Tm-1) € R™, its norm is defined as
(||| := max" " ||z;||. For ¢ € N, write R, := R/qR. Let x be a distribution over

R.

Definition 1 (LWEg . 4, Assumption). Let R,n,m,q,x be parametrised by
. The (decision) L\WER 5,.m g, assumption states that for any PPT adversary
A

A s Ry

s <$Ry A s Ry
Pr|A(A,b)=1 —Pr{A(A,b)=1

e+ x" b s Ry

b’ =sT- A+ e’ modgq
< negl(\).

The LTWER 1.4,y assumption is said to hold if the I\WER 1, m g, assumption holds
for all m = poly(}).

Definition 2 (Discrete Gaussian Distributions). Let m € N and s > 0.

The discrete Gaussian function over R with parameter s is defined as ps(x) ==
|

exp (—WS—2> with support R. The discrete Gaussian distribution over Z with

parameter s is defined as Dz s(x) = % with support Z. The discrete
z'ez Ps

Gaussian distribution over R with parameter s, denoted by Dr s is induced by
sampling dr independent samples x; <$ Dz s and outputing x = 2?20—1 x; - (L.
We recall a version of the leftover hash lemma over cyclotomic rings.

Lemma 1 (Adapted from [11, Lemma 7]). Let n = poly(\), p,q € N, and
m > n-log,q+ w(log A). The following distributions are statistically close in \:

B «sR!*™ B g ROXM
—$
(B,y) : x s R} and (B,y): ! :
y <s$Ry

y =B -xmodq
Lemma 2 (Derived from [37, Section 2.4]). For any k > 0,
Pr[|jul| > k-s |u<+s$Drs] <2 dg -exp(—7 - k).

Definition 3 (Ring Expansion Factor). The expansion factor of R, denoted
. b
by YR, i YR = MaXy per\ {0} m.

Proposition 1 ([4]). IfR is a prime-power cyclotomic ring, then yg < 2 degy.
If R is a power-of-2 cyclotomic ring, then yg < degp.
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4 Laconic Encryption

4.1 Definition

Definition 4 (Laconic Encryption). A laconic encryption scheme for mes-
sage space M consists of a tuple of PPT algorithms (Setup, KGen, Upd, Enc,
WGen, Dec) with the following syntaz:

— (pp, st,aux) « Setup(1*,1¢): The setup algorithm is a randomized algorithm
which takes as input the security parameter 1 and a length parameter 1¢. It
generates the public parameters pp, a state st, and some auxiliary informa-
tion aux.

— (pk,sk) - KGen(pp): The key generation algorithm takes as input the public
parameters pp and outputs a pair of public and secret keys (pk,sk).

— st’ « Upd®™(pp, st,ind, pk): The membership update algorithm, with (read-
and-write- )Jrandom access to the auzxiliary information aux, takes as input
the public parameters pp, the state st, an indez ind € {0,1}, and a public
key pk (or L). It outputs updated state st’.

— ctxt < Enc(pp, st,ind, msg): The encryption algorithm is a randomized algo-
rithm which takes as input the public parameters pp, the state st, an index
ind € {0,1}, and a message msg € M. It outputs a ciphertext ctxt.

— wit + WGen®"(pp, st, ind, pk): The witness generation algorithm, with (read-
Jrandom access to the auxiliary information aux, takes as input the public
parameters pp, the state st, an index ind € {0,1}, and a public key pk. It
outputs a (non)-membership witness wit.

— msg « Dec(sk,wit, ctxt): The decryption algorithm takes as input a secret
key sk, a membership witness wit, and a ciphertext ctxt. It outputs a message
msg.

Furthermore, there exists t € poly(\, ¢) such that all above algorithms run in
time at most t(\, £).

Our correctness definition considers a scenario where the public parameters
have underdone an arbitrary sequence of updates such that in the latest ver-
sion a tuple (ind, pk) is registered. In this case, if a message is encrypted with
respect to (pp, st, ind, pk), then decrypting the ciphertext with the secret key sk
corresponding to pk recovers the message with overwhelming probability.

Definition 5 (Correctness). A laconic encryption scheme II is said to be
statistically correct if for any (unbounded) algorithm A, any € = poly(X), it
holds that

Pr[Correctnessyz a(1*,1°) = 1] > 1 — negl(})

where the experiment Correctnessyy 4 is defined in Fig. 1.

Our security definition combines both index and message-hiding. It requires
that if each of two adversarially chosen indices indg,ind; is either registered by
an honest party (so that the secret key is unknown to the adversary) or not
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Correctnessyr 4 (1%, 1%) Security’}Y‘A(IA, 1%)

Honest := Empty dictionary Malicious := ()

(pp, st, aux) <+ Setup(lA, lé) (pp, st, aux) < Setup(l)‘, le)

(ind*, msg®) < AKCNOUPAO (5 st aux) (Mo, M) « AKCOUPAO (p5 st aux)
if ind* ¢ Honest then return 1 My = (indo, msg), M1 = (ind1, msg;)
ctxt” < Enc(pp, st,ind™, msg™) if {indo,ind: } N Malicious # () then
(pk™,sk™) + Honest[ind"] return 0

wit" <= WGen(pp, st, aux, ind*, pk*) ctxt™ < Enc(pp, st, indy, msg;,)

msg = Dec(sk™, wit", ctxt™) b AKCNOUPAO (i)

return (msg = msg") return b’

KGenO(ind) Pseudorandomness?j’A(1’\7 1%)

(pk, sk) <= KGen(pp) Malicious := 0)

st < Upd®”(pp, st, ind, pk)
Honestlind] := (pk, sk)

return (st, aux, pk)

(pp, st, aux) + Setup(1*,1°)

(ind*, msg®) « AXCNOUPdO (55 st aux)
if ind* € Malicious then return 0
if b = 0 then

UpdO(ind, pk)
ctxt® < Enc(pp, st,ind™, msg”)

pp < Upd™(pp, st, ind, pk)
if pk = L then Honest[ind] := L

else Malicious := Malicious U { ind }

else ctxt” «sC
b/ - AKGenO,Ude (CtXt*)

/
return b

return (pp, aux)

Fig. 1. Correctness, security, pseudorandomness and update privacy experiments for
laconic encryption.

registered, then for any adversarially chosen messages msg,, msg; the adversary
should not be able to distinguish a ciphertext encrypting msg, with respect to
indg from that encrypting msg; with respect to ind;.

Definition 6 (Security). A laconic encryption scheme II is said to be secure
if for any PPT (stateful) adversary A, any £ = poly()), it holds that

|Pr [Security%,A(l)‘, 19 = 1] - Pr [Security}-[,A(l)‘, 1% = 1]| < negl()
where the experiment Securityl}]’A is defined in Fig. 1.

We will further define a slightly stronger security notion called pseudorandom
ciphertexts. In essence, this property guarantees that if an index ind* has not
been registered, then a ciphertext with respect to ind* looks pseudorandom.

Definition 7 (Pseudorandom Ciphertexts). A laconic encryption scheme
1T with ciphertext space C is said to be have pseudorandom ciphertexts if for any
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PPT (stateful) adversary A, any ¢ = poly(X), it holds that
}Pr[Pseudorandomness(l)],A(l)‘, 1% = 1] - Pr[Pseudorandomness}],A(l’\, 1% = 1]|
< negl(})

where the experiment PseudorandomnessI}LA is defined in Fig. 1.

We also define a security notion called update privacy. It requires that the
state st hides the indices where the public keys have been registered.

Definition 8 (Update Privacy). A laconic encryption scheme II is said to
be updated private if the distribution of the state st is (statistically close to)
independent of the update operations Upd®™.

4.2 Our Construction

We construct a laconic encryption scheme for the message space M = Ro
in Fig. 2.

Theorem 1. Let R,¢, m,p,q,s,t be such that s <t, x =Dr s, X = Dry, and
q>((20+1)-m-vg -p+4)-VA-t+ 1. The construction in Fig. 2 is correct
with overwhelming probability in .
e—el. (u[ind]> ’ <
Xind

Proof. Observe that decryption is correct whenever

“\§ S

1)/4. By Lemma 2, with overwhelming probability in A, we have |le|| < -t
and |le|| < @s < @ -t. Since (u[i"d]> € Rg”l)m, we have (u[i“d] ‘ < p/2.
Xind Xind
Combining these facts yields
i A
e —el . ( ind <(20+4+1)-m- R~£~t~g+\[\-t<(q—1)/4
Xind 2 2
with overwhelming probability in . a

Theorem 2. Ifdr > A\, m > n-log, g+w(log \), and the A\WER , 4 assumption
holds, the laconic encryption in Fig. 2 is secure. More specifically, for every PPT
adversary A against the pseudorandom ciphertext security of the construction
in Fig. 2, there evist PPT adversaries Ay against ellWER , m 1.q.x.x.p/2, A2
against IWER p, om g and As against \WER p, pmi1,9,x Such that

adv(A) > £ - adv(A;) + adv(Az) + £ - adv(A3) + lhi(A)

where Ihl is the statistical distance defined by Lemma 1.

Proof. Denote the construction by IT and write C = R,(ZMH)mH for the cipher-
text space. Before we discuss the hybrids, we will briefly analyze the structure

of the challenge ciphertext. In the following, let ind* = (ind],...,ind}), and let k
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Setup(1*) KGen(pp) Upd®™(pp, st, ind, pk)

Ao, A, B +sR;*™ X3 Ry if pk = L then

Ve =y 3Ry y =B :xmod ¢ T =T\{ind}

T:={e} return (pk,sk) == (y,x) else

pp = (Ao, A1,B,y") T :=TU{ind}

st:i=y, Yind = Pk

aux == (T, {¥, toer) st’ + TreeUpdate™(pp, st, ind)

return (pp, st, aux)

Enc(pp, st, ind, msg)

!
return st

WGen®"(pp, st, ind, pk)

rj s Ry, Vje{0,...,0}
for j=0,...,/—1do

€e; <3 X2m

B — (- Ay A,
7 indj+1 -G indj+1 -G
T

Cj

er sy, e+sY

= (rj,r;41) - B, +ej mod ¢

c, =1, -B+e; modg
d::rg-ye—ke—i-{gJ-msgmodq

return ctxt := (co,...,ce,d)

TreeUpdate®™(pp, st, ind)

for j=¢—1,...,0do
_Gil(yindlthO)
*Gil(Yindij)

P -1
return wit ;= (uindl:juo, uindl:j”:l)jio

Wind, 5[0 =

Wind, (|1 =

Dec(sk, wit, ctxt)

parse sk as Xind

-1

_ T Wind,. ;|0 T

i=d— E cj-( ind1:; | )fCZ«X;ndmodq
=0

Windy ;|1

if || < g/4 then return 0

else return 1

forj=¢—-1,...,0do

if (indl;jHO) ¢ TA (ind1;j|\1) ¢ T then

T = T\ { indl;j }
else
if (ind1¢j|\iﬁdj+1) ¢ T then

*

Yindy.jllindj 41 = Y

— -1 .
Uindy ;[0 = -G (yindlzj uo): Uindy, (1 =

// Both children of indy.; are unassigned.

// ind1.; 1 is assigned but its sibling not.

_G_I(Yindlzj i)

T=TU { indl;j } // Assign indy.; if any of its children is assigned.
Yindy,; = A0 Windy jj0 + A1 - Wing, ;|1 mod ¢

return st

Fig. 2. Construction of laconic encryption.
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be such that ind}., = (ind],...,ind}) is a leaf node in the tree for which the ad-
versary does not have a corresponding preimage. Furthermore, we denote y; =
Yind;, at the nodes indy, ..., ind7, ;. In the following let ctxt* = (co, ..., cs, d) be
the challenge ciphertext. Consider the following hybrids.

— Ho: Identical to Pseudorandomness; ,(1*,1¢). Note that in this hybrid

c;=r;-(Ag Ap) + r;,(ind;41G ind;+1G) + e;mod ¢ Vje{0,...,0—1},
c; =r; -B+e) mod g, and
d=r) -y +e+ [%J -msg mod gq.
— Hi: Compute ctxt® as follows. Choose cg,...,Cr—1 <$ Rgm uniformly at
random, choose ey, ...,ex_1 <8 x>™, and set
k-1
d=)Y (c;—e) zj+r} yi 4 d
= J J) 2y kY tet 5 - msg mod ¢,
j=0
Uindy, .|j0 om .
where z; = u lJH € R;™. Furthermore, compute cg, ..., ¢, as in Ho.
ind’l‘:j 1

— Ha: In this hybrid we choose cj <8 Rgm and d <$ R, uniformly at random.
— Hs: In this hybrid we choose c¢; <s$ Rgm uniformly at random for ¢ = k +
L,...,£—1 and c¢ +$ R’ uniformly at random.

Note that in H3 all ciphertext components are chosen uniformly random. Hence
the claim of the theorem follows. We will establish the indistinguishability of
successive hybrids via a sequence of lemmata. a

Lemma 3. For any PPT adversary A there exists a PPT adversary Ay against
ellWER 1 m,1,q,x,%,p/2 Such that

IPr [Ho(A) = 1] — Pr [Hy(A) = 1]| < £ adv(Ay).

Proof. To show that Hy and H; are computationally indistinguishable, we define
the following sub-hybrids Hy, ..., H), and H, ..., H}.

— H; (for i = 0,...,0): Hj is identical to Ho and hybrids H. , are identical
to Hi. For the middle cases, i.e. 1 < i < k, we define hybrid #, so that

Co,--.,Ci—1 and d are computed as in H1, and ¢;, ..., cy are computed as in
Ho. Specifically, different from Hg, we choose cq,...,c;—1 <$ Rgm uniformly
at random, choose ey, ..., e;_1 +8 x> and set
i—1
T T % q
d=) (c; —ej) ~zj+ri-yi+e+{§J-msgmodq.
j=0

22



— HY (for i = 1,...,£): If i > k, then this hybrid is identical to H}. Else
(1<i<k),cjforallje[0:4\{i—1} are computed as in H}, and ¢;_1
is computed as follows. Choose €;_; uniformly at random and set

cl ,=¢ ,+r;-(ind; -G ind; - G) mod q.

Furthermore, we set

[V

7—
d=) (cj—e;)" z;+ (¢ —ej_y) zi-1+e+ {gJ - msg mod g.
J

I
=

First, observe that H; and A are in fact identically distributed: In /', since
C;_1 is uniformly and independently distributed, we can equivalently compute
it as

el ,=¢c_,—r;-(ind;-Gind; - G)

for a uniformly random and independent ¢;_;. This makes ¢;_1 = ¢;_1 uniformly
random, as in H,. Substituting the new ¢; to the expression of d in H/', we have

S
|
N

T

U
I
—
¢}

<

—ej) z;+ (€f1—ei 1) zii1+e+ EJ - msg mod ¢

BN
Il
N O

(c; —ej)"z; + (c;_; —r}(ind;G ind;G) —e]_1)z;—1 +e+ {gJ msg mod ¢

Il
-~ .
TiM

™

~. <
I
- o

(c;—ej)"-zj—r;-(ind;-Gind;-G)-z_1 +e+ {gJ - msg mod ¢

4
2

(cj—ej) -zj+r]

-y;‘+e+{ J~msgmodq,

<
Il
o

as in H}, where the last equality was due to (ind; - G ind; - G) - z;_; = —y7.

The main technical part of this proof lies in establishing indistinguishability
between hybrids H; and Hj , for i € {0,...,£—1}. Note that the case k <
i < ¢—1 is trivial since H = H, = H; for i > k. In the following, we focus
on the remaining case 0 < ¢ < k. We will show that these two hybrids are
indistinguishable under elLWE. Assume towards contradiction that

Pr[I(A) = 1] = Pr [/}, (4) = 1] 2 e
We will show that this implies a PPT adversary A) against ellLWE with advantage
€.

The adversary A is specified as follows. As input it receives a matrix A €
Rg“m, and it parses A as A = (Ag A;) where Ag,A; € Ry*™. Now Al
simulates H.(.A) with the matrices Ay, A; thus obtained, until the adversary A
queries the challenge ciphertext. Now it chooses z* = —z; and sends z* to its
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challenger. Note that z* is a legit query as ||z*|| < p/2. Now .A] obtaining a leak
l and y. Next, it computes the challenge ciphertext as in H}(A), except that it
sets

C, =Y + | T (In_dZJrl -G indi+1 . G) mod q

and

d=)Y (cj—e;)'z;—y -z*+1+ [%J - msg mod q.
3=0
Note that the remaining ciphertext components are the same as in #H;(.A) and
7.1(A). From there on, A} continues the simulation of #;(A) and outputs
whatever 1}(A) outputs.

Now let b € {0,1} be the challenge bit of the elLWE experiment. We claim
that if b = 0, then A} faithfully simulates H}(A). On the other hand, we claim
that for b = 1 the A} faithfully simulates H}, ;(A). From these two claims it
follows that A} has advantage e.

— For b = 0, it holds that yT = rT- A + e’ =17 (Ag A;) + e’ mod ¢ and
l=e" - z*+e=—e" z; + emod q. Renaming r to r; and e to e;, it holds
that

c; =y +ri(indis1- G ind;y1 - G) mod ¢
= r} . (AO Al) + I';r+1 . (il’;di+1 -G indi+1 . G) + e} mod q

and
1—1
T T % q
d=)» (cj—e) -z, —y -z +l+bJ-msgmodq (2)
=0
i—1

(]

(cj—e) - zj+(r; - A+e]) z —elz +e+ {gJ -msg mod ¢ (3)

BN
Il
=]

4
2

(cj—ej)T-zj+r}~yf+e+[ J~msgmodq7 (4)

<
Il
=)

where the last equality holds as y; = Az;. We can conclude that in this case
the simulation of A} and H}(A) are identically distributed.

— For b = 1, it holds that y = ¢; for a uniformly random ¢; s Rzm and
l=e' z*+e=—e"z; + e. It therefore holds that

C;r = yT + r'zr-i-l . (Il’;dH_l -G indH_l . G) mod q

=é&] +r,,, - (indit1 - G indiy1 - G) mod g

and

.
|
—

g

d: (cj—ej)T~zj—yT-z*—|—l—|—b

J - msg mod ¢

<.
I
o
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(Cj7ej)T'Zj+é;r‘Zi*egzi+€+ \‘gJ 'msngdq

]
Il
= o

(c; —ej)T'Zj + (¢ —e})-zitet {%J - msg mod g.

<.
Il
o

Le. it holds that in this case the simulation of A} and H[,, (A) are identically
distributed. O

Lemma 4. For any PPT adversary A there exists a PPT adversary As against
LWER n,2m,q,x Such that

|Pr{Hi(A) =1] — Pr{Hz2(A) = 1] | < adv(Asz) + [hI(N).

Proof. In the following we describe the adversary As for the case where k # /£,
i.e., the challenge identity is not registered. For the case k = ¢, the argument
is the same, except that we first invoke Lemma 1 to switch the matrix B to
uniformly sampled, which introduces an additive (statistical) term lhl(A) in the
distance between the two hybrids.

As first queries 2m LWE samples from its oracle and arranges them in matrix
form as (A, v), this A is then parsed as A = (Ag A1) and uses A and A; in
pp, whereas the vector v is stored. Next, As queries m LWE samples from its
oracle and arranges them in matrix form as (B, v’), this B is then used as part
of pp. Now A, simulates Hj, but whenever a new honest key pk; is generated,
Ay queries its LWE oracle and obtains (y;,9;), sets pk; = ¥; and stores ;.
The challenge ciphertext is generated as follows: Assume the challenge identity
ind* terminates in a public key pk;.. The challenge ciphertext is computed as in
Ha(A), except that we set

[u

d=) (uj—e;)" z;+ 0+ EJ msg mod ¢
0

Jj=

and ¢ = v if k < Land cj = v’ if k = (. A, then continues simulation of Hs(A)
and outputs whatever Hz(.A) outputs.

First observe that if (A,v), (B,v’) and {(y;,0;«)} are LWE samples, i.e.
v=s'-A+e'modgq, (V)T =sT-B+é&" mod g and 9= = s - §;« + &+ mod ¢,
then the simulation of A, is identically distributed to Hz(.A). On the other hand,
if ¢, v/ and the 9;+ are uniformly random and independent, then the simulation
of Ajs is identically distributed to Hs(A). The claim of the lemma follows. O

Lemma 5. For any PPT adversary A there exists a PPT adversary As against
LWER n,m+1,q,x Such that

[Pr{Hz2(A) = 1] — Pr{Hz(A) = 1]| < £-adv(Aj3).
Proof. Consider the following hybrids Hy', ..., H}’, where H{’ is identically dis-
tributed to Ha, and H})’ is identically distributed to Hs.
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— Hj%, (For i =0,...,¢—1): Identically distributed to H;, except that, for
i >k, ¢; is chosen uniformly at random.

Assume towards contradiction that
Pr#H{{i(A) =1] = Pr[H]"(A)=1] > ¢

for some i € {0,...,¢}. We will show that this implies a PPT adversary Aj;
against LWER ,, m ¢ With advantage e. The adversary As receives an input
(A,v) and proceeds as follows. Az simulates H}’(A), except for the following
modifications. First, it uses the matrix A = (Ao A1) in the public parameters.
Next, when the challenge ciphertext is generated, if ¢ > k it sets ¢; = v. Aj
then continues the simulation and outputs whatever its simulation of #H.”,(A)
outputs.

Now, it follows routinely that if (A,v) is an LWE sample, i.e. vI =sT- A +
e’ mod ¢, then the simulation of A3 is distributed identically to H}”(A). On the
other hand, if v is uniformly random, then the simulation of A3 is distributed
identically to #Hj",(A). We can conclude that A3 has advantage e. O

Update Privacy. There is a simple modification to construction of laconic
encryption in Fig. 2 which yields update-privacy. The idea is to make the hash-
function fa, a, (Yo,¥1) = Ao (-G '(yy)) + A1 (—G~!(y;)) randomized such
that fa,.a, (Yo, ¥1) statistically hides y, and y,. This can be achieved by slightly
modifying the gadget matrix G into G’ and making G’ ~! randomized 8 and
replacing the parameter m with a slightly larger m’ = m + nlog(q). Specifi-
cally, we set G’ = (G 0) € Z"™™  ie. we obtain G’ by appending nlog(q)

-1
all-zero columns to G. Furthermore, we define G/~ '(x) = (G r(x) >, where
r <% R% 10g(9) ig chosen uniformly at random. Note that it still holds that

G'G'™ 1( ) = x for all x € Ry. The modified hash function is now

F'(Yory1) = Ao~ (=G (yo)) + Ay (=G (yy)).

Now, decomposing Ag = (Ag1 Ag,2) and Ay = (A11 Ay ), where Ag1,Aq1 €
R2*™ and Aga, Arz € Ry "5 it holds that

F'(¥o.y1) = Ao~ (—G' " (yg)) + A1 (=G (yy))
-1
= (Ap1 Ap2) - (G ) + (A1 A1) (— (G (y1)>)
G-
G-

) )

=V

= (Ag1 A1) (

8[12] defined a similar notion of randomized G, which however samples a discrete
gaussian preimage

26



Since the matrix (Ag2 A1) € RZ}“" log(q) is chosen uniformly random and

(rg,r1) is uniformly random in ’Rg"log(Q), it holds by the leftover hash lemma
(Lemma 1) that v is 27 "-close to uniform. Consequently, the hash-value f'(yg,y;)
is statistically close to uniform. Hence, update privacy of the modified construc-
tion follows. We can conclude the following lemma.

Lemma 6. The modified construction of Fig. 2 using G’ and the randomized
G’ is update private.

Properties and Efficiency. We remark about some properties and efficiency
of our construction. The public parameters (initially) consists of three uniformly
random matrices Ao, A, B € Ry*™ which can be sampled with public coin.
Subsequent updates to the public parameters, more specifically to y, € Ry, are
deterministic. Suppose we pick ¢ to be linear in ¢, then the Setup and KGen
algorithms run in time logarithmic in ¢, while the Upd, Enc, WGen, and Dec
algorithms run in time quasi-linear in ¢.
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