
Endemic Oblivious Transfer via Random
Oracles, Revisited ?

Zhelei Zhou1,2,??, Bingsheng Zhang1(�),2,??, Hong-Sheng Zhou3(�),? ? ?, and
Kui Ren1,2

1 Zhejiang University, {zl zhou,bingsheng,kuiren}@zju.edu.cn
2 ZJU-Hangzhou Global Scientific and Technological Innovation Center

3 Virginia Commonwealth University, hszhou@vcu.edu

Abstract. The notion of Endemic Oblivious Transfer (EOT) was in-
troduced by Masny and Rindal (CCS’19). EOT offers a weaker security
guarantee than the conventional random OT; namely, the malicious par-
ties can fix their outputs arbitrarily. The authors presented a 1-round
UC-secure EOT protocol under a tailor-made and non-standard assump-
tion, Choose-and-Open DDH, in the RO model.

In this work, we systematically study EOT in the UC/GUC frame-
work. We present a new 1-round UC-secure EOT construction in the
RO model under the DDH assumption. Under the GUC framework, we
propose the first 1-round EOT construction under the CDH assumption
in the Global Restricted Observable RO (GroRO) model proposed by
Canetti et al. (CCS’14). We also provide an impossibility result, showing
there exist no 1-round GUC-secure EOT protocols in the Global Re-
stricted Programmable RO (GrpRO) model proposed by Camenisch et
al. (Eurocrypt’18). Subsequently, we provide the first round-optimal (2-
round) EOT protocol with adaptive security under the DDH assumption
in the GrpRO model. Finally, we investigate the relations between EOT
and other cryptographic primitives.

As side products, we present the first 2-round GUC-secure commit-
ment in the GroRO model as well as a separation between the GroRO
and the GrpRO models, which may be of independent interest.

1 Introduction

The security of a cryptographic protocol is typically analyzed under the simula-
tion paradigm [28], where the “formal specification” of the security requirements
is modeled as an ideal process, and a real-world protocol is said to securely re-
alize the specification if it “emulates” the ideal process. In the past decades,

? Corresponding authors: Bingsheng Zhang and Hong-Sheng Zhou.
?? Work supported by the National Key R&D Program of China (No.

2021YFB3101601), the National Natural Science Foundation of China (Grant No.
62072401), “Open Project Program of Key Laboratory of Blockchain and Cyberspace
Governance of Zhejiang Province”, and Input Output (iohk.io).

? ? ? Work supported in part by NSF grant CNS-1801470, and a Google Faculty Research
Award.

many variants were proposed: Initially, protocol security was considered in the
standalone setting, in the sense that the challenged protocol is executed in isola-
tion. Later, Universal Composibility (UC) [6] was introduced to analyze protocol
security in arbitrary execution environments; in particular, multiple protocol ses-
sions may be executed concurrently in an adversarially coordinated way. Note
that protocols in the UC framework must be subroutine respecting, in the sense
that all the underlying subroutines are only created for the challenged proto-
col instance and cannot be directly accessed by any other protocols or even the
other instances of the same protocol. To address this drawback, Canetti et al. [7]
proposed the Generalized Universal Composibility (GUC) framework.

Endemic Oblivious Transfer. The notion of Endemic Oblivious Transfer
(EOT) was introduced by Masny and Rindal [35] as a weaker version of Random
OT (ROT). In an EOT protocol, the sender has no input, and the receiver in-
puts a choice bit b ∈ {0, 1}; at the end of EOT, the sender outputs two random
elements (m0,m1), and the receiver outputs mb. Although EOT looks similar to
the conventional ROT, EOT offers a weaker security guarantee — the malicious
sender can fix its output (m0,m1) arbitrarily, and the malicious receiver can fix
its output mb arbitrarily. The first 1-round4 (a.k.a. non-interactive) EOT/ROT
protocol was proposed by Bellare and Micali [1]. It achieves standalone secu-
rity against semi-honest adversaries under the DDH assumption in the Com-
mon Reference String (CRS) model. As shown in [26], this scheme can also
be transformed to achieve malicious security using the Groth-Sahai proof [29].
Later, Garg et al. proposed several 1-round UC-secure EOT protocols under the
well-understood assumptions, (e.g., Decisional Diffie-Hellman (DDH), Quadratic
Residuosity (QR) and Learning With Errors (LWE)), in the CRS model [24]. Re-
cently, Masny and Rindal [35] demonstrated a generic construction for 1-round
EOT by using any non-interactive key exchange scheme in the Random Oracle
(RO) model; however, their generic construction only achieves standalone secu-
rity. Masny and Rindal [35,36] then provided a 1-round UC-secure EOT proto-
col but under a tailor-made computational assumption called “Choose-and-Open
DDH (CODDH)”, in the RO model. We remark that, different from the DDH,
the CODDH is a new assumption, and its hardness is yet to be further studied.

(Global) Random Oracles. Random oracle (RO) model [2] is a popular ide-
alized setup model that has been widely used to justify the security of efficient
cryptographic protocols. In spite of its known inability to provide provable guar-
antees when RO is instantiated with a real-world hash function [8], RO is still
a promising setup since it is generally accepted that security analysis in the RO
model does provide strong evidences to the resilience of the protocol in ques-

4 In this work, we consider the simultaneous communication model with a rushing
adversary, where both parties can send messages to each other within the same
round. The rushing adversary can delay sending messages on behalf of corrupted
parties in a given round until the messages sent by all the uncorrupted parties in
that round have been received. Note that this is different from the simultaneous
messaging requirement in [31], which deals with a non-rushing adversary.

2

tion in the presence of practical attacks [9]. In fact, RO model draws increasing
attention along with recent advancement of the blockchain technology.

Local RO Model vs. Global RO Models. The “local” RO model is often used in
the UC framework where the simulator is allowed to simulate it in the ideal
world, and it grants the simulator two advantages: (i) observability: the sim-
ulator can see what values the parties query the RO on; (ii) programability:
the simulator can program RO query responses as long as they “look” indis-
tinguishable from the real ones. In the GUC framework [7], a “global” RO is
external to the simulator; to facilitate simulation, some “extra power” needs to
be granted to the simulator. In the literature, two main strengthened variants
of the global RO model were proposed: global RO with restricted observability
(GroRO) model proposed by Canetti et al. [9] and global RO with restricted
programmability (GrpRO) model proposed by Camenisch et al. [5]. Here, the
restricted observability and programmability stand for the “extra power” that
the simulator has but the adversary does not have.

1.1 Problem Statement

Constructing EOT in (Global) RO Models. As mentioned above, it is
known that one can build a 1-round UC-secure EOT protocol under the well-
known assumptions in the local CRS model [24]; however, in the local RO model,
the recent construction by Masny and Rindal [35,36] was based on a non-standard
assumption i.e., the CODDH assumption. A natural question to ask is: can we
construct a 1-round UC-secure EOT protocol under well-understood assump-
tions (e.g., DDH assumption) in the local RO model?

Compared to local setups (e.g., local CRS and local RO), global setups are
more practical in real life applications. However, very little research work has
been done for constructing EOT protocols under a global setup. Our main goal
here is to construct a 1-round EOT protocol using global setups. We emphasize
that local setups are helpful for us to construct a provably secure 1-round EOT
protocol. For example, in the local CRS model, both parties can utilize the shared
string, i.e., the CRS, to generate the correlated information for the remaining
protocol execution. In other words, the CRS can be viewed as an extra round of
communication messages during the protocol execution. Intuitively, the security
analysis can go through: the simulator is allowed to generate the CRS along with
the trapdoor; then the trapdoor information will help the simulator to complete
the simulation. In the local RO model, the situation is similar: in the protocol
execution, the protocol players may query the RO at certain predefined points to
obtain corresponding responses; in a very fuzzy way, it also can be viewed as an
extra round of communication messages. In the security analysis, the simulator is
allowed to program the RO on those predefined points; this gives the simulator
advantages over the adversary which will help the simulator to complete the
simulation.

The situation is very different when we use a global setup for constructing
1-round EOT protocols. First, we remark that, as already proven in [7], it is

3

impossible to construct a non-trivial two-party computation protocols (including
EOT) using a global CRS. To bypass this impossibility, Canetti et al. proposed
the Augmented CRS (ACRS) model [7]; however, known technique of building
non-trivial two-party computation protocols in the ACRS model requires coin-
flipping [7,19], which increases round complexity. The good news is that it might
be possible to construct a 1-round EOT protocol using a global RO model; note
that, different global RO models (e.g., the GroRO [9] and the GrpRO [5]) have
been introduced for constructing non-trivial two-party computation protocols.
We must remark that, technical difficulty remains. Typically, a global RO is
instantiated with a predefined hash function. It seems that the aforementioned
design and analysis ideas using local ROs still work: both parties may still be
able to utilize the shared hash function on some predefined points to generate
the corresponding responses for the remaining protocol execution; unfortunately,
it is not true. Below, we provide our elaboration: (1) in the GroRO model, the
simulator is not allowed to program the global RO and thus cannot obtain the
“trapdoor” of the corresponding responses; as a result, it is unclear how we
will be able to complete the security analysis; (2) in the GrpRO model, the
simulator is only allowed to program the unqueried points, and the simulator
may not be able to program the global RO on those predefined points since
the environment may have already queried them before the protocol execution.
Given the technical difficulty, we ask the following major research question:

In the GUC framework, does there exist a 1-round EOT protocol under
well-understood assumptions in the GroRO/GrpRO model?

For completeness, we also construct new 1-round UC-secure EOT protocols
in the local RO model.

Understanding the Complexity of EOT. In addition to the concrete proto-
col constructions, we are also interested in understanding the complexity, includ-
ing the power and the limits, of the cryptographic task of EOT. More precisely,
what are the relations between EOT and other well-known secure computation
tasks? For example, is EOT fundamentally different from ROT or (1-out-of-2)
OT? In [35], Masny and Rindal have already initialized the investigation of this
interesting problem: They proposed a new OT notion called Uniform OT (UOT)
which also looks similar to the conventional ROT, except that it offers a strong
security guarantee that no adversary can bias the distribution of the ROT out-
puts. They showed that it is possible to build UOT based on an EOT and a
coin-tossing protocol; however, it is unclear if the coin-tossing protocol can be
built from an EOT protocol. We thus ask the following question:

What is the relation between the EOT and other cryptographic primitives
(such as coin-tossing and UOT etc.)?

Understanding the Complexity of Global RO Models. Finally, let us go
back to the global setups we used in this work. Recall that, the GroRO and the
GrpRO models provide different aspects of “extra power” to the simulator. Are

4

these two different global RO models, essentially equivalent? Or one is strictly
stronger than the other? It raises our last question:

What is the relation between the GroRO model and the GrpRO model?

Our goal is to provide a comprehensive and thorough investigation of con-
structing EOT via ROs. From a practical point of view, if the above questions
could be answered, we would see highly efficient constructions for EOT. From a
theoretical point of view, if (some of) the above questions could be answered, we
would have a better understanding of the relation between EOT and many se-
cure computation tasks; we could also have a better understanding of the power
and limits of different global RO models.

1.2 Our Results

In this work, we investigate the above problems. Our results can be summarized
as follows.

Constructing EOT via (Global) ROs. Table 1 depicts a selection of our new
constructions.

Protocol #Round Security
Computational

Assumption
Setup

Assumption

Garg et al. [24,25]a 1 UC+Static DDH CRS

Masny and Rindal [35,36] 1 UC+Static CODDHb RO
Canetti et al. [11] 1 UC+Adaptive DDH GrpRO+CRS
ΠEOT-RO(Sec. 3) 1 UC+Static DDH RO

ΠEOT-GroRO(Sec. 5.1)c 1 GUC+Static CDH GroRO

ΠEOT-GrpRO(Sec. 5.2)d 2 GUC+Adaptive DDH GrpRO

a Garg et al’s constructions can be instantiated from different assumptions (e.g.,
DDH, LWE and QR); but in this table, we focus on constructions using (cyclic)
group based assumptions.

b Here, CODDH refers to the “Choose-and-Open DDH” assumption which is not
known to be reducible to the DDH assumption.

c Although protocol ΠEOT-GroRO uses a weaker computational assumption and a
less idealized setup than protocol ΠEOT-RO does, the former is less efficient than
the latter.

d This construction is round-optimal due to Theorem 5, below.
Table 1. Comparison with state-of-the-art round-optimal EOT protocols under com-
putational assumptions that related to the cyclic groups.

Next, we provide the technical overview for our EOT protocol constructions
in the (global) RO models. We first show how to construct a 1-round UC-secure
EOT protocol under DDH assumption in the RO model against static adver-
saries. After that, we turn to the global RO models and show how to construct

5

a 1-round GUC-secure EOT protocol under CDH assumption in the GroRO
model. Note that, the situation in the GrpRO model is complicated: We find
that there exists no 1-round GUC-secure EOT protocols in the GrpRO model
even with static security, and we give a round-optimal (2-round) EOT protocol
under DDH assumption against adaptive adversaries.

New technique: 1-round UC-secure EOT protocol in the RO model. We present
a new technique that enables the first UC-secure 1-round EOT protocol in the
RO model under the DDH assumption (cf. Section 3). The basic scheme achieves
static security. Intuitively, our technique is as follows. We start with the two-
round standalone ROT/EOT protocol in the RO model proposed in [14]. In
the 1st round, the sender sends h := gs to the receiver; in the 2nd round, the
receiver uses sender’s message to compute B := grhb and sends B back, where
b ∈ {0, 1} is the choice bit; finally, the sender outputs m0 := Hash(Bs) and
m1 := Hash((Bh)s), where Hash is a predefined hash function and it is modeled
as a RO; the receiver outputs mb := Hash(hr). Although this protocol is simple
and efficient, it cannot achieve UC security [34,27].

Our technique is presented as follows. The dependence of the sender’s mes-
sage in [14] can be eliminated such that the receiver’s message can be produced
simultaneously in the same round. The idea is to let the receiver produce the com-
mitment key h instead of waiting it from the sender. How to generate a random
group element and be oblivious to its discrete logarithm? This can be achieved
by setting h := Hash(seed), where seed is some randomly sampled string. Similar
technique can be found in [11]. Now the 1-round (non-interactive) version of [14]
roughly works as follows. The sender sends z := gs to the receiver; meanwhile,
the receiver picks h := Hash(seed) and computes B := grhb, and then it sends
(seed, B) to the sender; finally, the sender computes h := Hash(seed) and outputs
m0 := Hash(Bs) and m1 := Hash((Bh)s); the receiver outputs mb := Hash(zr).

Further, to make the protocol UC-secure, certain extractability is needed: (i)
when the sender is malicious, the simulator should be able to extract the sender’s
private randomness s, so the simulator can compute both m0 and m1; (ii) when
the receiver is malicious, the simulator should be able to extract the receiver’s
choice bit. In order to extract the sender’s s, we let the sender additionally gen-
erate a RO-based straight-line extractable NIZK argument [39,23,33]. In order
to extract the receiver’s choice bit b, we let the receiver computes the ElGamal
encryption of b instead of the Pedersen commitment. We then let the receiver
additionally generate a NIZK argument to ensure the correctness of the ElGamal
encryption. Note that, we do not need the straight-line extractability here, since
the simulator can program the RO to obtain logg h and thus be able to decrypt
the ElGamal ciphertext to extract b.

1-round GUC-secure EOT protocol in the GroRO model. Turning to the GUC
setting, we propose the first 1-round EOT construction under the CDH as-
sumption in the GroRO model (cf. Section 5.1). Compared to our UC-secure
construction, this one requires weaker a computational assumption.

Recall that, in our UC-secure EOT protocol, we let the sender send z := gs

together with a straight-line extractable NIZK argument. The straight-line ex-

6

tractable NIZK argument gives the simulator the ability to extract s. However,
Pass showed that it is impossible to construct NIZK arguments in observable
RO model [39], let alone NIZK arguments with straight-line extractability. The
good news is that straight-line extractable NIWH argument is sufficient for our
purpose, and it exists in the GroRO model [39]. Therefore, we let the sender gen-
erate a straight-line extractable NIWH argument of s such that z = gs instead.
Next, to extract the receiver’s choice bit, our UC-secure construction utilizes
the programmability of RO; however, GroRO does not offer programability, so a
different approach shall be taken. In particular, we let the receiver compute a
Pedersen commitment to the choice bit B := grhb, and generate a straight-line
extractable NIWH argument of (r, b) such that B = grhb. Analogously to the
sender side, the straight-line extractable NIWH argument gives the simulator
extractability.

Understanding the Power/Limits of Different Global ROs. Here we dis-
cuss the feasibility result and impossible result in the GrpRO model. In addition
to that, we also reveal a separation between the GroRO and the GrpRO model.

A separation between the GroRO model and the GrpRO model. To show this sep-
aration, we first give a new impossibility result, showing that there exists no
1-round GUC-secure EOT protocol in the GrpRO model even with static secu-
rity (cf. Section 5.2). By combining this negative result in the GrpRO model
and the aforementioned positive result in the GroRO model, we demonstrate a
separation between the GroRO model and the GrpRO model. More precisely,
let GroRO,GrpRO be the functionalities of the GroRO and the GrpRO model, we
present the relation of these global RO models in Figure 1.

GrpRO GroRO

?

Fig. 1. The relation between the GroRO model and the GrpRO model. Here, “A 9 B”

denotes that A does not imply B. In addition, “A
?→ B” denotes that whether A implies

B remains unknown.

New impossibility results in the GrpRO model. Here we will present more details
about the aforementioned impossibility result in the GrpRO model. The impossi-
bility is proven by contradiction (cf. Section 5.2). Suppose that there exists such
a 1-round GUC-secure EOT protocol in the GrpRO model. Let us first consider
the case where the receiver is corrupted, and the simulator needs to extract the
choice bit of the receiver from its message. Recall that, the GrpRO only grants
the simulator the restricted programmability: the simulator can program the un-
queried points without being detected. More importantly, unlike local RO, the
simulator cannot program a global RO on the fly, as it cannot see which point is
queried at this moment. Thus, the simulator needs to find a way to enforce the
corrupt receiver to query the simulator’s programmed points. However, in a one

7

simultaneous round protocol, the messages between parties have no dependency.
Hence the simulator cannot enforce the corrupt receiver to produce its message
on the programmed points, and has no advantages. If the simulator still suc-
ceeds to extract the corrupted receiver’s choice bit, then we have the following
attack. The adversary corrupts the sender, and instructs the sender to run the
simulator algorithm above to extract the choice bit from the message sent by
the receiver/simulator. However, the simulator has no idea about the real choice
bit, thus with 1/2 probability the simulation would fail.

New feasibility: Round-optimal GUC-secure EOT protocol in the GrpRO model.
To complete the picture, we also give a round-optimal (2-round) EOT protocol
with adaptive security under the DDH assumption in the GrpRO model (cf. Sec-
tion 5.2). Here, we do not consider simultaneous messaging in the same round.
Our intuition comes from the UC-secure EOT protocol in the CRS+GrpRO
model proposed by Canetti et al. [11]. In their protocol, the CRS consists of two
group elements g, h ∈ G, and the simulator knows logg h. The sender computes
z := grhs, while the receiver generates (G,H) := Hash(seed) and computes two
Pedersen commitments to the choice bit using two sets of the parameter, i.e.,
(g,G) and (h,H), and the same randomness.

To eliminate the CRS, we let the sender generate the first set of the parameter
(g, h) := Hash(seed1) where seed1 is an uniformly sampled string. At the same
time, the sender computes z := grhs using random r, s ← Zq and sends seed, z
to the receiver in the first round. In the second round, the receiver first checks
if seed1 is a programmed point. If not, the receiver generates the second set
of the parameter (G,H) := Hash(seed2) where seed2 is an uniformly sampled
string. Then the receiver can compute two Pedersen commitments to the choice
bit, i.e., (B1, B2) := (gxGb, hxHb) using random x ← Zq. Finally, we let the
receiver send (seed2, B1, B2) to the sender. How to make the protocol simulatable
in the GrpRO model? We show the simulation strategy as follows: when the
receiver is malicious (and the sender is honest), the simulator can extract the
receiver’s choice bit b by programming the GrpRO (the simulator always succeeds
to program the GrpRO since seed1 is sampled by the honest sender itself) and
knowing α such that h = gα; when the sender is malicious (and the receiver
is honest), the simulator can compute both m0 and m1 by programming the
GrpRO (the simulator always succeeds to program the GrpRO since seed2 is
sampled by the honest receiver itself) such that (g, h,G,H) is a DDH tuple.

Understanding the Relation between EOT and Other Cryptographic
Primitives. Here we discuss the complexity of EOT. Our results can be sum-
marized as follows.

EOT implies UOT and commitment. In [35], the authors showed that UOT im-
plies EOT. But the work on the opposite direction is incomplete. Let FEOT,
FUOT and FCoin be the ideal functionalities of EOT, UOT and coin-tossing pro-
tocol, respectively. They showed that a UOT protocol can be constructed in the
{FEOT,FCoin}-hybrid world with unconditional security, and they constructed
FCoin via only FUOT. However, it remains unclear whether FCoin can be con-

8

structed via only FEOT; therefore, it is still an open question on whether EOT
implies UOT? We present the relations that they claimed in Figure 2(a).

Recall that, Brzuska et al. proved that bit commitment can be constructed via
1-out-of-2 OT with unconditional security [3]. What about EOT? Nevertheless,
surprisingly, we show that bit commitment can be constructed via a weaker
primitive, i.e., EOT with unconditional security (cf. Section 4.1).

Our key observation is that the receiver’s message can be viewed as the com-
mitment to the choice bit b, and the locally computed message mb together with
b can be viewed as the opening. Typically, a commitment protocol requires both
hiding and binding properties. The hiding property holds since the malicious
receiver in the EOT cannot learn m1−b, even if it can influence the distribution
of mb. The binding property holds since the malicious sender in the EOT can-
not know which message is received by the receiver, even if it can influence the
distributions of both m0 and m1.

FEOT FUOT

FCoin

(a) The relations claimed in [35]

FEOT FUOT

FCoinFCom

(b) The relations in this
work.

Fig. 2. The relations between EOT and other primitives. “A → B” denotes that A
implies B. “A 99K B” denotes that A can be transformed into B.

Since it is well-known how to construct FCoin via only FCom, where FCom is
the commitment functionality, we show that EOT implies UOT and completes
the relation between EOT and UOT (cf. Section 4.2). We present the relations
that explored in this work in Figure 2(b).

Furthermore, as a side product, we present the first 2-round GUC-secure
commitment in the GroRO model (cf. Section 5.1), which may be of independent
interest. The previous state-of-the-art protocols need 3 rounds [37,43]. Note that
this result does not contradict Zhou et al.’s impossibility result [43], as their work
did not consider simultaneous communication model.

1.3 Related Work

In this work, we mainly focus on the EOT (and OT) protocols in the different
variants of RO models, i.e. the local RO model, the GroRO model and the
GrpRO model. The EOT (and OT) results in the CRS model can be found in
the full version of this paper [42].

In terms of the local RO model, Chou and Orlandi proposed a 3-round OT
protocol called “the simplest OT protocol” [14]. This protocol and the protocol
in [30] have been found to suffer from a number of issues [4,34,27] and are not

9

UC-secure. In the following, Masny and Rindal showed how to construct EOT
protocols from the key exchange schemes in the local RO model [35]. In par-
ticular, they provided a 1-round UC-secure construction under a non-standard
assumption, i.e., Choose-and-Open DDH (CODDH) assumption [35,36].

Regarding the GroRO model, Canetti et al. proposed a 2-round OT pro-
tocol under DDH assumption [9], but their protocol is only one-sided GUC-
simulatable. Later, fully GUC-secure OT protocols in the GroRO model are
proposed [20,17]. Their protocols only need CDH assumption but require no less
than 5 rounds of communication. To achieve round-optimal, Canetti et al. pro-
posed a 2-round GUC-secure OT protocol in the GroRO model [11], but their
protocol requires a stronger assumption, i.e., DDH assumption.

As for the GrpRO model, Canetti et al. proposed an adaptive-secure 1-round
EOT protocol in the GrpRO+CRS hybrid model [11], but their protocol is only
UC-secure since their simulator must know the trapdoor of the CRS.

2 Preliminaries

2.1 Notations

We denote by λ ∈ N the security parameter. We say that a function negl : N→ N
is negligible if for every positive polynomial poly(·) and all sufficiently large
λ, it holds that negl(λ) < 1

poly(λ) . We use the abbreviation PPT to denote

probabilistic polynomial-time. For an NP relationR, we denote by L its associate
language, i.e. L = {x | ∃w s.t. (x,w) ∈ R}. We denote by y := Alg(x; r) the event
where the algorithm Alg on input x and randomness r, outputs y. We denote by
y ← Alg(x) the event where Alg selects a randomness r and sets y := Alg(x; r).
We denote by y ← S the process for sampling y uniformly at random from the
set S. Let q be a λ-bit prime, and p = 2q + 1 also be a prime. Let G be a
subgroup of order q of Z∗p with the generator g.

2.2 Universal Composability

We formalize and analyze the security of our protocols in the Canetti’s Universal
Composability (UC) framework [6] and Canetti et al ’s Generalized UC (GUC)
framework [7]. The main difference between the UC and the GUC framework
is that the environment Z cannot have direct access to the setups in the UC
framework, whereas Z is “unconstrained” and can access the setups directly in
the GUC framework. The local setups in the UC framework are often modeled
as ideal functionalities, whereas the global setups in the GUC framework are
often modeled as the shared functionalities which are completely analogous to
ideal functionalities, except that they may interact with more than one protocol
sessions. For that reason, the simulator in the UC framework can simulate the
local setups and have the full control over it; whereas, the simulator in the GUC
framework has no control over the global setups. We refer interesting readers to
see more details in [6,7].

10

Adversarial Model. In this work, we consider both static corruption (where
the adversary corrupts the parties at the beginning of the protocol) and adap-
tive corruption (where the adversary corrupts the parties at any time). We also
consider rushing adversaries, who may delay sending messages on behalf of cor-
rupted parties in a given round until the messages sent by all the uncorrupted
parties in that round have been received [31].

Secure Communication Model. Many UC-secure protocols assume the par-
ties are interconnected with secure or authenticated channels [10,7]. The secure
channel and authenticated channel can be modeled as ideal functionalities FSC

and FAuth respectively [6]. In this work, most of our protocols are designed in the
simultaneous communication channel with rushing adversaries, which is differ-
ent from that [31] deals with non-rushing adversaries. For this reason, we often
assume the synchronous channel which can be modeled as FSyn [6]. Note that,
intuitively, FSyn can be viewed an authenticated communication network with
storage, which proceeds in a round-based fashion [6,32]. For readability, we will
mention which secure communication channel is used in the context and omit it
in the protocol description.

2.3 Ideal Functionalities

In this section, we provide ideal functionalities that will be used in UC/GUC
security analysis.

OT, UOT and EOT. We start with the Oblivious Transfer (OT). In a OT
protocol, there is a sender S holding two private input m0,m1 ∈ {0, 1}λ and a
receiver R holding a choice bit b ∈ {0, 1}. At the end of the honest execution of
the OT protocol, the receiver R will compute mb. At the same time, the sender
should learn nothing about b while the receiver should learn nothing about m1−b.
We present the OT functionality FOT in Figure 3.

It interacts with two parties S, R and an adversary S.

Transfer. Upon receiving (Send, sid, S, R,m0,m1) from the sender S, do:

– Record (sid, S, R,m0,m1), and send (Send, sid, S, R) to R and the adversary S.
– Ignore any subsequent Send commands.

Choose. Upon receiving (Receive, sid, S, R, b) from R where b ∈ {0, 1}, do:

– Record (sid, S, R, b), and send (Receive, sid, S, R) to the sender S and the adversary S.
– Ignore any subsequent Receive commands.

Process. When both (sid, S, R,m0,m1) and (sid, S, R, b) are recorded, do:

– Send (Proceed?, sid, S, R) to the adversary S.
– Upon receiving (Proceed, sid, S) from the adversary S, output (Received, sid, S, R) to

the sender S; Upon receiving (No, sid, S) from the adversary S, output (Abort, sid, S)
to the sender S. Upon receiving (Proceed, sid, R) from the adversary S, output
(Received, sid, S, R,mb) to R; Upon receiving (No, sid, R) from the adversary S, output
(Abort, sid, R) to R.

Functionality FOT

Fig. 3. The Ideal Functionality FOT for Oblivious Transfer

11

In [35], Masny and Rindal proposed two notions that called Uniform OT
(UOT) and Endemic OT (EOT). Both of them are similar to OT, except that
the senders have no inputs. The main difference between the UOT and the
EOT is that they provide different levels of security guarantees. We describe
the UOT first. The UOT functionality samples two uniformly random strings
m0,m1, and outputs m0,m1 to the (potentially malicious) sender and mb to
the (potentially malicious) receiver. The UOT gives a strong security guarantee
that any malicious party cannot influence the distribution of the OT messages.
Formally, we put the UOT functionality FUOT in Figure 4.

It interacts with two parties S, R and an adversary S.

Transfer. Upon receiving (Send, sid, S, R) from S, do:

– Sample m0,m1←{0, 1}λ, record (sid, S, R,m0,m1), and send (Send, sid, S, R) to R and
the adversary S.

– Ignore any subsequent Send commands.

Choose. Upon receiving (Receive, sid, S, R, b) from R where b ∈ {0, 1}, do:

– Record (sid, S, R, b), and send (Receive, sid, S, R) to the sender S and the adversary S.
– Ignore any subsequent Receive commands.

Process. When both (sid, S, R,m0,m1) and (sid, S, R, b) are recorded, do:

– Send (Proceed?, sid, S, R) to the adversary S.
– Upon receiving (Proceed, sid, S) from the adversary S, output (Received, sid, S, R,
m0,m1) to the sender S; Upon receiving (No, sid, S) from the adversary S, output
(Abort, sid, S) to the sender S. Upon receiving (Proceed, sid, R) from the adversary S,
output (Received, sid, S, R,mb) to R; Upon receiving (No, sid, R) from the adversary S,
output (Abort, sid, R) to R.

Functionality FUOT

Fig. 4. The Ideal Functionality FUOT for Uniform Oblivious Transfer

Now let us turn to EOT. Compared to UOT, the EOT functionality gives
a weak security guarantee: no matter whether the sender or the receiver is ma-
licious, the malicious party can always determine the distribution of the OT
messages. Roughly speaking, if both sender and receiver are honest, the EOT
functionality acts as the UOT functionality. If the sender is malicious and the re-
ceiver is honest, the EOT functionality lets the adversary determine the message
strings m0,m1, and it returns the adversarial chosen mb to the honest receiver
after receiving b. If the receiver is malicious and the sender is honest, the EOT
functionality lets the adversary determine the message string mb, and it returns
the adversarial chosen mb and an uniformly sampled m1−b to the honest sender.
If both sender and receiver are malicious, the EOT functionality simply aborts.
Formally, we put the EOT functionality FEOT in Figure 5.

Random Oracles. Here we introduce two well-known global RO models: Global
Restricted Programmable Random Oracle (GrpRO) model proposed by Ca-
menisch et al. [5] and Global Restricted Observable Random Oracle (GroRO)
model proposed by Canetti et al. [9]. We omit the formal description of the
well-known local RO functionality FRO.

12

It interacts with two parties S, R and an adversary S.

Transfer/Choose. Upon receiving (Send, sid, S, R) from the sender S or
(Receive, sid, S, R, b) from the receiver R, do the same as FUOT that depicted in Figure 4.

Process. When both (sid, S, R,m0,m1) and (sid, S, R, b) are recorded, do:

– If both the sender S and the receiver R are honest, output (Received, sid, S, R,m0,
m1) to the sender S, (Received, sid, S, R,mb) to R and (Received, sid, S, R) to the
adversary S.

– Else if the sender S is corrupted and the receiver R is honest, send (Proceed?, sid, R)
to the adversary S. Upon receiving (Proceed, sid, R,m∗0 ,m

∗
1) from the adversary S, set

m0 := m∗0 , m1 := m∗1 , and output (Received, sid, S, R,m0,m1) to the sender S,
(Received, sid, S, R,mb) to R; Upon receiving (No, sid, R) from the adversary S, output
(Abort, sid, R) to R.

– Else if the sender S is honest and the receiver R is corrupted, send (Proceed?, sid, S)
to the adversary S. Upon receiving (Proceed, sid, S,m∗b) from the adversary S, set
mb := m∗b , and output (Received, sid, S, R,m0,m1) to the sender S, (Received, sid,
S, R,mb) to R; Upon receiving (No, sid, S) from the adversary S, output
(Abort, sid, S) to the sender S.

– Else if both the sender S and the receiver R are corrupted, halt.

Functionality FEOT

Fig. 5. The Ideal Functionality FEOT for Endemic Oblivious Transfer

The GrpRO Model. Compared to FRO, the GrpRO is modeled as a shared func-
tionality GrpRO which may interact with more than one protocol sessions. The
GrpRO answers to the queries in the same way as FRO: Upon receiving (Query, sid,
x) from any party, GrpRO first checks whether the query (sid, x) has been queried
before. If not, GrpRO selects a random value of pre-specified length v ← {0, 1}`out(λ),
answers with the value v and records the tuple (sid, x, v); otherwise, the pre-
viously chosen value v is returned again, even if the earlier query was made
by another party. The simulator is only granted the restricted programma-
bility: both the adversary and the simulator are allowed to program the un-
queried points of the random oracle, but only the simulator can program it
without being detected. More precisely, as depicted in Figure 6, upon receiving
(Program, sid, x, v) from the simulator/adversary, GrpRO first checks whether
(sid, x) has been queried before. If not, GrpRO stores (sid, x, v) in the query-answer
lists. Any honest party can check whether a point has been programmed or not
by sending the (IsProgramed, sid, x) to GrpRO. Thus, in the real world, the
programmed points can always be detected. However, in the ideal world, the
simulator S can escape the detection since it can return (IsProgramed, sid, 0)
when the adversary invokes (IsProgramed, sid, x) to verify whether a point x
has been programmed or not.

The GroRO Model. The GroRO is also modeled as a share functionality GroRO,
and it answers to the queries in the same way as FRO. The simulator is only
granted the restricted observability: some of the queries can be marked as “il-
legitimate” and potentially disclosed to the simulator. As depicted in Figure 7,
the GroRO interacts with a list of ideal functionalities F̄ = {F1, . . . ,Fn}, where
F1, . . . ,Fn are the ideal functionalities for protocols. For any query (sid′, x) from
any party P = (pid, sid) where sid′ is the content of the SID field, if sid′ 6= sid,

13

It interacts with a set of parties P = {P1, . . . , Pn} and an adversary S. It is parameterized
by the output length `out(λ). It maintains two initially empty lists List,Prog.

Query. Upon receiving (Query, sid′, x) from a party Pi ∈ P where Pi = (pid, sid), or the
adversary S:

– Check if ∃ v ∈ {0, 1}`out(λ) such that (sid, x, v) ∈ List. If not, select v ← {0, 1}`out(λ)
and record the tuple (sid′, x, v) in List.

– Return (QueryConfirm, sid′, v) to the requestor.

Program. Upon receiving (Program, sid, x, v) with v ∈ {0, 1}`out(λ) from the adversary S:

– Check if ∃ v′ ∈ {0, 1}`out(λ) s.t. (sid, x, v′) ∈ List and v 6= v′. If so, ignore this input.
– Set List := List ∪ {(sid, x, v)} and Prog := Prog ∪ {(sid, x)}.
– Return (ProgramConfirm, sid) to S.

IsProgramed. Upon receiving (IsProgramed, sid′, x) from a party Pi ∈ P where Pi =
(pid, sid), or the adversary S:

– If the input was given by Pi = (pid, sid) and sid 6= sid′, ignore this input.
– If (sid′, x) ∈ Prog, set b := 1; otherwise, set b := 0.
– Return (IsProgramed, sid′, b) to the requester.

Share Functionality GrpRO

Fig. 6. The Global Restricted Programmable Random Oracle Model GroRO

then this query is considered “illegitimate”. After that, GroRO adds the tuple
(sid′, x, v) to the list of illegitimate queries for SID sid′, which we denote as Qsid′ .
The illegitimate queries Qsid′ may be disclosed to an instance of ideal function-
ality F ∈ F̄ whose SID is the one of the illegitimate queries, and the ideal
functionality instance F may leak the illegitimate queries Qsid′ to the simulator.

It interacts with a set of parties P = {P1, . . . , Pn} and an adversary S. It is parameter-
ized by the output length `out(λ) and a list of ideal functionalities F̄ := {F1, . . . ,Fn}. It
maintains an initially empty list List.

Query. Upon receiving (Query, sid′, x) from a party Pi ∈ P where Pi = (pid, sid), or the
adversary S, do the same as GroRO depicted in Figure 6, except when sid 6= sid′, add the
tuple (sid′, x, v) to the (initially empty) list of illegitimate queries for SID sid′, which we
denote by Qsid′ .

Observe. Upon receiving a request from an instance of an ideal functionality Fi ∈ F̄ with
SID sid′, return the list of illegitimate queries Qsid′ for SID sid′ to this instance Fi.

Share Functionality GroRO

Fig. 7. The Global Restricted Observable Random Oracle Model GroRO

2.4 Building Blocks

In this work, we use the followings as the main building blocks: the Pedersen
commitment [40], the ElGamal encryption [21], the Sigma-protocols [16], and
the (straight-line extractable) NIZK/NIWH arguments in the RO model [39].
We also use the well-known CDH and DDH assumption [18]. Due to the space

14

limit, here we do not provide the formal descriptions of the building blocks above,
and we refer interesting readers to see them in the full version of this paper [42].

3 UC-Secure Endemic OT via Random Oracles

In this section, we provide a new 1-round UC-secure EOT protocol under stan-
dard assumptions in the RO model.

We start with the two-round standalone EOT protocol in [14]: in the first
round, the sender sends h := gs using s←Zq; in the second round, the receiver
uses sender’s message to compute B := grhb based on its choice bit b and
its secret randomness r←Zq; finally, the sender computes and outputs m0 :=
FRO(Bs) and m1 := FRO((Bh)s) while the receiver outputs mb := FRO(hr). Here
we use to notation y := FRO(x) to describe the process for querying x to the
random oracle FRO and obtaining the output y, which aligns with the notation
in [11]. Our goals are: (i) reduce the round complexity of this protocol to one
simultaneous round; (ii) add new mechanisms to make this protocol UC-secure.

In order to reduce the round complexity, we let the receiver generate h by
invoking the RO on a randomly sampled string seed. In this way, the receiver can
compute its message without the sender’s message, thus only one simultaneous
round is needed. This technique can be found in [11]. We then discuss how
to provide UC security. The UC-secure EOT protocol requires extractability : (i)
when the sender is malicious, the simulator should be able to extract the sender’s
secret randomness, so the simulator can compute both m0 and m1; (ii) when the
receiver is malicious, the simulator should be able to extract the receiver’s choice
bit b. In order to extract the sender’s secret randomness s, we let the sender
additionally generate a straight-line extractable NIZK argument [39,23,33] of s
such that z = gs. The straight-line extractability relies on the observability of the
RO model. In this way, the simulator can extract the malicious sender’s secret
randomness. In order to extract the receiver’s choice bit b, we let the receiver
generate an ElGamal encryption of bit b instead of a Pedersen commitment to
bit b, i.e., the receiver computes (u, v) := (hr, hbgr) using r←Zq. We also let
the receiver generate a NIZK argument of (b, r) such that (u, v) = (hr, hbgr) to
ensure that (u, v) is an ElGamal encryption of a bit b. In this way, the simulator
knows logg h by making use of the programmability of the RO model, and thus
is able to extract b from (u, v).

Let g be the generator of G. Let FRO1 : {0, 1}∗ → G and FRO2 : {0, 1}∗ →
{0, 1}λ be random oracles. Let RENC := {((g, h, u, v), (r, b)) | (b = 0 ∧ (u, v) =
(hr, gr)) ∨ (b = 1 ∧ (u, v) = (hr, grh))} and RDL := {((g, z), s) | z = gs}.
We denote by ΠsleNIZK the straight-line extractable NIZK argument in the FRO3-
hybrid world. We denote by ΠNIZK the NIZK argument in the FRO4-hybrid world.
We note that, the domain and range of FRO3 and FRO4 depend on the concrete
instantiations of the protocols, for that reason, we do not write them explicitly.
Here we assume the synchronous channel FSyn is available to the protocol players.

Protocol Description. We present our protocol ΠEOT-RO in Figure 8; note that,
in Figure 8, we only cover the case where both sender and receiver are honest.

15

Sender Receiver(b ∈ {0, 1})FROi

seed, u, v, πENC

z, πDL

s←Zq; z := gs

πDL ← ΠsleNIZK.Prove
FRO3

((g, z), s) for RDL

seed←{0, 1}λ; r ← Zq

h := FRO1(sid, ‘R’||seed)
(u, v) := (hr, hbgr)
πENC ← ΠNIZK.Prove

FRO4((g,
h, u, v), (r, b)) for RENC

h := FRO1(sid, ‘R’||seed)
Abort if ΠNIZK.Verify

FRO4((g,
h, u, v), πENC) = 0 for RENC

Output m0 := FRO2(sid, ‘S’||vs)
m1 := FRO2(sid, ‘S’||(vh)s)

Abort if ΠsleNIZK.Verify
FRO3((g,

z), πDL) = 0 for RDL

Output mb := FRO2(sid, ‘S’||zr)

Fig. 8. 1-round EOT protocol ΠEOT-RO in the {FRO,FSyn}-hybrid world, where FRO =
{FROi}i∈[4]. Let g be the generator of G. Let FRO1 : {0, 1}∗ → G and FRO2 : {0, 1}∗ →
{0, 1}λ. Let RENC := {((g, h, u, v), (r, b)) | (b = 0 ∧ (u, v) = (hr, gr)) ∨ (b = 1 ∧ (u, v) =
(hr, grh))} and RDL := {((g, z), s) | z = gs}.

When sender (resp. receiver) is statically corrupted and receiver (resp. sender) is
honest, after sending its message to FSyn and waiting for a long time, the honest
receiver (resp. sender) will query FSyn to obtain the other party’s message. If
FSyn replies the desired message, the honest party will compute and output the
local message according to Figure 8; otherwise, the honest party simply aborts.
The security of the protocol has been stated in Theorem 1.

Theorem 1. Assume the DDH assumption holds in group G. Let FRO1 : {0, 1}∗ →
G and FRO2 : {0, 1}∗ → {0, 1}λ be the random oracles. Let ΠNIZK be an NIZK ar-
gument in the FRO3-hybrid world. Let ΠsleNIZK be a straight-line extractable NIZK
argument in the FRO4-hybrid world. The protocol ΠEOT-RO depicted in Figure 8
UC-realizes the functionality FEOT depicted in Figure 5 in the {FRO,FSyn}-hybrid
world against static malicious corruption, where FRO = {FROi}i∈[4].

Proof. We leave the formal proof in the full version of this paper [42].

Instantiation. We instantiate ΠsleNIZK for relation RDL with the Schnorr’s proto-
col [41] and the randomized Fischlin transform [33] which improves the efficiency
and applicability of Fischlin transform [23]. We instantiate ΠNIZK for relation
RENC with the following techniques: we first employ the OR-composition [15] to
the Chaum-Pedersen protocols [13] to prove either (g, h, v, u) is a DDH tuple
(which means b = 0) or (g, h, vh , u) is a DDH tuple (which means b = 1), we then
apply the the Fiat-Shamir transform [22] to remove the interaction.

Efficiency. Here we compare the efficiency in the amortized setting where the
sender and the receiver can reuse some elements for multiple instances of the
EOT protocol (in this protocol, the sender can reuse s, πDL while the receiver
can reuse the string seed). The amortized setting is also used in [11] for effi-
ciency comparison. By taking the parameters (that achieves 128-bit security)

16

from [33], our protocol requires 18 exponentiations w.r.t. computation and 10
group/field elements w.r.t. communication; while the state-of-the-art 1-round
UC-secure RO-based protocol in [35] requires 4 exponentiations w.r.t. compu-
tation and 2 group elements w.r.t. communication. Note that, our protocol is
based on a standard assumption; whereas the protocol in [35] is based on a
non-standard assumption.

4 The Relations between Endemic OT and Other
Primitives

In this section, we first show how to construct a bit commitment protocol via
EOT with unconditional security. Subsequently, we complete the picture of OT
relations in [35], showing that UOT can be constructed via EOT with uncondi-
tional security.

4.1 From Endemic OT to Commitment

Recall that, Brzuska et al. proved that bit commitment can be constructed via
1-out-of-2 OT with unconditional security [3]. As remarked in [35], there is a
separation between the EOT and OT in the standalone setting: there are no
1-round OT protocols while there are 1-round EOT protocols. Although there
is such a separation, we show a surprising fact: bit commitment can also be
constructed via a weaker primitive, i.e., EOT, with unconditional security.

We observe that the receiver’s message can be viewed as the commitment to
the receiver’s choice bit b, and the locally computed message mb together with
b can be viewed as the opening. Typically, a commitment protocol requires two
properties: hiding and binding. The hiding property comes from the fact: even
if the malicious EOT receiver can influence the distribution of mb, it cannot
learn the other message m1−b. The binding property comes from the fact: even
if the malicious EOT sender can influence the distributions of both m0 and m1,
it cannot tell which one is received by the receiver. Furthermore, if we use a UC-
secure EOT protocol as the building block, the resulting commitment protocol
is also UC-secure. Note that, we only assume authenticated channel FAuth is
available to the protocol players, and we omit the formal description of the
well-known commitment functionality FCom.

Protocol Description. We present our protocol ΠCom in Figure 9; note that, in
Figure 9 we only cover the case that both committer and receiver are honest.
The remaining cases can be found in the full version of this paper [42]. The
security of the protocol has been stated in Theorem 2.

Theorem 2. The protocol ΠCom depicted in Figure 9 UC-realizes the function-
ality FCom with unconditional security in the {FEOT,FAuth}-hybrid world against
static malicious corruption.

Proof. We leave the formal proof in the full version of this paper [42].

17

ReceiverCommitter(b ∈ {0, 1})

FEOT

b
mb m0,m1

Opening Phase:

Committing Phase:

b,m

Accept b iff m = mb

Fig. 9. Bit Commitment Protocol ΠCom in the {FEOT,FAuth}-Hybrid World

4.2 From Endemic OT to Uniform OT

In [35], the Masny and Rindal showed how to construct UOT with unconditional
security in the {FEOT,FCoin,FAuth}-hybrid world, where FCoin is the well-known
coin-tossing functionality and we omit the formal description here. We recall the
protocol construction in [35] in Figure 10. However, they only showed how to
construct the coin-tossing protocol via UOT. Therefore, whether EOT implies
UOT remains an open question.

FEOT

b
mbm0,m1

FCoin
r0, r1 r0, r1

Output s0 := m0 ⊕ r0
s1 := m1 ⊕ r1

Output sb := mb ⊕ rb

Sender Receiver(b ∈ {0, 1})

Fig. 10. UOT Protocol ΠUOT in the {FEOT,FCoin,FAuth}-Hybrid World from [35]

Lemma 1 ([35]). The protocol ΠUOT depicted in Figure 10 UC-realizes FUOT

depicted in Figure 4 with unconditional security in the {FEOT,FCoin,FAuth}-
hybrid world against static malicious corruption.

In this section, we provide a positive answer to this unsolved question. Our
solution is as follows: we have already showed that EOT implies commitment
in Section 4.1, and the coin-tossing protocol can be easily constructed via only
commitment; putting things together, we show that EOT implies UOT. Note
that, we only assume FAuth is available to the protocol players, and we omit the
formal description of the well-known coin-tossing functionality FCoin.

Protocol Description. We present our protocol ΠCoin in Figure 11; note that, in
Figure 11 we only cover the case that both two players are honest. The remaining

18

cases can be found in the full version of this paper [42]. The security of the
protocol has been stated in Theorem 3.

Player 2Player 1

m1 Receipt

m2

Decommit m1

Output m := m1 ⊕m2 Output m := m1 ⊕m2

FCom

Fig. 11. Coin-Tossing Protocol ΠCoin in the {FCom,FAuth}-Hybrid World

Theorem 3. The protocol ΠCoin depicted in Figure 11 UC-realizes the function-
ality FCoin with unconditional security in the {FCom,FAuth}-hybrid world against
static malicious corruption.

Proof. We leave the formal proof in the full version of this paper [42].

Formally, we prove that EOT implies UOT through Corollary 1. The security
proof of Corollary 1 directly comes from Lemma 1, Theorem 2 and Theorem 3,
and thus we omit the trivial proof here.

Corollary 1. The protocol ΠUOT depicted in Figure 10 UC-realizes FUOT de-
picted in Figure 4 with unconditional security in the {FEOT,FAuth}-hybrid world
against static malicious corruption.

5 GUC-Secure Endemic OT via Global Random Oracles

In this section, we turn to global RO models to seek a stronger variant of UC
security, i.e., GUC security. As for the GroRO model, we construct the first
1-round GUC-secure EOT protocol under CDH assumption against static ad-
versaries. Basing on that, we propose the first 2-round GUC-secure commitment
protocol in the GroRO model.

Regarding the GrpRO model, we prove that there exists no 1-round GUC-
secure EOT protocol in the GrpRO model even with static security. By com-
bining this negative result in the GrpRO model and the positive result in the
GroRO model, we reveal a separation between these two models. Furthermore,
we construct the first 2-round (round-optimal) GUC-secure EOT protocol under
DDH assumption in the GrpRO model against adaptive adversaries.

19

5.1 Feasibility Results in the GroRO Model

Our EOT Protocol. We start with our UC-secure EOT protocol ΠEOT-RO

depicted in Figure 8. Recall that, we let the sender send z := gs using s ← Zq,
together with a straight-line extractable NIZK argument of s such that z = gs

in ΠEOT-RO. The straight-line extractable NIZK argument gives the simulator
chance of extracting the sender’s secret randomness. However, Pass showed that
it is impossible to construct NIZK arguments in observable RO model [39], let
alone NIZK arguments with straight-line extractability. The good news is that we
find that straight-line extractable NIWH argument is sufficient for our purpose,
and it is possible in the GroRO model [39]. Therefore, we let the sender generate
a straight-line extractable NIWH argument of s such that z = gs. Now let
us consider the receiver. In order to extract the receiver’s choice bit, we make
full use of the programmability of random oracles in ΠEOT-RO. Since GroRO does
not permit anyone to program the random oracle, we need to take a different
strategy: we let the receiver generate h by invoking the GroRO on a randomly
sampled string seed, compute a Pedersen commitment to the choice bitB := grhb

using r ← Zq, and generate a straight-line extractable NIWH argument of (r, b)
such that B = grhb. Analogously to the sender side, the simulator can extract
the malicious receiver’s choice bit b.

Sender Receiver(b ∈ {0, 1})GroROi

s←Zq; z = gs

πDL ← ΠS
sleNIWH.Prove

GroRO3

((g, z), s) for RDL

seed, B, πCOM

z, πDL

seed←{0, 1}λ
h := GroRO1(sid, ‘R’||seed)
r←Zq;B := grhb

πCOM ← ΠR
sleNIWH.Prove

GroRO4

((g, h,B), (r, b)) for RCOM

Abort if ΠS
sleNIWH.Verify

GroRO3

((g, z), πDL) = 0 for RDL

Output mb := GroRO2(sid, ‘S’||zr)

h := GroRO1(sid, ‘R’||seed)
Abort if ΠR

sleNIWH.Verify
GroRO4((g, h,B),

πCOM) = 0 for RCOM

Output m0 := GroRO2(sid, ‘S’||Bs)
m1 := GroRO2(sid, ‘S’||(Bh)s)

Fig. 12. 1-round EOT protocol ΠEOT-GroRO in the {GroRO,FSyn}-hybrid world, where
GroRO = {GroROi}i∈[4]. Let g be the generator of G. Let GroRO1 : {0, 1}∗ → G and
GroRO2 : {0, 1}∗ → {0, 1}λ. Let RCom := {((g, h,B), (r, b)) | B = grhb} and RDL :=
{((g, z), s) | z = gs}.

Let g be the generator of G. Let GroRO1 : {0, 1}∗ → G and GroRO2 : {0, 1}∗ →
{0, 1}λ. Let RCom := {((g, h,B), (r, b)) | B = grhb} and RDL := {((g, z), s) | z =
gs}. We denote by ΠS

sleNIWH the straight-line extractable NIWH argument in the
GroRO3-hybrid world which is used for generating the proof by sender. We denote
by ΠR

sleNIWH the straight-line extractable NIWH argument in the GroRO4-hybrid

20

world which is used for generating the proof by receiver. We assume synchronous
channel FSyn is available to the protocol players..

Protocol Description. We present our protocol ΠEOT-GroRO in Figure 12; note
that, in Figure 12 we only cover the case that both sender and receiver are
honest. The remaining cases can be found in the full version of this paper [42].
The security of the protocol has been stated in Theorem 4.

Before giving the theorem, we have to give the transferable EOT functionality
FtEOT in Figure 13. The main difference with the traditional EOT functionality
is that in FtEOT, the simulator can request the list of illegitimate queries, which
fits the GroRO model.

Theorem 4. Assume the CDH assumption holds in group G. Let GroRO1 : {0, 1}λ →
G and GroRO2 : G → {0, 1}λ be the random oracles. Let ΠS

sleNIWH be a straight-
line extractable NIWH argument in the GroRO3-hybrid world. Let ΠR

sleNIWH be a
straight-line extractable NIWH argument in the GroRO4-hybrid world. The protocol
ΠEOT-GroRO depicted in Figure 12 GUC-realizes the functionality FtEOT depicted
in Figure 13 in the {GroRO,FSyn}-hybrid world against static malicious corrup-
tion, where GroRO = {GroROi}i∈[4].

Proof. We leave the formal proof in the full version of this paper [42].

The functionality interacts with two parties S, R and an adversary S.

Transfer/Choose/Process. Same as FEOT depicted in Figure 5.

Observe. When asked by the adversary S, obtain from GroRO the list of illegitimate queries
Qsid that pertain to SID sid, and send Qsid to the adversary S.

Functionality FtEOT

Fig. 13. The Transferable Ideal Functionality FtEOT for Endemic Oblivious Transfer

Instantiation. We instantiate ΠS
sleNIZK for relation RDL with the Schnorr’s proto-

col and the randomized Fischlin transform as in Section 3. Note that, although
we use the same instantiation as in Section 3, we only obtain a straight-line
extractable NIWH argument, since here we use a observable RO model [39]. We
instantiate ΠR

sleNIWH for relation RCom with the Okamoto’s protocol [38] and the
randomized Fischlin transform.

Efficiency. We consider the efficiency of our GUC-secure protocol ΠEOT-GroRO in
the amortized setting here, just like we did in Section 3. By taking the parameter
(that achieves 128-bit security) in [33], our GUC-secure protocol ΠEOT-GroRO

requires 53 exponentiations w.r.t. computation and 41 group/field elements w.r.t.
communication; while the state-of-the-art 2-round GroRO-based OT protocol
in [11] requires 5 exponentiations w.r.t. computation and 2 group elements +
2λ bits string w.r.t. communication. Note that, our protocol only requires CDH

21

assumption, whereas the protocol proposed in [11] requires the DDH assumption,
which is stronger.

Our Commitment Protocol. Recall that, we construct a commitment proto-
col ΠCom depicted in Figure 9 in the {FEOT,FAuth}-hybrid world with uncondi-
tional security (cf. Section 4.1). It is easy to see that if we replace FEOT with
FtEOT and call the resulting protocol ΠtCom, then the protocol ΠtCom will GUC-
realize FtCom in the {FtEOT,FAuth}-hybrid world with unconditional security,
where FtCom is the transferable commitment functionality introduced in [9] and
here we omit the the formal description of FtCom. Formally, we have the following
corollary, and its security proof is analogously to the proof of Theorem 2.

Corollary 2. The protocol ΠtCom GUC-realizes the functionality FtCom with un-
conditional security in the {FtEOT,FAuth}-hybrid world against static malicious
corruption.

Instantiation. We instantiate FtEOT with our 1-round GUC-secure EOT proto-
col depicted in Figure 12. Then we immediate obtain a 2-round GUC-secure
commitment protocol ΠtCom in the GroRO model; note that, the first round
messages are communicated over the synchronous channel FSyn and the second
round message is communicated over the authenticated channel FAuth. The se-
curity is guaranteed by Theorem 4 and Corollary 2.

Comparison. Our commitment protocol is the first 2-round GUC-secure commit-
ment in the GroRO model, while the previous state-of-the-art protocols achieve
3 rounds [37,43]. Note that, Zhou et al. proved that it is impossible to construct
2-round GUC-secure commitment protocol in the GroRO model even with static
security [43]; but they do not assume FSyn is available for protocol players. Our
2-round commitment protocol contains a simultaneous round, so we do not con-
tradict their impossibility result. We also note that, our protocol and protocols
in [37,43] are all 3-move static-secure protocols, but ours is the only one whose
first two moves can be executed in one simultaneous round; hence, ours is the
only one that can achieve 2-round.

5.2 Impossibility and Feasibility Results in the GrpRO Model

Our Impossibility Result. Here we show that there exists no 1-round GUC-
secure EOT protocol against static adversaries in the GrpRO model.

We prove this impossibility by contradiction. Suppose that there exists such
a 1-round GUC-secure EOT protocol. Let us first consider the case where the
receiver is corrupted, and the simulator needs to extract the choice bit of the
receiver from its message. Recall that, the GrpRO only grants the simulator the
restricted programmability: although the simulator can program the unqueried
points without being detected, the simulator is external to the GrpRO and it can
not know in real time what queries other parties are sending to GrpRO. Thus, the
simulator needs to program the points in advance and find a way to enforce the
corrupt receiver to generate its message on the simulator’s programmed points.

22

In that way, the simulator can have the chance of extracting the choice bit
of the receiver. However, in a one simultaneous round protocol, the messages
between parties have no dependency. Hence the simulator cannot enforce the
corrupt receiver to produce its message on the programmed points, and has no
advantages over the real world adversary. If the simulator still succeeds to extract
the corrupted receiver’s choice bit, then distinctions will be revealed when the
adversary performs the following attacks. The adversary corrupts the sender, and
instructs the sender to run the simulator algorithm above to extract the choice bit
from the message sent by the receiver/simulator. However, the receiver/simulator
has no idea about the real choice bit, thus with high probability the simulation
would fail. Formally, we prove this impossibility through Theorem 5.

Theorem 5. There exists no terminating 1-round protocol Π that GUC-realizes
FEOT depicted in Figure 5 with static security in the {GrpRO,FSyn}-hybrid world.

Proof. We leave the formal proof in the full version of this paper [42].

By combining this negative result in the GrpRO model and the positive
result in the GroRO model depicted in Section 5.1, we demonstrate a separation
between the GroRO and the GrpRO model.

Our EOT Protocol. Theorem 5 rules out the possibility of 1-round GUC-
secure EOT protocols in the {GrpRO,FSyn}-hybrid world. It makes us wonder if
we do not let the sender and the receiver send their messages simultaneously
but in a specific order, can we construct a 2-move (also 2-round) GUC-secure
protocol?

We start with the UC-secure EOT protocol in the CRS+GrpRO hybrid
model proposed by Canetti et al. [11]. Their CRS consists of two group ele-
ments g, h ∈ G, and the simulator knows logg h. They let the receiver generate
parameter G,H by invoking the RO on a randomly sampled string seed, and
compute two instances of Pedersen commitment to the choice bit (B1, B2) :=
(gxGb, hxHb) using two sets of different parameters (g,G), (h,H) and the same
randomness x ← Zq. As for the sender, they let the sender compute z := grhs

using randomness r, s← Zq. Finally, the sender outputs m0 := GrpRO(Br1B
s
2) and

m1 := GrpRO((B1

G)r(B2

H)s) while the receiver outputs mb := GrpRO(zx).
Our goals are: (i) remove the CRS setup of this protocol; (ii) make this

protocol GUC-secure in the GrpRO model. To achieve the former goal, we let
the sender generate g, h by invoking random oracle on a randomly sampled string
seed1. Then the sender computes z := grhs using r, s← Zq, and sends seed1, z to
the receiver. On the other hand, we let the receiver generate G,H by invoking
GrpRO on another randomly sampled string seed2, computes two instances of
Pedersen commitment to the choice bit (B1, B2) := (gxGb, hxHb) using the
same randomness x← Zq. The local computation is the same as Canetti et al ’s
protocol. In order to show that our modified protocol achieves the latter goal,
we show the simulation strategy as follows: when the receiver is malicious, the
simulator can extract the receiver’s choice bit b by programming the GrpRO and
knowing α such that h = gα. Then the simulator can extract b by the following

23

strategy: if B2 = Bα1 , it sets b := 0; else if B2

H = (B1

G)α, it sets b := 1; else, it sets
b := ⊥. Note that, when B1, B2 are not correctly constructed (i.e., the simulator
sets b := ⊥), the malicious receiver cannot compute either m0 or m1. When the
sender is malicious, the simulator can compute both m0 and m1 by programming
the GrpRO such that (g, h,G,H) is a DDH tuple, i.e., G = gt, H = ht. In this
way, the simulator can compute m0 := GrpRO(zx) and m1 := GrpRO(zx−t).

Sender Receiver(b ∈ {0, 1})GrpROi

seed1←{0, 1}λ
(g, h) := GrpRO1(sid, ‘R’||seed1)
r, s←Zq; z := grhs seed1, z

seed2, B1, B2

Abort if seed1 is programmed
(g, h) := GrpRO1(sid, ‘R’||seed1)
seed2←{0, 1}λ
(G,H) := GrpRO1(sid, ‘R’||seed2)
x←Zq; (B1, B2) := (gxGb, hxHb)

Abort if seed2 is programmed
(G,H) := GrpRO1(sid, ‘R’||seed2)
Output m0 := GrpRO2(sid, ‘S’||Br

1B
s
2)

m1 := GrpRO2(sid, ‘S’||(B1

G)r(B2

H)s)

Output mb := GrpRO2(sid, ‘S’||zx)

Fig. 14. 2-round EOT protocol ΠEOT-GrpRO in the {GrpRO,FAuth}-hybrid world, where
GrpRO = {GrpRO1,GrpRO2}. Let GrpRO1 : {0, 1}∗ → G×G and GrpRO2 : {0, 1}∗ → {0, 1}λ.

Let GrpRO1 : {0, 1}∗ → G×G and GrpRO2 : {0, 1}∗ → {0, 1}λ. Here we assume
authenticated channels FAuth are available.

Protocol Description. We present our protocol ΠEOT-GrpRO in Figure 14; note
that, in Figure 14 we only cover the case that both sender and receiver are
honest. The remaining cases can be found in the full version of this paper [42].
The security of the protocol has been stated in Theorem 6.

Theorem 6. Assume the DDH assumption holds in group G. Let GrpRO1 : {0, 1}λ →
G×G and GrpRO2 : G→ {0, 1}λ be the random oracles. The protocol ΠEOT-GrpRO

depicted in Figure 14 GUC-realizes the functionality FEOT depicted in Figure 5
in the {GrpRO,FAuth}-hybrid world against adaptive malicious corruption, where
GrpRO = {GrpRO1,GrpRO2}.

Proof. We leave the formal proof in the full version of this paper [42].

Efficiency. We consider the efficiency of our protocol ΠEOT-GrpRO in the amortized
setting here, just like we did in Section 3. Our protocol requires 5 exponentia-
tions w.r.t. computation and 2 group elements w.r.t. communication; while the
state-of-the-art 2-round GrpRO-based OT protocol in [11] requires the same
computation and extra 2λ bits string w.r.t. communication compared to our

24

protocol. We emphasize that our protocol achieves GUC security; whereas the
protocol proposed in [11] achieves only UC security.

Acknowledgment. We thank anonymous reviewers of Eurocrypt 2023 for their
helpful and constructive comments.

References

1. Bellare, M., Micali, S.: Non-interactive oblivious transfer and applications. In: Bras-
sard, G. (ed.) CRYPTO’89. LNCS, vol. 435, pp. 547–557. Springer, Heidelberg
(Aug 1990). https://doi.org/10.1007/0-387-34805-0_48

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93. pp. 62–73. ACM Press (Nov 1993). https://doi.org/10.
1145/168588.168596

3. Brzuska, C., Fischlin, M., Schröder, H., Katzenbeisser, S.: Physically unclone-
able functions in the universal composition framework. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 51–70. Springer, Heidelberg (Aug 2011).
https://doi.org/10.1007/978-3-642-22792-9_4

4. Byali, M., Patra, A., Ravi, D., Sarkar, P.: Fast and universally-composable obliv-
ious transfer and commitment scheme with adaptive security. Cryptology ePrint
Archive, Report 2017/1165 (2017), https://eprint.iacr.org/2017/1165

5. Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The won-
derful world of global random oracles. In: Nielsen, J.B., Rijmen, V. (eds.) EU-
ROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 280–312. Springer, Heidelberg
(Apr / May 2018). https://doi.org/10.1007/978-3-319-78381-9_11

6. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press (Oct 2001).
https://doi.org/10.1109/SFCS.2001.959888

7. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable secu-
rity with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 61–85. Springer, Heidelberg (Feb 2007). https://doi.org/10.1007/

978-3-540-70936-7_4

8. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC. pp. 209–218. ACM Press (May 1998).
https://doi.org/10.1145/276698.276741

9. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random
oracle. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014. pp. 597–608. ACM
Press (Nov 2014). https://doi.org/10.1145/2660267.2660374

10. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC. pp. 494–503.
ACM Press (May 2002). https://doi.org/10.1145/509907.509980

11. Canetti, R., Sarkar, P., Wang, X.: Efficient and round-optimal oblivious trans-
fer and commitment with adaptive security. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020, Part III. LNCS, vol. 12493, pp. 277–308. Springer, Heidelberg (Dec
2020). https://doi.org/10.1007/978-3-030-64840-4_10

12. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO’92. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (Aug 1993).
https://doi.org/10.1007/3-540-48071-4_7

25

https://doi.org/10.1007/0-387-34805-0_48
https://doi.org/10.1007/0-387-34805-0_48
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-642-22792-9_4
https://doi.org/10.1007/978-3-642-22792-9_4
https://eprint.iacr.org/2017/1165
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1145/276698.276741
https://doi.org/10.1145/276698.276741
https://doi.org/10.1145/2660267.2660374
https://doi.org/10.1145/2660267.2660374
https://doi.org/10.1145/509907.509980
https://doi.org/10.1145/509907.509980
https://doi.org/10.1007/978-3-030-64840-4_10
https://doi.org/10.1007/978-3-030-64840-4_10
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7

13. Chou, T., Orlandi, C.: The simplest protocol for oblivious transfer. In:
Lauter, K.E., Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS,
vol. 9230, pp. 40–58. Springer, Heidelberg (Aug 2015). https://doi.org/10.1007/
978-3-319-22174-8_3

14. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y. (ed.) CRYPTO’94.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (Aug 1994). https://doi.org/
10.1007/3-540-48658-5_19

15. Damg̊ard, I.: On Σ-protocols. Lecture Notes, University of Aarhus, Department
for Computer Science p. 84 (2002), https://www.cs.au.dk/~ivan/Sigma.pdf

16. David, B., Dowsley, R.: Efficient composable oblivious transfer from CDH in the
global random oracle model. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) CANS
20. LNCS, vol. 12579, pp. 462–481. Springer, Heidelberg (Dec 2020). https://doi.
org/10.1007/978-3-030-65411-5_23

17. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

18. Dodis, Y., Shoup, V., Walfish, S.: Efficient constructions of composable commit-
ments and zero-knowledge proofs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 515–535. Springer, Heidelberg (Aug 2008). https://doi.org/10.

1007/978-3-540-85174-5_29
19. Doerner, J., Kondi, Y., Lee, E., shelat, a.: Secure two-party threshold ECDSA

from ECDSA assumptions. In: 2018 IEEE Symposium on Security and Privacy.
pp. 980–997. IEEE Computer Society Press (May 2018). https://doi.org/10.

1109/SP.2018.00036
20. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete

logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196, pp.
10–18. Springer, Heidelberg (Aug 1984)

21. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identifi-
cation and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS,
vol. 263, pp. 186–194. Springer, Heidelberg (Aug 1987). https://doi.org/10.

1007/3-540-47721-7_12
22. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with

online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–
168. Springer, Heidelberg (Aug 2005). https://doi.org/10.1007/11535218_10

23. Garg, S., Ishai, Y., Srinivasan, A.: Two-round MPC: Information-theoretic and
black-box. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part I. LNCS, vol.
11239, pp. 123–151. Springer, Heidelberg (Nov 2018). https://doi.org/10.1007/
978-3-030-03807-6_5

24. Garg, S., Ishai, Y., Srinivasan, A.: Two-round MPC: Information-theoretic and
black-box. Cryptology ePrint Archive, Report 2018/909 (2018), https://eprint.
iacr.org/2018/909

25. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear
maps. In: Umans, C. (ed.) 58th FOCS. pp. 588–599. IEEE Computer Society Press
(Oct 2017). https://doi.org/10.1109/FOCS.2017.60

26. Genç, Z.A., Iovino, V., Rial, A.: “the simplest protocol for oblivious transfer”
revisited. Information Processing Letters 161, 105975 (2020). https://doi.org/
https://doi.org/10.1016/j.ipl.2020.105975

27. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
ACM STOC. pp. 218–229. ACM Press (May 1987). https://doi.org/10.1145/
28395.28420

26

https://doi.org/10.1007/978-3-319-22174-8_3
https://doi.org/10.1007/978-3-319-22174-8_3
https://doi.org/10.1007/978-3-319-22174-8_3
https://doi.org/10.1007/978-3-319-22174-8_3
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://www.cs.au.dk/~ivan/Sigma.pdf
https://doi.org/10.1007/978-3-030-65411-5_23
https://doi.org/10.1007/978-3-030-65411-5_23
https://doi.org/10.1007/978-3-030-65411-5_23
https://doi.org/10.1007/978-3-030-65411-5_23
https://doi.org/10.1007/978-3-540-85174-5_29
https://doi.org/10.1007/978-3-540-85174-5_29
https://doi.org/10.1007/978-3-540-85174-5_29
https://doi.org/10.1007/978-3-540-85174-5_29
https://doi.org/10.1109/SP.2018.00036
https://doi.org/10.1109/SP.2018.00036
https://doi.org/10.1109/SP.2018.00036
https://doi.org/10.1109/SP.2018.00036
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/978-3-030-03807-6_5
https://doi.org/10.1007/978-3-030-03807-6_5
https://doi.org/10.1007/978-3-030-03807-6_5
https://doi.org/10.1007/978-3-030-03807-6_5
https://eprint.iacr.org/2018/909
https://eprint.iacr.org/2018/909
https://doi.org/10.1109/FOCS.2017.60
https://doi.org/10.1109/FOCS.2017.60
https://doi.org/https://doi.org/10.1016/j.ipl.2020.105975
https://doi.org/https://doi.org/10.1016/j.ipl.2020.105975
https://doi.org/https://doi.org/10.1016/j.ipl.2020.105975
https://doi.org/https://doi.org/10.1016/j.ipl.2020.105975
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420

28. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (Apr 2008). https://doi.org/10.1007/978-3-540-78967-3_24

29. Hauck, E., Loss, J.: Efficient and universally composable protocols for oblivious
transfer from the CDH assumption. Cryptology ePrint Archive, Report 2017/1011
(2017), https://eprint.iacr.org/2017/1011

30. Katz, J.: On achieving the “best of both worlds” in secure multiparty computation.
In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC. pp. 11–20. ACM Press (Jun
2007). https://doi.org/10.1145/1250790.1250793

31. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785,
pp. 477–498. Springer, Heidelberg (Mar 2013). https://doi.org/10.1007/

978-3-642-36594-2_27

32. Kondi, Y., shelat, a.: Improved straight-line extraction in the random oracle
model with applications to signature aggregation. In: Agrawal, S., Lin, D. (eds.)
ASIACRYPT 2022. pp. 279–309. Springer Nature Switzerland, Cham (2022).
https://doi.org/https://doi.org/10.1007/978-3-031-22966-4_10

33. Li, B., Micciancio, D.: Equational security proofs of oblivious transfer pro-
tocols. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol.
10769, pp. 527–553. Springer, Heidelberg (Mar 2018). https://doi.org/10.1007/
978-3-319-76578-5_18

34. Masny, D., Rindal, P.: Endemic oblivious transfer. In: Cavallaro, L., Kinder, J.,
Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 309–326. ACM Press (Nov 2019).
https://doi.org/10.1145/3319535.3354210

35. Masny, D., Rindal, P.: Endemic oblivious transfer. Cryptology ePrint Archive,
Report 2019/706 (2019), https://eprint.iacr.org/2019/706

36. Mohassel, P., Rosulek, M., Scafuro, A.: Sublinear zero-knowledge arguments for
RAM programs. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I.
LNCS, vol. 10210, pp. 501–531. Springer, Heidelberg (Apr / May 2017). https:
//doi.org/10.1007/978-3-319-56620-7_18

37. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO’92. LNCS, vol. 740, pp. 31–
53. Springer, Heidelberg (Aug 1993). https://doi.org/10.1007/3-540-48071-4_
3

38. Pass, R.: On deniability in the common reference string and random oracle model.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Hei-
delberg (Aug 2003). https://doi.org/10.1007/978-3-540-45146-4_19

39. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO’91. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (Aug 1992). https://doi.org/10.1007/3-540-46766-1_9

40. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO’89. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (Aug
1990). https://doi.org/10.1007/0-387-34805-0_22

41. Zhou, Z., Zhang, B., Zhou, H.S., Ren, K.: Endemic oblivious transfer via random
oracles, revisited. Cryptology ePrint Archive, Paper 2022/1525 (2022), https://
eprint.iacr.org/2022/1525

42. Zhou, Z., Zhang, B., Zhou, H.S., Ren, K.: Guc-secure commitments via ran-
dom oracles: New impossibility and feasibility. In: Agrawal, S., Lin, D. (eds.)
ASIACRYPT 2022. pp. 129–158. Springer Nature Switzerland, Cham (2022).
https://doi.org/https://doi.org/10.1007/978-3-031-22972-5_5

27

https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://eprint.iacr.org/2017/1011
https://doi.org/10.1145/1250790.1250793
https://doi.org/10.1145/1250790.1250793
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/https://doi.org/10.1007/978-3-031-22966-4_10
https://doi.org/https://doi.org/10.1007/978-3-031-22966-4_10
https://doi.org/10.1007/978-3-319-76578-5_18
https://doi.org/10.1007/978-3-319-76578-5_18
https://doi.org/10.1007/978-3-319-76578-5_18
https://doi.org/10.1007/978-3-319-76578-5_18
https://doi.org/10.1145/3319535.3354210
https://doi.org/10.1145/3319535.3354210
https://eprint.iacr.org/2019/706
https://doi.org/10.1007/978-3-319-56620-7_18
https://doi.org/10.1007/978-3-319-56620-7_18
https://doi.org/10.1007/978-3-319-56620-7_18
https://doi.org/10.1007/978-3-319-56620-7_18
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/978-3-540-45146-4_19
https://doi.org/10.1007/978-3-540-45146-4_19
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://eprint.iacr.org/2022/1525
https://eprint.iacr.org/2022/1525
https://doi.org/https://doi.org/10.1007/978-3-031-22972-5_5
https://doi.org/https://doi.org/10.1007/978-3-031-22972-5_5

	 Endemic Oblivious Transfer via Random Oracles, Revisited

