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Abstract. We study the complexity of two-party secure arithmetic com-
putation where the goal is to evaluate an arithmetic circuit over a finite
field F in the presence of an active (aka malicious) adversary. In the pas-
sive setting, Applebaum et al. (Crypto 2017) constructed a protocol that
only makes a constant (amortized) number of field operations per gate.
This protocol uses the underlying field F as a black box, makes black-box
use of (standard) oblivious transfer, and its security is based on arith-
metic analogs of well-studied cryptographic assumptions. We present an
actively-secure variant of this protocol that achieves, for the first time,
all the above features. The protocol relies on the same assumptions and
adds only a minor overhead in computation and communication.

Along the way, we construct a highly-efficient Vector Oblivious Linear
Evaluation (VOLE) protocol and present several practical and theoretical
optimizations, as well as a prototype implementation. Our most efficient
variant can achieve an asymptotic rate of 1/4 (i.e., for vectors of length
w we send roughly 4w elements of F), which is only slightly worse than
the passively-secure protocol whose rate is 1/3. The protocol seems to
be practically competitive over fast networks, even for relatively small
fields F and relatively short vectors. Specifically, our VOLE protocol
has 3 rounds, and even for 10K-long vectors, it has an amortized cost
per entry of less than 4 OT’s and less than 300 arithmetic operations.
Most of these operations (about 200) can be pre-processed locally in
an offline non-interactive phase. (Better constants can be obtained for
longer vectors.) Some of our optimizations rely on a novel intractability
assumption regarding the non-malleability of noisy linear codes, that
may be of independent interest.

Our technical approach employs two new ingredients. First, we present
a new information-theoretic construction of Conditional Disclosure of
Secrets (CDS) and show how to use it in order to immunize the VOLE
protocol of Applebaum et al. against active adversaries. Second, by using
elementary properties of low-degree polynomials, we show that, for some
simple arithmetic functionalities, one can easily upgrade Yao’s garbled-
circuit protocol to the active setting with a minor overhead while pre-
serving the round complexity.
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1 Introduction

Secure multiparty protocols (MPC) allow a set of parties to jointly compute a
function over their inputs while keeping those inputs private. In many situations,
the underlying sensitive data is numerical, and the computation can be naturally
expressed as a sequence of arithmetic operations such as addition, subtraction,
and multiplicationEI This calls for secure arithmetic computation, namely secure
computation of functions defined by arithmetic operations. It is convenient to
represent such a function by an arithmetic circuit, which is similar to a stan-
dard Boolean circuit except that gates are labeled by addition, subtraction, or
multiplication. It is typically sufficient to consider such circuits that evaluate
the operations over a large finite field F, since arithmetic computations over the
integers or (bounded precision) reals can be reduced to this case. Computing
over finite fields (as opposed to integers or reals) can also be a feature, as it is
useful for applications in threshold cryptography (see, e.g., [31]).

It is always possible to reduce arithmetic computation to Boolean compu-
tation by implementing each arithmetic operation by Boolean circuit. However,
this approach leads to a large blow-up in the circuit sizeE| Thus we strive for
“purely arithmetic” solutions that avoid such an emulation. Specifically, follow-
ing [B], we strive for a protocol that achieves a constant computational overhead.
That is, we would like to securely evaluate any arithmetic circuit C over any
finite field F, with a computational cost (on a RAM machine) that is only a
constant times bigger than the cost of performing |C| field operations with no
security at all. Here we make the standard convention of viewing the size of C
also as a security parameter, namely the view of any adversary running in time
poly(|C]) can be simulated up to a negligible error in |C|.

1.1 ADINZ: Constant Overhead with Passive Security

In [5] (hereafter referred to as ADINZ) it was shown that it is possible to realize
2-party arithmetic MPC with constant computational overhead in the presence
of a passive (aka semi-honest) adversary. Specifically, ADINZ introduced the
Vector Oblivious Linear Evaluation (VOLE) functionality in which the sender
holds a pair of vectors a,b € F"¥ and the receiver holds a scalar z € F and
gets as an output the vector za + b, and showed how to (1) realize VOLE of
width w with complexity of O(w) and (2) how to use VOLE to realize batch
Oblivious Linear Fvaluation (batch-OLE) of length n with complexity O(n).
The latter functionality takes a pair of vectors ¢,d € F” from the sender and a
vector y € F™ from the receiver and delivers to the receiver the vector y ©® ¢ +
d where ® stands for entry-wise multiplication. Both the VOLE functionality
and batch-OT functionality naturally extend the Oblivious Linear Evaluation

! More complex numerical computations can typically be efficiently reduced to these
simple ones, e.g., by using suitable low-degree approximations.

2 For example, for the case of finite fields with n-bit elements, the size of the best
known Boolean multiplication circuits is w(nlogn).



(OLE) functionality [44/40] that corresponds to the case where w =1 or n = 1.
Moreover, OLE, VOLE, and batch-OLE can be viewed as the arithmetic versions
of oblivious transfer (OT), string-OT, and batch-OT, respectively. Indeed, just
like in the binary setting, securely computing an ¢-size arithmetic circuit reduces
via an arithmetic-GMW construction [40] to the task of securely computing
batch-OLE of length ¢. Based on this reduction, ADINZ constructed a constant-
overhead MPC protocol for general arithmetic circuits.

The security of the ADINZ protocols is based on arithmetic analogs of well-
studied cryptographic assumptions. Concretely, for the VOLE protocol, it suffices
to assume the existence of a linear-time computable “code” over F for which
noisy codewords are pseudorandom. Since a conservative choice of constant-
rate noise suffices, one can instantiate this LPN-type assumption based on an
arithmetic variant of Alekhnovich’s assumption [2] or based on the codes of Druk
and Ishai [25]. The batch-OLE protocol is based on an arithmetic version of a
NC?° polynomial-stretch PRG [38IBIT19]. (See [53] for security analysis of these
two assumptions in the arithmetic setting.)

The ADINZ protocols also enjoy several useful properties. They make only
black-box access of the field F and their arithmetic complexity (the number
of field operations) grows linearly with the circuit size of the underlying func-
tionality and is independent of the size of IFEI In addition, all protocols make
a black-box use of a standard OT channel. In fact, in the hybrid-OT model,
they achieve information-theoretic privacy against a corrupted VOLE/batch-
OLE senderﬁ As advocated in [39/40], designing protocols in the OT-hybrid
model yield several advantages such as native pre-processing [14], simple amor-
tization via OT-extension [14J3412], and the ability to rely on different concrete
implementations (including UC-secure ones) under a variety of computational
or physical assumptions. Moreover, black-box usage is typically a necessary con-
dition for obtaining practical efficiency. Indeed, the VOLE protocol of ADINZ
makes only light-weight linear-algebraic operations and operates in a constant
number of rounds, and a prototype implementation appeared in [5]. It should
be mentioned that in the past few years the VOLE primitive has turned out to
be an important building block with numerous applications such as secure com-
putation of linear algebraic computations [43], round-efficient secure arithmetic
computation via arithmetic garbling [8], secure keyword search and set intersec-
tion [26130], zero-knowledge proofs for arithmetic circuits [I7/T923/51I13], and
non-interactive secure computation [1923]. (See [40/517] and references therein.)

1.2 Actively Secure Arithmetic MPC with Constant Overhead?

Unfortunately, the ADINZ protocols are only passively secure, and, as we will
later see, an active adversary can completely break the privacy of both pro-
tocols (the VOLE protocol and the batch-OLE). One can probably construct

3 The protocol additionally uses standard “bit-operations” whose complexity is domi-
nated by the field operations.
4 We mention that the aforementioned assumptions are not known to imply OT.



an actively-secure protocol by combining ADINZ with constant-overhead arith-
metic zero-knowledge proofs via an arithmetic version of the GMW-compiler [32].
The elegant work of Bootle et al. [I5] provides such a zero-knowledge protocol.
However, this approach inherently makes a non-BB use of the underlying OT
protocol. Also, the protocol of [I5] has a super-constant round complexity.

For the special case of VOLE, the breakthrough results of Boyle et al. [I7/18]
yield an actively-secure realization with constant overhead. However, their pro-
tocols are based on strong LPN-type assumptions with sub-constant noise rate.
The protocol can be based on OT in a black-box way [18] at the expense of
further strengthening the underlying intractability assumption to a leaky LPN
assumption and by making additional use of correlation robust hash functions.

To summarize, to the best of our knowledge, it is currently unknown how
to realize batch-OT (or general arithmetic MPC) with active security, constant
overhead, and black-box access to OT, regardless of the underlying assumption.
For VOLE, the only known constructions either make a non-BB use of OT or
rely on relatively strong intractability assumptions such as leaky-LPN with sub-
constant noise and correlation robust hash functions. Our goal in this work is to
avoid these limitations and derive an actively-secure arithmetic MPC protocol
with constant overhead that enjoys all the features of the ADINZ protocol.

2 Our Contribution

We resolve the above question in the affirmative by presenting actively-secure
variants of the ADINZ protocols for VOLE, batch-OLE, and general arithmetic
secure computation, that enjoy all the additional features and are based on the
same assumptions. While our main focus is theoretical, we also present several
practical optimizations to the VOLE protocol that make use of less conservative
intractability assumptions. Details follow.

2.1 The VOLE protocols

Just like [5], we rely on the existence of fast pseudorandom matriz M € F™*Fk
where m > k is a fixed polynomial in k (say m = k3). Here “fast” means the
mapping u +— M - u can be computed by making only O(m) arithmetic opera-
tions, and “pseudorandom” means that if we take a random vector in the image
of M, and add a random pu-sparse noise vector to it, the resulting vector is com-
putationally indistinguishable from a truly random vector over F™. The noise
rate p can be taken to be a constant, e.g., 1/4. There are several candidates for
such fast pseudorandom matrices (see the discussion after Assumption . We
prove the following theorem.

Theorem 1 (informal). Based on the fast pseudorandom matriz assumption,
the VOLE functionality of width w can be realized with active security in the
OT-hybrid model with arithmetic complezity of O(w) and with perfect security
against an active adversary that corrupts the Sender and computational security
against the Receiver.



This protocol (and all the protocols constructed in this work) makes black-
box use of the underlying field and is therefore fully arithmetic in the sense of [40].
(One can also derive the stronger form of arithmetic MPC of [4] by instantiating
the OT channel with an “arithmetic OT”). In addition, all the protocols that are
constructed in this work admit a straight-line black-box simulator. In the 2-party
setting, the existence of such simulators implies that the protocol is UC-secure
as follows from [41l Theorem 1.5] and [42].

As already mentioned, Theorem [I] is the first to achieve constant overhead
and black-box dependency in the OT based on a conservative constant-rate noise
LPN-type assumption. Moreover, to the best of our knowledge, this is the first
construction that achieves constant overhead and statistical Sender security in
the OT-hybrid model, regardless of the underlying assumption,

Remark 1 (realizing the OT-channels with constant overhead). For the sake of
communication/ computational complexity, we charge every bit that is passed
over the OT channel as a single bit/bit-operation. As already observed in [385],
when each OT message is sufficiently long compared to the security parameter
(which is the case in our protocols), such OT-channels can be realized securely
based on an arbitrary OT protocol with the aid of a linear-time computable
linear-stretch PRG. The existence of the latter follows from the binary version
of the fast pseudorandom matrix assumption (see [I385]). In particular, by
using any UC-secure OT protocol in the CRS setting (e.g., [46]), we derive UC-
secure implementations of our protocols in the standard model. (See See the full
version for more details.)

Optimizations: VOLE1 and VOLE2. Motivated by the rich applications of VOLE,
we present several optimizations for the protocol. At the extreme, we present a
VOLE protocol (VOLEL) that can achieve an asymptotic rate of 1/4 (i.e., the
communication is dominated by sending roughly 4w elements of F), which is
only slightly worse than the passively-secure protocol whose rate is 1/3. As-
suming that the OT consumes 2 rounds, VOLE]1 has 3 rounds of computation.
The protocol is provably secure against a computationally-unbounded sender,
provably secure against a passive receiver, but only heuristically secure against
an active receiver. That is, we conjecture that it achieves security against an
active receiver, but do not have a security reduction to a clean intractability as-
sumption. As a compromise, we introduce another protocol VOLE2 that slightly
downgrades the asymptotic rate of 1/5, has 6 rounds, but can be proved secure
based on a new, yet plausible, intractability assumptionEI

The Correlated Noisy-Codeword Hardness Assumption. Our assumption intu-
itively asserts that given a random noisy codeword ¢ sampled from a code T
with noise pattern e, it is hard to efficiently generate a new noisy codeword d
whose noise pattern e’ is non-trivially correlated with the noise pattern e in the

® In fact, even our most conservative protocol (VOLE3) that proves Theorem [1| has
an assymptotic rate of 1/5 and its amortized computational complexity is roughly
the same. However, VOLE3 achieves this only over significantly longer vectors.



following sense. The new noise vector e’ is “far” from being a scalar multiple of e
but it agrees with the original noise vector e with respect to the set of non-noisy
coordinates I = {i : e; =0} of e, i.e., d[I] is in the span of T[I]. Observe that
such a noisy codeword can be generated by sampling a vector in the column span
of (T|e) and then modifying ¢ entries with the hope that all these entries fall
out of the set of clean coordinates I. Such an attack succeeds with probability
©t, and our assumption states that one cannot do much better than this. (See
Section |§| for a formal statement.) We believe that this assumption may be of
independent interest and provide some evidence towards its validity in the full
version [10].

Implementation and concrete complezity. The computational overhead of VOLE1
and VOLE2 are essentially the same. In the full version [I0], we analyze the con-
crete complexity of these protocols when instantiated with the same building
blocks that were used in the passive setting of [5], suggest several practical op-
timizations, and present an implementation of the protocols. We show that the
computational overhead compared to the passive version is minor (less than
20%). Furthermore, even for relatively short vectors of length 10000, our proto-
cols have an amortized cost per VOLE entry of fewer than 4 OTs and less than
300 arithmetic operations (additions and multiplications). We use novel tech-
niques (e.g., sparse LU-decomposition) to push most of these operations (about
200) to a non-interactive offline phase that can be pre-processed locally based
only on the public parameters and local random tape. As a result, this prepro-
cessing can be applied even before each party knows who will be her partner for
the computation. The protocol is also very cheap for the receiver and requires in
the online phase less than 10 arithmetic operations and 4 OT’s per VOLE entry.
(The sender’s online amortized computation consists of 4 OT’s and less than
80 arithmetic operations per entry.) Such a receiver-efficient protocol is espe-
cially useful for applications like VOLE-based zero-knowledge proofs (e.g., [23])
in which the verifier plays the receiver and the prover plays the VOLE sender.
We believe that our protocol may be practically competitive over fast net-
works even for relatively small fields F and relatively short vectors. (Think for
example, of an arithmetic zero-knowledge for a circuit that contains few 10K’s
gates, which, by [23], translates into a single VOLE of comparable length.)
When comparing our protocols to the alternative compressed-VOLE-based so-
lution [I7UI8], we see that the latter achieves a better rate of 1/2, but its amor-
tization point seems to “kick in” only for longer vectors (due to the use of an
“internal-MPC” protocol for securely realizing “short VOLE-correlations”). Thus,
this approach is in a sense complementary to ours, and it will be interesting to
study the combination of the twoﬁ We also expect that additional optimizations

5 The current implementations of the compressed-VOLE-based solution are either re-
stricted to the binary field [I8] or achieve passive security [48] and so we cannot
compare the actual performance of our implementation against a compressed-VOLE-
based implementation. Indeed, to the best of our knowledge, it seems that our work
provides the first implementation of actively-secure VOLE over large fields.



of our implementation and the underlying building blocks will further improve
the computational cost.

2.2 The batch-OLE protocol

The ADINZ [5] protocol for batch-OLE is based on the existence of pseudo-
random generator (PRG) G : F¥ — F" with polynomial stretch, e.g., n = k2,
that is computable by a constant-depth (NC?) arithmetic circuitm Candidate
constructions are studied in [B53]. We prove the following theorem.

Theorem 2 (informal). Assuming the existence of an NC° arithmetic PRG
with polynomial stretch, the batch-OLE functionality of length n can be real-
ized with active security in the VOLE-hybrid model with arithmetic complexity
of O(n) and by making a single call to an ideal k-length O(n/k)-width VOLE
where the batch-OLE receiver (resp., sender) plays the role of the VOLE re-
ceter (resp., sender). The protocol is perfectly secure against an active adver-
sary that corrupts the receiver and computationally secure against an adversary
that actively corrupts the sender. Moreover, the protocol has a constant number
of rounds.

Here the k-length O(n/k)-width VOLE functionality consists of k copies of
O(n/k)-width VOLE. The protocol has 4 rounds (counting VOLE as a 2-round
protocol). In [27] it is shown that the task of securely computing an arithmetic
circuit C' with active security reduces to batch-OLE of length O(|C|) with con-
stant computational overhead while preserving information-theoretic security.
Combining this with Theorems [2] and [T} we derive the following corollary.

Corollary 1. Assuming a fast pseudorandom matriz and an NC® PRG with
polynomial stretch, any two-party functionality that is computable by an arith-
metic circuit C' can be realized with arithmetic complexity of O(|C|) in the OT-
hybrid model while providing information-theoretic security for one party and
computational security for the other party. The protocol makes black-box use of
the underlying field.

The corollary extends to any constant number of parties via standard reductions
(e.g., [27]).

2.3 Technical Overview of the VOLE protocols

We briefly present some of the main technical ideas behind our constructions
starting with the VOLE protocols.

" The exact level of stretch is not important since one can transform a given PRG
with a polynomial stretch of n = k¢ for some ¢ > 1, to a PRG with a stretch of
n =k for an arbitrary constant ¢’ > ¢ while increasing the depth of the circuit by
a constant factor (see, e.g., [3]).



The passive-VOLE protocol. The VOLE protocol of ADINZ17 is based on a
protocol for “reverse VOLE” (RVOLE) functionality in which Bob holds a vector
a € F?, Alice holds a vector b € F¥ and a scalar x € F and the goal is to
deliver the value of xza + b to Bob. Roughly, Bob sends to Alice an encryption
¢ = E(a) € F™ of a which is based on the fast pseudorandom matrix. (F also
depends on some random field elements that are omitted for simplicity.) This
encryption is “almost-linear” and so Alice can homomorphically compute a new
ciphertext d = E(za + b) € F™ by applying linear operations over ¢. However,
this ciphertext cannot be sent to Bob since it leaks information about x and
b. In particular, if Bob sees a coordinate of d that was “noisy” in the original
ciphertext ¢ he can efficiently extract the private input of Alice. (See the full
version [I0].) To fix the problem, we let Bob read only the entries of d for which
cis non—noisyﬁ Of course, Bob has to hide these locations, and so, for each entry
i € [m], the parties invoke a standard 1-out-of-2 (or even all-or-nothing [47]) OT-
channel where Alice sends the pair (d;, L) and Bob’s selection bit determines
whether to read d; or to receive a 1 symbol. While in the passive setting Bob
can be trusted to read only the clean locations, an actively corrupt Bob can
simply read all the entries of the vector d, and completely recover Alice’s input.

Securing the protocol against active Bob via CDS. Let us denote by T' the matrix
that corresponds to the linear part of the encryption F, i.e., T maps a plaintext
of length w (and a vector of k£ random field elements) to a vector of length m
whose noisy version corresponds to a ciphertext. Our first observation is that the
above protocol remains secure if and only if the entries I C [m] that Bob reads in
the OTs satisfy the following condition: (*) The ciphertext ¢ restricted to I is in
the span of T'[I], the sub-matrix of 7" whose rows are indexed by I. (As a sanity
check, observe that when Bob is honest the set I of “clean” coordinates satisfies
the condition.) At this point, it is natural to try and extend the protocol with
some form of zero-knowledge proof in which Bob proves that I satisfies the above
condition. However, since I corresponds to Bob’s input to the OTs (specifically,
Bob’s “selection bits”) such a proof system seems to lead to a non-BB use of the
OTs. To avoid this complication, we take an alternative route and make use of
a special-tailored Conditional Disclosure of Secret (CDS) Protocol [28].

Roughly speaking, in such a protocol Alice chooses a random secret s and,
for each index ¢ € [m], Alice sends over the ith OT-call a pair of field elements
(di, z;), and Bob has to choose whether to learn d; or z;. For a selection vec-
tor I, Bob learns the vectors (d;);c; and (2;)igr. By design, the latter vector
reveals the secret s if and only if I satisfies the (*) condition. Thus the CDS
protocol effectively limits the query access to the OT’s, and turns it into so-

8 This information suffices to recover the plaintext za + b since the encryption in-
ternally employs a suitable error-correcting code. Indeed, [5] show how to combine
a fast pseudorandom matrix with a linear-time error-correcting code and derive a
linear-time encodable code that is pseudorandom under random noise but can be
decoded in linear-time in the presence of random erasures.



called a generalized OT (GOT) [35.,5().,49.,29]E| Below, we present such a CDS
protocol that achieves a constant computational overhead for both the sender
and the receiver and information-theoretic security. Given such a protocol, we
can immunize the RVOLE protocol by letting Alice re-encrypt her ciphertext
d under the secret s. This approach yields only computational security since
the key s, which is a single field element, is shorter than the vector d. (A CDS
with longer secrets would lead to a super-constant computational overhead.) To
achieve information-theoretic security, we note that it suffices to use s to encrypt
the scalar x of the RVOLE protocol. That is, Alice invokes the modified RVOLE
protocol (with the CDS mechanism) over the inputs  + s and b. We show that
if Bob’s selection strategy I satisfies the (*) condition, we can extract his inputs
and perfectly simulate his view based on za + b. If Bob’s strategy I does not
satisfy (*), he learns the vector b but x remains completely hidden, and we can
perfectly simulate his view by sending a = 0% to the ideal RVOLE function-
ality. We refer to the resulting protocol as the modified-RVOLE protocol (See

Section .

Constructing the CDS. Our construction of the CDS is linear-algebraic in nature.
As a starting point, we employ the following standard fact: Fix a matrix 7" and
a vector c. Suppose that we “encrypt” a secret s by sampling a random row
vector z in the co-kernel of T', and publishing the “ciphertext” s + (z,¢). If ¢ is
spanned by T the ciphertext equals to s, on the other hand, if ¢ is not spanned
by T, the ciphertext information theoretically hides s. Thus, linear independence
is translated into secrecy. We can extend this idea to the CDS setting where we
wish to reveal the secret iff ¢[I] is in the span of T[I] for a subset I. To do
this we reveal, for each ¢ ¢ I, the ith entry of our randomizer, z;, and send
the ciphertext s + (z,¢) in the clear. Given this information, one can map the
ciphertext to s+ (z[I], c[I]) which is decryptable if and only if ¢[I] € span(T[I]).
While the above construction achieves privacy and correctness, it is not clear
whether it achieves constant computational overhead. Indeed, we do not know
how to sample a random vector in the co-kernel of T" in linear time. Fortunately,
there is a simple fix. To achieve a linear-time construction, we uniformly sample
z from the entire space (without limiting to the co-kernel) and append to the
CDS the value z - T as a public value. Since right multiplication in T can be
done in linear time, we can also left-multiply by 7" in linear time (following the
“generalized transposition principle” [I6J38]) and so this variant can be realized
with constant computational overhead. It is not hard to show that correctness
and privacy still hold. (See the full version [10] for a formal definition of CDS
and for details about the construction.)

9 GOT allows Bob to retrieve a subset of the messages of Alice that are “authorized”
according to some predicate P. Previous constructions were either based on decom-
posable randomized encoding (aka private-simultaneous messages protocols) [35] or
on secret-sharing [50J4929]. We generalize these approaches by using CDS which is
strictly weaker than both primitives.



Securing the protocol against active Alice? We move on and consider an actively-
corrupted Alice. Clearly, even if Alice deviates from the protocol and does not
compute the vector d properly, her view is still simulatable since all that she
sees is a semantically-secure ciphertext c. However, such misbehavior may lead
Bob to abort and it is not fully clear how to simulate this case. Specifically, let
us assume that Alice misbehaves and generates a vector d ¢ colspan (T'|c). The
simulator detects this and can send an “abort” to the ideal functionality. However,
in the real execution, Bob aborts only if his I-partial view is inconsistent, namely,
if d[I] ¢ colspan ((T|c)[I]) where I = I(e) is the set of non-noisy coordinates
in e. To make the problem concrete, consider a malicious Alice that honestly
computes d and then adds noise to the first coordinate of d. In this case, the
above simulator sends an abort, but in the real protocol, Bob aborts only if the
first coordinate is in I(e) which happens with constant probability 1 — . We
present several solutions to this problem with different levels of efficiency.

1. The first solution is heuristic: We simply assume that the protocol is secure as
it is. As evidence, we can prove this statement for the original RVOLE proto-
col (without the CDS) based on a variant of the Correlated Noisy-Codeword
Hardness Assumption. (See the full version [I0].) By using a straightforward
reduction from VOLE to RVOLE [5], this leads to the VOLE1 protocol. (See
Section [5])

2. In the second solution, we first employ the modified-RVOLE protocol over
random vectors a’ and b’ (this guarantees the ability to perfectly simulate
an “abort” event), then use a small sub-protocol in which Alice proves that
her CDS secret is independent of Bob’s input (based on a simple commit-
ment), and finally, we shift the vectors back to the real inputs vectors a and
b by exploiting the linearity of the VOLE functionality. To prove security
we still need to extract Alice’s input in the event that the protocol does not
abort. For this, we rely on the aforementioned “Correlated Noisy-Codeword”
intractability assumption. In a nutshell, we show that under this assump-
tion, the simulator who is given a malformed ciphertext d either identifies
that Bob would abort in the real execution or successfully extracts an ef-
fective input for Alice. Thus the security of the protocol can be based on
the Correlated Noisy-Codeword assumption and on the fast pseudorandom
matrix assumption. We refer to the resulting protocol as VOLE2 and note
that it adds only a minor computational and communication overhead over
RVOLEL. (See Section [6])

3. Finally, our most conservative solution (VOLE3) relies solely on the fast
pseudorandom matrix assumption. The starting point is again the modified-
RVOLE protocol. We begin by observing that there exist efficient tests that
determine whether Alice’s ciphertext d is “valid” and whether Alice’s vector
of CDS messages z is “valid”. Furthermore, when d and z are both valid,
we can extract a unique effective input for Alice and properly simulate the
protocol. We also note that there exists a strategy for Bob that detects
(with probability 0.5) whether Alice cheats. Indeed, in the OT phase Bob
can toss a coin and ask with probability 1/2 to receive the vector d (by using

10



I =1™) and with probability 1/2 the vector z (by using I = 0™) and check
validity. When running in this “detection mode” Bob effectively gives up on
the computation and just verifies whether Alice misbehaves or not. Note that
Bob’s decision is taken only in the OT phase and is hidden from Alice, and
so effectively Alice first “commits” to strategy (cheat or not), and only then
Bob decides whether to “call her bluff”. Furthermore, even when Bob acts
as a detector, we can fully simulate his view (since the protocol is actively-
secure against any deviation of Bob). We will exploit these observations
to obtain a “silent” cut-and-choose version of the protocol. Specifically, we
realize W-width VOLE based on many calls to the modified-RVOLE protocol
over shorter vectors of width w < W. Ignoring some technical details, we
“sacrifice” a small fraction of these calls for cheating—detectioﬂ and glue
together the remaining copies via a linear-time computable linear exposure-
resilient function [20] (also known as perfect deterministic extractors for
bit-fixing sources). Such functions can be constructed based on linear-time
encodable codes. (See Section [7])

2.4 Technical Overview of the batch-OLE protocol

The ADINZ passive batch-OLE protocol relies on an arithmetic analog of Beaver’s
OT extension [I4]. Given an arithmetic PRG G : F¥ — F", the idea is to realize
a pseudorandom batch-OLE in which Alice holds the vectors ¢ and d of length n,
Bob holds a seed of a PRG « of length k and the functionality stretches the seed
x to a pseudorandom vector y = G(x) of length n, and delivers to Bob the value
y ® ¢+ d where © stands for entry-wise multiplication. The latter functionality
fc is realized by using an arithmetic variant of Yao’s protocol. Specifically, Alice
prepares an arithmetic decomposable affine randomized encoding (DARE) [36//0]
(aka arithmetic garbled-circuit) of f& and sends the “keys” that correspond to her
entries. Bob recovers the keys of his inputs by making k calls to VOLE of width
w = O(n/k) and recovers the output. When the PRG is computable in NC°
the protocol can be realized with constant computational overhead. Clearly, the
protocol is insecure in the presence of an actively corrupted Alice who can send
a malformed encoding that corresponds to a different function. This well-known
problem is extensively studied in the binary setting. We note that our concrete
setting admits a simple and highly efficient solution.

Specifically, we strongly exploit the following properties: (1) We only care
about the case where Bob’s input « is chosen at random; (2) When Bob decodes
the, possibly malformed, DARE (or the garbled circuit), each output of the com-
putation can be written as a low-degree polynomial whose degree corresponds to

10 Interestingly, this detection is performed “silently” To test a session Bob just plays
this session in a “detection mode”. In contrast, in typical cut-and-choose-based solu-
tions, Bob asks Alice to “open” a session. In fact, in our protocol we can even hide
from Alice which sessions were tested by Bob.
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the degree of fg which is very small (constant) compared to the field size |]FHE|
(3) The function fg is linear in Alice’s inputs.

Equipped with these observations, we run an extended variant of the passively-
secure protocol in which Alice holds the pair (¢, d) and another random pair of
vectors (¢/,d’) of similar length, and Bob learns y ® ¢+ d and y ® ¢/ + d’. Let
us focus, for simplicity on the first output of fs. By applying the decoder, Bob
learns the values z; and 2] which are supposedly equal to y; - ¢; + d; and to
Y1 - €} + d) where where y; = G(x). Assuming that Alice behaves properly, Bob
can now compute the value of y1-L(c1, ¢))+L(dy, d}) for any linear combination
L. The idea is to challenge Alice with a random non-trivial L and ask her to send
c¢=L(e1,¢)) and d = L(dy,d), and let Bob check whether L(z1, 2]) = cy; + d,
and abort if the test fails.

First, observe that Alice’s additional messages do not leak any information
(since €] and d} mask the values of ¢; and d;). Next, by using simple linear-
algebraic arguments, we show that if Alice deviates from the protocol she will
get caught except with probability O(D/|F|) where D is the degree of the PRG
G. To see this, assume that Alice sends malformed garbled circuits for Bob’s
first outputs of fg. This means that Bob computes z; = Q(x) and 2] = Q'(x)
for some degree-D multivariate polynomials Q(:) and @Q’(-) that are not both
in the span of {G1(-),1} (e.g., there are no scalars c;,d; for which Q(x) =
¢c1G(z) + dy). Consequently, if we take a random linear combination L of Q(-)
and Q'(+), the resulting polynomial L(Q, Q') almost surely falls out of the span
of {Gl(-), 1}. In this case, no matter how the scalars ¢, d are chosen by Alice, the
polynomial L(Q(:), Q'(-)) will not be equal to the polynomial ¢G;(-) + d. Since
both polynomials are of degree at most D, they will disagree over a random
point &, except with probability D/|F|, and so Bob will almost surely catch the
cheating. (See Section [§] for more details.)

As already mentioned this analysis crucially relies on the low-degree feature
of the decoding procedure (property 2) to ensure that @ and Q" are of degree
D. To the best of our knowledge, this is the first time that this feature is being
employed.

Acknowledgement. We are grateful to Ivan Damgard and Yuval Ishai for early
discussions that influenced this work. We also thank YT for explaining various
aspects of [I7JI8]. We thank the reviewers of Eurocrypt2023 for their comments.

3 Preliminaries

3.1 Linear algebraic notations

We define some linear-algebraic notation. Below F denotes some finite field and
m € N is a positive integer.

11 Tndeed, here we assume that the field is sufficiently large. In contrast, the VOLE1
and VOLE2 protocols can be realized over small fields as well.
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Selective matrix-vector entries. For a vector d € ™ and a 0-1 vector I =
(I,...,In) €0, l}m, we define the vector d[I] € F™ such that its ith entry
is d; if I; = 1 and 0 otherwise. This notation can be used for both row and
column vectors, and can be naturally extended to matrices as follows. For a
m x k matrix M whose rows are denoted by Mj, ..., M,, € F¥ and a binary
vector I € {0, 1}m7 we let M[I] € F™** denote the matrix whose ith row is
M; if I; = 1 and 0F otherwise. Note that this operator is linear and can be
written in the following matrix form:

Vector of clean coordinates. Let e € F™ denote a vector (typically viewed
as a noise vector). We define the vector I(e) € {0, l}m such that its ith
entry is 1 iff e; = 0. Note that by our notations e[I(e)] = 0™.

Matrix-vector concatenation. Let M be a matrix of dimensions m x k and
a vector ¢ € F™. We define M|c to be the result matrix that is obtained by
concatenating the column vector ¢ to the matrix M from the right side.

Bernoulli vector. Let BER™ (p) for real number p € [0,1] be the distribution
of binary vectors I = (I, ..., I,,) of length m with i.i.d entries such that for
any i: I; takes a value of 1 with probability p.

Family of finite fields. We always assume that our functionalities are implicitly
parameterized by a family of finite fields whose size may grow with the security
parameter. Throughout the paper, we fix this family F = {Fy}ren and assume
that it is efficiently computable, that is, one should be able to compute all field
operations in poly(k) time (including the ability to add/subtract/multiply/divide
and to sample a random field element). Note that this requirement implies that
|Fi| < 2POY(*) and so field elements can be represented by poly(k)-bit strings.
In fact, for our protocols, we only need black-box access to the field operations,
and the ability to send field elements either directly or over an OT channel.
By default, we also assume that the field is sufficiently large, e.g., exponentially
large in the security parameter. For sufficiently large width parameter w (e.g.,
cubic in k), our protocols for width-w VOLE require O(w) field operations, and
at most O(wlog|Fy|) Boolean operations. Accordingly, the overall complexity is
dominated by the arithmetic complexity O(w) which is optimal. Indeed, even
in an insecure implementation, w arithmetic operations are needed for w-width
VOLE.

It should be mentioned that the assumption regarding the field size is mainly
needed for achieving linear-time efficiency and most of our protocols (or close
variants of them) remain secure even when the field is of small constant-size (the
error is always negligible in the security parameter). See Remark
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4 The ADINZ protocol

The ADINZ [5] protocol for VOLE is based on a gadget (“encoder”) that allows
fast encoding and decoding under erasures but semantically hides the encoded
messages in the presence of noise. This gadget is mainly based on a public matrix
M € F;C”Xk with the following (LPN-style) pseudorandomness property: If we
take a random vector in the image of M, and add a sparse noise to it, the
resulting vector is computationally indistinguishable from a truly random vector
over F?(k). The noise distribution that is being used in the ADINZ protocol

corresponds to an additive noise vector e € le(k) where each coordinate of e is
assigned independently with the value of zero with probability 1 — p and with a
uniformly chosen non-zero element from F; with probability p. We let D(Fk)ZL
denote the corresponding noise distributions for such vectors of length m. For
concreteness,the reader may think of 1 as a small constant, say 1/4, however
can also be chosen so that it tends to 0 when the security parameter k tends to
infinity. The properties of the ADINZ gadget are summarized in the following
assumption.

Assumption 3. (Fast pseudorandom matrix) There exists a noise rate i =
w(k) < 1/2 and an efficient randomized algorithm M that given a security pa-
rameter 1% and a fields family representation F, samples a m x k (m = O(k?))
matriz M over Fy, such that the following holds:

1. (Linear-time computation) The mapping fur : v — Mr can be computed in
time that linear in the output length m, i.e., by performing O(m) arithmetic
operations.

2. (Noisy-codeword is pseudorandom) The following ensembles are computa-
tionally indistinguishable:

{(M,Mr+e)}keN R, {(M,u)}keN

where M < M(1*F),r < F¥ e + D(Fy)y and u < F.

3. (Linear independence) If we sample M < M(1* F) and keep each of the
first u = O(klog® k) rows independently with probability 1 — i (and remove
all other rows), then, except with negligible probability in k, the resulting

matriz has full rank of k.

Concrete instantiations of this matrix-ensemble M (e.g., based on sparse ma-
trices or on the Druk-Ishai ensemble [25]) are discussed in [5]. The ADINZ
encoder also makes use of a (non-cryptographic) linear error correcting code
Ecc : F}Y — F} which encodes vectors of length w into vectors of length v over
the field F, with constant rate R and linear time encoding and decoding, such
that decoding is possible with high success probability from a constant fraction
of erasures u/ which is slightly larger than the noise rate p. (For p = i we can
take ' = %) Such codes are known to exist and can be efficiently constructed
given a black-box access to Fy. The code Ecc and the matrix M are combined
together into the so-called protocol’s encoder:
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ADINZ Protocol’s encoder. Given k € N, m = O(k®), w = O(k%), » € F} and
a € FY, let M be a m x k fast pseudorandom matrix. We define the encoding
gadget E,.(a) to be:

E.(a) =M -7+ 0" o Ecc(a)
where Ecc : F}) — F}, u = 2klog?k, v = m — u and o denotes concatenation
(so 0" o Ecc(a) is a vector of length m). Equivalently, for an information vector
a € IFY and randomness vector r € IF’,:, we can write the encoder as

E(a)=T- (2)

OUX’U)
T=| My (1)

Eccyxw

where the encoder matrix is

and Ecc, ., € F}™" is the generating matrix of the error correcting code. By ex-
ploiting Assumption [3]and the features of the error correcting code, the encoder
FE satisfies the following properties:

1. (Fast and Linear) The mapping FE,.(a) can be computed by making only
O(m) arithmetic operations. Moreover, it is a linear function of r and a and
so En(a)+ Eq(a') = Epyr(a+a).

2. (Hiding under errors) For any message a € FY and r < F¥,e < D(Fy)", the
vector Ey(a) + e is pseudorandom. Namely: for any ensemble {a}, .y the
following ensembles are computationally indistinguishable:

{(M,Er(ak)Jre)} ~, {(M,u)}

where M« M(1%,F),r < F}, e < D(Fy)" and u + F}". In particular, a
noisy codeword computationally “hides” a.

3. (Fast decoding under erasures) Given a random vector I < BER™(1 — p)
and a code d[I] = E,(a)[I] (i.e. each coordinate is erased independently
with probability p) it is possible to recover the vector a, with negligible error
probability, by making only O(m) arithmetic operations. We first recover r
by solving the linear system dyop[liop] = Miop|[Liop]” (Where “top” means top
u coordinates) via Gaussian elimination in O(m) arithmetic operations. By
Assumption [3| (property [3) the system is likely to have a unique solution.
Then we compute M [Ihot|r in time O(m), subtract from d[lye4] to get the
vector Ecc(a))[lhot] and recover a by erasure decoding in time O(m).

keN keN

Remark 2 (On the choice of parameters). Some of the above requirements are
tailored to achieve a VOLE of width w with an asymptotic computational com-
plexity of O(w) field operations. This includes the choice of the values of m,w,
and u, the requirements for the “fast” computation of FE and “fast” decoding un-
der erasures, and the assumption that the field size is exponential in the security
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parameter. All these requirements can be waived without affecting the security of
the protocols. (Assuming that the pseudorandomness assumption holds.) In par-
ticular, for concrete settings, it may be better to set these parameters differently
as done in our implementations (See the full version [10]).

In the full version [10] we show that the ADINZ protcol is vulnerable against
actively corrupt receiver and prove that it is secure against an active sender
under a new intractability assumption. (These parts will not be used in our
subsequent protocols.)

5 RVOLE Protocol against Actively-Corrupted Receiver

In this section, we construct a protocol for RVOLE, which is actively secure
against Bob and passively secure against Alice. The protocol is based on the
[ADINZ] protocol. We will later use this protocol as a building block of an ac-
tively secure VOLE protocol of width w over the field family F. Our protocol
relies on CDS for span membership. Formally, let fr . : {0, l}m — {O, 1} be a
predicate that receives a vector I € {0, 1}m and accepts iff ¢[I] € colspan (T'[I]).
A CDS for fr. is a pair of algorithms Enc(/,S; R) and Dec(I,z) such that
for an input I, secret S and randomizer R the “ciphertext” z = Enc(I,S; R)
perfectly hides S if fr(I) = 0, and, otherwise, Dec(I, z) outputs S. In ad-
dition, the encoding function can be decomposed to an offline part that does
not depend on I and m “online” parts each depending on a single bit of I, i.e.,
Enc(I,S; R) = (Enco(S; R),Ency(I1,S;R),...,Encg(1,,,S; R)). We also require
that, both Enc(1, S; R) and Dec, are computable by O(m) arithmetic operations
over F. Construction of such a CDS with unconditional information-theoretic
security appears in the full version [10].

Protocol 4 (modified RVOLE protocol). To initialize the protocol Bob sam-
ples the matriz M + M(1¥,F) and sends it to Alice.

1. Bob: Given an input a € F}!, Bob samples vectors r F’lz and e < D(IFk)L",
sets I = I(e) and sends the vector: ¢ = E,.(a) + e to Alice.

2. Alice: Given the inputs b € F’, x € Fi, and Bob’s message ¢ € F[*,
samples a random vector: v’ IFZ and a field element ' <+ F and computes
the vector d = ’c + E,/(b).

8. Alice: Samples randomness R for the span membership CDS and sets the
secret A = x — 2/, and for each i € [m] Alice computes two possible CDS
messages z;0 = Enc;(0,A;R) and z;1 = Enc;(1,A; R). In addition, Alice
computes the CDS offline message by zo = Enco(A; R) and sends zy to Bob.

4. Alice and Bob: Invoke m-batch OT where the ith entry of Alice is the pair

(Zi71, dl) and Zi,0

and Bob uses the vector I as its selection vector.
5. Bob:
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— Collects all the z-part of the OT messages into a vector z = (2o, (2,1, )ic[m)])
and applies the CDS decoder to recover the CDS secret A = Dec(I, z).
If decoding fails Bob aborts.

— If d[I] is not in colspan ((T'|c)[I]), Bob aborts. Otherwise, Bob employs
the decoding-under-erasures property of the gadget E (property @, com-
putes the vector v’ (supposedly x'a +b), shifts it by Aa and outputs the
result v =v' + Aa (supposedly, xa +b).

The original ADINZ protocol is obtained by removing the blue parts and
setting ' = x and outputting v’. As always, we assume the existence of an ideal
m-batch OT channel. Through the analysis of Protocol [, we assume that all
the protocol’s length parameters: m,w,v and u are polynomial functions of the
security parameter k.

Remark 3 (About the set-up). In this protocol (and all the subsequent ones) the
set-up step in which the matrix is sampled can be done once and for all. This is
reflected in the security proofs which work even if the simulators receive M as
an external input.

Lemma 1. Under Assumption[3, the Protocol[] realizes the RVOLE function-
ality of width w over F in the OT-hybrid model with arithmetic complexity of
O(w) (ignoring the initialization cost) and with the following guarantees:

1. Computational security against a passive adversary that corrupts Alice.

2. Computational privacy against an active adversary that corrupts Alice.

8. Perfect security against a passive adversary that corrupts Bob.

4. Perfect security against an active adversary that corrupts Bob and deviates
from the protocol.

Proof (sketch). The complexity bound follows from the complexity of the ADINZ
encoder and from the complexity of the CDS encoder and decoder. One can easily
verify that correctness holds when both parties are honest and that Alice’s only
incoming message is pseudorandom and is therefore simulatable regardless of
Alice’s behavior. This implies items 1 and 2. To simulate Bob, we collect ¢ and
I as chosen by (a possibly malicious) Bob, and check if ¢[I] is in colspan (T'[1]).
If the check passes we can extract Bob’s effective input a’ by solving the linear

system ¢[I] = T[I]- (Z;,) , and if the check fails we set a’ to be the all-zero vector.

Given v = za’ + b from the ideal functionality, we generate the CDS message
of Alice just like in the real protocol by using some & and b that are consistent
with the output v. It can be shown that this simulator perfectly emulates the
real distribution. (See the full version [I0] for details.) O

Some comments are in place:

1. (Computationally-unbounded Bob) The information-theoretic security against
Bob holds even if the ideal OT channel is replaced with an OT protocol that
provides statistical privacy for the sender (e.g., [45/1]).
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2. (Full security against active Alice) We do not know if Protocol [d] provides full
security against an actively corrupt Alice and leave this as an open question.
It seems reasonable to assume that the protocol achieves full security. Under
this assumption, one can plug Protocol [4 to the standard RVOLE-to-VOLE
transformation [5] and derive an actively-secure VOLE protocol. We refer to
this protocol as VOLEI.

3. (Concrete communication complexity of CDS) Our concrete CDS communi-
catesn+1 = k+w+1 field elements in the offline message zy and leaves the
1-messages z;1 empty. Accordingly, each of the OT messages is just a single
field element. Moreover, by resorting to computationally-private CDS (and
exploiting PRGs), we can use an economic variant of the CDS in which each
of the 0-messages, 21, ..., 2m, is of length k£ independently of the field size.
As a result, the total communication complexity of the OT messages can be
reduced to mlog |Fi| + m - k. Furthermore, this can be done while keeping
the computational complexity linearE

4. (On the achievable rate) Based on the aforementioned optimized CDS, Pro-
tocol [f] communicates m field elements from Bob to Alice, n+1 = k+w field
elements from Alice to Bob in the offline CDS message, and m field elements
plus O(mk) bits over the OT-channel. Overall, the number of field elements
that are communicated is 2m+n+1 = 2(u+v)+w+k+1 = (2v+w)(1+0(1))
where the last equality holds since k = o(w) and v = o(v). Recall that v
is the length of the code produced by Ecc, which needs to be at least ap-
proximately ﬁw to allow successful decoding of w field elements values
from a noisy codeword with a fraction of u random erasures. Therefore, the
communication rate of the protocol, measured as the length of the protocol’s
output w, divided by the communication complexity, approaches to:

w 1—wu
W4+w 3—p

If Assumption [3 holds for any constant error rate > 0 then we can obtain
a rate approaching % — ¢ for any constant € > 0. Furthermore, by choosing
a non-constant erasure fraction of u = ﬁ for f(k) that tends to infinity

with k (for example f(k) = 10; ) we get an asymptotic rate of 1/3, namely,
in order to realize an RVOLE functionally of size w by our protocol 3w
fields elements should be communicated (where w and k tend to inﬁnity)E
The reduction to VOLE increases the communication by w additional field
elements and so the rate of the VOLE1 protocol is ﬁ which approaches
to 1/4 for a small noise rate. Recall that the communication rate of the

passively-secure ADINZ VOLE protocol approaches 1/3.

12 The computational complexity and communication complexity of batch-OT are mea-
sured as the total bit-length of the sent messages; see the full version [I0] for a
justification for this convention.

13 In the context of binary codes, LPN-style assumptions with sub-constant z are quite
standard.
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6 Actively-Secure VOLE under Correlated
Noisy-Codewords

In this section, we realize the VOLE functionality directly while achieving active
security against both Alice and Bob. For this, we introduce an additional, new,
“Correlated Noisy-Codeword” intractability assumption. We will also have to
slightly modify the parameters of the ADINZ encoding matrix. Recall that the
ADINZ encoding matrix T is defined as follows:

Ouxw
T= mek y

Eccyxw

where m = 2(k%), u = 2(klog® k) and v = O(m). For technical reasons we will
need to slightly strengthen the linear-independence requirements of the matrix
T as follows. Except with negligible probability over the choice of M and Ecc
it must hold that: (a) If we sample a random subset of the first u rows of M
by taking each row independently with probability 1/ log!® k then the resulting
matrix has full rank (all the columns are linearly independent); (b) The error-
correcting code Ecc can correct up to O(logl‘1 k) errors and, as before, can
recover from say 1.2uv arbitrary erasures. (The constant 1.2 can be replaced
with any constant larger than 1.)

6.1 The Correlated Noisy-Codeword Hardness Assumption

The following intractability assumption intuitively asserts that given a noisy
codeword ¢ = Tv+e of T, it is hard to efficiently generate a new noisy codeword
d = Tv' + €’ whose noise is non-trivially correlated with e in the following sense.
The new noise vector €’ agrees with the original noise vector e with respect to
the set of non-noisy coordinates I = I(e), i.e., d[I] € colspan (T[I]), but e’

is “far” from being a scalar multiple of e. That is, p (d7 colspan (T\c)) =/

where p(d, S) is the minimal Hamming distance between a vector d and a set
of vectors § C F™. Observe that such a noisy codeword can be generated by
sampling a vector in the column span of (7'|¢) and then modifying ¢ entries with
the hope that all these entries fall out of the set of clean coordinates I. Such an
attack succeeds with probability uf, the following assumption states that this is
essentially the best that one can hope for up to polynomial speed—upsE

Assumption 5 (Correlated noisy codeword). For a distribution T over
matrices in F}"*" where m(k),n(k) are some polynomials in the security param-
eter k, and for a constant noise rate of u < 1/2, the Correlated Noisy-Codeword

14 The concrete formulation that is taken here is chosen for the sake of simplicity. More
refined and conservative versions (e.g., that assume better speed-ups and consider
sub-constant noise regimes) can be adopted as well.
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assumption asserts that for every efficient adversary A* there exists some neg-
ligible e(k) and constant C' such that for every integer £ < m:

d(_ir*(c) d[I] € colspan (T[I]) A p (d, colspan (T|c)> = } < exp(—Cl)+e(k)

where T' < T and ¢ = Tv + e for v« F}, e < D(Fy));' and I = I(e).

For our purposes, it suffices to assume the “super-logarithmic version of
Assumption ’ that asserts that for every super-logarithmic function 4(k) =
w(log k) the success probability in the above game is negligible in k. (Note that
this variant follows from the above formulation.) We conjecture that every ma-
trix distribution whose noisy codewords are pseudorandom also satisfies this
assumption, and provide some evidence for this in the full version [10]. From
now, we will always use the super-logarithmic version of the assumption with
respect to the distribution 7 that corresponds to the ADINZ encoding matrix.

We will make use of the following simple observation whose proof is deferred
to the full version [10].

Lemma 2. There exists a probabilistic polynomial-time algorithm G that given
the matriz T and the vectors c,d € F}' outputs a vector u € FZ"'l with the
following guarantee. Except with negligible probability in k over the choice of
(T, c) (which are distributed as in Assumption[5) and the randomness of G, if d
is £-close to colspan (T|c) for = O(logl‘1 k) then the algorithm outputs u such
that (T'|c) - u is {-close to d.

6.2 The VOLE2 protocol

We present our VOLE protocol and prove security under Assumption [5} The
protocol employs an ideal-commitment functionality, aka commitment channel,
which is a 2-phase ideal functionality of the following form. In the commit phase,
the functionality takes an input z from a sender (e.g., a field element), and
delivers a commit message to the receiver. At a later phase, the sender can
de-commit by sending an “open” message to the functionality which delivers to
the receiver the committed message x. Such an ideal commitment channel can
be constructed based on OT-channel [21122] perfect security against the receiver
and statistical security against the sender the communication and computational
complexity of &k OT-calls and & field additions (where k is the statistical security
parameter).

Protocol 6 (VOLE2 protocol). To initialize the protocol Bob samples the
matriz M < M(1* ) and sends it to Alice.

1. Alice and Bob: Hold inputs x € Fj, and a,b € F}} respectively. The parties
invoke Pmtocol for RVOLE where Bob’s input is a random vector a’ < F}’,
and Alice’s input is = and a random vector b’ < F}’. Let 2’ denote the
random field element that is being sampled by Alice in the protocol and let
A, = x — 2’ denote the secret that Alice delivers via the CDS.
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2. Alice: Sends A, over an ideal commitment channel which delivers a “com-
mit” message to Bob.

3. Bob: If Bob aborts during Protocol [J] then he aborts the entire execution.
Otherwise, Bob recovers from the protocol the vector v’ (supposedly x’a’+b')
and the CDS secret A, (supposedly x — x'). Bob sends A, to Alice.

4. Alice: Verifies that Bob’s message equals to A,, and aborts if the check
fails. If the check passes, Alice decommits by sending an “open” message to
the commitment channel which delivers the committed value, A, to Bob.

5. Bob: Verifies that the decommitted value equals to A,, and aborts if the check
fails. If the check passes, Bob sends to Alice the vectors v = v/ + Aza’ + b
(supposedly, xa' + b +b) and A, =a —a’'.

6. Alice: Computes the vector w = ©tAq + v — b (supposedly, za + b) and
outputs the result.

In the full version [I0] we prove that the protocol is computationally secure
against an actively corrupt Alice, and statistically secure against an actively
corrupt Bob. By replacing the commitment with & calls to OT, we derive the
following lemma.

Lemma 3. Suppose that Assumptions[3 and[5 hold. Then protocol [¢ for hon-
est parties realizes the VOLE functionality of width w over F with arithmetic
complezity of O(w) (ignoring the initialization cost) in the OT-hybrid model.
The protocol is statistically-secure against an active sender Bob with negligible
deviation error and computationally secure against an active receiver Alice.

Some comments are in place:

1. (Unbounded sender) Here too, the protocol achieves information-theoretic
security against the sender even if the ideal channels are replaced by an OT
protocol that provides statistical privacy for the sender and by a commitment
scheme that is statistically hiding. (The latter reduces to the former by using
the OT-to-Commitment transformation.

2. (Working over small fields) The statistical error is exponentially-small in the
bit-length of the field element A,. (This essentially corresponds to the case
where Bob guesses the value of A, despite playing dishonestly in the RVOLE
protocol in a way that keeps the CDS secret hidden). Thus, when the field
is small the error is only 1/|Fg|. Nevertheless, even when the field is small,
one can easily get a negligible error at a minor cost by randomly padding
the element A, to length k.

3. (On the achievable rate of Protocol [f)) The communication of Protocol [f]
(VOLE2) consists of (2v+w)(140(1)) field elements in Step 1 (when invoking
the RVOLE Protocol), 2k field elements to commit (via k¥ OT calls) and
to de-commit, and additional 2w + 1 elements. Since k& = o(w), the total
communication complexity is (2v+3w)(14 o(1)). Recall that v is the length
of the code produced by Ecc, which needs to be at least approximately ﬁw
to allow successful decoding of w field elements values from a noisy codeword
with fraction of p random erasures. Therefore, the communication rate of
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the protocol, measured as the length of the protocol’s output w, divided by
the communication complexity, approaches to

w 1—p

20+3w  5—3u

If Assumption [3| holds for any constant error rate u > 0 then the rate of
RVOLE2 approaches to % — ¢ for any constant € > 0.

4. (Comparison to VOLE1) In terms of communication we pay an amortized
cost of an extra field element per each VOLE entry compared to VOLEL,
which, in turn, pays an extra field element compared to the passively-secure
ADINZ protocol. In terms of computation, VOLE2 has a negligible overhead
compared to VOLE1 which consists of a single commitment (for the entire
VOLE), and, an amortized cost of 1/R field multiplication and 2/R field
additions per VOLE entry where R = w/v is the rate of the error-correcting

code[@]

7 Actively-Secure VOLE under Fast Pseudorandom
Matrix

In this section, we describe a VOLE protocol with full active security based on
the modified-RVOLE protocol (Protocol . Following the outline in Section
we begin with some useful observations.

7.1 Useful Observations

More CDS properties. We will make use of the fact that our concrete CDS sends
messages only on “zero” inputs. (That is, our CDS is effectively a secret sharing
scheme for the negated predicate.) Let z = (20, 21,0,---,2m,0) be a (possibly
malformed) full vector of CDS messages. We say that z is walid if for every
input I that satisfies the underlying predicate f, the CDS decoder recovers the
same secret. We say that z is honestly generated if it is generated by invoking
the CDS message generator honestly on some random tape and some secret. (By
perfect correctness, an honestly generated CDS is always valid.) We assume the
existence of an efficient tester 7 that rejects every invalid z, and accepts every
honestly generated z. (That is T is allowed to accept a vector that is not honestly
generated as long as it is valid.) Furthermore, if T accepts then it should be able
to recover the secret. Our CDS construction satisfies these properties.

15 Recall that VOLE1 is obtained by combining the RVOLE-to-VOLE transformation
with Protocol [] for RVOLE. Accordingly, the latter protocol achieves provable ac-
tive security against the Sender, provable passive security against the Receiver, and
heuristic active security against the Receiver.
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Closer look at cheating Alice. Fix some strategy A* for a malicious Alice in
Protocol [ Formally, this is a deterministic mapping that takes Alice’s inputs
(z,b), the public matrix M, and Bob’s message ¢ and outputs a CDS message
vector z = (20, (2:,0)ie[m]) and a vector d (to be placed on the l-inputs of the
OT). If either z is invalid or d is invalid in the sense that d ¢ colspan ((Tc)), we
say that A* cheats on (z,b, M, ¢). In the full version [10] we show that when Alice
does not cheat, her “effective input” can be extracted given her OT messages,
and use this to prove the following lemma. Let us denote Protocol [ by II.

Lemma 4. There exists a simulator SIM' (x, b) that makes a black-box use of A*
and simulates II whenever A* does mot cheat. Formally, for every sequence of
inputs ((xg, bg), a) it holds that the ensemble

[REALA« ;7((k, bi), ar) | A* doesn't cheat |
s computationally indistinguishable from the ensemble

[IDEALSIM s lar,be) | SIM doesn’t faz’l} .

The next crucial observation is that there exists a strategy for Bob that
detects (with probability 0.5) whether Alice cheats. Indeed, as explained in the
introduction, in the OT phase Bob can toss a coin and ask with probability 1/2
to receive the vector d (by using I = 1™) and with probability 1/2 the vector
z (by using I = 0™) and check validity. When running in this “detection mode”
Bob effectively gives up on the computation and just verifies whether Alice
misbehaves or not. Note that Bob’s decision is taken only in the OT phase and
is hidden from Alice, and so effectively Alice first “commits” to strategy (cheat
or not), and only then Bob decides whether to “call her bluff”. Furthermore, even
when Bob acts as a detector, we can fully simulate his view (since the protocol
is actively-secure against any deviation of Bob). We will exploit this property to
obtain a “silent” cut-and-choose version of the protocol as follows.

7.2 The VOLES3 protocol

Let IT denote Protocol |4 instantiated with width w(k) = O(k?) and recall that
IT makes a call to an m = m(k)-batch OT channel. The new protocol (hereafter
denoted as VOLE3) realizes VOLE with width W = W(k) (for some value
that will be determined later) by making t = ¢(k) calls to I, and by “opening”
p = p(k) sessions for detecting a potential cheating by Alice. In addition to
these parameters, we let s = s(k) = ¢(k) — p(k) denote the number of remaining
“un-opened” sessions, and let £ = ¢(k) be a leakage parameter. The product ¢p/t
should be polynomial in the security parameter k£ and, for efficiency purposes, s
should be £2(t). For example, set t = k, p = ¢ = k¥ and s = k — k9. Again, we
make use of ideal commitments which can be realized based on OT channels.
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Linear-time resilient functions. We will need a linear mapping Ext : F** —
F(=A)sw where B = B(k) < 1 is bounded away from 1, with the following prop-
erties: (1) Ext should be computable in linear arithmetic time (i.e., by making
O(sw) operations); and (2) The distribution Ext(X) should be uniform when-
ever the input X is uniform except for at most ¢ = £(k)w + 1 = o(sw) entries
that may be arbitrarily fixed. Formally, for every ¢'-subset L C [sw] and fixing
(Xi)ier € FY if (Xi)igr is uniform over Fs© =¥ the output Ext(X1,..., Xw) is
uniform over F(!=#)5%_Such functions are known as ¢ -resilient functions [20] and
can also be viewed as perfect deterministic extractors for bit-fixing sources. One
can realize such functions, with the desired parameters, based on linear-time
encodable error-correcting codes with rate 1 — 8 and distance ¢/ + 1 (see [20]
and [24] Theorem 3.1.7]). The width of VOLES is taken to be the output length
of Ext, i.e., W(k) = (1 — B)sw.

Protocol 7 (VOLES3 protocol). Upon initialization, bob samples M + M(1*,F)
and sends it to Alice. The input of Bob is a pair of vectors g, f € F}Y and the
input of Alice is © € F.

1. Bob: Invokes t independent parallel sessions of II with the matriz M as a
public parameter, where the jth private input is a random vector a; < F}’.
For each such session j € [t], Bob computes the first-round message c; as in
Step 1 of II, and sends c¢;j. Let I; denote the (vector representation of the)
set of clean coordinates in c;.

2. Alice: Samples x* < Fy.. For every j € [t], Alice sets her inputs for the jth
session to be (x;,b;) where x; = z* and b; < F}Y, she samples a random
tape for the jth session, sends the corresponding offline CDS message z; o
to Bob, and computes the vectors (z;,d;) that will be sent in the OT phase
of the jth session (by following Steps 2 and 3 of II). Here we view Alice’s
input to the m-batch-OT as a pair of m-long vectors.

3. OT-phase: Bob samples a random p-subset P C [t] of sessions that will
be “opened”. For each j € [t| in parallel, the parties invoke the m-batch OT
channel of the jth session. Alice’s input is (zj,d;). If j ¢ P Bob’s input
is I;; Otherwise, Bob samples a random bit o; < {0,1} and uses a trivial
selection vector I} := o7* € {0™, 1™ }.

4. Bob: If cheating is detected in one of the “opened copies” j € P (i.e., if the
received vector is invalid), Bob aborts. Otherwise, let S = [t] \ P denote the
set of unopened copies. For every j € S, Bob recovers the output v; € F} of
the jth session just like in Step @ in IT (hereafter referred to as IIs). If the
output is “abort” Bob sets v; = 0.

5. Sub-protocol: To verify that Alice’s inputs (z;);es are all equal, the parties
do:

— Bob: Computes the sum ¢ of all the last elements of the vectors (a; €
Fi)jes: i.e, 0 := 3 i gaj[w] and sends to Alice the pair (S,d). (Bob
challenges Alice to compute the sum 3, g v;[w].)

— Alice: Sends A = 276 + 3 g bj[w] over the ideal commitment channel
which delivers a “commit” message to Bob.

— Bob: Given a “commit” message, sends the value N := 3.5 v;[w].
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— Alice: decommits by sending an “open” message to the commitment
channel if N = X, else Alice aborts.
— Bob: Halts with an abort symbol if Alice does not open the commitment
or if the decommitment X # X', and continues otherwise.
6. Alice: Sends A =z — z*.
7. Bob: Aligns the results of the unopened sessions vectors by setting

u; :=v; + Aa;, VjeES,

concatenates the vectors (a;);cs to a single vector ag € Fi and the vectors
(uj)jes to a single vector ug € Fi*, and extracts the vectors

a’ = Ext(as), u' :=Ext(ug).

Bob sends to Alice the vectors a:= f —a' and h :==u' +g.
8. Alice: Concatenates (b;)jes to a vector bg € F;*, eatracts b’ := Ext(bg),
and outputs h + o — b'.

The protocol has an arithmetic complexity of O(tw) = O(sw) = O(W), as re-
quired. The communication complexity is dominated by the complexity of Steps
1-3 and Step 7 which is t-Cp (w)+2W = tO(w)+O(W) = O(W) where Cpz(w) is
the communication complexity of IT over width w. (The communication in Steps
4-6 consists of O(s) bits and O(k) field elements for realizing the commitment
channel via OT). By employing extractors that shrink their input by a factor
of 1 — 8 for arbitrarily small constant § (e.g., based on the codes of [33]), we
can take W = (1 — 8)(1 — o(1))tw. Recalling that C(w) approaches to 3w, the
total communication of VOLE3 approaches to t3w + 2W = 5W/(1 — 8 — o(1)),
i.e., the asymptotic rate approaches to 1/5. The simulators for Alice and Bob
appear in the full version [10], leading to Theorem

8 Batch-OLE

Let n(k) be a polynomial in k and let G : F¥ — F™ be a function that can
be computed by a constant-depth bounded fan-in arithmetic circuit (aka NC°
arithmetic circuit). We assume that G is input-regular in the sense that each
input affects at most O(n/k) outputs. Let fg : F* x F"* x F¥ — F" be the
mapping

(e,d,z) — G(x) ©®c+d,

where ¢,d € F", € F* and ® stands for entry-wise multiplication. We will
be interested in computing the Generalized Affine Functionality F& which takes
the vectors ¢,d € F™ from Alice (the sender) and delivers to the receiver Bob a
random vector & € F* together with the outcome of fg(c, d, ). The functional-
ity F¢ is corruption-aware and it allows a malicious Bob to choose x arbitrarily.
Throughout, we assume, wlog, that, for every ¢ € [n], the output of G;(-) is a
non-constant function (i.e., for some x, 2’, it holds that G;(x) # G;(z')).
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Realizing F¢. In the passive setting, it is easy to realize F¢ by using an arith-
metic variant of Yao’s protocol [52] where the garbled circuit is replaced with
fully-decomposable randomized encoding (DARE). (See the full version [10] for
background on DARE; for now, the reader can think of DARE as arithmetic
garbled circuit.) In fact, this protocol also provides active security against the
receiver Bob. We will show how to cheaply upgrade the protocol and provide ac-
tive security against the sender as well. Our protocol employs DARE for f = fg.
By [3718] there exists a DARE f which can be encoded and decoded by an O(n)-

size arithmetic circuit. Since f is decomposable we can write it as

flx,e,d;r) = (fole,d;r), (fi<xi§"°))i€[k])'

(That is, we collapse the c-dependent outputs and the d-dependent outputs to
a single “block”.) Furthermore, for every i € [k] the function f;(z;;7) can be
written as z;a; + b; where the vectors (a;, b;) are sampled by a “key-sampling”
mapping K; : r — (a4, b;). By padding, we may assume that the key generation
functions K1, ..., Ki have uniform output length of w, and since G is an input-
regular NC° function, it holds that w = O(n/k). Moreover, recall that given
(r, ¢, d) we can collectively compute fo(r, ¢, d), (Ki(r))iefr) by O(n) arithmetic
operations. We denote the randomness complexity of the DARE by p. We realize
Fe by Protocol [§] which employs an ideal batch-VOLE of width 2w and length
k (that is, k parallel calls to VOLE of width 2w), and performs 2 additional
rounds of interaction. In the full version [I0] we prove the following lemma.

Lemma 5. Protocol [§ realizes F¢; with information-theoretic active security in
a constant number of rounds by making a single call to an ideal k-length O(n/k)-
width VOLE, communicating O(n) field elements, and performing O(n) arith-
metic operations. The protocol is perfectly secure against an active adversary that
corrupts Bob (receiver) and statistically secure against an adversary that actively
corrupts Alice (the sender) where the statistical deviation is O(D/|F|) = negl(k)
where D = O(1) is the degree of G.

Protocol 8 (GA protocol). Let X denote the uniform distribution over F*.
Given an input c¢,d € F" for Alice and an empty input for Bob, the protocol
proceeds as follows.

1. Alice: selects randomness r < FP for the encoding, and sets vy = fo(c, d;r)
and (a;,b;) = K;(r) for every i € [k]. In addition, Alice samples random
cd,d € F" and v’ « F?, and sets v, = fo(c',d';r) and (a},b]) = K;(v') for

1) 7

every i € [k].
2. The parties invoke k-length of O(n/k)-width VOLE as follows. Bob samples
x <+ X, and plays the role of the receiver with the input € = (x1,...,xk).

Alice plays the role of the sender and sets her inputs to be the 2w-length
vectors (a;0a}) and (b;ob;) for every i € [k] where o denotes concatenation.
For every i € [k], the functionality delivers to Bob the vectors v; = z;a; +b;,
v, = z;al + bl.

In addition, Alice sends to Bob the vectors vy and vy.
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3. Bob: decodes the vectors z,z' € F™ by setting z = Dec((v;)o<i<k) and
z' = Dec((v})o<i<k) where Dec is the decoder of the DARE. In addition,
Bob sends to Alice a random non-zero field element o < F*.

4. Alice: sends to Bob the n-length vectors v = c+ ac’ and § = d + ad'.

5. Bob: outputs (x,z) if z + az' = G(x) © v+ 4§, and, otherwise, aborts.

Constructing batch-OLE. One can easily construct batch-OLE of length n based
on a single call to the F¢ functionality where G is a PRG (see [5]). If G : F¥ — F»
is an NC® PRG with, say quadratic stretch n = k2, we can further realize
F¢ using the above protocol with constant computational overhead. Note that
the protocol assumes that G is input-regular. This requirement is satisfied by
natural PRG candidates in NCP?, and, in fact, it can be fully waived (see the
full version [10]).

On the concrete complexity of the protocol. The complexity of the protocol is
dominated by the parameters of the PRG G and the cost of the DARE for fq.
Assuming that G : F¥ — F™ is a d-local regular PRG whose DARE can be
computed and decoded by T arithmetic operations, Protocol [§ has a complex-
ity of 27" plus 4n additions and 4n multiplications. The value of T" depends on
the locality d and the exact choice of the predicate that computes G;, and de-
serves further study. Recall that Protocol [§] essentially realizes “pseudrandom”
batch-OLE. This can be upgraded to a “standard” batch-OLE with an additional
overhead of 2n multiplications and 5n additions.
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