
Let Attackers Program Ideal Models:
Modularity and Composability for

Adaptive Compromise

Joseph Jaeger[0000−0002−4934−3405]

School of Cybersecurity and Privacy
Georgia Institute of Technology, Atlanta, USA

josephjaeger@gatech.edu
https://cc.gatech.edu/~josephjaeger/

Abstract. We show that the adaptive compromise security definitions
of Jaeger and Tyagi (Crypto ’20) cannot be applied in several natural use-
cases. These include proving multi-user security from single-user security,
the security of the cascade PRF, and the security of schemes sharing the
same ideal primitive. We provide new variants of the definitions and show
that they resolve these issues with composition. Extending these defini-
tions to the asymmetric settings, we establish the security of the modular
KEM/DEM and Fujisaki-Okamoto approaches to public key encryption
in the full adaptive compromise setting. This allows instantiations which
are more efficient and standard than prior constructions.

Keywords: Adaptive security · Ideal models · Selective-opening attacks.

1 Introduction

Definitions lie at the heart of modern cryptography. They allow us to math-
ematically specify what should be achieved by a scheme in practice and give
modular, proof-based analyses to ensure these properties are achieved. Studying
and understanding definitions is fundamental to the field of cryptography.

There are multiple desiderata to consider when giving a security definition
for a primitive including: (i.) Is it philosophically sound? Does it meaningfully
model the uses and goals of a primitive in the real world? (ii.) Is it sufficiently
strong? Can we prove that this security notion will imply security of higher-level
protocols constructed from the primitive? (iii.) Is it sufficiently weak? Can we
prove that schemes which “should be” secure satisfy the definition?1

In this work, we consider a set of definitions recently introduced by Jaeger and
Tyagi [23] for the security of encryption schemes and pseudorandom functions
in the “adaptive compromise” setting. They gave several examples of schemes
1 More nuanced versions of (ii.) and (iii.) ask not just whether these proofs are pos-

sible, but also how easy they are to write. Definitions which are difficult to work
with can result in proof errors or cryptographers only loosely sketching their proofs
(potentially hiding errors).

https://cc.gatech.edu/~josephjaeger/

2 J. Jaeger

achieving their definitions as well as higher-level protocols which can be proven
secure based on sub-primitives achieving their definitions, thereby evidencing
that their definitions achieve desiderata (ii.) and (iii.). We provide counter-
evidence. There are natural goals and constructions for which their definitions
fail with respect to (ii.) and (iii.).2

As an example, it does not seem to be possible to prove that single-user re-
strictions of their definitions implies the full multi-user versions. Across a wide
variety of definitions, the notion of multi-user security that is considered “cor-
rect” follows from single-user security by a straightforward hybrid argument.
Thus, whether this holds for a definition might be considered a sort of litmus
test. A definition for which this is not possible should be examined carefully to
understand why. Having done so, we propose new variants of Jaeger and Tyagi’s
definitions and show that they resolve these shortcomings, while preserving the
positive qualities of the original definitions.

1.1 Adaptive Compromise and SIM-AC security

Before discussing our contributions, let us first briefly recall the adaptive com-
promise setting broadly and the specific SIM-AC definitions of Jaeger and Tyagi
(simulation security under adaptive compromise). Roughly speaking, the adap-
tive compromise setting captures times when there are multiple users of a sys-
tem, each of whom have their own secrets. An attacker then interacts with these
users and based on these interactions may adaptively decide to steal some of the
secrets. In applications of these definitions, this description may be somewhat
metaphorical. For example, in the searchable encryption scheme of CJJJKR [14]
the “users” are keywords, each of which are assigned a secret key. The “stealing”
of keys occurs because to perform a search for a particular keyword, the protocol
shares the keyword’s secret key. The adaptive compromise setting is widely stud-
ied in cryptography and is associated with a variety of terms including (but not
limited to) adaptive corruption/compromise/security [23,26], non-committing
encryption [13,25,10,12], and selective-opening attacks [6,9,7,18,19,21].

Jaeger and Tyagi’s work was motivated by various papers that ran into adap-
tive compromise issues for symmetric encryption or PRFs and had addressed
the issues by fixing particular uses of random oracles acting like PRFs. They
observed that these works all technically required the same detail-intensive ran-
dom oracle analysis (which was usually omitted or incorrect). To address this,
they introduced their SIM-AC definitions which allow one to abstract away this
detail-intensive analysis as something that need only be done once at the lowest
levels of analysis. They showed that these notions were achieved by standard effi-
cient schemes in appropriate ideal models, and sufficed for proving the security of
their motivating higher-level applications. Broadly their definitions were online-
simulator based definitions in which the attacker tries to distinguish between a

2 The examples for which (iii.) fails are “intermediate-level” proofs where both the
assumption and desired result use their definitions. Arguably then, it is only with
respect to (ii.) that these definitions have issues.

Let Attackers Program Ideal Models 3

Fig. 1. Left: Typically one proves a scheme Π achieves a security notion with random
oracle P, then heuristically assumes it is SEC secure with a particular hash function
(e.g. SHA-384). Middle and Right: A scheme Π cannot be SIM-AC-X secure with
any standard model hash function [23,25]. Instead, one uses SIM-AC-X security of ΠP

as an intermediate step to showing that ΠP achieves some security notion SEC′. Then
one heuristically assumes ΠSHA is SEC′ secure.

real world where they interact with the honest algorithms of the scheme and an
ideal world where the simulator provides responses for every oracle query (in-
cluding ideal primitive queries). Security requires that for every adversary there
is a simulator whose responses it cannot distinguish from the real world.

Notably these definitions were defined explicitly for use only with ideal prim-
itives because techniques of Nielsen [25] show that such definitions cannot be
achieved in the standard model. Arguably this causes issues with desiderata (i.).
Consider a scheme ΠH which expects access to a hash function H. In practice,
the might be deployed with the hash function SHA-384 (giving ΠSHA) under
the hope that it achieves some security notion SEC. Towards justifying this the
scheme may be analyzed when the hash function is replaced with a random
oracle P (giving ΠP). If ΠP is shown to be SEC secure, this may be taken as
heuristic evidence that ΠSHA will be SEC secure. However, this clearly cannot
be the case for SEC=SIM-AC-X from the aforementioned result that SIM-AC
notions cannot be achieved in the standard model.

From our perspective, the “correct” interpretation is that the SIM-AC defini-
tions are intentionally chosen to be overly strong so that (in ideal models) they
imply any other security property SEC′ one desires. Suppose SEC′ is plausibly
achievable in the standard model and one proves that SIM-AC-X security im-
plies SEC′ security. Then a proof that ΠP is SIM-AC-X secure can be viewed as
part of a longer ideal model proof that it achieves SEC′. Then the proof can act
as as heuristic evidence that ΠSHA is a standard model scheme achieving SEC′.
We represent this pictorially in Fig. 1.

A similar viewpoint can be taken to proving that a particular hash function
construction is indifferentiable from a random oracle. It is trivial to show that
no standard model hash function can achieve this. However, analyzing indiffer-
entiability in ideal models still serves as a convenient intermediate notion for
heuristically justifying the use of the hash function in some contexts.

4 J. Jaeger

1.2 Our results

Shortcomings of SIM-AC. After introducing notations and other preliminar-
ies, we start in Section 3 by recalling the original SIM-AC definitions of Jaeger
and Tyagi. In their definitions, an attacker interacts with either a real world
(where oracles are instantiated honestly) or an ideal world (where oracles are all
simulated by a simulator given only some leakage about the queries being made).
The definitions are multi-user and allow the attack to ask that a particular users
secrets be revealed at any time. Then, in the ideal world, the simulator is given
all of the suppressed information about prior queries and must produce a con-
sistent key, lest it be discovered. In the ideal world, the simulator completely
controls the responses of the ideal primitive.

We evidence some shortcomings of these definitions, in that they are seem-
ingly unable to prove some very natural results.3 One example, which came up
in their own work, is that their definitions cannot be used for proofs wherein the
ideal object is used multiple times within a protocol (whether by multiple differ-
ent sub-primitives or repeated use of the same sub-primitive). For example, in
the searchable encryption construction of CJJJKR [14] the same random oracle
was shared across encryption and a PRF, but for the analysis done by Jaeger
and Tyagi they were forced to use different primitives for the two uses. One can
generically solve this problem via oracle cloning [5], but we find this unsatis-
factory. A good definitional framework should allow us to capture when uses of
ideal primitives don’t require domain separation techniques. Furthermore, while
domain separation is relatively fast and efficient for random oracles, we are gen-
erally interested in the use of a variety of ideal primitives and it is much less
clear how to do oracle cloning efficiently with something like an ideal cipher.

Similar and even more subtle issues arise in some “standard” results that
one would expect to hold with a “good” definition. One would expect that it
should be possible to prove secure the cascade construction of a PRF [4,17]
which iteratively applies a smaller PRF, as well as to prove that for most se-
curity notions single-user security implies multi-user security. The cascade con-
struction underlies several other construction PRFs including AMAC, HMAC,
and NMAC [2,3,1]. These (and other) issues all stem from a common cause.
In SIM-AC, the simulator completely controls and replaces the ideal primitive.
As such the definition is not robust to proofs which require multiple different
applications of security with respect to the same ideal primitive.

New definition, SIM*-AC. Motivated by these shortcomings, in Section 4
we propose new variants of these definitions, which we term SIM*-AC. Our new
definitions match the prior SIM-AC definitions, but make three crucial modifi-
cations. The first is that rather having complete control of the ideal primitive,
we give the simulator access to an oracle for querying the primitive and which

3 We use “seemingly” here and similar phrasing elsewhere because, while we have
deeply considered these problems and do not see how SIM-AC could be used to prove
these results, we do not have any explicit counterexamples showing it is impossible.

Let Attackers Program Ideal Models 5

additionally provides the special power of being able to give an input-output pair
which the primitive will program itself to be consistent with, if possible. This
modification means that applications of SIM*-AC in a proof will leave the ideal
primitive around for use in further proof steps. However, these future steps can
run into issues where the simulator is supposed to have programmed the ideal
primitive, but a reduction attacker who wants to run the simulator internally
has no way of forcing other parties to use a programmed ideal primitive. This
issue is resolved by our second modification which gives the adversary the ability
to program the ideal primitive. The final modification is aimed at proofs which
require a polynomial number of hybrids and, as such, the reduction adversary
needs to depend on the simulator so that it can properly simulate internal hy-
brids. We simply reverse the order of quantification so that a universal simulator
is quantified before a specific attacker.

After the introduction of the new definitions we show by example that the
modifications suffice to write the proofs we identified as seemingly not possi-
ble with the original SIM-AC definitions. Namely, we prove that for all of our
SIM*-AC definitions (with one exception) single-user security implies multi-user
security4 and that the cascade construction of a large-domain PRF from a small-
domain PRF is secure. Both proofs are hybrid arguments which conceptually re-
semble such proofs for most standard indistinguishability-based security notions.
For going from single-user to multi-user the hybrid is over how many of the users
will be honestly run versus emulated by a copy of the single-user simulator. For
the cascade construction (which is a generalization of the GGM construction of a
PRF from a PRG), we think of there being an underlying tree structure imposed
on the internal values of the computation. The proof performs a hybrid over how
many layers of the tree are honestly run versus emulated by a multi-user simu-
lator for the underlying PRF. Using multi-user security allows us to hybrid one
layer at a time, rather than having hybrid over each node individually.

Asymmetric encryption. The SIM-AC definitions focus on symmetric prim-
itives (encryption and PRFs) because this is what was required by their appli-
cations. However, adaptive compromise has been studied in detail for public-
key encryption, so it is natural to ask how a SIM*-AC notion for public key
encryption would work. We do so in Section 5, providing a definition that cap-
tures the compromise of receiver secret decryption keys and sender randomness.
The resulting definition roughly matches the SIM-FULL definition of Camen-
sich, Lehmann, Neven, and Samelin [12].5 In their work, they showed that SIM-
FULL was stronger than various prior adaptive compromise definitions [11,18]
and equivalent to a new universal composability definition they introduce.

Casting this definition in SIM*-AC language provides benefits. Where CLNS
constructed one particular secure encryption scheme from one-way trapdoor per-
mutations, the broader context of SIM*-AC style definitions allows us to fol-
4 The exception is key-private security which is meaningless with only a single user.
5 Their definition is basically a SIM-AC-CCA (not SIM*-AC) definition with labels

and using a random oracle.

6 J. Jaeger

low the example of Jaeger and Tyagi by giving modular analysis. In particular,
we introduce SIM*-AC definitions for key-encapsulation mechanisms (KEM),
then show the KEM/DEM approach [15] allows one to combine a KEM with
a symmetric encryption scheme to construct public-key encryption. We con-
sider one version of the Fujisaki-Okamoto transformation [16] (as modularized
by Hofheinz, Hövelmanns, and Kiltz [20]) to show that it can lift a KEM satis-
fying a one-wayness security notion to a KEM satisfying our full SIM*-AC-CCA
notion. Thereby we have a more general collection of different options how to
construct a public-key encryption scheme secure against adaptive compromise.
We can instantiate this with well-studied and standardized schemes, improving
efficiency because our analysis allows the use of block-cipher based symmetric
encryption for the DEM.

An interesting comparison point for our KEM/DEM analysis is the work of
Heuer and Poettering [19] who also looked at the KEM/DEM construction. They
proved a weaker offline-simulation notion of security for public key encryption
by making a particular concrete assumption about the DEM being constructed
from a blockcipher and having to have a particular simulatable form.

New definition, old results. Jaeger and Tyagi showed a number positive
results in their original work. These include that random oracles and ideal ci-
phers make SIM-AC-PRF secure function families, that various constructions of
symmetric encryption achieve SIM-AC security when their underlying function
families are SIM-AC-PRF secure, and that higher-level protocols can be proven
secure assuming the SIM-AC security of their constituent elements. It would be
rather disappointing if our switch to SIM*-AC security required us to re-prove
all of these results from scratch.

In Section 6, we dedicate the end of our paper to showing that these results
hold with SIM*-AC security. We roughly divide these pre-existing results into
three categories: low-level results (constructing basic SIM-AC primitives directly
from ideal primitives), intermediate-level results (using one notion of SIM-AC
to achieve another), and high-level results (proving secure some non-SIM-AC
protocol). For each we discuss how the existing result can be seen, possibly with
minor modification to the proof, to hold for SIM*-AC security. In some cases we
can get minor improvements along the way, such as allowing the proof to handle
when a single ideal primitive is shared between multiple schemes.

2 Preliminaries

Pseudocode notation. We define security notions using pseudocode-based
games. The pseudocode “Require bool” is shorthand for “If not bool then return
⊥”. If S is a set, then x←$ S sets x equal to a uniformly random element of S.
The notation x(·)←$ S means that each xu will be sampled according to xu←$ S
the first time it is accessed.

The notation y←$ A(x1, x2, · · · : σ) denotes the (randomized) execution of A
with state σ. Deterministic execution uses←. The state σ is passed by reference,

Let Attackers Program Ideal Models 7

so changes that A makes to σ are maintained after A’s execution. All other inputs
are passed by value. For given x1, x2, . . . and σ we let [A(x1, x2, · · · : σ)] denote
the set of possible outputs of A given these inputs.

The symbol ⊥ is used to indicate rejection or uninitialized variables. The
symbol ⋄ is used as a return value by functions that do not need to return any-
thing. Unless specified otherwise, these values are assumed not to be contained
in sets. Algorithms and oracles will typically assume their input is from a par-
ticular domain (e.g. the message space of an encryption scheme). We implicitly
assume adversaries never provide them with input not in these domains.

A list T of length n ∈ N specifies an ordered sequence of elements T [1], T [2],
. . . , T [n]. The operation T.add(x) appends x to this list by setting T [n+1]← x,
so T is now of length n + 1. We let |T | denote the length of T . In pseudocode
lists are assumed to be initialized empty (i.e. have length 0). An empty list or
table is denoted by [·]. We sometimes use set notation with a list. For example,
x ∈ T is true if x = T [i] for any 1 ≤ i ≤ |T |. The loop “For x ∈ T ” is defined to
be looping “For i = 1, . . . , |T |” and defining x← T [i] in each iteration.

If T is a list of tuples (x, y) then we index into T like a table where T ⟨x⟩ is
the y value of the last tuple in the list with first component x (or is ⊥ if no such
tuple exists). By T.add(x, y) we mean T.add((x, y)).

We use an asymptotic formalism with security parameter λ. A function f is
negligible if for all polynomials p there exists a λp ∈ N such that f(λ) ≤ 1/p(λ)
for all λ ≥ λp. We say it is super-polynomial if 1/f is negligible and super-
logarithmic if 2f is super-polynomial.

Suppose Gsec
x is a game that samples a uniformly random bit b, runs an

adversary which guesses bit b′, and then returns the boolean (b = b′). Then for
d ∈ {0, 1}, we let Gsec

x,d be the game with b hardcoded to have value d and which
outputs the boolean (b′ = 1). Standard conditional probability calculations give
that 2Pr[Gsec

x]− 1 = Pr[Gsec
x,1]− Pr[Gsec

x,0].

Ideal primitives. Most of the definitions we consider are dependent on ideal
primitives such as random oracles or ideal ciphers, so we require a careful for-
malization of them. An ideal primitive P specifies (for each λ ∈ N) a distibution
Pλ over functions f : Kλ×Dλ → Rλ. When needed to avoid ambiguity we write
P.Pλ, P.Kλ, P.Dλ, and P.Rλ. In the P ideal model, f ←$ Pλ is sampled at the
beginning of any security game and algorithms are given oracle access to f .

It is often important that oracle access to an ideal primitive can be efficiently
simulated despite the fact that each f ∈ Pλ is typically exponential in size. This
is referred to as lazy sampling, which we notate using an algorithm P.Ls. We will
think of f as being (partially) specified by a table σP indexed by Kλ×Dλ. Then
the evaluation algorithm has syntax y←$ P.Ls(1λ, k, x : σP). If σP[k, x] = ⊥,
it samples σP[k, x] according to the appropriate distribution conditioned on the
current value of σP.6 Then it outputs σP[k, x]. We sometimes use AP as shorthand
for giving algorithm A oracle access to P.Ls(1λ, ·, · : σP).
6 Concretely, this is the distribution induced by sampling f ←$ Pλ subject to
f(k′, x′) = σ[k′, x′] wherever the latter is not ⊥ and assigning σP[k, x]← f(k, x).

8 J. Jaeger

The standard model is captured by the primitive Psm for which Pλ always
returns the function f defined exactly by f(ε, ε) = ε. A random oracle Prom is
captured by Pλ’s output being uniform over the set of all functions f : Kλ×Dλ →
Rλ. An ideal injection Pinj is captured by letting Kλ consist of tuples (◦, k) for
◦ ∈ {+,−}. Then Pλ returns a uniform f for which f((+, k), ·) is an injection
with inverse f((−, k), ·) (we define inverse functions to output ⋄ on input a
value not in the image of the original function). An ideal cipher Picm is an ideal
injection for which f((+, k), ·) is a bijection on the finite set Dλ = Rλ. Standard
techniques allow Ls to be efficiently evaluated for such functions.

Cryptographic schemes may be constructed from multiple underlying cryp-
tographic schemes, each expecting its own ideal primitive. Let P′ and P′′ be ideal
primitives. We define P = P′ × P′′ via the following algorithms.

P.Init(1λ)

σP
′←$ P′.Init(1λ)

σP
′′←$ P′′.Init(1λ)

Return (σP
′, σP

′′)

P.Ls(1λ, k, x : σP)

(σP
′, σP

′′)← σP

(d, k)← k
If d = 1 then y←$ P′.Ls(1λ, k, x : σP

′)
If d = 2 then y←$ P′′.Ls(1λ, k, x : σP

′′)
σP ← (σP

′, σP
′′)

Return y

In other words, P.Pλ samples f ′←$ P′.Pλ and f ′′←$ P′′.Pλ, then defines f by
f((1, k), x) = f ′(k, x) and f((2, k), x) = f ′′(k, x).

Programming ideal primitives. For our new security notions we need to
make explicit a notion of “programming” an ideal model. By this we mean al-
lowing some third party to define the output of ideal model on inputs that have
not previously been queried. Let σP be a table indexed by Kλ × Dλ and let
(k, x, y) ∈ Kλ × Dλ ×Rλ. We say that σP is compatible with (k, x, y), denoted
σP♡(k, x, y) if there exists f ∈ Pλ such that (i) σP[k

′, x′] = f(k′, x′) wherever
σP[k

′, x′] ̸= ⊥ and (ii) f(k, x) = y. Then we allow programming of an ideal
model P using the algorithm P.Prog defined as follows.

P.Prog(1λ, k, x, y : σP)

If σP♡(k, x, y) then σP[k, x]← y
Return ⋄

This ensures that P cannot be redefined on an input where it was already defined
and that an ideal injection cannot be made to have inconsistent inverses.

Our careful formalizing of ideal primitives in terms of functions, particu-
larly in requiring that P.Prog maintain consistency, is important for avoiding
subtle issues in later proofs. This formalization ensures that a deterministic al-
gorithm with oracle access to P always gives consistent outputs even if P is
programmed between executions. Correctness of a scheme with access to P (e.g.
that decryption inverts encryption) is maintained even if P is programmed be-
tween executions of different algorithms. Without these properties it would be

Let Attackers Program Ideal Models 9

difficult to avoid erroneous proofs that implicitly assumed them during typically
“straightforward” proof steps.

This is not without cost. The requirement for consistency in programming
has the potential to introduce subtle errors elsewhere in proofs by implicitly
assuming an attempt to program an oracle worked, when in fact it failed because
of inconsistency. Additionally, the act of honestly querying the ideal primitive
can be detected by a programming adversary who attempts to program at that
point and then checks if they succeed in this programming. We believe this cost
to be worthwhile because in the analyses we have considered, the places that
could cause such proof errors would anyway need to be analyzed carefully to
avoid other errors if we were using a more permission notion of programming.

For generality, we allow the use of non-programmable ideal primitives in
games that allow programming. This is captured by defining P.Prog to immedi-
ately return ⋄. When we quantify over an arbitrary ideal primitive, we allow it
to be programmable or non-programmable (or the combination of multiple ideal
primitives – some programmable, some not). When we discuss a specific ideal
primitive, we mean the programmable version unless specified otherwise.

Syntax for cryptographic primitives. We assume familiarity with (ran-
domized) symmetric encryption, asymmetric encryption, function families (e.g.
PRFs), and key encapsulation mechanisms. We use the following syntax.

Symmetric encryption
k←$ SE.Kg(1λ)

c←$ SE.EncP(1λ, k,m)

m← SE.DecP(1λ, k, c)

Asymmetric encryption
(ek,dk)←$ PKE.Kg(1λ)

c←$ PKE.EncP(1λ, ek,m)

m← PKE.DecP(1λ,dk, c)

Function Family
k←$ F.KgP(1λ)

y ← F.EvP(1λ, k, x)

x← F.InvP(1λ, k, y)

Key Encapsulation Mechanism
(ek,dk)←$ KEM.Kg(1λ)

(c, k)←$ KEM.EncapsP(1λ, ek)

k ← KEM.DecapsP(1λ,dk, c)

A family of functions F only has inverse algorithm F.Inv if it is a blockcipher. For
simplicity, we assume perfect correctness which holds for all f ∈ P.Pλ. We will
make careful note of where proofs make use of this correctness. To use notions of
imperfect correctness in these proofs, one must choose an imperfect correctness
notion that is “robust” to the ideal primitive being programmable.

We additionally will sometimes assume a notion we call query consistency
which requires that if c is produced by encryption/encapsulation, then decrypt-
ing/decapsulating c with the correct key only makes ideal primitive queries that
were also made by encryption/encapsulation. This ensures that any querying of
the ideal primitive while decrypting/decapsulating an honest ciphertext cannot
be detected by a programming adversary.

10 J. Jaeger

3 SIM-AC Definitions and Their Shortcomings

We start by recalling the definitions that Jaeger and Tyagi [23] introduced for
the simulation security of symmetric encryption or pseudorandom functions un-
der adaptive compromise. Jaeger and Tyagi showed that these definition were
achieved by very natural encryption/PRF constructions in the random oracle
or ideal cipher model and that they moreover sufficed for proving the security
of higher-level constructions (e.g. searchable encryption schemes, asymmetric
password-authenticated key exchange, and self-revocable encrypted cloud stor-
age). In this section, we will identify ways in which these definitions fall short.
Namely, that there are other natural encryption/PRF constructions and high-
level construction which cannot be proven secure using these definitions.7

3.1 SIM-AC Definitions

All of the SIM-AC definitions have a common structure; they measure the ability
of an adversary to distinguish between a “real” and a “simulated” world. In the
real world, the adversary interacts with multiple “users” that honestly execute
the algorithms of scheme. The adversary has access to an exposure oracle which
it can query to be given the secret keys of any users it chooses. Finally, the
adversary has oracle access to the ideal primitive algorithm P.Ls. In the ideal
world, the output of all of these oracles is provided instead by a simulator S. For
the definition to be meaningful, the behavior of the simulator when responding
to queries for “unexposed” users is restricted in some manner. (For example, the
simulator may be required to return a uniformly random string or may only be
given partial information about what the query was.)

Pseudorandom function security. We start with the notion of SIM-AC-PRF
security for a function family F. It is captured by the game Gsim-ac-prf

F,S,P,Aprf
shown in

Fig. 2. The variable X is used to track which users have been exposed, so Xu is
true when the user has been exposed. The game hardcodes that random values
are returned for evaluation queries to unexposed users in the simulated world.
Inputs and outputs to evaluation are stored in the table Tu which is given to S
when u is exposed.

We define Advsim-ac-prf
F,S,P,Aprf

(λ) = 2Pr[Gsim-ac-prf
F,S,P,Aprf

(λ)] − 1 and say that F is SIM-
AC-PRF secure with P if for all PPT Aprf there exists a PPT S such that
Advsim-ac-prf

F,S,P,Aprf
(·) is negligible. Intuitively, this definition captures that the outputs

of Fk look random to an adversary until they expose k.

Encryption definitions. Next we recall the SIM-AC security notions for a
symmetric encryption scheme SE. Consider the game Gsim-ac-cca

SE,S,P,Acca
(λ) shown in

Fig. 2. During encryption queries for unexposed users, the simulator is only told
7 Technically, we do not show that these proofs are impossible. We show why the

“natural” proofs fail and informally argue why it seems difficult to find other proofs.

Let Attackers Program Ideal Models 11

Game Gsim-ac-prf
F,S,P,Aprf

(λ)

k(·)←$ F.Kg(1λ)

σP←$ P.Init(1λ)

σ←$ S.Init(1λ)

b←$ {0, 1}
b′←$AEv,Exp,Prim

prf (1λ)

Return (b = b′)

Prim(k, x)

y1←$ P.Ls(1λ, k, x : σP)

y0←$ S.Ls(1λ, k, x : σ)

Return yb

Ev(u, x)

If Tu[x] ̸= ⊥ then return Tu[x]

y1 ← F.EvP(1λ, ku, x)

If Xu then y0←$ S.Ev(1λ, u, x : σ)

Else y0←$ F.Out(λ)

Tu[x]← yb
Return yb

Exp(u)

k′
1 ← ku

k′
0←$ S.Exp(1λ,u, Tu : σ)

Xu ← true

Return k′
b

Game Gsim-ac-cca
SE,S,P,Acca

(λ)

k(·)←$ SE.Kg(1λ)

σP←$ P.Init(1λ)

σ←$ S.Init(1λ)

b←$ {0, 1}
b′←$AEnc,Dec,Exp,Prim

cca (1λ)

Return (b = b′)

Prim(k, x)

y1←$ P.Ls(1λ, k, x : σP)

y0←$ S.Ls(1λ, k, x : σ)

Return yb

Enc(u,m)

If not Xu then ℓ← |m| else ℓ← m

c1←$ SE.EncP(1λ, ku,m)

c0←$ S.Enc(1λ, u, ℓ : σ)

Mu.add(cb,m); Return cb

Dec(u, c)

If Mu⟨c⟩ ̸= ⊥ then return Mu⟨c⟩
m1 ← SE.DecP(1λ, ku, c)

m0←$ S.Dec(1λ,u, c : σ)

Return mb

Exp(u)

k′
1 ← ku; k′

0←$ S.Exp(1λ, u,Mu : σ)

Xu ← true; Return k′
b

Fig. 2. Games defining SIM-AC-PRF security of F and SIM-AC-CCA security of SE.

the length of the message m. The list Mu stores the messages queried to user u
and ciphertexts returned. It is given to the simulator when that user is exposed.
If the attacker forwards challenge ciphertexts from encryption to decryption, this
list is used to respond appropriately.

We define Advsim-ac-cca
SE,S,P,Acca

(λ) = 2Pr[Gsim-ac-cca
SE,S,P,Acca

(λ)] − 1 and say SE is SIM-
AC-CCA secure with P if for all PPT Acca there exists a PPT S such that
Advsim-ac-cca

SE,S,P,Acca
(·) is negligible. Intuitively, this definition captures that an adver-

sary learns nothing (other than the length) about a message m encrypted with a
key k until they expose k. For chosen-plaintext security we restrict attention to
attackers that never query decryption. We then write the superscript sim-ac-cpa.

Stronger notions of security are captured by requiring that S be chosen from
some restricted set. Key-private security (SIM-AC-KP) requires that the CPA
simulator respond to encryption queries for un-exposed users using an algorithm
S.Enc1(1

λ, ℓ : σ) which is not given u as input. Indistinguishable from random
security (SIM-AC-$) requires that the CPA simulator respond to encryption
queries for un-exposed users by sampling c from a set S.Out(λ, ℓ). Authenticated
encryption security (SIM-AC-AE) requires that the CCA simulator respond to

12 J. Jaeger

encryption queries as in SIM-AC-$ security and to decryption queries for un-
exposed users with ⊥.

Simplifying assumptions. Jaeger and Tyagi observed the following simplify-
ing assumptions (copied almost verbatim from [23]) for their SIM-AC definitions.

– If an oracle is deterministic in the real world we can assume that the ad-
versary never repeats a query to this oracle or that the simulator always
provides the same output to repeated queries.

– We can assume the adversary never makes a query to a user it has already
exposed or that for such queries the simulator just runs the code of the real
world (replacing calls to P with calls to S.Ls).

– We can assume the adversary always queries with u ∈ [uλ] = {1, 2, . . . ,uλ}
for some polynomial u(·) or that the simulator is agnostic to the particular
strings used to reference users.

– We can assume that adversaries never make queries that fail “Require” state-
ments. (All requirements of oracles will be efficiently computable given the
transcripts of queries the adversary has made.)

Looking ahead, we will be able to make the analogous assumptions for the new
definitions introduced in this paper. These assumptions are convenient for prov-
ing that a scheme satisfies a given SIM-AC definition of security. The fact that
these assumptions are not hardcoded into the security game is convenient when
proving the security of a higher-level construction assuming that constituent
schemes satisfy some SIM-AC security notion.

3.2 Shortcomings of SIM-AC

Now that we have introduced SIM-AC security notions we can discuss ways that
they fall short of being able to establish the results we would like.

Multiple schemes with the same P. Suppose a higher-level protocol is con-
structed from multiple underlying schemes satisfying SIM-AC security notions.
We generally will not be able to prove the security of the protocol if the underly-
ing schemes make use of the same P.8 Performing a SIM-AC reduction with the
first scheme will replace the entirety of P with some S.Ls. With P being gone,
the security of the second scheme with respect to P is of no use.

As a toy example, we might consider function families F0 and F1. Even as-
suming they are both SIM-AC-PRF secure with P, it seems impossible to prove F
is SIM-AC-PRF secure where F.EvP(1λ, (k0, k1), (b, x)) = Fb.Ev

P(1λ, kb, x). Sev-
eral of Jaeger and Tyagi’s proofs were restricted by this and had to assume
underlying schemes used distinct ideal primitives.

8 Note this is the more general result, as we could let P = P1 ×P2 × . . . and have the
i-th scheme using P only actually query Pi.

Let Attackers Program Ideal Models 13

Multiple uses of the same scheme. Suppose a higher-level protocol is con-
structed from an underlying scheme satisfying a SIM-AC security notion and
that this scheme is used in several distinct ways in the protocol.

If it’s not possible to write a careful reduction that covers all of the uses
of the scheme at once, then we run into a similar issue as the above. The first
application of the scheme’s SIM-AC security will replace its ideal primitive with
a simulator, preventing us from applying its security again.

As a toy example, we might consider a function family F. Even assuming F is
SIM-AC-PRF secure with P, it seems impossible to prove that F′ is SIM-AC-PRF
secure where F′.Ev

P
(1λ, k, (x0, x1)) = F.EvP(1λ,F.EvP(1λ, k, x0), x1).

One of Jaeger and Tyagi’s proofs (for their Theorem D.1) almost ran into
issue with this. However, they seemingly got “lucky” in that for that particular
proof they were able to use just plain PRF security for the first use of the
underlying function family.

Single-user security implies multi-user security. With most “standard”
security notions (e.g. PRF, IND-CPA, IND-CCA) single-user security implies
multi-user security. These results are proven by a “hybrid proof” wherein the
single-user attacker picks a user u at random. It externally simulates u with
its own oracle, internally simulates all “prior” users as in the b = 0 world, and
internally simulates all “later” users as in the b = 1 world.

We run into issue if we try to write an analogous proof for SIM-AC definitions.
Note that simulating the b = 0 world for some users requires the attacker to run
the given single-user simulator. This creates a circular dependency as in SIM-AC
the simulator is allowed to depend on the adversary.

Even if we changed the order of quantification, we would still run into issues.
Each instance of the single-user simulator expects to already have complete con-
trol of the ideal primitive. This makes it unclear what ideal primitive oracle the
single-user adversary should provide the multi-user adversary it runs internally.
Because of these issues, Jaeger and Tyagi directly consider multi-user SIM-AC
definitions and do not discuss single-user variants thereof.

It may seem strange to consider “adaptive compromise” in a single-user set-
ting. Do expose queries make sense where there is only one user to be exposed?
It is useful to first observe that multi-user SIM-AC notions would be unchanged
if we required that the attacker expose all users before halting. Crucially, these
definitions use “online” simulators that are forced to commit to simulated cipher-
texts (without knowledge of the encrypted message) for users that will later be
exposed (at which time the simulator is told the messages).

4 SIM*-AC Security

We saw in the previous section some ways in which SIM-AC security definitions
cannot be used for proving results which intuitively “should” be possible to prove
with a “good” security defintion. In this section, we will introduce a related class
of security definitions which we notate by SIM*-AC. These new definition will

14 J. Jaeger

strengthen the power of the attacker and weaken the power of the simulator.
This allows proving the results that were a challenge for the prior definitions,
while still maintaining the value of the prior definitions. In particular, the results
previously shown by Jaeger and Tyagi with SIM-AC can be shown to hold with
SIM*-AC, while requiring minimal modifications to the proofs. We discuss the
details of this in Section 6.

Motivating the new definition. The starting place for our new definitions
partially goes back to the original explicit proposal of random oracles by Bellare
and Rogaway [8]. Therein, their definition of zero knowledge in the random
oracle model requires that the (offline) simulator’s final outputs includes the list
of points at which it would like the random oracle to have given values. At all
other points, the oracle is sampled at random. Wee [28] built on this, considering
different levels of how the simulator controls the random oracle and showing
that zero-knowledge proofs are closed under sequential composition when the
random oracle is explicitly programmable (or non-programmable). Sequential
composition fails in the “fully programmable” model as applying the simulator
for the first round of execution replaces the random oracle completely, at which
point we cannot use it to reason about further rounds.

There is a second subtle detail allowing sequential composition proof to go
though with polynomially many rounds. It is important that (part of) the adver-
sary was quantified after the simulator. The proof followed a hybrid argument
wherein rounds of zero knowledge are switched from real to simulated, one at a
time. To apply security for a particular round, the attacker must simulate the
other (real and simulated) rounds. For a constant number of rounds, we could
fix the attacker for the first round, be given its simulator, use the simulator
in the attacker for the second round, be given its simulator, and so on. When
the number of rounds is polynomial, we cannot fix an attacker for each round.
Instead a single attacker must work for all rounds, which requires knowing the
simulator ahead of time so it can properly emulate simulated rounds.

To resolve the issues identified with composition and hybrid arguments for
SIM-AC we will restrict the simulator to explicitly program the ideal primitive
and require a universal simulator that works for all attackers. However, this still
is not enough! The zero knowledge composition discussed above is importantly
“sequential” in an “offline simulation” setting. The simulator runs once in iso-
lation, then provides its output to the attacker which runs in isolation. The
attacker has complete control over all code executing with it, so can perfectly
emulate the programmed random oracle. In an “online simulation” setting like
SIM-AC, the attacker runs in parallel with the honest scheme algorithms or the
simulator. Our proofs would run into issues when attackers internally run copies
of the simulator which wants to program the random oracle, but the attacker
is then unable to force the honest scheme algorithms or simulator it does not
control to use this modified random oracle. We resolve this issue by expand-

Let Attackers Program Ideal Models 15

ing the power of the adversary and giving it the capacity to program the ideal
primitive.9 We use the prefix SIM*-AC for the definitions we write in this style.

Summarizing, in our SIM*-AC definitions simulators and adversaries can
access an oracle PPrim which allows them to evaluate or explicitly program the
ideal primitive. Schemes are still restricted to not program the ideal primitive.
This is a restriction on the simulator and strengthening of the attacker. Because
of the programmability of P we must write the code so that S is only run in the
ideal world and SE is only run in the real world.

Comparisons to prior definitions. Through this sequence of ideas we have
reached the same general structure of random oracle modeling proposed by Ca-
menisch, Drijvers, Gagliardoni, Lehmann, and Neven [10]. Their work is in the
universal composability (UC) setting where they consider several models for
global random oracles. In one, simulators and adversaries can explicitly program
the random oracle. They show it allows security proofs that very efficient and
natural random oracle-based constructions of several primitives satisfy the de-
sired security. Our work generalizes this any ideal primitive (not just random
oracles) and considers its application outside the universal composability frame-
work. That UC and SIM-AC work well with a similar programability notion is,
in hindsight, natural as they both consider online simulation.

Our SIM*-AC definitions as not strictly better for cryptographers than the
SIM-AC definitions of Jaeger and Tyagi [23]. One benefit of their work was the
ease with which existing results could be ported to the SIM-AC setting (e.g.
replacing IND-CPA in a proof with SIM-AC-CPA). This holds to some extent
with the new SIM*-AC definitions as well, but proofs do occasionally run into
additional difficulties because of fragilities caused by the programming of the
oracle. Overall we believe that this cost is worth the benefits provided by our new
definitions being able to show natural and desirable results that are seemingly
out of reach of plain SIM-AC.

High-level remarks There is value in incorporating this explicit programming
capacity for adversaries even into non-simulation definitions. Consider the con-
struction of some high-level system making use of multiple underlying schemes
that use the same ideal primitive, some for SIM*-AC security and some for non-
simulation security notions. (See, e.g., the searchable encryption proof in [23]
that involved the standard notion of PRF security in addition to SIM-AC-
PRF/KPA security). If the proof requires use of the non-simulation security
notion after a SIM*-AC notion has already been applied, this will only be possi-
ble if the attacker can program the ideal primitive in the non-simulation notion.

Allowing the adversary to program the ideal primitive is strange. It does
not seem to capture anything about reality, despite the fact that we allow the
adversary to do this programming even in the “real world”. However, this ability

9 Wee would have run into similar issues had their hybrid tried to switch rounds to
simulated from first to last, rather than the last to first approach they took.

16 J. Jaeger

Game Gsim∗-ac-prf
F,S,P,Aprf

(λ)

k(·)←$ F.Kg(1λ)

σP←$ P.Init(1λ)

σ←$ S.Init(1λ)

b←$ {0, 1}
b′←$AEv,Exp,PPrim

prf (1λ)

Return (b = b′)

PPrim(Op, k, x, y)

Require Op ∈ {Ls,Prog}
y←$ P.Op(1λ, k, x, y : σP)

Return y

Ev(u, x)

If Tu[x] ̸= ⊥ then return Tu[x]

If b = 1 then y ← F.EvP(1λ, ku, x)

If b = 0 then
If Xu then y ← S.EvPPrim(1λ, u, x : σ)

Else y←$ F.Out(λ)

Tu[x]← y

Return y

Exp(u)

If b = 1 then k′ ← ku
If b = 0 then k′←$ S.ExpPPrim(1λ,u, Tu : σ)

Xu ← true; Return k′

Game Gsim∗-ac-cca
SE,S,P,Acca

(λ)

k(·)←$ SE.Kg(1λ)

σP←$ P.Init(1λ)

σ←$ S.Init(1λ)

b←$ {0, 1}
b′←$AEnc,Dec,Exp,PPrim

cca (1λ)

Return (b = b′)

PPrim(Op, k, x, y)

Require Op ∈ {Ls,Prog}
y←$ P.Op(1λ, k, x, y : σP)

Return y

Enc(u,m)

If not Xu then ℓ← |m| else ℓ← m

If b = 1 then c←$ SE.EncP(1λ, ku,m)

If b = 0 then c←$ S.EncPPrim(1λ, u, ℓ : σ)

Mu.add(c,m); Return c

Dec(u, c)

If Mu⟨c⟩ ̸= ⊥ then return Mu⟨c⟩
If b = 1 then m← SE.DecP(1λ, ku, c)

If b = 0 then m←$ S.DecPPrim(1λ,u, c : σ)

Return m

Exp(u)

If b = 1 then k′ ← ku
If b = 0 then k′←$ S.ExpPPrim(1λ,u,Mu : σ)

Xu ← true; Return k′

Fig. 3. Games defining SIM*-AC-PRF security of F and SIM*-AC-CCA security of SE.
We use highlighting to indicate where the definitions differ from SIM-AC versions.

will be crucial to how we can use this new definition to prove the results that
we were unable to with the original SIM-AC definitions. We can view this in
the same paradigm we discussed for SIM-AC-style definitions in general; there is
value in studying very strong definitions which exploit ideal primitives beyond
how they can reasonably be thought to capture something about reality because
these notions can then serve as intermediate steps for proving (in the ideal model)
that the scheme satisfies other more “reasonable” security notions.

4.1 SIM*-AC Definitions

Pseudorandom function security. We start with PRF security for a function
family F. Our new definition is captured by the game Gsim∗-ac-prf

F,S,P,Aprf
shown in Fig. 3.

It differs from Gsim-ac-prf
F,S,P,Aprf

as described above; namely, Aprf is given oracle PPrim

Let Attackers Program Ideal Models 17

which uses P in both the real and simulated world.10 In the simulated world, S
is also given PPrim to query and program P. Note that the scheme algorithm
F.Ev is still given access only to P.Ls and not to P.Prog.

We define Advsim
∗-ac-prf

F,S,P,Aprf
(λ) = 2Pr[Gsim∗-ac-prf

F,S,P,Aprf
(λ)]− 1 and say that F is SIM*-

AC-PRF secure with P if there exists a PPT S such that for all PPT Aprf , the
advantage function Advsim

∗-ac-prf
F,S,P,Aprf

(·) is negligible. Note here that we quantified
the simulator before the adversary, unlike in SIM-AC-PRF security where the
simulator is allowed to depend on the adversary. This strengthens the definition
and is necessary for some of our positive results, but for some of our results the
weaker quantification will suffice. We say F is wSIM*-AC-PRF secure with P if
for all PPT Aprf there exists a PPT S such that Advsim

∗-ac-prf
F,S,P,Aprf

(·) is negligible.

Encryption definitions. The SIM*-AC-CCA security of an encryption scheme
SE is similarly captured by the game Gsim∗-ac-cca defined in Fig. 3 which modifies
the SIM-AC game to have the attacker and simulator both use PPrim. We define
Advsim

∗-ac-cca
SE,S,P,Acca

(λ) = 2Pr[Gsim∗-ac-cca
SE,S,P,Acca

(λ)] − 1 and say SE is SIM*-AC-CCA secure
with P if there exists a PPT S such that for all PPT Acca, the advantage function
Advsim

∗-ac-cca
SE,S,P,Acca

(·) is negligible. wSIM*-AC-CCA is captured by quantifying the
simulator after the adversary.

Chosen-plaintext security is captured by restricting attention to attackers
that do not query decryption. We then write sim∗-ac-cpa in superscripts. SIM*-
AC-X and wSIM*-AC-X security for X ∈ {KPA, $,AE} security are defined by
restricting the behavior of the simulator appropriately.

4.2 Single-user security implies multi-user security

As with SIM-AC security, we can capture single-user SIM*-AC security by re-
quiring that all of the attacker’s oracle queries use the same value of u. The fol-
lowing theorem captures that single-user SIM*-AC-CPA security implies multi-
user security. The result would also hold with SIM*-AC-X security for any
X ∈ {PRF,CCA, $,AC}, via the same proof technique. If does not hold for
X = KP. We will discuss why in more detail after the proof.

Theorem 1. Single-user SIM*-AC-CPA security implies multi-user SIM*-AC-
CPA security.

This proof follows using the ideas from a fairly standard single-user to multi-
user proof via a hybrid argument. Given a single-user simulator S1 and multi-user
adversary A, we define single-user A1 to pick a random t and respond to queries
with u < t by encrypting honestly, with u = t using its own encryption oracle,
and with u > t using a copy of S1 specific for that user. The multi-user simulator
we construct runs multiple independent copies of the single-user simulator – one
10 Here we are using a notational convention that an algorithm given more inputs

than it expects will ignore any extra inputs, so P.Ls(1λ, k, x, y : σP) is equivalent to
P.Ls(1λ, k, x : σP).

18 J. Jaeger

for each user. Note that this proof critically requires all three of the changes we
used to derive SIM*-AC from SIM-AC: (i) the simulator needs to be quantified
before the adversary so that A1 can run S1, (ii) the simulator must not have full
control of the ideal primitives output so there is no ambiguity in which “copy”
of the simulator run by A1 should get to respond to primitive queries, and (iii)
the adversary must be able to program the ideal primitive so that A1 is able to
correctly control the primitive when running copies of S1.

Proof. Let SE be single-user SIM*-AC-CPA secure with P and S1 be the simu-
lator that is guaranteed to exist. We show that SE is SIM*-AC-CPA secure with
P via the following simulator which runs independent copies of S1 for each user.

S.Init(1λ)

σ(·)←$ S1.Init(1
λ)

Return σ(·)

S.EncPPrim(1λ,u, ℓ : σ(·))

c←$ S1.Enc
PPrim(1λ, u, ℓ : σu)

Return c

S.ExpPPrim(1λ, u,Mu : σ(·))

k←$ S1.Exp
PPrim(1λ, u,Mu : σu)

Return k

Let A be a SIM*-AC-CPA adversary. It will be notationally convenient to
assume that it only queries users with identifiers u ∈ [uλ] = {1, . . . ,uλ} where
u(·) is a polynomial. This assumption is without loss of generality.

Hybrid Hi(λ), 0 ≤ i ≤ uλ

For u ∈ [uλ] do
ku←$ SE.Kg(1λ)

σu←$ S1.Init(1
λ)

σP←$ P.Init(1λ)

b′←$AEnc,Exp,PPrim(1λ)

Return (b′ = 1)

Enc(u,m)

If u ≤ i then d← 0

Else d← 1

c← Encd(u,m)

Return c

Exp(u)

If u ≤ i then d← 0

Else d← 1

k ← Expd(u)

Return k

Encd(u,m)

If not Xu then ℓ← |m| else ℓ← m

If d = 1 then c←$ SE.EncP(1λ, ku,m)

Else c←$ S1.Enc
PPrim(1λ, u, ℓ : σu)

Mu.add(c,m)

Return c

Expd(u)

If d = 1 then k ← ku
Else k←$ S1.Exp

PPrim(1λ, u,Mu : σu)

Xu ← true

Return k

Adversary AEnc,Exp,PPrim
1 (λ)

For u ∈ [uλ] do
ku←$ SE.Kg(1λ)

σu←$ S1.Init(1
λ)

t←$ {1, . . . , uλ}
b′←$AEncSim,ExpSim,PPrim(1λ)

Return b′

Encd(u,m), Expd(u)

//Unchanged from above

EncSim(u,m)

If u < t then c← Enc0(u,m)

Else if u = t then c← Enc(u,m)

Else c← Enc1(u,m)

Return c

ExpSim(u)

If u < t then k ← Exp0(u)

Else if u = t then k ← Exp(u)

Else k ← Exp1(u)

Return k

Fig. 4. Hybrids and adversary showing single-user security implies multi-user.

Let Attackers Program Ideal Models 19

Now, consider the hybrid games Hi for i = 0, . . . ,uλ defined in Fig. 4. For
u ≤ i, the game uses Enc0 and Exp0 to respond to encryption and exposure
queries as in the b = 0 simulated world of Gsim∗-ac-cpa using S. Otherwise, it
uses Enc1 and Exp1 to respond as in the b = 1 real world. Each hybrid game
returns true whenever A outputs 1. When i = uλ, it always holds that u ≤ i
so this game is identical to the b = 0 simulated world (except that the output
boolean is flipped). In the other extreme, when i = 0, it never holds that u ≤ i
so this game is identical to the b = 1 real world. Then (by standard conditional
probability calculation) we have

Advsim
∗-ac-cpa

SE,S,P,A (λ) = Pr[H0]− Pr[Huλ
] =

uλ∑
i=1

Pr[Hi−1]− Pr[Hi].

We construct a single-user adversary A1 that obtains advantage 1/uλ times
the above. It samples an index t ∈ {1, . . . ,uλ} at random. Then it runs A,
simulating their oracle queries. When u < t, it responds as in the simulated
world of Gep-sim-ac-cpa using S1. When u = t it forwards the query to its own
oracle. Otherwise, it responds to Enc and Exp queries as in the real world. Let
b denote the bit in the game A1 is being run in and t be the random value picked
by A1. Then in the view of A, the oracles for the first t− b users are simulated
and the rest are real – this is identical to its view in the hybrid game Ht−b.

Then the following calculations complete the proof.

Advsim
∗-ac-cpa

SE,S1,P,A1
(λ) = Et[Pr[Ht−1]]−Et[Pr[Ht−0]]

= (1/uλ)

uλ∑
t=1

Pr[Ht−1]− (1/uλ)

uλ∑
t=1

Pr[Ht]

= (1/uλ)

uλ∑
i=1

Pr[Hi−1]− Pr[Hi]

= (1/uλ)Adv
sim∗-ac-cpa
SE,S,P,A (λ).

Here Et denotes expectation over t←$ {1, . . . , uλ}. ⊓⊔

We can note in the above proof that for A1 to be able to correctly run
Enc0 and Exp0 it needed to run S1. This means that we needed the stronger
quantification where the adversary can depend on the simulator and that the
adversary needed to have the ability to program the random oracle.

Key-private security. Among the various SIM*-AC security notions we con-
sider here, the only variant for which single-user security does not imply multi-
user security is SIM*-AC-KPA security. Here, the simulator may not make use
of its input u when replying to encryption queries for un-exposed users (be-
yond checking if they are exposed). Note that in the hybrid argument above,
the multi-user simulator S uses the user identifier u to decide which state σu

to use. Hence this is incompatible with SIM*-AC-KPA security. Taking a step

20 J. Jaeger

back, we can notice that this issue with the proof is unsurprising and inherent.
The issue is that that single-user SIM*-AC-KPA does not meaningfully capture
any notion of key-privacy because the restriction on the simulator’s behavior is
trivially achievable when the attacker will only every query a single user. This
is nicely captured by the following result.

Theorem 2. Single-user SIM*-AC-KPA security is equivalent to SIM*-AC-CPA
security, which is weaker than SIM*-AC-KPA security.

Proof (Sketch). Note that single-user SIM*-AC-KPA security implies single-user
SIM*-AC-CPA security trivially. Then, by Theorem 1 this implies SIM*-AC-
CPA security. In the other direction, we can create a single-user SIM*-AC-KPA
simulator from a SIM*-AC-CPA simulator by always running the latter on, say,
u = 1. Hence the first claim of the theorem holds.

We can see that SIM*-AC-CPA security is weaker than SIM*-AC-KPA se-
curity by constructing a contrived scheme. Given some scheme SE, we define a
new scheme which adds a random bit d to its keys and then appends d to every
ciphertext produced. It is straightforward to show this new scheme is SIM*-AC-
CPA secure if SE was, but that is is not SIM*-AC-KPA secure. ⊓⊔

4.3 Cascade Construction

If F : F.K × F.Inp → F.K is a function family and n is a polynomial, then the
n-cascade construction Fn : F.K×F.Inpn → F.K is defined by the evaluation algo-
rithm Fn.Ev(1λ, k0,x) which computes ki ← F.Ev(1λ, ki−1,xi) for i = 1, . . . , n(λ)
and then outputs kn(λ). Here xi denotes the i-th entry of vector x. This is a
“domain extension” technique for building a PRF with a large domain from one
with a small domain. It was originally defined and analyzed in [4].11 Fn general-
izes the GGM construction of a PRF from a PRG [17]. It underlies several other
constructions of PRFs including AMAC, HMAC, and NMAC [2,3,1].

Theorem 3. If F is SIM*-AC-PRF secure with P, then Fn is as well.

The proof of this result is given in the full version. Intuitively, we can think of
the possible keys generated by Fn existing in a tree structure. Our proof does
a hybrid argument over the layers of the tree where we one at a time switch
the layers to being simulated. The simulator for a given layer treats all of the
keys at its layer as being multiple F “users”. This proof requires the “strong”
quantification, the simulator to not completely replacing the ideal primitive,
and the adversary having the ability to program the ideal primitive so that it
can internally run the simulator for layers that have been switched already.

Jaeger and Tyagi [23, ePrint, p.22-23] said, “It is often useful to construct a
PRF H with large input domains from a PRF F with smaller input domains [. . .]

11 Technically, they considered a more general construction where the number of it-
erations was not a priori fixed and so the adversary was restricted to make only
prefix-free queries. Our proof would extend to this setting as well.

Let Attackers Program Ideal Models 21

one can often [use our techniques] to lift a PRF security proof for H to a SIM-
AC-PRF security proof for H whenever F is SIM-AC-PRF secure.” The cascade
construction is one choice of H for which this is not possible with SIM-AC, but
becomes possible with SIM*-AC.

5 Asymmetric Encryption

In this section, we provide our treatment for the security of asymmetric crypto-
graphic primitives against adaptive compromise. We start by providing our secu-
rity definitions for public-key encryption (PKEs) and key-encapsulation mecha-
nisms (KEMs). Then we discuss how our definitions compare to prior definitions,
in particular those of Camensich, Lehmann, Neven, and Samelin [12]. We show
that the KEM/DEM approach to constructing a PKE scheme works with these
definitions and that standard ways of constructing CPA/CCA secure KEMs from
one-way secure primitives and a random oracle are secure.

5.1 Definitions

Public-key encryption. The SIM*-AC-CCA security of a public-key encryp-
tion scheme PKE is captured by the game Gsim∗-ac-cca shown in Fig. 5. It differs
from the SIM*-AC-CCA definition for symmetric encryption (Fig. 2) in that it
introduces an encryption key oracle (Ek) that the adversary can call to learn
the public encryption key for a user and it has oracles for two different kinds of
exposure. The receiver exposure oracle (RExp) is like the exposure oracles from
prior games, returning a user’s secret decryption key. The sender exposure oracle
(SExp) allows the attacker to ask for the randomness underlying the ciphertexts
that were returned by encryption.

We define Advsim
∗-ac-cca

PKE,S,P,Acca
(λ) = 2Pr[Gsim∗-ac-cca

PKE,S,P,Acca
(λ)]−1 and say PKE is SIM*-

AC-CCA secure with P if there exists a PPT S such that for all PPT Acca, the
advantage function Advsim

∗-ac-cca
PKE,S,P,Acca

(·) is negligible. wSIM*-AC-CCA is captured
by quantifying the simulator after the adversary. We capture xSIM*-AC-CPA
by ignoring the decryption oracle. Security considering only compromise of the
receiver/sender can be captured by ignoring the appropriate oracle. Then we
write SIM*-rAC or SIM*-sAC.

Key encapsulation mechanism. We also give definitions for key encapsula-
tion mechanisms (KEM). Our SIM*-AC definitions are highly analogous to the
corresponding public-key encryption definition. They are formally specified by
the game Gsim-ac-cca shown in Fig. 5. Therein, the Enc and Dec oracles have
been replaced with Encaps and Decaps oracles. The encapsulation oracle re-
turns a ciphertext along with the corresponding encapsulated key. In the ideal
world, the simulator provides the ciphertext and the encapsulated key is chosen
at random from the key space by the game for unexposed users.

We define Advsim
∗-ac-cca

KEM,S,P,Acpa
(λ) and the notions xSIM*-yAC-X for x ∈ {ε,w},

y ∈ {ε, r, s}, and X ∈ {CCA,CPA} as for PKE.

22 J. Jaeger

Games Gsim∗-ac-cca
PKE,S,P,Acca

(λ)

(ek(·), dk(·))←$ PKE.Kg(1λ)

σP←$ P.Init(1λ)

σ←$ S.Init(1λ)

b←$ {0, 1}
b′←$AEk,Enc,Dec,SExp,RExp,PPrim

cca (1λ)

Return (b = b′)

Game Gsim∗-ac-cca
KEM,S,P,Acca

(λ)

(ek(·), dk(·))←$ KEM.Kg(1λ)

σP←$ P.Init(1λ)

σ←$ S.Init(1λ)

b←$ {0, 1}
b′←$AEk,Encaps,Decaps,SExp,RExp,PPrim

cca (1λ)

Return (b = b′)

Ek(u)

ek′ ← eku

ek′←$ S.EkPPrim(1λ,u : σ)

Return ek′

PPrim(Op, k, x, y)

Require Op ∈ {Ls,Prog}
y←$ P.Op(1λ, k, x, y : σP)

Return y

Enc(u,m)

If not Xu then ℓ← |m| else ℓ← m

r←$ PKE.Rand(λ)

c← PKE.EncP(1λ, eku,m; r)

c←$ S.EncPPrim(1λ, u, ℓ : σ)

Mu.add(c,m); Ru.add(r)

Return c

Dec(u, c)

If Mu⟨c⟩ ̸= ⊥ then return Mu⟨c⟩
m← PKE.DecP(1λ, dku, c)

m←$ S.DecPPrim(1λ, u, c : σ)

Return m

SExp(u, i)

r ← Ru[i]

r←$ S.SExpPPrim(1λ, u, i,Mu[i] : σ)

Return r

RExp(u)

dk′ ← dku

dk′←$ S.RExpPPrim(1λ, u,Mu : σ)

Xu ← true

Return dk′

Encaps(u)

r←$ KEM.Rand(λ)

(c, k)← KEM.EncapsP(1λ, eku; r)

(c, k)←$ S.EncapsPPrim(1λ, u : σ)

If not Xu then k←$ KEM.K(λ)

Mu.add(c, k); Ru.add(r)

Return (c, k)

Decaps(u, c)

If Mu⟨c⟩ ̸= ⊥ then return Mu⟨c⟩
k ← KEM.DecapsP(1λ, dku, c)

k←$ S.DecapsPPrim(1λ, u, c : σ)

Return k

Fig. 5. Games defining the SIM*-AC-CCA security of PKE and KEM. Solid-boxed code
is only executed if b = 1. Dash-boxed code is only executed if b = 0.

Let Attackers Program Ideal Models 23

5.2 Comparison to SIM-FULL Definition

The definition we have arrived at is similar to the FULL-SIM security definition
for PKE introduced by Camensich, Lehmann, Neven, and Samelin (CLNS) [12].
We quickly summarize the differences. There are two dimensions in which their
definition is strong than ours. First, their definition considers PKE with labels,
while we have decided not consider labels. Labels can easily be added. Likely,
the best way to incorporate labels in constructions would be to use a symmetric
encryption scheme that accepts associated data as part of the KEM/DEM trans-
form (discussed momentarily). Second, in FULL-SIM the randomness used by
key generation is revealed rather than the decryption key. SIM-AC* can be used
to reason over this case by simply modify the scheme to use said randomness as
its decryption key (and recompute the actual decryption key during decryption).

Our definition strengthens theirs in several dimension. Theirs is more closely
analogous to SIM-AC than SIM*-AC as the simulator is given complete control
of the random oracle, the adversary is not able to modify it, and the “weak”
quantification is used. Resultantly, their single-user definition is seemingly unable
to prove that a corresponding multi-user definition holds.

We are not restrictive in the type of ideal primitive considered. CLNS con-
sidered only one specific construction in which they basically used a trapdoor
permutation generator as a KEM and then hand-crafted a symmetric encryp-
tion scheme using a random oracle.12 We will momentarily show that the task of
building SIM*-AC secure PKE can be broken down into constructing KEMs and
symmetric encryption. This is modular, allowing numerous instantiation and in
particular, allowing the symmetric encryption to be instantiated by well-studied
and standardized schemes based on blockciphers rather than using less efficient
hash functions throughout.

CLNS showed that SIM-FULL implied a variety of prior definitions consid-
ering compromise scenarios for PKE. These implications will carry over to our
definition as well. We explore the relationship between SIM*-AC-CCA, SIM-
FULL, and these other definitions more formally in the full version. Further,
CLNS considered a UC secure notion and proved it to be essentially equivalent
to SIM-FULL. Camenisch, Drijvers, Gagliardoni, Lehmann, and Nevin [10] con-
sidered this in the UC programmable random oracle model, proving the same
construction secure. Likely SIM*-AC-CCA is equivalent to this notion and so our
result will give modular, standard, efficient instantiations of UC secure public
key encryption secure under adaptive compromise.

5.3 KEM/DEM Hybrid Encryption.

A common technique for building public key encryption is KEM/DEM hybrid
encryption in which a key encapsulation mechanism produces a key which is
12 Speaking loosely, they basically use a random input to the trapdoor permutation

as a “symmetric key” with which they perform counter mode encryption, using the
random oracle as a pseudorandom function and then perform a MAC over all of the
relevant variables, again using the random oracle as a pseudorandom function.

24 J. Jaeger

then used to encrypt the message with a symmetric encryption scheme (i.e. “data
encapsulation mechanism”). This was proven secure by Cramer and Shoup [15].

Let KEM be a key encapsulation mechanism and SE be a symmetric encryp-
tion scheme (i.e. data encapsulation mechanism) where SE.Kg samples uniformly
from KEM.K. We denote the KEM/DEM scheme as KD[KEM,SE] and provide
the algorithms KD.Enc and KD.Dec below, where we assume KEM and SE ex-
pect access to ideal primitive P. Then KD expects access to P. It key generation
algorithm is defined by KD[KEM,SE].Kg = KEM.Kg.

KD[KEM,SE].EncP(1λ, ek,m)

(cKEM, k)←$ KEM.EncapsP(1λ, ek)

cSE←$ SE.EncP(1λ, k,m)
c← (cKEM, cSE)
Return c

KD[KEM,SE].DecP(1λ,dk, c)

(cKEM, cSE)← c

k ← KEM.DecapsP(1λ,dk, cKEM)

m← SE.DecP(1λ, k, cSE)
Return m

It is assumed that SE.Dec immediately halts and returns ⊥ if k = ⊥. Next, we
show that given the appropriate adaptive compromise security for the underlying
KEM scheme and encryption scheme, the composed KEM/DEM scheme is also
secure against adaptive compromise.

Exposure of encryption randomness is not captured by our definitions for
symmetric encryption. Rather than introduce a new security definition, in these
cases we restrict attention to coin extractable schemes for which there exists an
algorithm SE.CExt which always satisfies SE.CExtP(1λ, k, SE.EncP(1λ, k,m; r)) =
r. We are not aware of any practically deployed schemes which do not satisfy
this. For technical reasons, we assume that SE.CExt is query consistent by which
we mean that it does not make any ideal primitive queries that were not made
by the execution of SE.Enc that produced its input.

Theorem 4. Let x ∈ {ε,w}, y ∈ {ε, r, s}, and X ∈ {CPA,CCA}. If KEM is
xSIM*-yAC-X secure with P and SE is xSIM*-AC-X secure with P (and coin
extractable if y ∈ {ε, s}), then KD[KEM,SE] is xSIM*-yAC-X secure with P.

In fact, for the DEM we need only “single-challenge” security wherein the
attacker makes at most one encryption query per user. This allows the use of
deterministic DEMs. The proof of this result is given in the full version. The
general flow of the proof is what one would expect, first we replace honest use of
the KEM with simulated use that outputs uniformly random keys. We think of
the i-th key generated for user u as correspond to a DEM user (u, i) and replace
the DEM with simulation.

5.4 Hashed KEM

We consider a simple, standard way to construct a CPA secure KEM from a one-
way secure KEM and a random oracle. Conceptually, this construction follows
from the CPA secure PKE scheme considered in [8]. Let KEM be a key encapsu-
lation mechanism. Then the hashed KEM scheme which outputs the hash of a
key generated by KEM is denoted as HKEM[KEM]. Its algorithms are defined as
follows. Its key generation algorithm is defined by HKEM[KEM].Kg = KEM.Kg.

Let Attackers Program Ideal Models 25

HKEM[KEM].EncapsP×Prom(1λ, ek)

(c, kKEM)←$ KEM.EncapsP(1λ, ek)
k ← Prom(kKEM, ε); Return (c, k)

HKEM[KEM].DecapsP×Prom(1λ, dk, c)

kKEM ← KEM.DecapsP(1λ, dk, c)
k ← Prom(kKEM, ε); Return k

If the KEM expects access to P, then HKEM expects access to P×Prom. Note
that the random oracle must be “new” and cannot be queried by KEM. This is
necessary as the KEM could otherwise query the random oracle on the key it will
output and include that as part of the ciphertext. Note that one can use oracle
cloning [5], to create multiple random oracles from a single random oracle.

Intuitively, CPA security is achieved if the attacker cannot predict kKEM and
query it to the random oracle, i.e., as long as the KEM is one-way secure.

Theorem 5. If KEM is OW* secure with P, then HKEM[KEM] is SIM*-AC-
CPA secure with respect to P× Prom.

The full proof (and the formal definition of OW*) are given in the full version.
The proof works as one would expect. The simulator produces ciphertexts by
using KEM honestly. On exposures, it returns the keys/randomness it used and
attempts to reprogram the random oracle to map keys encapsulated by KEM to
the keys that were randomly sampled by the encapsulation oracle.

5.5 Fujisaki-Okamoto Transform

Finally, we consider a way to construct a CCA secure KEM from a one-way se-
cure KEM. In particular, we look at part of one version of the Fujisaki-Okamoto
transformation [16]. We work from the modular treatment of Hofheinz, Hövel-
manns, and Kiltz [20] (HHK), in particular showing that the transformation
which they refer to as U̸⊥ achieves SIM*-AC-CCA security. This should extend
to the other variants as well, but have focused on one for simplicity. Slightly
corrected versions of HHK’s proofs can be found in [22, Sec. 2.1-2.2].

Let KEM be a key encapsulation mechanism and F be a function family.
Then we consider the scheme U ̸⊥[KEM,F] defined as follows. The key gen-
eration algorithm U̸⊥[KEM,F].Kg generates keys (ek,dk)←$ KEM.Kg(1λ) and
fk←$ F.Kg(1λ), then outputs (ek, (dk, fk)).

U̸⊥[KEM,F].Encaps
P×Prom

(1λ, ek)

(c, kKEM)←$ KEM.EncapsP(1λ, ek)
k ← Prom(kKEM, c); Return (c, k)

U̸⊥[KEM,F].Decaps
P×Prom

(1λ, (dk, fk), c)

kKEM ← KEM.DecapsP(1λ, dk, c)
If kKEM ̸= ⊥ then k ← Prom(kKEM, c)

Else k ← F.EvP×Prom(1λ, fk, c)
Return k

Here U̸⊥[KEM,F].K(λ) = F.Out(λ) = Prom.Rλ. Note that if KEM expects
access to P, then U̸⊥[KEM,F] expects access to P × Prom. We allow F to have
access to P × Prom. It is important that KEM not have access to the random
oracle used by the transform (otherwise it could, for example, ensure that it
always produces output for which the first bit of Prom(kKEM, c) is 0 and thus
distinguishable from random).

However, our results show there is no issue with F having access to the same
random oracle used by U̸⊥. Indeed, HHK actually used the specific construction

26 J. Jaeger

F.Ev(1λ, fk, c) = Prom(fk, c). Considering an arbitrary F is more general. We
emphasize the proof with this generality only works because we are using our
new SIM*-AC security definitions. Moreover, given that caveat, this supports
Jaeger and Tyagi’s motivation for introducing SIM-AC definitions because this
modularity allows our proof to avoid the details of the random oracle analysis
required to prove that Prom(kKEM, c) is secure.

Additionally HHK use a public-key encryption scheme applied to a random
message in place of KEM. Again, U ̸⊥[KEM,F] is a generalization of this as the
security they assume of the encryption scheme implies that the KEM obtained
by encrypting a randome message satisfies the security we require.

They showed that the construction is IND-CCA secure as long as the un-
derlying scheme achieves a variant of one-way security which provides to the
attacker a plaintext checking oracle which decrypts a given ciphertext and re-
turns a boolean indicating whether the result is the same as a given message.
We show the same for our security definition.

Theorem 6. If KEM is OW*-PCA secure with P and F is SIM*-AC-PRF secure
with P× Prom, then U̸⊥[KEM,F] is SIM*-AC-CCA secure with P× Prom.

HHK gave a transform T which transforms a OW secure PKE scheme into a
OW-PCA secure PKE scheme. Interpreting this as a KEM in the natural manner
gives a OW-PCA secure KEM.

6 Recovering Prior Results

Finally, we conclude by showing that the positive results Jaeger and Tyagi [23]
established regarding various notions of SIM-AC security also hold with respect
to our analogous SIM*-AC notions. For this, we divide the results of Jaeger
and Tyagi into three general categories. This first category covers results where
(non-SIM-AC) security of some “high-level” construction is shown assuming its
constituent elements satisfy SIM-AC security. The second category covers re-
sults where SIM-AC security of some “intermediate-level” construction is shown
assuming its constituent elements satisfy SIM-AC security. The final category
covers results where SIM-AC security of some “low-level” primitive is shown by
direct ideal model analysis.

6.1 High-level Proofs

The first category is the easiest in which to replace SIM-AC with SIM*-AC. In
particular Jaeger and Tyagi showed: (1) SIM-AC-CPA secure encryption suffices
for a version of the OPAQUE password-authenticated key exchange protocol of
Jarecki, et al. [24] (because the latter was proven secure assuming “equivocable
encryption” which is a weaker notion than SIM-AC-CPA security), (2) SIM-AC-
PRF secure PRFs and SIM-AC-KP secure encryption suffice for a searchable
symmetric encryption scheme of Cash, et al. [14], and (3) SIM-AC-CPA secure
encryption suffices for the self-revocable cloud storage scheme of Tyagi, et al. [27].

Let Attackers Program Ideal Models 27

We can recover these results with wSIM*-AC in place of SIM-AC by noting that
our new notion is strictly stronger.

Lemma 1. For X ∈ {PRF,CPA,KPA, $,CCA,AE}, wSIM*-AC-X security im-
plies SIM-AC-X security. The converse does not hold.

This result follows from the fact that wSIM*-AC security strengthens adver-
saries (by allowing them to program the ideal primitive) and weakens simulators
(by restricting them to explicitly program the ideal primitive rather than having
complete control of it). For the converse, note that a SIM*-AC adversary can,
e.g., break the one-way function or collision-resistance security of a random or-
acle by programming it appropriately. Hence, one can modify a SIM-AC secure
scheme to be trivially insecure (e.g. reveal its secret key) when a collision in the
random oracle is known. SIM-AC security will be maintained, but the modified
scheme will not be SIM*-AC secure.

In each of the searchable symmetric encryption and BurnBox proof, Jaeger
and Tyagi had to assume that the constituent elements each used separate ideal
primitives. Using SIM*-AC definitions we could reproduce these results without
the assumption of separate ideal primitives using the proof modifications we
discussion for intermediate-level proofs.

6.2 Intermediate-level Proofs

In the second category, Jaeger and Tyagi gave security results for several encryp-
tion schemes. There is no general way to prove that these result carry over from
SIM-AC to SIM*-AC security notions.13 However, by examining the details of
the proofs used for each of these result we can see that we are in luck. In each,
the ideal primitive was used as a black-box. Constructed SIM-AC reduction ad-
versaries provided the given SIM-AC adversaries with direct access to their own
Prim oracle. The S.Ls algorithm of any constructed SIM-AC simulators S just
ran the corresponding algorithms of the given SIM-AC simulators.

As such, modifying these proofs for SIM*-AC (or wSIM*-AC) requires only
syntactic change to treat the ideal primitive as a black-box. Reduction adver-
saries provide their given adversaries with direct access to PPrim. Rather than
having a S.Ls algorithm, SIM*-AC simulators will provide their given underlying
simulators with direct access to PPrim. Otherwise the analysis follows as given.

In fact, in places where multiple SIM-AC primitive had to use separate ideal
primitives, this black-box use of the primitives allow them to share the same
primitive for SIM*-AC security without any extra effort.

Moreover, the only way in which constructed simulators depended on adver-
saries was through dependance on given simulators for the constituent algorithms
(which were allowed to depend on the adversary per SIM-AC security). As such,
there is no issue when using the order of quantification required for SIM-AC
rather than wSIM*-AC security. Hence the following results hold.
13 This follows from the counter-example described above where we construct a scheme

which is trivially insecure if a collision in the random oracle is known.

28 J. Jaeger

Lemma 2. Let x ∈ {ε, w}. Then the following hold.

– If SE is xSIM*-AC-CPA and INT-CTXT* secure with P, then SE is xSIM*-
AC-CCA secure with P.

– If SE is xSIM*-AC-CPA secure with P and F is UF-CMA* secure with P,
then (SE,F) encrypt-then-mac is xSIM*-AC-CCA secure with P.

– If SE[·] is IND-AC-EXT secure and F is xSIM*-AC-PRF secure with P, then
SE[F] is xSIM*-AC-$ secure with P.

This last result covers modes of operation such as counter (CTR), cipher-block
chaining (CBC), cipher feedback (CFB), and output feedback (OFB) mode.

The asterisks added to INT-CTXT and UF-CMA indicate that we need these
security notions to hold even for adversaries who are able to program the ideal
primitive. We note, for example, that UF-CMA* security is implied by SIM*-
AC-PRF security. We similarly expect that schemes which are known to achieve
INT-CTXT security when constructed from a PRF secure function family can
be shown by essentially the same proof to achieve INT-CTXT* security when
using a SIM*-AC-PRF secure function family.

6.3 Low-level Proofs

For the third category, Jaeger and Tyagi used information theoretic analysis to
show that random oracles are SIM-AC-PRF secure, ideal ciphers are SIM-AC-
PRF secure, and the ideal encryption model [27] is SIM-AC-AE secure.14

To re-establish these results one technically would have to re-write the proofs.
We will sketch how to modify the SIM-AC proofs for the first two of these.

Lemma 3. Random oracles are SIM*-AC-PRF secure (assuming |Kλ| is super-
polynomial) and ideal ciphers are SIM*-AC-PRF secure (assuming |Kλ| and |Dλ|
are super-polynomial).

The simulators given for both work by honestly simulating the ideal primitive
except whenever a new users is exposed they sample the key at random and
then program the primitive to be consistent with the random values returned
by earlier evaluation queries. This can done with the more restricted SIM*-AC
syntax for simulators. These simulators do not depend on the chosen adversary.

If F : Kλ ×Dλ → Rλ, their analysis showed that

Advsim
∗-ac-prf

F,Sprf ,Prom,A(λ) ≤
u2λ

2|Kλ|
+

uλpλ
2|Kλ|

and

Advsim
∗-ac-prf

F,Sprf ,Picm,A(λ) ≤
u2λ

2|Kλ|
+

uλpλ
2|Kλ|

+
q2λ

2|Dλ|
.

Here u is the number of distinct users A interacts with, p is the number of ideal
primitive queries it makes, and q is the number of evaluation queries it makes.
14 The last of these is a slight “cheat” as the ideal encryption model does not satisfy

their (or our) definitions of what an ideal primitive is.

Let Attackers Program Ideal Models 29

Each summand represents a bound of the probability that a bad event occurs
which could let an adversary distinguish the real and simulated worlds. The
first corresponds to distinct users choosing the same random key. The second
corresponds to the attacker making an ideal primitive query with an unexposed
user’s key. The third corresponds to random outputs of Ev colliding. A useful
proof flow for this would introduce a notion of SIM*-AC-PRP security then prove
that it is achieved by an ideal cipher and equivalent to SIM*-AC-PRF security
up to the birthday bound. We sketch this in the full version.

For SIM*-AC-PRF/PRP security of these constructions the only additional
bad event we could have to analyze is the probability that the attacker happening
to make an ideal model programming query using an unexposed user’s key. If p′λ
denotes the number of programming queries the attacker makes, this just adds
an additional term of 0.5uλp′λ/|Kλ| to either bound. Alternatively, we could leave
the bound unchanged and redefine pλ to include programming queries as well.

Acknowledgements We thank Nirvan Tyagi for their collaboration on [23],
early drafts of which considered asymmetric encryption. Some definitions and
results in Section 5 grew out of discussions about those drafts.

References

1. Bellare, M.: New proofs for NMAC and HMAC: Security without collision-
resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 20–24, 2006).
https://doi.org/10.1007/11818175_36

2. Bellare, M., Bernstein, D.J., Tessaro, S.: Hash-function based PRFs: AMAC and
its multi-user security. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016,
Part I. LNCS, vol. 9665, pp. 566–595. Springer, Heidelberg, Germany, Vienna,
Austria (May 8–12, 2016). https://doi.org/10.1007/978-3-662-49890-3_22

3. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message au-
thentication. In: Koblitz, N. (ed.) CRYPTO’96. LNCS, vol. 1109, pp. 1–15.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22, 1996).
https://doi.org/10.1007/3-540-68697-5_1

4. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: The
cascade construction and its concrete security. In: 37th FOCS. pp. 514–523. IEEE
Computer Society Press, Burlington, Vermont (Oct 14–16, 1996). https://doi.org/
10.1109/SFCS.1996.548510

5. Bellare, M., Davis, H., Günther, F.: Separate your domains: NIST PQC KEMs,
oracle cloning and read-only indifferentiability. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 3–32. Springer, Heidel-
berg, Germany, Zagreb, Croatia (May 10–14, 2020). https://doi.org/10.1007/
978-3-030-45724-2_1

6. Bellare, M., Dowsley, R., Waters, B., Yilek, S.: Standard security does not imply
security against selective-opening. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 645–662. Springer, Heidelberg, Germany, Cam-
bridge, UK (Apr 15–19, 2012). https://doi.org/10.1007/978-3-642-29011-4_38

https://doi.org/10.1007/11818175_36
https://doi.org/10.1007/11818175_36
https://doi.org/10.1007/978-3-662-49890-3_22
https://doi.org/10.1007/978-3-662-49890-3_22
https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1109/SFCS.1996.548510
https://doi.org/10.1109/SFCS.1996.548510
https://doi.org/10.1109/SFCS.1996.548510
https://doi.org/10.1109/SFCS.1996.548510
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1007/978-3-642-29011-4_38
https://doi.org/10.1007/978-3-642-29011-4_38

30 J. Jaeger

7. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg, Germany, Cologne,
Germany (Apr 26–30, 2009). https://doi.org/10.1007/978-3-642-01001-9_1

8. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93. pp. 62–73. ACM Press, Fairfax, Virginia, USA (Nov 3–5,
1993). https://doi.org/10.1145/168588.168596

9. Böhl, F., Hofheinz, D., Kraschewski, D.: On definitions of selective opening security.
In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293,
pp. 522–539. Springer, Heidelberg, Germany, Darmstadt, Germany (May 21–23,
2012). https://doi.org/10.1007/978-3-642-30057-8_31

10. Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The won-
derful world of global random oracles. In: Nielsen, J.B., Rijmen, V. (eds.) EU-
ROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 280–312. Springer, Heidelberg,
Germany, Tel Aviv, Israel (Apr 29 – May 3, 2018). https://doi.org/10.1007/
978-3-319-78381-9_11

11. Camenisch, J., Lehmann, A., Neven, G., Samelin, K.: Virtual smart cards: How
to sign with a password and a server. In: Zikas, V., De Prisco, R. (eds.) SCN
16. LNCS, vol. 9841, pp. 353–371. Springer, Heidelberg, Germany, Amalfi, Italy
(Aug 31 – Sep 2, 2016). https://doi.org/10.1007/978-3-319-44618-9_19

12. Camenisch, J., Lehmann, A., Neven, G., Samelin, K.: UC-secure non-interactive
public-key encryption. In: Köpf, B., Chong, S. (eds.) CSF 2017 Computer Secu-
rity Foundations Symposium. pp. 217–233. IEEE Computer Society Press, Santa
Barbara, CA, USA (Aug 21–25, 2017). https://doi.org/10.1109/CSF.2017.14

13. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: 28th ACM STOC. pp. 639–648. ACM Press, Philadephia, PA,
USA (May 22–24, 1996). https://doi.org/10.1145/237814.238015

14. Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.C., Steiner, M.:
Dynamic searchable encryption in very-large databases: Data structures and imple-
mentation. In: NDSS 2014. The Internet Society, San Diego, CA, USA (Feb 23–26,
2014)

15. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003)

16. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. Journal of Cryptology 26(1), 80–101 (Jan 2013). https://doi.
org/10.1007/s00145-011-9114-1

17. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions.
Journal of the ACM 33(4), 792–807 (Oct 1986)

18. Hazay, C., Patra, A., Warinschi, B.: Selective opening security for receivers. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp.
443–469. Springer, Heidelberg, Germany, Auckland, New Zealand (Nov 30 – Dec 3,
2015). https://doi.org/10.1007/978-3-662-48797-6_19

19. Heuer, F., Poettering, B.: Selective opening security from simulatable data en-
capsulation. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS,
vol. 10032, pp. 248–277. Springer, Heidelberg, Germany, Hanoi, Vietnam (Dec 4–8,
2016). https://doi.org/10.1007/978-3-662-53890-6_9

20. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS,

https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-642-30057-8_31
https://doi.org/10.1007/978-3-642-30057-8_31
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/978-3-319-44618-9_19
https://doi.org/10.1007/978-3-319-44618-9_19
https://doi.org/10.1109/CSF.2017.14
https://doi.org/10.1109/CSF.2017.14
https://doi.org/10.1145/237814.238015
https://doi.org/10.1145/237814.238015
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/978-3-662-48797-6_19
https://doi.org/10.1007/978-3-662-48797-6_19
https://doi.org/10.1007/978-3-662-53890-6_9
https://doi.org/10.1007/978-3-662-53890-6_9

Let Attackers Program Ideal Models 31

vol. 10677, pp. 341–371. Springer, Heidelberg, Germany, Baltimore, MD, USA
(Nov 12–15, 2017). https://doi.org/10.1007/978-3-319-70500-2_12

21. Hofheinz, D., Rao, V., Wichs, D.: Standard security does not imply indistin-
guishability under selective opening. In: Hirt, M., Smith, A.D. (eds.) TCC 2016-B,
Part II. LNCS, vol. 9986, pp. 121–145. Springer, Heidelberg, Germany, Beijing,
China (Oct 31 – Nov 3, 2016). https://doi.org/10.1007/978-3-662-53644-5_5

22. Hövelmanns, K.: Generic constructions of quantum-resistant cryptosystems. Ph.D.
thesis, Dissertation, Bochum, Ruhr-Universität Bochum, 2020 (2021), https://doi.
org/10.13154/294-7758

23. Jaeger, J., Tyagi, N.: Handling adaptive compromise for practical encryption
schemes. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS,
vol. 12170, pp. 3–32. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 17–21, 2020). https://doi.org/10.1007/978-3-030-56784-2_1

24. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: An asymmetric PAKE protocol se-
cure against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EU-
ROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 456–486. Springer, Heidel-
berg, Germany, Tel Aviv, Israel (Apr 29 – May 3, 2018). https://doi.org/10.1007/
978-3-319-78372-7_15

25. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 18–22, 2002). https://doi.org/10.1007/3-540-45708-9_8

26. Panjwani, S.: Tackling adaptive corruptions in multicast encryption protocols. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 21–40. Springer, Heidelberg,
Germany, Amsterdam, The Netherlands (Feb 21–24, 2007). https://doi.org/10.
1007/978-3-540-70936-7_2

27. Tyagi, N., Mughees, M.H., Ristenpart, T., Miers, I.: BurnBox: Self-revocable en-
cryption in a world of compelled access. In: Enck, W., Felt, A.P. (eds.) USENIX
Security 2018. pp. 445–461. USENIX Association, Baltimore, MD, USA (Aug 15–
17, 2018)

28. Wee, H.: Zero knowledge in the random oracle model, revisited. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 417–434. Springer, Heidelberg, Germany,
Tokyo, Japan (Dec 6–10, 2009). https://doi.org/10.1007/978-3-642-10366-7_25

https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-662-53644-5_5
https://doi.org/10.1007/978-3-662-53644-5_5
https://doi.org/10.13154/294-7758
https://doi.org/10.13154/294-7758
https://doi.org/10.1007/978-3-030-56784-2_1
https://doi.org/10.1007/978-3-030-56784-2_1
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/978-3-540-70936-7_2
https://doi.org/10.1007/978-3-540-70936-7_2
https://doi.org/10.1007/978-3-540-70936-7_2
https://doi.org/10.1007/978-3-540-70936-7_2
https://doi.org/10.1007/978-3-642-10366-7_25
https://doi.org/10.1007/978-3-642-10366-7_25

	Let Attackers Program Ideal Models:Modularity and Composability for Adaptive Compromise

