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Abstract. As end-to-end encrypted messaging services become widely
adopted, law enforcement agencies have increasingly expressed concern
that such services interfere with their ability to maintain public safety.
Indeed, there is a direct tension between preserving user privacy and
enabling content moderation on these platforms. Recent research has
begun to address this tension, proposing systems that purport to strike
a balance between the privacy of “honest” users and traceability of “ma-
licious” users. Unfortunately, these systems suffer from a lack of pro-
tection against malicious or coerced service providers. In this work, we
address the privacy vs. content moderation question through the lens of
pre-constrained cryptography [Ananth et al., ITCS 2022]. We introduce
the notion of set pre-constrained (SPC) group signatures that guarantees
security against malicious key generators. SPC group signatures offer the
ability to trace users in messaging systems who originate pre-defined il-
legal content (such as child sexual abuse material), while providing secu-
rity against malicious service providers. We construct concretely efficient
protocols for SPC group signatures, and demonstrate the real-world fea-
sibility of our approach via an implementation. The starting point for
our solution is the recently introduced Apple PSI system, which we sig-
nificantly modify to improve security and expand functionality.

1 Introduction

End-to-end encrypted services offer users the ability to communicate informa-
tion, with the guarantee that even the service provider itself cannot access the
raw information that it is storing or transmitting. Billions of people worldwide
are now using end-to-end encrypted systems such as WhatsApp and Signal.

However, the strong data privacy guarantees offered by end-to-end encryption
(E2EE) technology have not been universally celebrated. Law enforcement and
national security agencies have argued that such services interfere with their
ability to prosecute criminals and maintain public safety [19,30]. In particular,
E2EE appears to directly conflict with the goals of content moderation, which
refers to the ability to screen, monitor, or trace the origin of user-generated
content.



One prominent example of the use of content moderation is in fighting the
proliferation of child sexual abuse material, or CSAM. In the United States, the
proposed EARN IT act [28] would enable legal action to be taken against internet
service providers that fail to remove CSAM material from their service. It has
been argued that the proposed legislation would inhibit the use of E2EE, which
prevents service providers from detecting in the first place if they are hosting or
transmitting CSAM [37]. In fact, a 2019 open letter to Facebook signed by then
U.S. Attorney General William Barr along with international partners explicitly
requested that Facebook not proceed with its planned implementation of E2EE,
due to its tension with CSAM detection [29).

One can imagine that this “encryption debate” polarizes to two conceivable
outcomes: a world with E2EE but without any content moderation, or a world
without E2EE but with content moderation. Since neither of these outcomes
seems to be truly satisfactory, it becomes vital to explore the space in between,
or more fundamentally, to identify if any such space even exists. Indeed, the
past few years have seen researchers paying increased attention to this very
question, as covered for example by a recent report [31] released by the Center
for Democracy and Technology, a technical report on the risks of client side
scanning [2] and a recent talk about the question of CSAM detection vs. E2EE
given at Real World Crypto 2022 [35].

In this work, we explore the viability of using cryptographic techniques to
balance the need for both user privacy and illegal content moderation in mes-
saging systems. Along the way, we also study content moderation in the context
of encryption systems used by cloud service providers. This might be of inde-
pendent interest.

Prior solutions. In the setting of encrypted messaging systems, the principle
goal of illegal content moderation is to identify the existence of illegal content in
the system and uncover the identity of the originator of such content. The de-
sirable privacy goals are to (i) hide the messages exchanged in the system, even
from the server, and (ii) preserve the anonymity of the originator of any harmless
content that is forwarded through the system. Note that this latter property is
crucial in many real-world scenarios, e.g., whistleblowers may desire to use the
protection provided by E2EE without the threat of being de-anonymized. A
recent proposal [32] in this direction fails to adequately balance these goals, al-
lowing a malicious server to de-anonymize any user, thereby completely violating
the fundamental guarantee of E2EE.

We also note that some recent works have attempted to address the funda-
mentally different but related question of content moderation for misinformation,
and we refer to Section 1.3 and Section 1.4 for discussion on this.

The problem. The main problem with existing proposals (including the “trace-
back” systems for addressing misinformation that we discuss later) is that they
suffer from a glaring lack of protection against a server who wishes to use the
system beyond its prescribed functionality. This is a serious problem, not only
because the server itself might have malicious intent, but also because of the



threat of coercion from powerful actors that may want to use the technology for
surveillance or censorship.

This lack of built-in protection fundamentally damages the transparency of
E2EE, reducing the incentive for users to adopt the systems for their communi-
cation. While these works have indeed tried to strike a balance between privacy
and content moderation, we believe that, for the deterrence of pre-defined,* il-
legal content (such as CSAM), they have over-compromised on privacy. In this
work, we seek to build systems that offer similar content tracing functionality,
while offering greater transparency and rigorous cryptographic guarantees about
the possible scope of server behavior.

1.1 Summary of Our Contributions

We present novel definitions and efficient protocols for illegal content moderation
in the setting of encrypted messaging.

Set Pre-Constrained (SPC) Group Signatures. We propose a new notion of
set pre-constrained group signatures which can be implemented in an end-to-end
secure messaging application. This allows tracing users who send illegal content
while ensuring privacy for everyone else.

— Definition: In SPC group signatures, a database D (of illegal content) can be
encoded within the group’s public key. The key requirement is that the signer
of any message m € D can be de-anonymized by the group manager but
signers of messages m ¢ D remain anonymous even to the group manager.
Our definitions model malicious group managers and ensure that the group’s
public key encodes a database D that is authorized by a third-party such
as the US National Center for Missing and Exploited Children (or more
generally, multiple third parties). Furthermore, the public key is publicly-
verifiable, so all clients in the system can verify for themselves (without
knowing D) whether the group manager’s public key encodes an acceptable
D.?

— Construction: We provide a concretely efficient construction of SPC group
signatures based on standard bilinear map assumptions, in the Random Or-
acle model. In this construction, we allow the group manager’s public key to
grow with the size of D. Crucially, however, the running time of the signing
algorithm (with oracle access to the public key) as well as verification and
tracing is independent of the size of D.

4 By pre-defined, we mean any content that has been classified as “illegal”, for example
by a governmental body, before the parameters of the cloud storage or messaging
system are sampled. Updating parameters to include new content classified as illegal
is an interesting question in this context, which we discuss further in Section 1.3.

5 In the body, we generalize our definition to consider general functionalities F as
opposed to just the set-membership function specified by D. However, all of our
constructions in this work target the special case of sets D, and we restrict our
attention to such functionalities in the overview.



SPC Encryption. Along the way to constructing SPC group signatures, we
define and construct efficient set pre-constrained (SPC) encryption schemes. Our
construction builds and improves upon the recent Apple PSI protocol [10]: (1)
We identify a gap in their proof of security against a malicious server and show
how to efficiently build on top of their protocol in order to close this gap. (2)
Further, we augment their construction to achieve a stronger notion of security
that provides guarantees on the integrity of the database embedded in the public
key (analogous to SPC group signatures).

Our SPC encryption scheme has public keys of size linear in the database D
and constant encryption and decryption times. We demonstrate that this asymp-
totic efficiency trade-off is likely the “best-possible” in that further improvements
would imply the elusive notion of doubly-efficient private information retrieval
[12,11], which is not known to exist under standard cryptographic assumptions.

Evaluation. We implement our SPC group signature scheme and provide bench-
marks in the full version [8]. We find that signing and verification take tens of
milliseconds, and signature size is in the order of a few kilobytes®. When in-
stantiated over the BN254 curve, the communication overhead for typical image
sizes of 400 KB is under 1% and the additional computation incurs a ~ 15%
overhead on top of message delivery time. We view these results as strong ini-
tial evidence that illegal content moderation in E2EE messaging systems — with
security against malicious servers — can indeed be performed in the real world.
While our current focus is on illegal content moderation, we believe that the

efficiency properties of our SPC group signature and encryption schemes make
them attractive tools for other applications that involve membership testing
against a private “blocklist”. Examples include privacy-preserving DNS block-
listing [25] where the blocklist could be proprietary, and anonymous credential
systems where it is desirable to hide revocation attributes.

1.2 Our Approach

In this work, we aim to build a messaging system that satisfies, at the very least,
the following set of requirements.

1. The system is end-to-end encrypted. In particular, the server cannot learn
anything at all about the content transmitted in the system unless it receives
some side information from a user participating in the system.

2. The originator of any piece of content remains anonymous to any user that
receives the forwarded content.

3. If a user receives some illegal content, they can report it to the server, who
can then determine the identity of the user who originated the content. This
holds even if the content has been forwarded an arbitrary number of times
before being reported.

5 More precisely, for the BN254 curve, this translates to 3.5 Kilobytes per SPC group
signature.



4. The originator of any harmless content remains anonymous, even from the
perspective of the server who may receive a report about the content.

Naive Approaches. To demonstrate the challenges in realizing all four prop-
erties, we first consider some existing approaches.

As a first attempt, we could try simply using end-to-end encryption. While
this may satisfy the first two properties, it clearly does the support the third
constraint, which we refer to as traceability.

A natural next attempt would be to use a group signature scheme [15,9]
underneath E2EE in order to recover this property of traceability. In a group
signature scheme, there is a group manager that generates a master public key
mpk and a master secret key msk. A new client enters the system by interacting
with the group manager in order to receive a client-specific secret key sk. Any
client can use their sk to produce a signature o on a message m, which can be
verified by anyone that knows mpk. On the one hand, the identity of the signer
remains anonymous from anyone that knows o but not msk. On the other hand,
knowing msk allows the group manager to determine which client produced o.
Thus, we can satisfy the first three goals above by having the messaging service
provider additionally take on the role of the group manager. Each user in the
system would then obtain a signing key sk from the server, and then attach
a signature to any piece of content that they send (where the signature is also
transmitted under the encryption). Unfortunately, this solution does not prevent
the server from colluding with a user to identify the originator of any piece of
content received by that user. That is, this solution appears to be fundamentally
at odds with the crucial fourth requirement, or anonymity, stated above.

Despite some prior attempts at recovering a notion of anonymity in group
signature (see Section 1.3 from some more discussion), we conclude that existing
frameworks are insufficient for capturing the security that we demand. In order
to address this issue, we must somehow constrain the ability of the group man-
ager to de-anonymize anyone in the system.

SPC group signatures: Definitions. This motivates our first contribution,
which is the definition of a set pre-constrained group signature, or SPC group
signature. In this primitive, the group manager’s master public key will be com-
puted with respect to some set D of illegal content (which should remain hidden
from clients even given the master public key). The novel security property we
desire is that the anonymity of a client who produces a signature on some mes-
sage m ¢ D remains intact, even from the perspective of the group manager.

More concretely, we ask for the following (informally stated) set of security
properties.

— Traceability: the identity of a client who signs a message m € D should be
recoverable given the signature and the master secret key.

— Client-server anonymity: the identity of a client who signs a message m ¢ D
should be hidden, even given the master secret key.



— Set-hiding: the master public key should not reveal the set D.”

— Unframeability: no party, not even the master secret key holder, should be
able to produce a signature that can be attributed to an honest client.

— Client-client anonymity: the identity of a client who signs any message m
should be hidden from the perspective of any party who does not have the
master secret key.

At this point, we must stop to consider the meaningfulness of the above
security definitions as stated. In particular: who decides D? Clearly, if D is
set to be the whole universe of messages, then this is no more secure than a
standard group signature. And if an adversarial group manager is trying to
break the client-server anonymity of the above scheme, what is preventing them
from generating their master public key with respect to this “trivial” set D?

In order to constrain D in a meaningful way, we introduce a predicate P
into the definition of client-server anonymity. The description of P will be fixed
at setup time along with some public parameters pp known to everybody in
the system and secret parameters sp known only to the group manager (we will
discuss below the reason we include secret parameters). We will model client-
server anonymity using an ideal functionality F,non that takes a set of items D
as input from the group manager and a sequence of pairs of identities and mes-
sages (pky,m1), ..., (pks, mi) from the client (who represents all clients in the
system). If P(pp,sp, D) = 0, the functionality aborts, and otherwise it delivers
{mi}ic), {Pk; tizm,ep to the group manager.

This gives us a generic framework for specifying how to constrain the pos-
sible D used by the group manager. In particular, we are able to delegate the
respounsibility of constraining D to a third-party (e.g. the National Center for
Missing and Exploited Children, or NCMEC), who is tasked with setting up
the parameters (pp,sp) for the predicate P. That is, we can gracefully split the
responsibility of implementing / maintaining the encrypted messaging system
(by e.g. WhatsApp) and the responsibility of specifying what constitutes illegal
content (by e.g. NCMEC or a collection of such agencies).

Perhaps the most natural example of P is the “subset” predicate, which is
parameterized by a set D* of “allowed” messages (e.g. the entire database of
illegal content as defined by NCMEC), and accepts only if D C D*. In this case,
since D* itself represents illegal content, we do not want to make it public. Thus,
we set sp = D*, and pp = |D*|. We refer to security with respect to this subset
predicate as authenticated-set security.

In our full definition, we explicitly consider the third-party Auth as a par-
ticipant in the system, who begins by setting up a pp and sp of their choice.
Then, we require security against an adversary that corrupts either the client
(and thus cannot learn anything about D), the group manager (and thus can
only learn {pk;}i.m,ep for some “valid” D), or the third-party Auth (and thus
cannot learn anything about any of the identities pk;). Note that security is only
vacuous if the adversary manages to corrupt both the group manager and Auth

" Note that if we want to prevent even the group manager from seeing / storing the
illegal content, we can set D to be hashes of the content itself.



at the very beginning of the protocol, and thus is able to set sp and D as it
wishes. While this seems like a potential limitation, our framework is general
enough to support a de-centralized Auth. That is, we could consider many third-
parties Authy,. .., Auth, who each specify a database D}, and set P to accept D
only if (for example) D C D} N---N Dj. Thus, in order to compromise the sys-
tem, an adversary would have to corrupt the group manager and all third-party
authorities simultaneously, while the key generation procedure is occurring.

SPC group signatures: Construction. We next investigate the feasibility
and efficiency of constructing SPC group signatures. To do so, we abstract out
the basic “pre-constraining” property we need from the group signature scheme,
and re-state it in the context of an encryption scheme.

That is, we first define a scheme for what we call set pre-constrained encryp-
tion, or SPC encryption, with the following properties.

— The public key pk is generated with respect to some database D of items.

— The public key pk should not reveal D, since D may consist of sensitive or
harmful content.

— Any user, given pk, can encrypt a message m with respect to an item x such
that the key generator (using sk) can recover m if x € D, but learns nothing
about m if z ¢ D.

We note that our terminology is inspired by the recent work of Ananth et al.
[4] who proposed the notion of pre-constrained encryption. However, our defini-
tions and constructions are quite different; see Section 1.4 for further discussion.

Our security definition for set pre-constrained encryption mirrors the anonymity
definition explained above, where the key generator for the encryption scheme
now plays of role of the group generator. Specifically, we can still parameterize
security by a predicate P and parameters (pp,sp) set up by a third-party Auth.

Now, we describe a generic construction of an SPC group signature scheme
from an SPC encryption scheme plus standard crytographic tools: a one-way
function F, a digital signature scheme, and a zero-knowledge non-interactive
argument of knowledge.

The group manager will take as input some set D and sample a public key
for the SPC encryption scheme computed with respect to D. It will also include
a verification key for the signature scheme in its master public key. A client can
join the system by sampling a secret s, setting id = F(s) to be their public
identity, and obtaining a signature on id from the group manager. Now, to sign
a message m, the client first encrypts their identity id with respect to item m
using the SPC encryption scheme, producing a ciphertext ct. Then, they produce
a zero-knowledge proof 7 that

“I know some id, a signature on id, and s such that id = F(s), such
that ct is an SPC encryption of id with respect to m”

Observe that given any valid signature (ct, 7) on a message m € D, the group
manager should be able to recover the id that produced (ct, 7) by decrypting ct.



We refer to this property as traceability. One subtle issue that emerges here is
that m can only attest that ct is in the space of valid ciphertexts encrypting
id under item m, and cannot show that ct was sampled correctly. Thus, we will
need to require that the SPC encryption is perfectly correct, that is, ct is perfectly
binding to id when m € D.

Next, we see that any signature (ct,7) on a message m hides id from any
other client, which gives us the client-client anonymity property. More specific
to our case, we can also show that any signature (ct, 7) on a message m ¢ D hides
id, even from the server, which we capture using our simulation-based security
definition.

Finally, we highlight the notion of unframeability, which requires that a ma-
licious server cannot produce a signature (ct, 7) that can be opened to the id of
any honest client. Intuitively, this follows because the server will not know the
pre-image s of id, and so cannot produce a valid proof .

SPC Encryption: Construction. With this generic compiler in hand, we pro-
vide a concretely efficient construction of SPC encryption, and then a concretely
efficient instantiation of the generic compiler described above. This results in
a practical proposal for SPC group signatures, which is our main constructive
result.

Our construction of SPC encryption builds on top of the Apple PSI protocol
[10]. This protocol already satisfies the basic syntax that we require, namely, the
ability to embed a set D in the public key pk of an encryption scheme. How-
ever, their security notion is much weaker than the authenticated-set security we
desire, and described above. Nevertheless, we can capture the security they do
claim to achieve using our generic framework, and we refer to it as bounded-set
security. In more detail, in their scheme, the key generator is completely free to
choose the set D, as long as the size of D is below some public bound n. That
is, pp = n, sp is empty, and P(n,,D) =1 if |D| < n.

Building on their basic scheme, we provide three new contributions.

— We observe that the proof of security (for bounded-set security) given in
the Apple PSI paper [10] only holds when the bound n is large enough with
respect to other system parameters. This results in a large gap between cor-
rectness (the number of items that an honest server programs into its public
key) and security (the number of items that a malicious server can potentially
program into its public key). We show how to remedy this in a concretely
efficient manner, completely closing this gap and achieving essentially no
difference between the correctness and security bounds.

— We build on top of the protocol in a different manner in order to establish
an efficient protocol that satisfies our novel (and much stronger) definition
of authenticated-set security.

— We show how to tweak these schemes in order to obtain the perfect correct-
ness guarantee needed to make our compiler from SPC encryption to SPC
group signatures work. Interestingly, we lose an “element-hiding” property
of the scheme in this process. Luckily, we don’t require this property for our
compiler, since elements correspond to messages in the SPC group signature



scheme, which we are not worried about leaking to the server in the event
of a user report.

An in-depth overview of the Apple PSI protocol and the technical ideas
involved in our improved constructions are given in Section 3.1.

Finally, we derive a concretely efficient instantiation of the SPC encryption
to SPC group signature compiler, which makes use of structure-preserving signa-
tures [1] and the Groth-Sahai proof system [24]. We provide an overview of the
technical ideas involved in our constructions in Section 4.3. We also implement
the resulting SPC group signature scheme and provide further discussion and
benchmarking in the full version [8].

SPC Encryption: Limitations. As a separate contribution, we investigate
generic asymptotic efficiency properties of SPC encryption. We identify three
desirable “succinctness” properties with respect to the database size n: succinct
public-key size, succinct encryption time, and succinct decryption time, where
in each case, succinctness refers to poly-logarithmic complexity in n. The Apple-
PSI-based protocols have non-succinct public-key size, but succinct encryption
and succinct decryption. A natural question is whether it is also possible to
achieve succinct public key. We observe the following, and provide more details
in the full version.

— There are techniques in the literature [3] that can achieve succinct public key
and succinet encryption with either (i) non-succincet decryption with element-
hiding, or (ii) succinct decryption without element-hiding, from standard
cryptographic assumptions. However, these constructions are impractical
and not suitable for real-world deployment.

An “optimal” SPC encryption scheme with succinct public key, succinct en-
cryption, succinct decryption, and element-hiding implies the elusive notion
of doubly-efficient private-information retrieval [12,11], which is not known
to exist under any standard cryptographic assumption.

Thus, while the Apple PSI paper is not explicit about why they settled for a
protocol with a non-succinct public key, our analysis validates this choice.

1.3 Discussion

CSAM deterrence vs. misinformation. As mentioned above, CSAM deter-
rence and combating misinformation are two of the most prominent applications
of online content moderation. While both applications indeed fall under the
umbrella of content moderation, they each introduce unique challenges from a
cryptosystem perspective. The pre-constraining techniques that we make use of
in this paper are designed specifically for the deterrence of illegal content, such
as CSAM. On the other hand, the “traceback” systems introduced in prior works
such as [43,34,38] are arguably geared more towards the application of combating
misinformation.

Perhaps the biggest distinction between these applications from a crypto-
graphic perspective is their amenability to pre-definition. As already discussed,



illegal content must be pre-defined in some sense, for example by a govern-
mental body. It is crucial to take advantage of this pre-definition in designing
cryptosystems for illegal content deterrence. Indeed, since the description of the
illegal content itself can be baked into the parameters of the system, we can
hope to obtain rigorous guarantees about which content is being tracked and
monitored by the system administrator.

On the other hand, it is not even clear in the first place how to define mis-
information, or even who has the authority to define it. Plus, new content that
could potentially be classified as misinformation is constantly being created and
distributed. Thus, it is less clear how to obtain rigorous security guarantees
against potentially malicious servers in the setting of misinformation deterrence.
A potential approach could be to allow new content (such as new misinformation
or abuse) to be added to the “constrained” set, so that the originators of prior
messages containing this content could be traced. This feature is reminiscent of
“retrospective” access to encrypted data as considered in [22] in a somewhat
different context. They show that such access requires the use of powerful (and
currently very inefficient) cryptographic tools, and it would be interesting to see
if the same implications hold in the setting of tracing in end-to-end encrypted
messaging systems.

Deniability vs. unframeability. Another difference between illegal content
and misinformation from a cryptographic perspective is reflected in the tech-
nical tension between the notions of deniability and unframeability. Deniability
essentially asks that messages between users can be simulated without any user-
specific secrets, where indistinguishability from real messages holds from the
perspective of an entity with full information, including user and even server se-
crets. This can certainly be a desirable property of encrypted messaging systems,
especially when there is a threat of coercion from powerful outside sources. How-
ever, this property conflicts with unframeability against malicious servers, since
it enables servers to produce these simulated messages [42]. While deniability
has been a sought-after feature of encrypted systems with traceback functional-
ity [38], it actually appears to be counter-productive in systems that are meant
to detect originators of CSAM or other illegal content. Indeed, it is important
that not only can the server identify the originator, but also that the server can
convince law enforcement of the identity of the content originator. On the other
hand, we view unframeability against malicious servers as a crucial property of
CSAM deterrence systems, since users can face dramatic consequences if framed
for the generation or dissemination of illegal content. Thus, our techniques are
tailored to obtain the strongest notion of unframeability and no deniability,
while prior work [38] that focused on combating misinformation took the oppo-
site approach.

8 Though we note that one could potentially alter our group signature scheme to
obtain deniability at the cost of unframeability, by including in the zero-knowledge
argument a clause along the lines of “OR I know the master secret key”.
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On security against malicious servers. In this work, we took steps towards
ensuring privacy and anonymity against malicious (or even honest-but-curious)
servers in encrypted systems with support for content moderation. As mentioned
earlier in the introduction, it is absolutely vital to explore the space of solutions
to the “encrytion debate” that don’t give up fully on either end-to-end encryption
or content moderation. There is much more work to be done in this space, and
we view our techniques as one tool in an ever-expanding toolbox of techniques
meant to address the broad question of privacy vs. content moderation.

In particular, while we remove the need to trust service providers (think,
WhatsApp), the notion of authenticated-set security essentially moves this trust
to a third party (think NCMEC). We consider this progress, since it splits the
responsibility of providing a messaging service and defining illegal content. More-
over, as discussed earlier, our scheme would immediately extend to support mul-
tiple third parties that can each attest to the validity of the server’s public
parameters, further splitting the trust. However, we acknowledge that there is
opportunity to further improve the transparency and trust in such content mod-
eration systems.

Additional challenges and future directions. We conclude our discussion
with a few directions for future work. First, a desirable property of encrypted
illegal content moderation systems is the ability to update public parameters to
include new illegal content. As discussed in the Apple PSI paper [10], a simple
way to handle updates is to redo setup and release the updated public key as part
of system update. Achieving more efficient updates, however, is an interesting
direction for future work. For example, if an update only corresponds to locations
that are changed, it may start leaking the positions that correspond to database
elements. This suggests the need for creative solutions, for example the use of
differential privacy techniques to hide this leakage.

Next, we did not consider thresholding in this work, which would protect the
privacy of content or anonymity of users until multiple matches were found in
the database. While this is straightforward to incorporate into SPC encryption,
it is not as immediate for SPC group signatures, at least if the goal is to maintain
concrete efficiency. We leave an exploration of this to future work.

Next, we chose to use Groth-Sahai proof systems in order to demonstrate
that SPC group signatures could be constructed with reasonable efficiency. How-
ever, there are other tools available, such as efficient SNARGs (succinct non-
interactive arguments) that may result in better verification time at the cost of
increased signer work. We leave further investigation of this to future work.

Finally, we mention broader considerations that would come with using our
system in the real world. In the system, the actual database D would likely not
consist of the actual CSAM images themselves, but rather hashes of CSAM im-
ages computed using a perceptual hash function, such as Apple’s NeuralHash
[5]. This introduces the possibility of adversarial use of the hash function, for
example targeted collision-finding. We view this as an important attack vec-
tor to consider, especially when using these hash functions in conjunction with
cryptographic protocols meant to provide privacy against malicious servers. Ex-
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ploration of this topic is outside the scope of the current work, and we refer the
reader to [40] and references therein for current research on the topic.

1.4 Related Work

Pre-Constrained Cryptography. Our work borrows the terminology of pre-
constrained cryptography from Ananth et al. [4] because of sharing a similar
vision — that of putting pre-specified restrictions on the key generation authority.
Our definitions and constructions, however, are different from [4]. First, we note
that the notion of (set) pre-constrained group signatures is new to our work,
while Ananth et al. [4] only focus on (pre-constrained) encryption systems. In
the setting of pre-constrained encryption, the notion of malicious security in [4]
is weaker than ours and allows the authority to choose any “constraint” from a
class of constraints. This weaker notion is not meaningful in our setting, as it
allows the service provider (think, WhatsApp) to use an arbitrary set of their
choice. Ananth et al. propose constructions for different flavors of pre-constrained
encryption; the one that comes closest to our setting relies on indistinguishability
obfuscation [7], and is presently only of theoretical interest. In contrast, we
provide concretely efficient constructions for our setting.

Traceback Systems. While our work focuses on moderation for pre-defined
illegal content, there has also been much recent work on the adjacent ques-
tion of moderation for misinformation or abusive content. Solutions for this
problem typically build “traceback” mechanisms into end-to-end encrypted sys-
tems [43,34,38,27], extending the reach of so-called “message franking” systems
[26,17,42]. These solutions rely on user reporting to identify the existence of
harmful content. Once a report is received by the server, the server and report-
ing user can work together to identify the originator of the harmful message.
Unfortunately, these systems suffer from various drawbacks [21]: (1) They allow
a colluding server and users to de-anonymize the originator of any message, even
if the content is harmless. (2) Initial solutions in this space additionally require
the help of users on the traceback path to identify the originator, and do not
maintain their anonymity. While the latter drawback was addressed in the recent
work of [38], no known solution provides security guarantees against malicious
servers. Our system addresses both of these shortcomings, for our specific setting
of illegal content moderation.

Group Signatures. Finally, we mention a related line of work on group sig-
natures with message-dependent opening (GS-MDO) [18,33]. Here, trust is split
between the group manager and an additional entity called the “admitter”. The
identity of a group member that produces a signature on a message m can be re-
vealed only if the group manager and admitter combine their private information.
Unlike SPC group signatures, GS-MDO does not require any “commitment” to,
or “pre-constraining” of, the set of messages that can be de-anonymized. This
means that even after the system parameters are set up, the group manager and
admitter can in principle work together to de-anonymize every signature while
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still acting “semi-honestly” w.r.t. the protocol specification. In particular, clients
of the system will not have the peace of mind guaranteed by public parameters
that are publicly “authenticated” to only allow de-anonymization of a particular
set of illegal content specificied by some trusted (collection of) third party(ies).

2 Preliminaries

The security parameter is denoted by A € N. A function f : N — N is said
to be polynomial if there exists a constant ¢ such that f(n) < n° for all n €
N, and we write poly(:) to denote such a function. A function f : N — [0,1]
is said to be negligible if for every ¢ € N, there exists N € N such that for
all n > N, f(n) < n~¢ and we write negl(-) to denote such a function. A
probability is noticeable if it is not negligible, and overwhelming if it is equal to
1 — negl(A) for some negligible function negl(A). For a set S, we write s < S to
indicate that s is sampled uniformly at random from S. For a random variable
D, we write d < D to indicate that d is sampled according to D. An algorithm
A is PPT (probabilistic polynomial-time) if its running time is bounded by
some polynomial in the size of its input. For two ensembles of random variables
{Do,x}rens {D1.a}ren, we write Dy =, D; to indicate that for all PPT A, it
holds that

Pr [Ad)=1— Pr [Ad)=1]|<

d(—'Doy)\ d(—’DL)\

+ negl(A).

DO =

2.1 Basic cryptographic primitives and assumptions

We will use a standard symmetric-key encryption scheme (Enc, Dec) with key
space K that satisfies random key robustness, which states that for any message
m, Pry i [Dec(k’, Enc(k, m)) = L] = 1 — negl(\). We will also make use of a
standard digital signature scheme (Gen, Sign, Verify) that is ezistentially unforge-
able under chosen message attacks (EUF-CMA).

2.2 Non-interactive arguments of knowledge

Let £ be an NP language and let R be the associated binary relation, where a
statement = € £ if and only if there exists a witness w such that (z,w) € R. A
non-interactive argument system for R consists of algorithms Setup, Prove, Verify,
where Setup(1*) outputs a string crs, Prove(crs, z,w) outputs a proof 7, and
Verify(crs, z, ) outputs either 1 to indicate accept or 0 to indicate reject. We
say that a non-interactive argument system for a relation R that satisfies the
standard notions of completeness, knowledge extraction, and zero-knowledge, is a
zero-knowledge non-interactive argument of knowledge (ZK-NTAoK) for R. We
will use the fact that the following relations all have highly efficient ZK-NTAoKs
in the ROM. Let G be a group of order ¢ with generator g.

— The relation Rpreg = {((g,h), ) : h = g*}. A ZK-NIAoK for Rpiog follows
from applying the Fiat-Shamir heuristic [20] to Schnorr’s sigma protocol [41].
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— The relation Rpy = {((g, h1, k2, h3),a) : (b1 = g*) A (hg = h§)}. A ZK-
NIAoK for Rpy follows from applying the Fiat-Shamir heuristic to Chaum
and Pederson’s sigma protocol [14].

— For any n and k < n, the relation Rpogr = {((g;h1, ..., hn), (S, {aities)) :
(IS| = k) A (Vi € S,h; = g*)}. A ZK-NIAoK for Rp| . follows from
applying the Fiat-Shamir heuristic to the protocol of [16]. Moreover, an
efficient succinct argument system for this language whose size is logarithmic
in n, was shown recently by [6].

2.3 Groth-Sahai Proofs

Let G be a bilinear group generator that on input 1* returns (p, G1, Gz, T, e, g1, g2),
where G1, Go, T are groups of order p, where p is a A-bit prime. g; is a generator

of Gy, g2 is a generator of G, and e is a non-degenerate bilinear map. That

is, e(g,g) is a generator of T, and for all a,b € Z,, it holds that e(g{,g5) =

e(g1,92)?. The DDH assumption is assumed to hold in each of G; and Go.

In other words, the SXDH (symmetric external Diffie-Hellman) assumption is

assumed to hold.

Groth and Sahai [24] constructed efficient non-interactive zero-knowledge
proof systems for statements that involve equations over bilinear maps. “GS
proofs” can prove certain statements that consist of the equations over vari-
ables Xy,...,X,, € G,Y1,...,Y, € Go,x1,..., and Ty, Y1,-..,Yns € L.
Although, the GS proof system can handle many types of equation, we re-
strict our attention to two categories. The first type is pairing product equa-
tions — [T;2; e(Ai, i) [[iZ, e(Xi, Bi) [Tiz, [Tj=, e(Ai, Bj)® = 1r, for constants
A; € G1,B; € Go,¢5 € Zy, where 1r is the identity in T and b) multi-
scalar exponentiations — H:L:/1 AV X0 T, H;il X799 = Ty, for con-
stants A;,T1 € G1,b;,¢ij € Zp and analogous statements for multi-scalar expo-
nentiation in Gs.

GS proofs are in the common random string model, and satisfy the com-
pleteness and zero-knowledge properties described in Section 2.2. However, they
only satisfy a weaker notion of knowledge extraction which has been referred
to as partial knowledge extraction [23]. This property states that if the witness
consists of both group elements and exponents, only the group elements are
extractable.

2.4 Cuckoo hashing

A cuckoo hashing scheme consists of the algorithms (Setup, Hash), and is param-
eterized by a universe U of elements.

— Setup(\,n,e) — (n', hg, h1) : the setup algorithm takes as input an integer
parameter A, an integer bound n, and ¢ > 0, and outputs an integer n’ and
two hash functions hg, hy : U — [n'], where n’ is a deterministic function of
A, n, and e.
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— Hash(hg, h1, D) — T : the (deterministic) hashing algorithm takes hash
functions hg,hy : U — [n'] and a set D C U, and outputs a table T =
[T1,...,Ty], where each T; is either an element in D or L.

For correctness, we demand that for every x € U, ho(z) # hq(z). We will assume
that this is the case for every pair of even adversarially chosen hash functions.’
Each non-_1 element of T is distinct. Finally, for any n, e and set D C U of size
n, it holds that with probability 1 — negl(\) over (m, ho,h1) + Setup(A,n,€),
there exists a set D’ C D such that |D’| > (1 — €)|D| and such that for any
x € D', either T () = x or T}, () = x, where T' := Hash(hq, h1, D).

3 Set Pre-Constrained Encryption

In this section, we define and construct set pre-constrained (SPC) encryption.
We start by providing an overview in Section 3.1. We then present formal def-
initions of SPC encryption in Section 3.2, and constructions in Section 3.3. In
the full version [8] we demonstrate that an optimal version of SPC encryption
implies doubly-efficient private information retrieval and also prove security of
our protocols.

3.1 Overview

The basic Apple PSI protocol. We start by recalling the basic Apple PSI
protocol, viewed as an encryption scheme. “Basic” here refers to the protocol
without the extra threshold or synthetic match functionalities, which we will not
consider explicitly in this work.

A key technique used in Apple’s protocol is the Naor-Reingold Diffie-Hellman
random self reduction [36]. Let G be a cyclic group of order ¢ with generator
g, and let hq, ha, hg be three other group elements. Suppose that 3,7y < Z, are
sampled as uniformly random exponents, and hf = g% - h], b}y = hf -h3. Then
it holds that (i) if (g, h1, ha, hs) is a Diffie-Hellman tuple (that is, there exists «
such that ¢* = hy and h§ = h3), then (g, h1, k), hYs) is a Diffie-Hellman tuple,
and (ii) if (g, h1, ha, h3) is not a Diffie-Hellman tuple, then (h}, h%) are fresh
uniformly random group elements.

Now, this self-reduction can be used to construct a set pre-constrained en-
cryption scheme for a single-item set {z} as follows. Let H be a hash function
that hashes items to group elements (H will be treated as a random oracle in
the security proof). The key generator, on input an item z, will sample a < Z,
and publish (A = g%, B = H(z)%) as the public key. Note that (g, A, H(x), B)
is a Diffie-Hellman tuple, while for any =’ # z, (g, A, H(2'), B) is not a Diffie-
Hellman tuple. This suggests a natural encryption scheme. Given the public
key, an item y, and a message m, the encryption algorithm will run the Naor-
Reingold self-reduction on (g, A, H(y), B) to produce group elements (@, .S), and

9 For example, h1 can be defined to first hash = and then check if the hash is equal to
ho(z) and if so add 1.
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then treat S as a secret key for encrypting the message m. That is, the ciphertext
will consist of (@, SEncg(m)), where SEnc is a symmetric-key encryption scheme.
If y # «, then S will be uniformly random, even from the key generator’s per-
spective, so m remains hidden. On the other hand, if y = z, then (g, 4, Q,5)
is a Diffie-Helman tuple, and the element S = Q% can be computed by the key
generator and used to recover m.

This scheme can easily be extended to support larger set sizes, by having
the key generator publish (A, H(x1)%,...,H(x,)*) as the public key, where
Z1,...,Ty is its input set. However, the naive extensions of the encryption and
decryption algorithms described above will have running time that grows with
the size n of the set. The authors of the Apple PSI system make use of a technique
called cuckoo hashing to significantly reduce this running time. Concretely, the
key generator will hash the set (x1,...,2,) into a table T of size n’ = (1 + €)n
for some constant €, using randomly sampled hash keys hg, h1. The guarantee
is that with high probability, for most z;, either T}, () = ;i or Ty, (2;) = @i
Note that T will have n’ — n empty entries, which we denote with L. The key
generator will then publish (A, By, ..., B, ) as the public key, where for each
i€ [n],if T; = x then B; = H(x)®, while if T; = L then B; = ¢" for a random
exponent r. Now, to encrypt a message m with respect to an item g, one only
has to produce two pairs (Qo, SEncs,(m)), (Q1,SEncg, (m)), where (Qs,Sp) is
the result of applying the Naor-Reingold self-reduction to (g, 4, H(y), By, (y))-

This results in a set pre-constrained encryption scheme that can handle pre-
constraining sets of size n with a public key of about n’ = (1 + €)n group ele-
ments, and encryption and decryption algorithms whose running times do not
grow with the size of n. One can show (in the random oracle model) that this
scheme already satisfies set-hiding under the DDH assumption, and can be made
to satisfy element-hiding from DDH, as long as the two pairs (Qq, SEncg,(m)),
(Q1,SEncg, (m)) that constitute the ciphertext are randomly permuted, and
Bi,..., B, are all distinct group elements.

Achieving bounded-set and authenticated-set security. Next, we show
that augmenting the above template with simple and efficient zero-knowledge
arguments suffices to achieve first bounded-set and next authenticated-set secu-
rity. While the potential utility of adding zero-knowledge arguments to Apple’s
PSI system has previously been discussed informally [13,39], we view our for-
malization and efficient realization of rigorous security definitions as a necessary
and important contribution in this space.

The Apple PSI paper [10] actually already claims to achieve bounded-set
security, which guarantees that a malicious key generator can only decrypt mes-
sages that are encrypted with respect to some set of items of size at most B.
However, it is left unclear what B is, and how it depends on other parameters
in the system. In fact, their proof completely breaks down if B < n’. In par-
ticular, their proof relies on extracting the input set X of the key generator by
observing random oracle queries, potentially adding one item x to X for each
group element B; in the public key. If the resulting X is such that |X| > B,
then the ideal functionality aborts, and the malicious key generator would not
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receive encryptions from the client. However, this behavior does not reflect what
would happen in the real world, where the client would not be able to tell how
large the key generator’s “effective input” actually is.

This issue in the proof occurs with good reason, since a malicious key genera-
tor can indeed publish (A, H(x1)?, ..., H(z,)®) for n' items z1, ..., z, without
being detected. However, correctness for honest key generators is only guaran-
teed to hold for up to n items (due to the cuckoo hashing). Thus, in the best
case, we hope for a scheme that achieves bounded-set security with bound n.

We show how to achieve this by instructing the key generator to append to
their key (A, By, ..., By/) a zero-knowledge non-interactive proof of knowledge
that they know the discrete logarithm « of A and at least n’ — n discrete loga-
rithms {r;} of the elements By, ..., B, . Highly efficient proofs supporting these
languages are known [16,6]. Intuitively, the n’ — n group elements B; for which
the generator knows r; such that B; = g™ are “useless” for decrypting encrypted
messages. To see why, recall that, due to the Naor-Reingold self-reduction, B; can
only be used to decrypt with respect to an item x such that (g, A, H(z), B;) forms
a Diffie-Hellman tuple. However, if the generator knows an x, a;, and r; such that
this holds, they can break the discrete logarithm problem, since H(z) = ¢"/®
and H(z) can be programmed by a reduction. Thus, only at most n of the el-
ements (Bi,. .., By/) will actually be useful for decrypting messages, which we
leverage to show bounded-set security with a bound of n.

Next, we consider our notion of authenticated-set security, which introduces
a third party that chooses the set D. In our scheme, the third party first
sends D to the key generator. Then, the key generator prepares a public key
(A, B1,...,By). In the honest case, for each i it either holds that there exists
x € D such that (g, A, H(z), B;) form a Diffie-Hellman tuple, or the generator
knows r; such that B; = ¢;. Now, these are claims that the generator can prove
efficiently in zero-knowledge to the third party. The third party will then checks
these proofs, and if all verify, will sign the set of group elements (A, By, ..., By/)
under its public verification key. We show in Section 3.3 that this is sufficient
for achieving authenticated-set security.

3.2 Definitions

A set pre-constrained encryption (SPCE) scheme ITspce[U, M, n, €] consists of
algorithms (Gen, Enc, Dec), and is parameterized by a universe U of elements, a
message space M, a set size n, and a correctness parameter e. U, M,n, e may
actually be infinite families parameterized by the security parameter A, though
we suppress mention of this for ease of notation.

— Gen(1*, D) — (pk, sk): the parameter generation algorithm takes as input a
security parameter 1* and a set D C U of size at most n, and outputs a
public key pk and a secret key sk.

— Enc(pk,x,m) — ct: the encryption algorithm takes as input a public key pk,
an item x € U, and a message m € M, and outputs a ciphertext ct.

— Dec(sk,ct) = {m, L}: the decryption algorithm takes as input a secret key
sk and a ciphertext ct and outputs either a message m € M or a symbol L.
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We note that any SPC encryption scheme can be utilized for encrypted cloud
storage as follows. The server initially publishes pk, and whenever the client
wants to upload some content z, they would sample an (element-hiding) SPC
encryption of (x,m), where m is arbitrary “associated data” (e.g. the name of
the client). Then, if z € D, the server would be able to use sk to recover the
associated data m. Otherwise (x, m) will remain hidden from the server.

Efficiency. By default, all algorithms in an SPC encryption scheme should be
polynomial-time in the size of their inputs, and n,|z|,|m| should be polynomial-
size in \. However, we will want to consider a more fine-grained notion of effi-
ciency with respect to the size n of the set D, which may be a large polynomial.
We say that the scheme has succinct public-key if |pk| = poly(A,logn), succinct
encryption if the running time of Enc is poly(A,logn), and succinct decryption
if the running time of Dec is poly(),logn).

Correctness. We define notions of correctness for an SPC encryption scheme.
We first consider the following notion of e-correctness, where the parameter
€ essentially determines an upper bound on the fraction of the set D that is
“dropped” by the Gen algorithm.'?

Definition 1. An SPC encryption scheme (Gen, Enc, Dec) is e-correct for some
€ >0 if for any X\ € N and D C U, it holds that with probability 1 — negl(\) over
(pk,sk) < Gen(1*, D), there exists a D' C D such that |D'| > (1 —¢)|D| and for
any x € D' and m € M, Pr[Dec(sk, Enc(pk, z,m)) = m] =1 — negl(}).

Next, we define the stronger notion of perfect e-correctness that will be useful for
our application of SPC encryption to building SPC group signatures in Section 4.

Definition 2. An SPC encryption scheme (Gen, Enc, Dec) is perfectly e-correct
for some € > 0 if the following two properties hold for any A € N and D C U.

— With probability 1—negl(\) over (pk, sk) < Gen(1*, D), there exists a D' C D
such that |D'| > (1—€)|D| and for any m and x € D', Pr[Dec(sk, Enc(pk, z,m)) =
m] = 1.

— For all (pk,sk) € Gen(1*, D), x,m, Pr[Dec(sk, Enc(pk, z,m)) € {m, L}] = 1.

Security. We define security using the simulation framework, via an ideal func-
tionality described in Fig. 1. The ideal functionality ]-"gf:CE takes place between
a server, who runs Gen and Dec, a client, who runs Enc, and a third party Auth,
whose role will be described below. In full generality, the server’s input is a
function F', but in our applications, we will always parse F' as a description of
a database D of items. The client’s input is a sequence of items and messages
(x1,m1),...,(xk, mg). The client should learn nothing about D, Auth should
learn nothing about the messages my, ..., my, and the server should learn only
{mi}iz,ep (and potentially the elements {2;};cqx))-

10 Traditionally, one might expect € to be negligible, and thus suppressed in the defini-
tion. However, our protocols will make use of cuckoo hashing which may introduce
an inverse-polynomial e.
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To make security against the server meaningful, we must place some restric-
tion on D. We do this (in a modular way) by parameterizing the functionality
with a predicate P. This predicate may depend on some public parameters pp
(known to both client and server) and some secret parameters sp (known only
to the server). It is the job of Auth to set up these parameters. We allow a ma-
licious adversary to corrupt either the server, the client, or Auth. We note that
one could also consider collusions between any pair of parties, but in each case
security becomes vacuous, so we do not consider this in our proofs of security.

Below, we describe the instantiations of P that we will consider in this work:
one will define what we call bounded-set security and the other will define what
we call authenticated-set security.

P
]:SPCE

Parties: server S, client C, and authority Auth.
Parameters: universe U/, message space M.

— Obtain input (pp,sp) from Auth. Deliver pp to both C' and S, and sp
to S.

— Obtain input F = (Fs, Fauwh) from S and deliver F' to Auth. Abort
and deliver L to all parties if P(pp,sp, F') = 0.

— Obtain input (z1,m1),...,(zk, mi) from client, where each x; € U
and each m; € M.

— Deliver Fs({xi,mi}ici)) to server and Faun({zi, m:i}icik]) to Auth.

Fig. 1. Ideal functionality for SPC encryption. P is a predicate that takes as input some
public parameters pp, secret parameters sp, and a pair of functions F' = (Fs, Fauth),
and outputs a bit.

Bounded-set security. Here, we define two predicates P[BS] and P[BS-EH], where
BS stands for bounded-set, and EH stands for element-hiding. For each, the
public parameters pp are parsed as an integer n, there are no secret parameters
sp, and F' is parsed as the description of a database D C U/. The predicate then
outputs 1 if and only if |D| < n. For P[BS],

Fs({zi,mitie) = {xitiepw)s {mitiziep, Faun({Tis mitiew)) = {@itien,

and for P[BS-EH],

Fs({xi,mi}iew) = K, Amitiz,en, Fawn({Ti, mi}icm) = k-

Authenticated-set security. Here, we define two predicates P[AS] and P[AS-EH],
where AS stands for authenticated-set. For each, the public parameters pp are
parsed as an integer n, the secret parameters are parsed as a database D* C U
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of size n, and F' is parsed as a database D C U. The predicate then outputs 1 if
and only if D C D*. For P[AS],

Fs({zi,mi}ic) = {zibiep), {Mitie,ens  Fasn({Ts, miticm)) = {2 tiew)
and for P[AS-EH],

Fs({zi,mi}icr) = ko Amitiw,ens Favn({zs, mi}icp) = k-

One can also define a game-based notion of security against outsiders by ex-
tending standard notions of semantic security to capture the indistinguishability
of ciphertexts corresponding to encryptions of two different messages. We defer
this to the full version [8].

3.3 Construction

We begin by giving templates for SPC encryption based on Apple’s PSI protocol
[10]. These schemes will have succinct encryption and succinct decryption, but
non-succinct public-key. We will first describe a scheme HSB;éiEEH (Protocol 2)
that satisfies e-correctness and security against outsiders with element-hiding.
Then, we describe a related scheme HES?E_PC (Protocol 3) that satisfies perfect
e-correctness but only security against outsiders without element-hiding, and is
tailored to support encrypting messages that are group elements. This latter
scheme will be useful for our construction of set pre-constrained group signa-
tures in Section 4. Following these basic templates, we will then show how to
(efficiently) upgrade each to obtain bounded-set and authenticated-set security,

T § BS—EH ;7BS—PC j7AS—EH ;7AS—PC
resulting in schemes Ilcgcr ', Icpcr —, Hepee > Hspce

Ingredients:

— A cyclic group G of prime order ¢ in which the DDH problem is assumed to
be hard.

— A symmetric-key encryption scheme (RobEnc, RobDec) with keyspace K that
satisfies random key robustness (Section 2.1).

— Hash functions H : Y — G\ {0} and G : G — K modeled as random oracles,
where G maps the uniform distribution over G to (negligibly close to) the
uniform distribution over K.

— A cuckoo hashing scheme (CH.Setup, CH.Hash) (Section 2.4).

HBasicfEH

Achieving bounded-set security. It can in fact be shown that IIcSee " [U, M, n, €]

(vesp. IS PCU, G, n,€]) already securely emulates fg,[CBE_EH] (resp. fché])

with set size pp = n’ where n’ is such that (n’,-,) < CH.Setup(\, n,¢). How-
ever, n’ may be much larger than n, which means a large gap between correctness
(an honest server would be able to decrypt with respect to (1 — €)n items) and
security (a dishonest server would potentially be able to decrypt with respect to
up to n’ items).

Below, we show that an efficient tweak to the basic schemes results in schemes
HEPSC_EEH, USBPSC_EPC (Protocol 4) that completely close this gap. That is, for any n,

the schemes HEPSC_EEH, HSBSC_EPC securely emulate ]—"gJCBE_EH], ]-';T)[CBE] with pp = n.
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Basic—EH
I U, M, n, €

Parameters: universe U, message space M, set size n, correctness param-
eter €, and security parameter .

Setup: description of the group G with generator g, and random oracles
H,G.

Gen(1*, D):

— Run  (n',ho,h1) <«  CH.Setup(\,m,e) and then T =
CH.HaSh(ho, hl, D)

Sample a < Zg4 and set A = g*.

Define T as follows. For each i € [n'], if T; = L then sample 7; < Zg
and set f’z = ¢"i, and otherwise set i = H(T3)“.

— Output pk := (ho, h1, A, 7~") and sk := a.

Enc(pk, z,m):

— Parse pk as (ho, h1, A,ZN“) and abort if there are any duplicate entries
inT.

— For b € {0,1}, sample By, 7 <+ Zq and compute Qp = g’ -
H(z)"™, Sy = A% T, ct, == RobEnc(G(Ss),m). Sample b + {0, 1}
and output ct := (Qs, Ctp, Q1—b, Cti—s).

Dec(sk, ct):

— Parse sk as a and ct as (Qo, cto, Q1,ct1).

— For b € {0,1} and compute m; := RobDec(G(Q5F), cts). If exactly one
of mg or my is not L, then output this message, and otherwise output
1.

Fig. 2. Basic SPC encryption with element-hiding

Observe that the correctness properties of HES?E_EH, HES?E_PC are preserved

by this transformation, due to the completeness of the ZK-NIAoKs, and the se-
curity against outsiders properties are also preserved, due to the zero-knowledge
of the ZK-NTAoKs.

HAS—EH HAS—PC

Achieving authenticated-set security. Next, we describe schemes Ilgpcg
(Protocol 5) that satisfy authenticated set security. In order to achieve this no-
tion, we will relax Gen to be an interactive protocol between the server and
Auth, with the following syntax. Gen(Server, Auth(D))(1*) — (pk,sk) where the
parameter generation protocol takes place between a server and Auth with input
a set D C U, and outputs to the server a public key pk and a secret key sk.

Observe that the correctness properties of HES??EH, SBSEIEPC are preserved
by the transformation, due to the completeness of the ZK-NIAoKs and correct-
ness of Sig, and the security against outsiders properties are also preserved, due
to the zero-knowledge of the ZK-NTAoKs.
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Basic—PC
I U, G, n, €]

Parameters: same as [Teaee ", except that the message space is the set of
group elements in G.

Setup: Same as ITeaae .

Gen(1*, D): Same as HSBSZEE{H, except that ho, hi1,T are included in sk,
and we abort if there does not exist a D’ C D such that |D’| > (1 — €)| D]
and such that for any € D', either Tho(z)y = or Thy(z) = .

Enc(pk, z,m):

— Parse pk as (ho, hl,A,T) and abort if there are any duplicate entries
inT.

— For b € {0,1}, sample B,V  Zq, and compute Qp = g% -
H(z)", Sy = A% - T} . Output ct := (z,Qo, So - m, Q1,51 - m).

Dec(sk, ct):

— Parse sk as (ho, h1, T, a) and ct as (z, Qo, So, Q1,51).

— If there exists exactly one b € {0, 1} such that T}, (,) = x, then output
m = S;/Qy. Otherwise, output L.

Fig. 3. Basic SPC encryption with perfect correctness

BS—EH BS—PC

Hgpce [uaManae]aHSPCE U,G,n, €
Parameters: Same as HES?EEH,HSBS??PC. Note that the parame-
ters A\,m, and € determine a maximum hash table size n’, where
(n',-,) < Setup(\, n,€).

Setup: Let (Provepiog, Verifyp ,,) be a ZK-NIAoK for Rpiog and let

(Proveﬁ;g,Verifyﬁ;g) be a ZK-NIAoK for RDLog";*" (Section 2.2). Both

of these proof systems are in the random oracle model and have no ad-
ditional setup, so there is no additional setup required for HE;C_EEH, Hngc_EPC
Gen(1*,D): Same as HSBPaziEEH, HSBPaZiEPC, except ~thabt proofs
ma < Provepieg((g,A), @) and 7z <« Proveg((g,7), {ritim=1)
are computed and appended to the public key pk.

Enc(pk,z,m): Same as IT&aac ™ [T18289<PC except that the algo-
rithm aborts if either of w4 or 77 fails to verify, or the number of group

elements in 7 is greater than n’.

o Basic—EH Basic—PC
Dec(sk, ct): same as Hepce —, IIopce

Fig.4. SPC encryption with bounded-set security
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IS U, M, e, TS IU, Gy, €]

. . Basic—EH Basic—PC
Parameters: same as Igpcg , Igpee

Setup: let (Sig.Gen,Sig.Sign, Sign.Verify) be a EUF-CMA secure sig-
nature scheme (Section 2.1). Before the protocol begins, Auth will sample
(VKAuth, SKauth) Sig.Gen(lA) and broadcast vkauh to all parties. Also, let
(Proveptog, Verifyp, ,,) be a ZK-NIAoK for Rpiog and (Provepn, Verifypy,)
be a ZK-NIAoK for Rpn (Section 2.2). Both of these proof systems

are in the random oracle model, so require no additional setup beyond
HBasic—EH HBasic—PC
spcE > t4spcE

Gen(Server, Auth(D))(1*):

— Auth sends D to Server.

— Server first runs the Gen algorithm of HES?E_EH,HS??E_PC on input
(1*, D) to obtain output (ho,h1, A, T),oz, along with table T and
randomness {r; }:1,=1. Next, compute w4  Provepiog((g, A), @). Fi-
nally, for each i € [n'], where n’ is the size of T, T

e If T; = 1, compute m; < ProveDLog((g,’_ﬁ'),ri).
o If T; # 1, compute m; < Provepn((g, 4, H(Ti),ﬁ-),a).
Send (A, T,T,7a, {mi}iein]) to Auth.
— Auth runs Verifyp . ((9,A),74) and for each i € [n]: if T; = 1,

runs Verifyp, .. ((g,T3),7:) and if T; # L, check that T; € D and
runs Verifyp,((g, A, H(T}), T:), 7). If all checks pass, compute o <
Sig.Sign(sk, (A,T)), and return o.

— Server outputs pk := (ho, h1, A,i o) and sk := a.

Enc(pk, z,m): same as HESZEE*EH,HSBSEEEPC, except that it first runs
Sig.Verify(vkautn, (A, T),0)" and aborts if the signature fails to verify.
Dec(sk, ct): same as [Tga9c™EH rBasic=PC

¢ Note that this verification only needs to be done once per user and not
every time Enc is run, since the public key does not change.

Fig.5. SPC encryption with authenticated-set security

4 SPC Group Signatures

In this section, we define and construct SPC group signatures. We present formal
definition of SPC group signatures in Section 4.1, and constructions in Section 4.2

and Section 4.3. We defer proofs of security to the full version [8].

23




4.1 Definitions

A set pre-constrained group signature (SPCGS) scheme ITspces| M, P, n, €| con-
sists of algorithms Gen, Sign, Verify, Open, along with an interactive protocol
KeyGen. We refer to the party that runs Gen as the group manager GM, and
the KeyGen protocol is run by GM and a client C. It is parameterized by a mes-
sage space M, an identity (or public key) space P, a set size n, and a correctness
parameter e.

— Gen(1*, D) — (mpk, msk). The parameter generation algorithm takes as in-
put a security parameter 1* and a set D C M of size at most n, and outputs
a master public key mpk and a master secret key msk.

— KeyGen{GM(msk), C) — (pk,sk). The KeyGen protocol is run by the group
manager GM with input msk and a client C. It delivers an identity pk € P
to both GM and C, and an identity signing key sk to C.

— Sign(mpk, sk,m) — o. The signing algorithm takes as input the master public
key mpk, an identity signing key sk, and a message m € M, and outputs a
signature o.

— Verify(mpk,m,o) — {T, L}. The verification algorithm takes as input the
master public key mpk, a message m € M, and a signature o, and outputs
either T or L, indicating accept or reject.

— Open(msk, o) — {pk, L}. The opening algorithm takes as input the master
secret key msk and signature o, and outputs either an identity pk € P or L.

We imagine using an SPC group signature scheme for encrypted messaging
as follows. We assume that there is already a standard end-to-end encrypted
messaging system in place, and the server additionally publishes mpk for the
SPCGS scheme. Each client runs a KeyGen protocol with the server in order to
obtain their identity pk and their secret key sk. Then, whenever they want to
send a message m, they additionally compute a signature o on m, and send the
message (m, o) under the end-to-end encryption. Any message received that does
not have a properly verifying signature is immediately discarded by the client
algorithm. Finally, if an honest client receives a pair (m, o) for some illegal
content m, they can report this to the server, who can run the Open algorithm
in order to determine which identity produced the signature o.

We now port the definitions of bounded-set and authenticated-set security
against malicious servers (as previously defined for SPC encryption) to the
group signature setting. Further, we follow standard definitions of traceability,
anonymity, and unframeability for group signatures.

Definition 3 (Correctness). An SPC group signature scheme (Gen, KeyGen, Sign,
Verify, Open) is correct if for any A\ € N, D C M, and message m € M,

it holds with probability 1 — negl(\) over (mpk, msk) < Gen(1*, D), (pk,sk) <
KeyGen(GM(msk), C), and o < Sign(mpk, sk, m) that Verify(mpk, m,c) = 1.
Security. We formulate several notions of security for an SPC group signature
scheme. First, we define a notion of traceability, which ensures that any signature

on a message m € D that is accepted by the verification algorithm will leak the
identity of the signer to the master secret key holder.
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Definition 4 (Traceability). An SPC group signature scheme (Gen, KeyGen, Sign,
Verify, Open) is e-traceable for some € > 0 if for any PPT adversary A, A € N,
and D C M, it holds that with probability 1 — negl(\) over (mpk, msk) «+
Gen(1*, D), there exists a D' C D with |D'| > (1 — €)|D|, such that

IsValid[mpk](m, o, pk) = 1
Pr|A (meD)
A (pk & Zaav)

where the oracles Oake; Oopens Onka, Osign, set Iady and predicate IsValid[mpk]
are defined as follows.

. (m’0-> — AOAKGyoOpenaoHKGaosign

pk < Open(msk, o) = negl(}),

— Oake (KeyGen initiated by the Adversary) has msk hard-coded and, when
initialized, acts as the group manager in the KeyGen protocol. Define Iaqgy to
be the set of identities obtained by GM(msk) as a result of the interactions
between A and Oakg.

— Oopen has msk hard-coded, and on input a signature o, outputs Open(msk, o).

— Ouke (KeyGen initiated by an Honest party) has msk hard-coded and, when
queried, runs KeyGen(GM(msk), C) — (pk,sk), and returns pk (and not sk).
Define Ton to be the set of pk’s output by Ouke.

— Osign takes a message m and an identity pk as input. If pk ¢ Tyon, return
nothing, and otherwise let sk be the secret key associated with pk and return
Sign(mpk, sk,m). Define J to be the set of (m,pk) queried to Osign.

— IsValid[mpk](m, o, pk) outputs (Verify(mpk,m,c) = 1) A ((m, pk) ¢ J). That
is, it accepts if the adversary produced a valid message signature pair that
was not a query to its signing oracle.

Next, we define the notion of unframeability, which ensures that an adversary
cannot produce a verifying signature with respect to some identity pk for which
they do not hold the corresponding sk, even if they know the master secret key.

Definition 5 (Unframeability). An SPC group signature scheme (Gen, KeyGen, Sign,
Verify, Open) satisfies unframeability if for any PPT adversary A and D C M,

Verify(mpk,m, o) =1
Pr [ A (mpk, msk) € Gen(1*, D)
A ((m, pk) ¢ \7) A (pk € IHon)

) (mpk, msk, m, o) + A(’)HKG,Osign(l)\’D) B
. pk <~ Open(msk, o) | ~ negl(A),

where the oracles Onka, Osign and sets Inon, J are defined as in Definition /.

Now, we consider the notion of anonymity, which protects the identity of any
signer who produces a signature on a message m ¢ D, even against the group
manager. Here, we will follow our simulation-based notion of security for SPC
encryption. The ideal functionality F% . takes place between a group manager
GM who runs Gen, interacts in KeyGen, and runs Open, a client, who interacts in
KeyGen and runs Sign, and an authority Auth, whose role will be described below.
In full generality, the group manager’s input is a function F, but in our applica-

tions, we will always parse F' as a description of a database D of messages. The
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client’s input is a sequence of identities and messages (pky,m1), ..., (pky, mk).
The client should learn nothing about D, Auth should learn nothing about the
identities {pk; };c[x], and the group manager should learn nothing about the iden-
tities {pk;}i:m,¢p, except perhaps how many “repeats” there are (if we don’t
require the property of unlinkability).

To make security against the server meaningful, we must place some restric-
tion on D. We do this (in a modular way) by parameterizing the functionality
with a predicate P. This predicate may depend on some public parameters pp
(known to both client and group manager) and some secret parameters sp (known
only to the group manager). It is the job of Auth to set up these parameters.

Below, we describe the instantiations of P that we will consider in this work:
one will define what we call bounded-set security and the other will define what
we call authenticated-set security.

P
Fanon

Parties: Group manager and client.
Parameters: message space M, identity space Z.

— Obtain input (pp,sp) from Auth. Deliver pp to both group manager
and client, and sp to group manager.

— Obtain input F' = (Fgm, Fauh) from group manager and deliver F to
Auth. Abort and deliver L to all parties if P(pp,sp, F)) = 0.

— Obtain input (pky,m1),..., (pks, mk) from client, where each pk, € Z
and each m; € M.

— Deliver Fom({pk;, mi}icqx)) to group manager and Faueh ({pk;, 70 Ficik])
to Auth.

Fig. 6. Ideal functionality for SPC group signatures with anonymity. P is a predicate
that takes as input some public parameters pp, and a pair of functions F = (Fys, Fauth),
and outputs a bit.

Bounded-set security. Here, we define two predicates P[BS] and P[BS-link], where
link stands for linkability. For each, the parameters pp are parsed as an integer n,
there are no secret parameters sp, and F' is parsed as a description of a database
D C M. The predicate then outputs 1 if and only if |D| < n. For P[BS],

Fom({pk;, miticir)) = {pk;tiomien, {ma i), Fautn({PKy, M ticr)) = {miticp)s
and for P[BS-link],
Fom({pk;, miticir)) = {pk; biom,e D, Aux({pk; }iimi g D), A ticir)s

where for any multiset S, Aux(S) consists of the number of distinct elements in
S along with how many times each appears, and

Fautn({pPk;, mitiery) = {mitiep)-
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Authenticated-set security. Here, we define two predicates P[AS] and P[AS-EH].
For each, the public parameters pp are parsed as an integer n, the secret param-
eters are parsed as a database D* C M of size n, and F' is parsed as a database
D C M. The predicate then outputs 1 if and only if D C D*. For P[AS],

FGM({pki7mi}ie[k]) = {Pki}i:mieD, {mi}ie[k]7 FAuth({pkiami}iG[k]) = {mi}ie[k]u

and for P[AS-link],

Fom({pk;, miticir)) = {pk; biom,e D, Aux({pk; }iimi ¢ D), A ticir)s

where for any multiset S, Aux(S) consists of the number of distinct elements in
S along with how many times each appears, and

Fautn({Pk;, mi Yier)) = {mitier)-

Finally, we consider “client-client” anonymity and unlinkability, which con-
siders the security of signatures against other clients. Here, we can hope for
stronger security properties, since clients do not hold the master secret key and
thus might not be able to de-anonymize signatures even on messages m € D.
Thus, we give separate (game-based) definitions of anonymity and unlinkability
against adversarial clients.

Definition 6 (Anonymity). An SPC group signature scheme (Gen, KeyGen,
Sign, Verify, Open) satisfies client-client anonymity if for any PPT adversary
A, A e N, D C M, and m € M, it holds that with probability 1 — negl(\)
over (mpk, msk) < Gen(1*, D), (pkg,sko) <+ KeyGen(GM(msk), C), (pky,sk;)
KeyGen{GM(msk), C),

OakGOHke; Osign mpk, pky, _ 3. b+ {0, 1} }
Pr |:./4 B ( pk]_?o- T oo Sign(mpk,skb,m) < 9 + neg'(A)’

where the oracles Oake, Onke, and Osign are defined as in Definition 4.

Definition 7 (Unlinkability). An SPC group signature scheme (Gen, KeyGen,
Sign, Verify, Open) satisfies client-client unlinkability if for any PPT adversary
A, A e N, D C M, and messages mg, my € M, it holds that with probability
1 — negl()\) over (mpk,msk) < Gen(1*, D), (pky,sko) + KeyGen(GM(msk),C),
(pky,ski) « KeyGen(GM(msk), C),

mpka Pk07

oo < Sign(mpk, skg, mg)
)
pk17 00,01

b+ {0,1} | <

Pr AOAKG7OHKG;OSign ( .
o1 < Sign(mpk, skp, m;)

1
5+ negl(h),

where the oracles Oakg, Onke, and Osig, are defined as in Definition 4.
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4.2 Generic construction

We show how to construct an SPC group signature scheme generically from an
SPC encryption scheme that satisfies certain properties, plus a few standard cryp-
tographic tools. Our construction is given in the random oracle model, though
we note that if we were willing to assume an additional simulation-soundness
property of the ZK-NIAoK, then we would not require a random oracle. It is
presented in Protocol 7.

Ingredients:

— An SPC encryption scheme IIspcg = (SPCE.Gen, SPCE.Enc, SPCE.Dec) that
satisfies perfect e-correctness, security against outsiders, and either bounded-
set security or authenticated-set security (Section 3).

— A one-way relation (R, R.Gen, R.Sample) (Section 2.1). Let P denote the set
of instances.

— An EUF-CMA secure signature scheme Sig = (Sig.Gen, Sig.Sign, Sig.Verify)
with message space P (Section 2.1).

— A ZK-NTAoK scheme ZK = (ZK.Setup, ZK.Prove, ZK .Verify) in the common
random string model for general NP relations (Section 2.2).

— A random oracle H.

4.3 An efficient instantiation

We now summarize our approach for a concretely efficient instantiation of the
above generic template, based on constructions of SPC encryption schemes from
Section 3. Note that we will need a concretely efficient instantiation of a zero-
knowledge argument system that can be used to prove statements that involve
verifying signatures and the correctness of SPC encryption. Our goal here is to
avoid non-black-bozx use of the cryptography needed for signatures and SPC en-
cryption. Thus, we use bilinear maps, and make use of the Groth-Sahai proof
system [24], which can efficiently prove statements that involve certain oper-
ations in pairing groups.!! We combine the GS proof system with the use of
structure-preserving signatures [1], which support messages, verification keys,
and signatures that consist solely of group elements. We provide details of the
scheme, implementation and benchmarking in the full version [8].

Our construction will make use of a bilinear map G = (p, G1,G2, T, e, g1, 92)
where the SXDH assumption is assumed to hold, as described in Section 2.3.
The group signature scheme ITspcgs[M, G1,n, €] will have an arbitrary message
space M and identities consisting of group elements in G;. The four ingredients
are instantiated as follows.

' We remark that, although GS proofs only satisfy partial knowledge extraction (see
Section 2.3), this is sufficient for our construction. Indeed, the signatures extracted
in order to show e-traceability and unframeability only consist of group elements,
and the one-way relation witness extracted during the proof of unframeability is also
a group element.
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IIspces[M, P, n, €]

Parameters: message space M, identity space P, set size n, correctness
parameter €, and security parameter \.

Setup: pp < R.Gen(1*) and a random oracle H.

Gen(1*, D): run (pkgpcg, skspce) < SPCE.Gen(1*, D)* and (vksig, Sksig) <
Sig.Gen(1*). Set mpk := (pkspce, Vksig) and msk := (skspce, sksig).

KeyGen(GM(msk), C): the client C samples random coins s, com-
putes (pk,w) := R.Sample(pp; s), and sends pk to GM. GM parses msk as
(skspce, sksig) and then computes and sends oiq < Sig.Sign(sksig, pk). C
sets sk == (s, 0id).

Sign(mpk, sk, m): parse mpk as (pkgpcg,Vksig) and sk as (s,oi), com-
pute (pk,w) := R.Sample(pp;s), sample random coins r, and compute
ct := SPCE.Enc(pkgpce,m, pk;r). Let crs = H(m,ct), and compute
7 ZK.Prove(crs, (pp, pkspce, VKsig, M, ct), (pk, s, w, oi4, 7)) for the relation
that checks that

— ct = SPCE.Enc(pkgpcg, m, pk; ),
— (pk,w) = R.Sample(pp; s),
— and Sig.Verify(vksig, pk, gid)-

Output o = (ct, crs, 7).

Verify(mpk,m,o) : parse mpk as (pkgpcg,Vksig) and o as
(ct,crs,m), check that H(m,ct) = cs and if so output
ZK.Verify(crs, (pp, pkepce; Vksig, m, ct), ).

Open(msk,o) : parse msk as (skspcg,sksig) and o as (ct,crs,m), and
output SPCE.Dec(skspck, ct).

@ If the SPC encryption scheme satisfies authenticated-set security, this
will be an interactive procedure between GM and Auth.

Fig. 7. Generic construction of SPC group signatures.

— SPC encryption: Either the scheme HSBS‘EEPC [M,Gq,n, €| or HQEEEPC[M, G1,n, €
from Section 3.

— One-way relation: The Diffie-Hellman relation in G, where R is the set of
tuples (g, 9%, ¢%,9*?) € G}. R.Gen outputs (g,9%) = (g,h), and R.Sample
chooses randomness 3 and outputs (¢°, h?). This relation is one-way from
the hardness of the computational Diffie-Hellman problem in Gj.

— Signature scheme: The structure-preserving signature scheme from [1].
— ZK-NTAoK: The Groth-Sahai proof system (Section 2.3).

Details of our concretely efficient scheme can be found in the full version [8].
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