
Witness-Succinct
Universally-Composable SNARKs⋆

Chaya Ganesh1 , Yashvanth Kondi2, Claudio Orlandi2 , Mahak Pancholi2,
Akira Takahashi3 , and Daniel Tschudi4

1 Indian Institute of Science
chaya@iisc.ac.in

2 Aarhus University
{ykondi,orlandi,mahakp}@cs.au.dk

3 University of Edinburgh
takahashi.akira.58s@gmail.com

4 Concordium
dt@concordium.com

Abstract. Zero-knowledge Succinct Non-interactive ARguments of Knowl-
edge (zkSNARKs) are becoming an increasingly fundamental tool in
many real-world applications where the proof compactness is of the ut-
most importance, including blockchains. A proof of security for SNARKs
in the Universal Composability (UC) framework (Canetti, FOCS’01)
would rule out devastating malleability attacks. To retain security of
SNARKs in the UC model, one must show their simulation-extractability
such that the knowledge extractor is both black-box and straight-line,
which would imply that proofs generated by honest provers are non-
malleable. However, existing simulation-extractability results on SNARKs
either lack some of these properties, or alternatively have to sacrifice wit-
ness succinctness to prove UC security.
In this paper, we provide a compiler lifting any simulation-extractable
NIZKAoK into a UC-secure one in the global random oracle model, im-
portantly, while preserving the same level of witness succinctness. Com-
bining this with existing zkSNARKs, we achieve, to the best of our
knowledge, the first zkSNARKs simultaneously achieving UC-security
and constant sized proofs.

⋆ The authors would like to thank abhi shelat for helpful discussions about an early
version of this work. We thank anonymous reviewers of Eurocrypt 2023 for valuable
comments and suggestions.

The work described in this paper has received funding from: the Concordium
Blockhain Research Center, Aarhus University, Denmark; the Carlsberg Founda-
tion under the Semper Ardens Research Project CF18-112 (BCM); the European
Research Council (ERC) under the European Unions’s Horizon 2020 research and
innovation programme under grant agreement No 803096 (SPEC); Core Research
Grant CRG/2020/004488, SERB, Department of Science and Technology; Infosys
Young Investigator Award, Infosys Foundation, Bangalore; the Protocol Labs Re-
search Grant Program PL-RGP1-2021-064.

https://orcid.org/0000-0002-2909-9177
https://orcid.org/0000-0003-4992-0249
https://orcid.org/0000-0001-8556-3053
https://orcid.org/0000-0001-6188-1049

1 Introduction

The UC framework and UC Secure NIZKs. The Universal Composability
(UC) framework [28] allows for the modular design and analysis of complex cryp-
tographic protocols, and guarantees security in the presence of arbitrarily many
sessions running concurrently. The environment Z (representing everything that
is external to the execution of the protocol of interest) interacts with the pro-
tocol, at the conclusion of which it outputs a decision bit, indicating whether it
thinks it has interacted with a “real-life” adversary A and parties running the
protocol, or with an “ideal-process” adversary (or simulator) Sim and parties
accessing the so-called ideal functionality F specifying the ideal outcome of a
given protocol.

This paper focuses on non-interactive zero-knowledge proofs (NIZK) [16,17]
in the UC framework. In the standalone setting, security of NIZKs is guaranteed
by showing standard properties separately such as completeness, zero-knowledge,
and (knowledge) soundness under some setup assumptions, like a common ref-
erence string (CRS) or the Random Oracle Model (ROM). However, several
restrictions and stronger properties come into play once the NIZK functionality
is to be realized in the UC model. A common methodology to design NIZKs in
the ROM is to start with an interactive argument which is proven ZK/knowl-
edge sound, and then compile this interactive argument into a non-interactive
proof. This means that NIZKs that are proven secure using rewinding (either
for ZK or for extraction) are at odds with UC, because the environment Z is
an interactive distinguisher between the real execution protocol and the ideal
process, and therefore a simulator Sim in the security proof cannot rewind Z.
Thus, straight-line simulation and extraction are required for a NIZK to be UC
secure. Informally, a proof system is straight-line extractable if one can efficiently
extract a valid witness without interacting with any successful prover. On top
of extraction being straight-line, by definition, UC simulators must be able to
obtain a witness having only black-box access to Z, i.e., without knowing the
concrete code of Z.

Another important ingredient to realize UC security is non-malleability (NM)
[37], which is often referred to as simulation-extractability in context of UC
(NI)ZK [35,38,46,56,72,73]. Essentially, a malleability attack allows an adversary
to maul existing proofs observed during the protocol execution, and to forge a
proof on some statement for which they do not know the corresponding witness.
Preventing such attacks is crucial in the UC model: as Z may ask uncorrupted
provers or simulator to produce proofs on arbitrary statement-witness pairs, the
ability to maul such proofs will induce the simulation to fail (i.e., Sim fails to
extract a witness) and thus helps Z distinguish the real execution from the ideal
one. The non-malleable NIZK construction of [35] was shown to be UC secure
in [31]. Subsequently, [50, 54] constructed UC secure NIZKs in the presence of
adaptive adversaries, and [50] proved that simulation-extractability is necessary
for UC. In sum, black-box extraction (BBE), straight-line extraction (SLE) and
simulation-extractability (SIMEXT) are the properties a NIZK must satisfy in
order to be UC secure.

2

We now discuss UC security for SNARKs (succinct non-interactive argu-
ments5 of knowledge) where the communication is sublinear (ideally polyloga-
rithmic or constant6) in the size of the non-deterministic witness used to verify
the relation. A SNARK is circuit-succinct if the proof size is sublinear only in
the size of the circuit representing the statement; if it is sublinear in the length
of the witness too, it is witness-succinct. Many SNARK constructions in the
literature rely on knowledge assumptions to prove witness extraction, i.e. their
extractors rely on examining the concrete code of the adversary in order to ex-
tract a witness. As discussed earlier, this is a barrier to achieving UC security, as
simulation in the UC framework can not depend on the code of the environment.

One simple folklore method to obtain UC-secure circuit-succinct NIZK given
a SNARG (a SNARK that only guarantees soundness, not proof-of-knowledge)
and a (perfectly correct) public key encryption scheme is the following: a public
key pk serves as a common reference string, given which the prover computes
a ciphertext ct to encrypt the witness w under randomness r. The prover then
computes a SNARG π that proves that the message encrypted by ct is indeed
a witness to the statement, and outputs (ct, π). This tuple now constitutes a
straight-line extractable NIZK, as the extractor (given sk) can simply decrypt
ct to obtain w—intuitively this w must be a valid witness since ct is a perfectly
binding commitment to w, and so if w is not a valid witness then π would be
proving a false theorem. Notice that this proof additionally inherits the circuit
succinctness property of the SNARG, as ct is of size O(|w|) and π is the SNARG
itself. This approach was described by De Santis et al. [35] in the context of
lifting ordinary NIZK to simulation-sound NIZK, and implemented as part of
the C∅C∅ framework for circuit-succinct UC NIZK by Kosba et al. [63], with
optimizations for concrete efficiency using the state-of-the-art SNARKs at the
time. C∅C∅ further proposed an optimized method to obtain non-malleability,
by additionally proving that the encrypted string is a valid signature on the
statement. Putting all these features together, C∅C∅ serves as the first generic
UC lifting compiler preserving circuit succinctness.

A major limitation of this technique is that it is inherently limited to pro-
ducing proofs that are at least as large as the witness, by virtue of the witness
having to be ‘decryptable’ from the ciphertext. Constructing witness-succinct
proofs that enjoy black-box straight-line extraction appears to require a fun-
damentally different approach. Indeed, Kosba et al. remarked that there is “no
known UC-secure zero-knowledge proof construction that is circuit and witness-
succinct, even under non-standard assumptions” [63, pg. 2], and left open the
question of whether such an object is even feasible to construct. Given this, one
may ask:

Is it possible to obtain UC-secure witness-succinct NIZKs
under well-studied setup assumptions?

The requirement of “well-studied” setup assumptions is meant to capture
those forms of setup that have generally accepted realizations. In this work, we
5 Argument systems are proofs where soundness is computational. For proofs to be

shorter than the length of the witness, restricting to arguments is necessary [48,49].
6 Polynomial only in the security parameter.

3

consider the common reference string (CRS) model, and the random oracle model
(ROM) to fall within the scope of well-studied setup. For SNARKs in particular,
there is already established infrastructure to generate the CRSs required (via so
called “powers of tau” ceremonies implemented by major blockchains such as
ZCash, FileCoin, etc. [21]). There are also established heuristics to instantiate
the ROM in practice with carefully chosen hash functions, and the ROM it-
self is arguably amongst the oldest and most comprehensively studied idealized
models [10].
Models we do not consider. Several SNARK constructions are known to be
secure with non-black-box extraction under knowledge assumptions, or in ide-
alized models such as the Generic Group Model (GGM) or Algebraic Group
Model (AGM). The UC-AGM framework [1] allows to model the AGM and al-
gebraic adversaries in a composable fashion. However, doing so requires the use
of algebraic environments making it incompatible with standard UC. The other
related alternative model is considered in [60] where they formally define the con-
cept of knowledge-respecting distinguishing environments, enabling the usage of
primitives relying on knowledge assumptions in larger protocols. However, their
entire formalization is built on top of a different compositional framework [68]
than UC. Similar to the UC-AGM framework, distinguishers in their model are
globally assumed to explain how they computed each knowledge-implying object
they output, making themselves weaker than environments in the standard UC.
Succinct Arguments of Knowledge with a CRS alone. Folklore has long
held that NIZKs in the CRS model with black-box straight-line extraction cannot
be witness-succinct, as the witness must be ‘decryptable’ from the proof string
as in the simple approach described earlier. Indeed, all pairing based efficient
SNARKs that are witness-succinct in the standard model with a CRS (like [47,
70]) are not black-box extractable7. The intuition is that for a language whose
witnesses have enough entropy, an argument that is too “short” cannot contain
enough information about a witness: this makes extraction impossible for an
extractor that does not have any additional power, like access to the prover’s
randomness (like in non-black-box extractors) or the ability to rewind the prover
(like in interactive arguments and resulting NIZKs compiled in the ROM). We
refer the reader to the recent work of Campanelli et al. [27] for a formal treatment
of this. Given that black-box extraction is necessary for UC security, we consider
it justified to consider UC security in the ROM in light of this impossibility.
Succinct Arguments of Knowledge in the ROM. There are several witness-
succinct proof systems in the ROM in the literature such as the classical Prob-
abilistically Checkable Proofs (PCP) based approach of Kilian [61], Micali’s CS
proofs [69], and the recent works on Interactive Oracle Proofs [15]. However
to our knowledge, there are no witness-succinct proof systems in the ROM that
have been formally analyzed in the UC framework. While some of these construc-
tions [3, 11, 69] are black-box straight-line extractable, simulation-extractability

7 Pairing based constructions like PLONK, Sonic, Marlin are not black-box extractable
as well, but they are also in the ROM in addition to requiring a CRS.

4

Scheme Assumption Model Transparent BBE SLE SIMEXT

STARK [12] ROM ROM ✓ ✓ ✓ unknown
Aurora [14] ROM ROM ✓ ✓ ✓ unknown
RedShift [59] ROM ROM ✓ ✓ ✓ unknown
Bulletproofs [22] DLOG ROM ✓ ✓ ✗ ✓ [45]
SONIC [67] AGM & q-DLOG CRS & ROM ✗ ✗ ✓ ✓ [42]
PLONK [41] AGM CRS & ROM ✗ ✗ ✓ ✓ [42]
Marlin [33] AGM CRS & ROM ✗ ✗ ✓ ✓ [42]
Groth16 [51] GGM CRS(& ROM for NM) ✗ ✗ ✓ ✓ [20]
Groth-Maller [53] XPKE & Poly CRS ✗ ✗ ✓ ✓

LAMASSU [2] q-MC & q-MK & BDH & DL CRS ✗ ✗ ✓ ✓

Ours + [53] + [57] XPKE & Poly & SDH CRS & GROM ✗ ✓ ✓ ✓

Ours + [2] + [57] q-MC & q-MK & BDH & DL & SDH CRS & GROM ✗ ✓ ✓ ✓

Table 1: Known properties of existing (witness-succinct) zkSNARKs compared
to example instantiation of our compilation. “BBE” stands for black-box knowl-
edge extraction; “SLE” for straight-line knowledge extractor; “SIMEXT” for
simulation-extractability. We say a proof system is “transparent” if no trusted
generation of CRS is required. Note that the assumptions for the last row are
derived from an example instantiation of [2, Theorem 4] where they adapt [52]
as an underlying SNARK.

of these has not been shown. SNARKs in the ROM that are logarithmic in
the statement and witness size are known from conservative computational as-
sumptions such as the hardness of computing discrete logarithms [19,22] in the
standalone setting. Bulletproofs [22] are known to be simulation-extractable, but
currently only in the AGM+ROM [44] or in the ROM with rewinding [45]. If a
CRS is assumed in addition to ROM, then constructions like PLONK, Sonic, and
Marlin also provide constant sized (polynomial only in the security parameter)
proofs, but their simulation-extractability is only shown in AGM+ROM [42].
We indicate these properties of existing SNARKs in Table 1. Given this state of
affairs, we can refine our earlier question to the following:

Is it possible to obtain UC-secure NIZKs with constant size proofs
in the random oracle model?

Our Results In this work, we answer the above question in the affirmative.
In particular, we give a compiler (in the ROM) that lifts any SNARK from
non-black-box to black-box straight-line extraction, with constant (i.e. Oλ(1))
overhead.

Theorem 1.1. (Informal) Given a non-black-box simulation-extractable zkSNARK
ΠR for a relation R and a succinct polynomial commitment scheme, there ex-
ists a UC-secure, witness-succinct zkSNARK ΠUC-R in the (global random ora-
cle (GRO), local setup (FSetup))-hybrid model, where GRO is observable but non-
programmable as in [30] and FSetup models the setup required by the original
zkSNARK ΠR (e.g., a trusted CRS generator or the local random oracle).

Plugging well-known SNARKs such as [2, 53] into our compiler gives us as a
corollary the first constant sized UC NIZKs in the (GRO,Fcrs)-hybrid model,
from pairings under knowledge assumptions.

5

Remarks. There are a few qualifications to our main theorem:
– Knowledge Assumptions: Any output NIZK produced via our compiler in-

herits the knowledge assumptions used by the input SNARK. However, as
knowledge assumptions cannot be used directly in the UC framework (as
simulation cannot depend on the environment), the extraction strategy for
our compiled SNARK does not involve invoking the non-black-box extractor
of the input SNARK. Intuitively, we only make use of the input SNARK’s
non-black-box extractor to argue the indistinguishability of intermediate hy-
brid experiments (which can depend on the environment).

– Unique Proofs: Our compiler requires polynomial commitments that sup-
port a new ‘unique proof’ property, i.e. it is hard for an adversary to pro-
duce two distinct proofs for the same evaluation point. This is in fact an
analogous notion to unique response defined for ROM-based NIZK proofs to
be simulation-extractable [38, 44]. Although this is not a standard property
in the stand-alone setting, we show that it is a natural feature of common
polynomial commitment schemes such as KZG [57].

1.1 Technical Overview

We begin with the observation that most SNARKs already have straight-line
zero-knowledge simulators—the verifier of a non-interactive object has no secrets
and so there is nothing to be gained by rewinding or looking at its code—and
therefore simulating an honest prover’s SNARK string in the UC context is
straightforward. Moreover, a plethora of work suggest that many concretely
efficient SNARKs are already simulation extractable (see Table 1). The barrier
to using existing SNARKs in the UC context is that the only known extractors
require either looking into the code of the prover (i.e. non-black-box extraction)
or rewinding the prover. Neither of these extraction techniques can be directly
used within the UC framework, as the simulator in the UC experiment can not
rewind the environment, nor depend on its code.

Previous works have recognized the fact that even though simulation must be
straight-line in the UC framework, their proofs of indistinguishability can make
use of arguments that involve rewinding the environment [25,36]. The underlying
principle is that even though the environment can not be rewound during simu-
lation for the UC experiment, rewinding the environment can still be helpful as
an analytical tool, for example in generating intermediate hybrid distributions
between the real and ideal experiments. To our knowledge, this principle has not
been applied to the case of non-black-box simulation, i.e. generating intermediate
hybrid distributions using the code of the environment.

Our insight is that the existence of a non-black-box extractor guarantees that
in order to produce a SNARK, the environment must fundamentally ‘know’ a
witness—lifting the SNARK to a UC NIZK is then a matter of forcing the
environment to use this knowledge. We describe below how we leverage this
insight, by incrementally building upon the simple approach described earlier.

6

Commitments instead of encryption. Recall that the simple approach—
where a proof consists of ciphertext ct and proof π that ct encrypts a witness—
is bottlenecked by the ciphertext having to be ‘decryptable’, which means that
|ct| ∈ Ω(|w|). If we relax the decryptability requirement, we can have ct be
a commitment instead. This is helpful, because commitments can be indepen-
dent of the size of the message committed, and therefore succinct. Obtaining
the witness from ct now becomes a matter of extracting a committed message
rather than simply decrypting a ciphertext, and forms the core of the technical
challenge.
Core Tool: Succinct, provable, straight-line extractable commitments.
Straight-line extractable commitments are typically straightforward to construct
in the random oracle model—simply computing H(w, r) to commit to w with
randomness r suffices [25, 71]. However H must be a random oracle to enable
straight-line extraction, meaning that one cannot prove statements about its
input. This is an issue as we need to prove that w committed to in ct is indeed a
valid witness. This issue can be solved by assuming that since H is instantiated
with a concrete hash function, it will have a circuit representation (as is common
in the literature on recursive SNARKs [23, 34]) however we wish to avoid such
heuristics.

We must therefore construct a ‘provable’ commitment scheme, i.e. one that
has a meaningful circuit representation while also supporting straight-line ex-
traction of the committed message. Our methodology for designing such a com-
mitment involves two parts (cm, πcm), where cm is a commitment string output
by a standard model commitment algorithm Com, and πcm is a straight-line ex-
tractable proof of knowledge of its opening—notice that now it is meaningful to
prove via a SNARK that cm is a commitment to a valid witness, as Com is a
standard model algorithm. Since it is straightforward to achieve |cm| ∈ Oλ(1),
we will focus on the design of πcm.

Like much of the SNARK literature, in constructing πcm we leverage the fact
that arithmetization is conducive to succinct proofs. In particular, we instruct
the prover to encode the witness w as the coefficients of a polynomial f(x),
and commit to f within cm (rather than committing to w directly). Assuming a
prime q ∈ ω(poly(λ)) is a parameter of the scheme, and d ∈ Z a parameter of the
statement, w is interpreted as a vector w ∈ Fd

q that characterize the coefficients
of the degree8 d− 1 polynomial f ∈ Fq[X]. Our straight-line extraction strategy
will be to ensure that the prover queries at least d evaluations of f to the random
oracle (i.e. enough to reconstruct w), by having the verifier check a subset of the
evaluations. Importantly, this validation of f can be performed succinctly; the
verifier need only query Oλ(1) evaluations of f , and each evaluation can be
authenticated at Oλ(1) cost. We sketch our ideas behind these principles below.
Oλ(1) Verifier Queries: The prover first evaluates f at n points and commits
to each {f(i)}i∈[n]. The prover is then instructed to reveal r of the committed
8 We remark that the actual compiler needs to inflate the degree according to the

number of revealed evaluations in order to retain zero-knowledge, but we omit this
technicality here for ease of exposition.

7

evaluations—which are checked for correctness—to guarantee that the commit-
ments contain at least d − 1 correct evaluations in total, with overwhelming
probability. Assuming that r ∈ [n] is chosen at random, the parameters can be
fixed so that r ∈ Oλ(1), due to the following rough analysis: the best adversarial
assignment (for a cheating prover) of the n committed evaluations consists of
only d−1 correct (and n−d+1 ‘junk’) ones, to maximize the number of subsets
of size r that will satisfy a verifier—i.e.

(
d−1

r

)
. The total number of possible sub-

sets that the verifier could query is
(

n
r

)
, which brings the probability of success

of the best possible cheating strategy to:(
d−1

r

)(
n
r

) ≈ dr/r!
nr/r! =

(
d

n

)r

Now if we fix r as say, λ (so that r ∈ Oλ(1)), notice that for any d ∈ Z the above
quantity can be upper bounded by 2−λ by setting n ≈ 2d. In general, as long as
r ∈ Ω(λ/ log λ), the same upper bound can be achieved with n ∈ poly(d, λ).
Authenticating Evaluation Openings at Oλ(1) Cost via Fischlin’s Tech-
nique [39]: We framed our description above in a PCP-like model, where the
prover writes down n evaluations of f , of which the verifier queries and checks
r of them. As n is clearly not witness-succinct, we need a method by which the
prover can commit to the n evaluations, and succinctly reveal r of them upon
request. In the PCP/IOP literature [15, 69], it is common to use Merkle trees
for this task; they provide Oλ(1) sized commitments with r short (Oλ(log n)
sized) openings, and even natively support straight-line extraction. This follows
a ‘cut-and-choose’ paradigm, where the prover commits to n objects, and the
verifier checks r of them in order to guarantee that a total of at least d of the
committed objects are ‘good’. However the Oλ(log n) sized evaluation opening
is a deal breaker (in the context of achieving Oλ(1)-sized proofs) as it grows—
albeit slowly—with the witness size, and appears to be a fundamental hurdle
with such techniques.

In the context of compiling Σ-protocols to NIZKs with straight-line extrac-
tion, Fischlin [39] presented a technique based on proofs of work that shed the
Oλ(log n) cost of Merkle tree openings when checking the validity of a subset
of committed objects. At a very high level, Fischlin’s technique emulates the
combinatorial properties of the cut-and-choose approach, without the logistics
of providing explicit commitments/openings. Fischlin’s idea is that rather than
challenging the prover to reveal a (randomly chosen) r-sized subset of some com-
mitted xi values, the prover is challenged to provide any r values {xi}i∈[r] such
that H(xi) = 0 for each i, where H is a random oracle. This forces the prover to
query multiple ‘good’ xi values to H before finding r of them that hash to the
zero string, and no explicit decommitment information is necessary.

Applying Fischlin’s technique to our setting yields a protocol of the following
form. Upon fixing cm, for each i ∈ [r]: (1) the prover computes π

(i)
cm = (zi, f(zi))

with uniform zi and the corresponding evaluation proof π
(i)
ev that ensures the

polynomial f committed to in cm has been correctly evaluated at zi, and (2)

8

store (π(i)
cm, π

(i)
ev) and go to the next iteration if H(cm, i, π

(i)
cm, π

(i)
ev) = 0 for a

random oracle H with b-bit outputs, and go to step (1) otherwise. Thanks to
the evaluation proof, π

(i)
cm is tied to a given commitment cm. In practice, succinct

evaluation proof can be easily implemented by naively invoking the underlying
SNARK prover9 or by instantiating cm with a dedicated polynomial commitment
scheme such as [57], which usually minimizes the overhead in prover’s work.
Computing such a proof is easy for an honest prover, via rejection-sampling with
random (zi, f(zi)) values until r of them that hash to zero are found. As for an
adversarial prover P ∗, the aim is to produce an accepting proof—by finding r
pre-images of 0—with d − 1 or fewer queries to the random oracle. As a loose
upper bound, the probability that P ∗ finds r successes within d − 1 queries is
at most the probability that for every i ∈ [r], P ∗ is able to find H(cm, i, ·) = 0
within d − 1 queries. For any given i, the probability that P ∗ finds H(cm, i,
·) = 0 within d queries is at most d/2b; therefore the probability that P ∗ finds
H(cm, i, ·) = 0 within d − 1 queries for every i ∈ [r] simultaneously is at most
(d/2b)r = 2−r(b−log d). The proof sketch here are implicitly assuming that a valid
evaluation proof is determined uniquely once cm, zi, and f(zi) are fixed. Our
formal analysis accounts for this subtlety and we show that [57] indeed satisfies
this property.

Assuming that r = λ ∈ Oλ(1), the above quantity is bounded by 2−λ when
b = 1 + log d ∈ Oλ(log d). The prover’s work is in expectation 2b · r = 21+log d · λ
which is in poly(λ) as well as Oλ(d), i.e. it scales linearly in the witness size. Of
course better parameters are possible; r can be improved by up to a log factor,
as we explore later in the ‘succinctness’ component of the proof of Theorem 3.1.

Putting it together: The prover produces an Oλ(1)-sized standard model com-
mitment cm to a degree d polynomial f that encodes the witness, and proves
knowledge of its opening via πcm = (π(i)

cm)i∈[r] – this proof is at the heart of
forcing the environment to use the witness within the context of the protocol.
The proof πcm requires the prover to ‘work’ to find r ∈ Oλ(1) pre-images of 0 for
random oracle H, where each pre-image is an evaluation of f . The parameters for
this proof-of-work are set so that (except with negligible probability) the prover
queries more than d− 1 evaluations of f in its effort to find these r pre-images
of zero. Reading these d evaluations of f allows an extractor to reconstruct f—
which is an opening to cm. Finally, the prover gives a SNARK π to prove that
it knows an opening to cm that is the witness to a public statement (through
a suitable witness-polynomial encoding function Enc). If one were to hypotheti-
cally run the non-black-box SNARK extractor on the environment at this point,
the opening to cm that it finds should be exactly the same as the f reconstructed
via the extractor of πcm; if not, then one would obtain two openings to cm, in
contradiction of the binding property of the commitment scheme. Therefore,
any knowledge that the environment uses in the production of π—perhaps even

9 For this alternative instantiation, one must use a de-randomized version of the un-
derlying SNARK to obtain the unique proof property, as also required by our main
compiler.

9

outside the protocol—is extracted in a black-box, straight-line fashion via πcm
within the context of the protocol.

1.2 Related Work

Straight-line Extraction. Our UC-lifting technique is inspired by Fischlin’s
transform [39] based on Proof-of-Work. Kondi and shelat [62] gave an analy-
sis for using Fischlin’s transformation for compressing proofs in the context of
signature aggregation, and showed how randomizing Fischlin’s technique is con-
ducive to zero-knowledge. Very recently, Lysyanskaya and Rosenbloom [65, 66]
present compilers lifting Σ-protocols to UC-secure (adaptive) NIZKPoK in the
global ROM, where the straight-line extraction is realized via Fischlin’s trans-
form. Canetti, Sarkar, and Wang [32] realized triply adaptive UC-secure NIZK
using a straight-line extractable commitment in the CRS model. Pass [71] de-
scribed a generic way to turn Σ-protocols with special soundness into straight-
line extractable proof systems using RO-based commitment. The technique is
somewhat analogous to the verifiable encryption of Camenisch and Damgård [24]
where the commitment is instantiated using public-key encryption and thus SLE
holds in the CRS model (where the decryption key serves as a private extraction
key for the knowledge extractor). The transform of Unruh [74] extended [71]
to retain security against an adversary making superposition queries to the RO
(the so-called quantum random oracle model). Recently, Katsumata [58] showed
an efficient SLE transform in the QROM tailored to lattice-based ZK proofs.
Lifting Transformations. Techniques for generically adding black-box simu-
lation extractability to any NIZK were first shown in the works of [35, 50, 73],
optimized in the C∅C∅ framework [63], and tailored to Groth16 in [5, 6]. These
techniques augment the relation to an OR language and the trapdoor for one
of the OR clauses is used by the ZK simulator. Extractability is obtained by
encrypting the witness under a public key that is part of the CRS and ad-
ditionally proving correct encryption. The LAMASSU [2] framework extends
the C∅C∅ lifting technique to work with updatable SNARKs giving a generic
compiler from updatable CRS SNARKS to SE SNARKs. TIRAMISU [9] builds
on these frameworks to additionally lift SNARKs into black-box simulation ex-
tractable ones. However, all these lifting transformations yield SNARKs where
one of either witness succinctess or blackbox extraction is lost, unlike our com-
piler. There are works on lifting specific SNARKs into SE; the work of Groth
and Maller [53] presents an SE SNARK, but the simulation extractability is
non-black-box. There is a line of work on analysing the simulation extractabil-
ity [7, 8, 20] of Groth16; all of these are in idealized models like GGM/AGM, in
addition to ROM.

2 Preliminaries

Notations. For positive integers a and b such that a < b we use the integer
interval notation [a, b] to denote {a, a + 1, . . . , b}. We also use [b] as shorthand

10

for [1, b]. If S is a set we write s ←$ S to indicate sampling s from the uniform
distribution defined over S; if A is a randomized (resp. deterministic) algorithm
we write s← A (resp. s := A) to indicate assigning an output from A to s. The
security parameter λ is 1λ in unary. A function f(λ) is said to be negligible in
λ if for any polynomial poly(λ) it holds that f(λ) < 1/poly(λ) for sufficiently
large λ > 0. We write “f(λ) < negl(λ)” to indicate f(λ) is negligible in λ. F[X]
denotes polynomials over a finite field F. For an integer d ≥ 1, F<d[X] ⊆ F[X]
denotes polynomials of degree less than d.

2.1 UC Framework

In this work, we use the Universal Composability (UC) framework [28] for se-
curity proofs. UC follows the simulation-based paradigm where the security of
a protocol is defined with respect to an ideal world where a trusted party, the
functionality F, does the all of the computation. Informally, a protocol securely
realizes F in the real world if for any real world adversary there exist an equiva-
lent ideal world adversary (the simulator). Equivalent meaning that any outside
observer (the environment) cannot distinguish between the real protocol execu-
tion and the ideal execution. UC’s composition theorem ensures that one can
safely compose protocols that have been proven UC-secure.
Global Random Oracle. More precisely, we use the generalized UC (GUC)
framework [29] which allows to model global functionalities that are shared be-
tween different protocol instances. We consider a hybrid-model where parties
have access to a (non-programmable) global random oracle GRO as introduced
in [30]. We follow the simplified description from [25]. The GRO functionality can
be queried by any party and the ideal adversary with two commands: query
and observe. The environment can query GRO by spawning additional dummy
parties outside the context of the current protocol execution. GRO answers all
new query command by lazy sampling from the domain and stores them locally
in a list Q. A repeated query requires a simple lookup in Q. Some query queries
are marked “illegitimate” and can be observed via observe command. Next we
explain which query counts as an illegitimate one. Each party is associated with
its party identifier pid and a session identifier sid. When a party queries GRO
with the command (query, x), the query is parsed as (s, x′) where s denotes the
session identifier associated with the party. A query is marked as illegitimate
if the sid field of the query differs from the sid associated to the party making
the query. In other words, these are the queries made outside the context of the
current session execution. We formally define the functionality GRO in Fig. 1.

Remark 2.1. In [30] the random oracle allows ideal functionalities to obtain the
list of illegitimate queries. In order for the adversary to fetch those queries there
needs to be a (dummy) functionality that forwards those queries. In [25] this is
simplified by allowing the adversary to directly query the random oracle for ille-
gitimate queries. Thus, functionalities no longer need to forward the illegitimate
queries.

11

Functionality 1: GRO

GRO is parametrized by the output length ℓ(λ).
– Query Upon receiving a query (query, x), from some party P = (pid, sid)

or from the adversary Sim do:
• Look up v if there is a pair (x, v) for some v ∈ {0, 1}ℓ(λ) in the (initially

empty) list Q of past queries. Else, choose uniformly v ∈ {0, 1}ℓ(λ) and
store the pair (x, v) in Q.

• Parse x as (s, x′). If sid ̸= s then add (s, x′, v) to the (initially empty)
list of illegitimate queries for SID s, that is denoted by Q|s.

• Return v to P.
– Observe Upon receiving a request (observe, sid) from the adversary Sim,

return the list Q|sid of illegitimate queries for SID sid to the adversary.

Fig. 1: Functionality for Global Random Oracle GRO [25]

Intuitively, these illegitimate queries are required for proving security of our
protocols. The ideal adversary (or the simulator) works by observing GRO queries
made by the corrupt party during the protocol execution. However, the environ-
ment can bypass this by querying GRO via additional dummy parties outside the
current session. The simulator remains oblivious to these additional parties and
thus fails in proving security. However, this behavior of the environment is ac-
counted for in [25] by marking such queries as illegitimate and disclosing them to
the simulator via observe command. Note that any GRO query for session id sid
made by a party (or the simulator) participating in the session identified by sid
will never be marked as illegitimate. Thus, any query made the simulator itself
is not recorded by the functionality and hence cannot be observed by anyone.
This is crucial for proving indistinguishability between the ideal and the real
world and we elaborate in the proof of Theorem 3.1.

Definition 2.2 (UC Security in the Global ROM [29, 30]). Let F,F ′ be
m-party functionalities and Π be a protocol. We say that Π UC-realizes F in the
GRO,F ′-hybrid model if for any hybrid-model PPT adversary A, there exists an
ideal process PPT adversary Sim such that for every PPT environment Z, it
holds that:

{IDEALGRO
F,Sim,Z(x, λ, z)}x,λ,z ≈ {REALGRO

F ′,Π,A,Z(x, λ, z)}x,λ,z

where REAL is the outputs of the honest parties and the adversary A after a
real execution of protocol Π with input x = (x1, . . . , xm) for parties P1, . . . , Pm

where each xi ∈ {0, 1}∗, z ∈ {0, 1}∗ is the auxiliary input for A and λ is the
security parameter. IDEAL is the analogous distribution in an ideal execution
with a trusted party that computes F for the parties and hands the output to the
designated players.

12

2.2 Succinct Non Interactive Zero-Knowledge Proof

A non-interactive proof system for relation R, denoted by ΠR, consists a tuple
of algorithms (PGen,OSetup,P,V).

– pp← PGen(1λ): Takes as input the security parameter λ and outputs public
parameters pp. Once PGen is invoked we assume that all of the following
algorithms take pp as an implicit input.

– out ← OSetup(in): A stateful setup oracle that takes an input string in and
outputs out.

– π ← POSetup(x, w): Takes as input a statement x and witness w, and outputs
a proof π if (x, w) ∈ R.

– b ← VOSetup(x, π): Takes as input a statement x and proof π, and outputs a
bit b, indicating “accept” or “reject”.
We introduce the setup oracle OSetup to the notation of NIZKs to capture the

two typical setup assumptions in an abstract manner. That is, if a proof system
is instantiated in the CRS model, then OSetup internally generates crs upon re-
ceiving a query with any input for the first time, and keeps outputting the same
crs regardless of the input. When instantiating the RO model, OSetup is initial-
ized with an empty query-response table and proceeds as follows. On receiving
in ∈ {0, 1}∗, if in has never been queried, sample uniform out ∈ {0, 1}ℓ(λ), store
(in, out) in the table, and return out. Otherwise, look up the table to find out
associated with in, and return out.

We define three basic security properties for ΠR in the stand-alone setting.

Definition 2.3 (Completeness). ΠR satisfies completeness if for every (x,
w) ∈ R, it holds that

Pr
[
b = 1 : pp← PGen(1λ); π ← POSetup(x, w); b← VOSetup(x, π)

]
= 1.

We define zero-knowledge by following the syntax of [38,44]. A zero-knowledge
simulator S is defined as a stateful algorithm with initial state st = pp that oper-
ates in two modes. The first mode, (out, st′)← S(1, st, in) takes care of handling
calls to the oracle OSetup on input in. The second mode, (π, st′) ← S(2, st, x)
simulates a proof for the input statement x. For convenience we define three
“wrapper” oracles. These oracles are stateful and share the internal state st,
which initially contains an empty string.

– S1(in) to denote the oracle that returns the first output of S(1, st, in);
– S2(x, w) that returns the first output of S(2, st, x) if (x, w) ∈ R and ⊥

otherwise;
– S ′

2(x) that returns the first output of S(2, st, x).

Definition 2.4 ((Unbounded) Zero-Knowledge). Let ΠR = (PGen,OSetup,
P,V) be a non-interactive proof system for relation R. ΠR is unbounded non-
interactive zero-knowledge (NIZK), if there exists a PPT simulator S with wrap-

13

Functionality 2: FSetup

FSetup is parametrized by a security parameter λ and a degree bound D > 0 and
runs with parties P1, . . . , PN and an ideal process adversary Sim.

– Parameters Upon receiving input (genparams, sid) from a party Pi, if no
pp has been stored, run pp← PGen(1λ), initialize oracle OSetup with pp, and
store pp. Send (params, sid, pp) to Pi.

– Commitment Key Upon receiving input (genkey, sid) from a party Pi, if
no ck has been stored, run ck ← KGen(1λ, D) and store ck. Send (comkey,
sid, ck) to Pi.

– Setup Upon receiving input (setup, sid, in) from a party Pi, ignore if OSetup
has not been initialized with pp. Otherwise run out ← OSetup(in) using the
current state of OSetup and send (setup, sid, out) to Pi.

Fig. 2: N -party functionality for setup FSetup

per oracles S1 and S2 such that for all PPT adversaries A it holds that∣∣∣∣∣Pr
[

b = 1 :
pp← PGen(1λ);

b← AOSetup,P(pp)

]
− Pr

[
b = 1 :

pp← PGen(1λ);
b← AS1,S2(pp)

]∣∣∣∣∣ < negl(λ).

Next, we define simulation extractability, which essentially guarantees that
proofs are non-malleable. We stress that the present definition is weaker than
what is necessary for realizing UC security, because the extractor algorithm
here is non-black-box, i.e., it requires looking into the code of the adversary.
The definition is an abstracted version of [53] and the schemes satisfying their
definition clearly meet the version below by instantiating S with trapdoor’d CRS
generator in mode 1 and ZK simulator in mode 2.

Definition 2.5 ((Non-black-box) Simulation Extractability). Consider
a non-interactive proof system ΠR = (PGen,OSetup,P,V) for relation R with an
NIZK simulator S. Let (S1,S ′

2) be wrapper oracles for S as defined above. ΠR
is non-black-box simulation-extractable (SIM-EXT) with respect to S, if for any
PPT adversary A, there exists a PPT extractor EA such that

Pr
[

(x, π) /∈ Q ∧ (x, w) /∈ R
∧ b = 1

:
pp← PGen(1λ); (x, π)← AS1,S′

2(pp);
b← VS1(x, π); w ← EA(x, π, stateA, st)

]
< negl(λ)

where st is the final state of the simulator S, stateA is a string containing all
inputs and outputs of A, including random coins, and Q is a set of statement-
proof pairs (x, π) with x being a statement queried by A to the proof simulation
wrapper oracle S ′

2, and π being the corresponding simulated proof, respectively.

14

Functionality 3: FNIZK

FNIZK is parametrized by polynomial-time-decidable relationR ∈ {0, 1}∗×{0, 1}∗,
and runs with parties P1, . . . , PN and an ideal process adversary Sim. It stores
proof table Q which is initially empty.

– Proof Upon receiving input (prove, sid, ssid, x, w) from a party Pi, ignore if
(x, w) /∈ R. Otherwise, send (prove, sid, x) to Sim. Upon receiving (proof, π)
from Sim, store (x, π) in Q and send (proof, sid, ssid, π) to Pi.

– Verification Upon receiving input (verify, sid, ssid, x, π) from a party Pi, if
(x, π) is not stored in Q, then send (verify, sid, x, π) to Sim. Upon receiv-
ing (witness, w) from Sim, if (x, w) ∈ R, store (x, π) in Q. Finally, return
(verification, sid, ssid, (x, π) ∈? Q) to Pi.

Fig. 3: N -party functionality for non-interactive zero-knowledge FNIZK

The ideal functionality FSetup that provides the setup and oracle for non-
interactive proof system ΠR = (PGen,OSetup,P,V) is described in Fig. 2.

Our final goal is to compile ΠR with the above basic security properties into
a UC-secure NIZK protocol ΠUC-R. The ideal functionality for Non-interactive
Zero-Knowledge FNIZK is defined in Fig. 3. The functionality is taken from [55]
with a minor difference being that FNIZK explicitly informs Sim of the associated
session ID.

2.3 Succinct Polynomial Commitment Scheme

The following definition is adapted from the full version of [33]. The difference
is that we omit the commitment key trimming algorithm as it is only necessary
for concrete optimization.

Definition 2.6 (Polynomial Commitment Scheme). A polynomial com-
mitment scheme over field F, denoted by PCS, is a tuple of algorithms (KGen,
Com, Eval, Check):
1. ck ← KGen(1λ, D): Takes as input the security parameter λ and the maxi-

mum degree bound D and generates commitment key ck as output.
2. c ← Com(ck, f, d; ρc): Takes as input ck, the polynomial f ∈ F<d[X], the

degree bound d ≤ D, randomness ρc and outputs a commitment c. In case
the commitment scheme is deterministic ρc = ⊥.

3. π ← Eval(ck, c, d, z, y, f ; ρc): Takes as input ck, the commitment c, degree
bound d ≤ D, evaluation point z ∈ F, claimed polynomial evaluation y ∈ F,
the polynomial f , and outputs a non-interactive proof of evaluation π. The
randomness ρc must equal the one previously used in Com.

4. b ← Check(ck, c, d, z, y, π): Takes as input statement (ck, c, d, z, y) and the
proof of evaluation π and outputs a bit b.

15

satisfying the following properties:
Completeness. For any integer 1 ≤ d ≤ D, for all polynomials f ∈ F<d[X],
for all evaluation points z ∈ F, and any randomness ρc

Pr

b = 1 :
ck← KGen(1λ, D); c← Com(ck, f, d; ρc);
y := f(z); π ← Eval(ck, c, d, z, y, f ; ρc);
b← Check(ck, c, d, z, y, π)

 = 1.

Evaluation Binding. For any integer 1 ≤ d ≤ D, for all PPT adversaries A,

Pr

 y ̸= y′

∧ b = 1
∧ b′ = 1

:
ck← KGen(1λ, D); (c, d, z, y, y′, π, π′)← A(ck);

b← Check(ck, c, d, z, y, π);
b′ ← Check(ck, c, d, z, y′, π′)

 ≤ negl(λ).

Succinctness. A PCS is said to be succinct if both the size of commitment c

and evaluation proof π is of size Oλ(1).

In addition to standard properties above, we need a few more special prop-
erties for our compiler to work. In a later section we show that the widely used
scheme of [57] indeed satisfy these.

Definition 2.7 (Unique Proof). For all PPT adversaries A,

Pr


π ̸= π′

∧ b = 1
∧ b′ = 1

:

ck← KGen(1λ, D);
(c, d, z, y, π, π′)← A(ck);

b← Check(ck, c, d, z, y, π);
b′ ← Check(ck, c, d, z, y, π′)

 ≤ negl(λ).

We define a polynomial encoding scheme, which takes a vector of field ele-
ments and outputs an appropriate randomized polynomial. An important prop-
erty, sometimes referred to as bounded independence in the literature [33, §2.3]10,
guarantees that a bounded number of evaluations do not leak any information
about the original polynomial.

Definition 2.8 (Polynomial Encoding Scheme). A polynomial encoding
scheme, denoted by PES, is a tuple of algorithms (Enc, Dec) defined over an
evaluation domain DEnc (which also determines the forbidden domain SEnc =
F \ DEnc).

– f ← Enc(w, n, ℓ; ρ): Takes as inputs w ∈ Fn, dimension of the vector n > 0,
evaluation bound ℓ > 0, and randomness ρ ∈ Fℓ, and outputs a polynomial
f ∈ F<n+ℓ[X].

– w′ ← Dec(f, n, ℓ): Takes as inputs f ∈ F<n+ℓ[X], n > 0, and ℓ > 0, and
deterministically outputs w′ ∈ Fn.

10 This property is also know as k-knowledge bound in [13].

16

We say PES is correct if w = Dec(Enc(w, n, ℓ; ρ), n, ℓ) for any n > 0, ℓ > 0,
w ∈ Fn, and ρ ∈ Fℓ. PES satisfies bounded independence if for any n > 0, ℓ > 0,
and w ∈ Fn, and for ρ sampled uniformly from Fℓ, any set of ℓ evaluations of
f ← Enc(w, n, ℓ; ρ) in DEnc are independently and uniformly distributed in F.

In this work, we only consider polynomial encoding schemes where the size of the
evaluation domain is exponential in the security parameter, i.e. |DEnc| ∈ O(2λ).
Below we recall some candidate encoding schemes that are implicitly employed
in many SNARK constructions.

– Coefficient Encoding PES1 = (Enc1, Dec1): PES can be instantiated using
simple coefficient encoding as in [67]. Here DEnc = F \ {0} and Enc1 outputs

f(X) =
n∑

i=1
wiX

i−1 +
ℓ∑

i=1
ρiX

n+i−1

where w = (wi)i∈[n] and ρ = (ρi)i∈[ℓ]. The decoding algorithm Dec1 outputs
the first n coefficients of f . It satisfies bounded independence because any
set of ℓ evaluations of f are independent of the encoded vector.

– Lagrange Encoding PES2 = (Enc2, Dec2): This encoding method has been
used in e.g. [26, 33, 41]. Suppose a subset H ⊂ F of cardinality n and an
evaluation domain DEnc = F \ (H ∪ {0}). Assume that an input w ∈ Fn

is indexed by H, i.e., w = (w(a))a∈H . Let La,H ∈ F<n[X] for a ∈ H be
the Lagrange polynomials corresponding to H and ZH(X) =

∏
a∈H(X − a)

be a vanishing polynomial of H. Then using ρ = (ρi)i∈[ℓ] as randomness,
Enc2(w, n, ℓ; ρ) outputs

f(X) =
∑
a∈H

w(a) · La,H(X) +
(

ℓ∑
i=1

ρiX
i−1

)
· ZH(X).

The decoding algorithm Dec2 outputs (f(a))a∈H . On the one hand, PES2
satisfies correctness since f agrees with w over the forbidden domain SEnc =
H. On the other hand, up to ℓ evaluations of f in DEnc reveal nothing about
the encoded vector w. Typically, the evaluation bound ℓ should be set strictly
larger than the number of evaluation proofs the prover explicitly reveals,
because a commitment to the polynomial itself may leak information about
one evaluation (as in the KZG scheme). It turns out that this property helps
us show the hiding property below once combined with a suitable polynomial
commitment scheme.

Evaluation Hiding. We now define evaluation hiding. Note that this is a
stronger property than the usual hiding definition (such as the ones in [33,57]):
essentially, evaluation hiding guarantees that the joint distribution of commit-
ment, evaluation proof, and polynomial evaluations leaks nothing about the
committed polynomial, whereas the usual PCS hiding property does allow eval-
uations to be associated with the committed polynomials. Clearly, if Enc is
deterministic PCS can never be evaluation hiding. This is why the definition

17

only makes sense with respect to a specific encoding scheme. Recent IOP-based
SNARKs such as [26,33,41,67] in fact exploit this property (albeit without for-
mal definition tailored to PCS) to hide evaluations of a polynomial encoding
secret witness and thus to retain perfect zero knowledge. The definition is pa-
rameterized by a function ϕ : Z+ → Z+ calculating the expansion factor for
encoding randomness: given the number of evaluated points ℓ′ > 0, it deter-
mines ℓ > ℓ′ the total number of random field elements necessary for hiding the
committed polynomial even after outputting a commitment, ℓ′ evaluation proofs,
and ℓ′ evaluations.

Definition 2.9 (ϕ-Evaluation Hiding). Let PCS = (KGen, Com, Eval, Check)
be a polynomial commitment scheme and PES = (Enc, Dec) be a polynomial
encoding scheme. We say PCS is ϕ-evaluation hiding with respect to PES if for
all PPT adversaries A = (A1,A2),

Pr


b = b′ ∧ z ∈ D|z|

Enc :

ck← KGen(1λ, D); (w, z)← A1(ck);
n := |w|; ℓ := ϕ(|z|); d := n + ℓ;

ρw ←$ Fℓ; b←$ {0, 1};
f ← Enc(b ·w, n, ℓ; ρw);

c← Com(ck, f, d; ρc);
y := f(z);

π ← Eval(ck, c, d, z, y, f ; ρc);
b′ ← A2(c, y, π)


≤ 1

2 + negl(λ)

where A1,A2 share the internal states, y := f(z) denotes setting yi := f(zi) for
all i ∈ [|z|], and π ← Eval(ck, c, d, z, y, f ; ρc) denotes setting πi ← Eval(ck, c, d,
zi, yi, f ; ρc) for all i ∈ [|z|].

Non-Extrapolation. We define a new property related to ϕ-evaluation hiding
of a PCS scheme with respect to a PES scheme. We require that, given a polyno-
mial commitment and ℓ′ > 0 evaluations and proofs for an encoding of all-zero
vector, no adversary can compute a valid proof for a new evaluation point. In
other words, it is hard for an adversary to extrapolate a new evaluation given
ℓ′ evaluations even when the polynomial is fixed to be the encoding of all-zero
vector. Non-extrapolation naturally follows from evaluation hiding and binding
for many PCS plus PES schemes for the right choice of ϕ. We show this explicitly
for the KZG polynomial commitment scheme in Section 4.

Definition 2.10 (ϕ-Non-Extrapolation). Let PCS = (KGen, Com, Eval, Check)
be a polynomial commitment scheme and PES = (Enc, Dec) be a polynomial en-
coding scheme. We say PCS supports ϕ-non-extrapolation with respect to PES

18

if for all PPT adversaries A = (A1,A2), and

Pr



v = 1 ∧ z ∈ D|z|
Enc

∧ z∗ ∈ DEnc ∧ z∗ /∈ z
:

ck← KGen(1λ, D); (n, z)← A1(ck);
ℓ := ϕ(|z|); d := n + ℓ;

ρw ←$ Fℓ;
f ← Enc(0n, n, ℓ; ρw);
c← Com(ck, f, d; ρc);

y := f(z);
π ← Eval(ck, c, d, z, y, f ; ρc);

(z∗, y∗, π∗)← A2(c, y, π);
v ← Check(ck, c, d, z∗, y∗, π∗)


≤ negl(λ)

where A1 and A2 share the internal states, y := f(z), π are as before.

3 Succinctness-Preserving UC NIZK Compiler

In this section, we describe a generic, succinctness-preserving compiler that takes
as inputs: (1) a SIM-EXT NIZK proof system ΠR = (PGen,OSetup,P,V) for
the arithmetic circuit satisfiability relation R =

{
(C, w) : C(w) = 1

}
, and (2) a

PCS = (KGen, Com, Eval, Check) with suitable properties. The resulting protocol,
denoted by ΠUC-R, UC-realizes FNIZK in the (GRO,FSetup)-hybrid model, where
FSetup is described in Fig. 2.

Theorem 3.1. Let ΠR be a SIM-EXT NIZK proof system, for the arithmetic
circuit satisfiability relation R, with Oλ(1) size proofs. Let PCS be a polyno-
mial commitment scheme with Oλ(1) size commitments and evaluation proofs,
evaluation binding, unique proofs, ϕ-evaluation hiding, and ϕ-non-extrapolation
with respect to the encoding scheme PES = (Enc, Dec). Then, ΠUC-R described
in Fig. 4 UC-realizes FNIZK in the (GRO,FSetup)-hybrid model for relation R and
has proofs of size Oλ(1).

Proof. We prove the following properties.
Completeness. For a given commitment c and circuit C′, an honest prover fails
to generate a valid proof if, after trying at most T distinct evaluation points zi’s
∈ DEnc, it fails to find any preimage such that it hashes to 0b. As we will see, T
is required to be only polynomially big in λ and so the prover is guaranteed to
stop in polynomial time. For each iteration i, after fixing c, C′, zi, the values yi =
f(zi) and πi are derived uniquely. Thus, the honest prover fails in this iteration
only if for all the T number of evaluation points GRO(query, (sid, (C′, c, zi, yi, πi,
i))) ̸= 0b. The prover fails overall if it fails in at least one of the iterations. Let
the event of failing in iteration i be denoted by faili. For T = (λ + log(r)) · 2b,
the probability of the honest prover failing can be bounded as below.

19

Protocol 1: ΠUC-R

The protocol ΠUC-R is parameterized by: security parameter λ, finite field F, evaluation domain
DEnc for PES, evaluation hiding expansion factor ϕ : Z+ → Z+, number of parallel repetitions
r = r(λ) > 0, proof-of-work parameter b(λ) > 0, bound T (λ) > 0, and maximum degree bound
D > 0 for PCS.

– Proof Upon receiving input (prove, sid, ssid, C, w), ignore if C(w) ̸= 1. Otherwise, Pi does:
1. Send (genparams, sid) to FSetup and wait for answer (params, sid, pp).
2. Send (genkey, sid) to FSetup and wait for answer (comkey, sid, ck).
3. Parse w = w ∈ Fn. Let ℓ := ϕ(r) and d := n + ℓ. If d > D, abort by outputting

(proof, sid, ssid,⊥).
4. Generate a polynomial encoding of the witness vector: f ← Enc(w, n, ℓ; ρw), where

ρw ←$ Fℓ.
5. Generate a commitment to the polynomial encoding: c ← Com(ck, f, d; ρc), where the

randomness ρc is sampled uniformly from the domain specified in PCS.
6. Define the circuit C′ such that it outputs 1 on input w′ = (w, ρw, ρc) if and only if the

following conditions are met:

C(w) = 1 ∧ c = Com(ck, Enc(w, n, ℓ; ρw), d; ρc)

7. Run ΠR.P on input pp, C′, and w′ to obtain a proof π′. Whenever P makes a call
to OSetup with input in, send (setup, sid, in) to receive a response (setup, sid, out) and
forward out to P.

8. Initialize empty sets z, y, and πPCS.
9. For each iteration i ∈ [r] do:

(a) Initialize counter ctr := 0 and an empty set of used evaluation points Di.
(b) If ctr = T , abort by outputting (proof, sid, ssid, runout_eval).
(c) Sample an evaluation point: zi ←$ DEnc \ Di. Update ctr := ctr + 1. Update Di :=
Di ∪ {zi}.

(d) Compute yi = f(zi) and evaluation proof πi ← Eval(ck, c, d, zi, yi, f ; ρc).
(e) Send (query, (sid, (C′, c, zi, yi, πi, i))) to GRO. Upon receiving v from GRO, if the first

b bits of v are not 0b, go to step 9b. Otherwise, store zi, yi, and πi in z, y, and
πPCS, respectively.

10. Output (proof, sid, ssid, ϖ), where ϖ := (π′, c, z, y, πPCS).
– Verification Upon receiving input (verify, sid, ssid, C, ϖ), Pi does:

1 Send (genparams, sid) to FSetup and wait for answer (params, sid, pp).
2 Send (genkey, sid) to FSetup and wait for answer (comkey, sid, ck).
3 Parse ϖ = (π′, c, z, y, πPCS). Derive the witness size n from the description of C. Com-

pute ℓ and d as Proof would and if d > D abort by outputting (verification, sid,
ssid, 0).

4 Define the circuit C′ as Proof would.
5 Parse z = (zi)i∈[r], y = (yi)i∈[r], and πPCS = (πi)i∈[r].
6 Output (verification, sid, ssid, 1) if all of the following checks pass, otherwise output

(verification, sid, ssid, 0):
(a) ΠR.V on input pp, C′, and π′ outputs 1. Calls to OSetup by V are handled similar

to the above.
(b) For all i ∈ [r]: 1 = Check(ck, c, d, zi, yi, πi).
(c) For all i ∈ [r]: send (query, (sid, (C′, c, zi, yi, πi, i))) to GRO, and the first b bits of

the return value vi are 0b .

Fig. 4: Protocol for UC-secure non-interactive proof in the (GRO,FSetup)-hybrid
model. ΠUC-R internally runs ΠR, PCS, and PES.

20

Pr[fail] ≤
r∑

i=1
Pr[faili] = r ·

(
1− 1

2b

)T

≈ elog(r) · 1
e(λ+log(r)) ≤ 2−λ

Thus, an honest prover manages to find a preimage of 0b in polynomial time
except with probability 2−λ. We also remark that the completeness error in-
creases only additively even if the underlying proof system ΠR is statistically
complete.11 We defer the analysis in this case to the full version.
Simulation. We begin by sketching the overall simulation strategy. First, con-
sider simulation for an uncorrupted prover. We simulate the behaviors of FSetup
and π′ component of real-world proofs produced by honest provers using the un-
derlying NIZK simulator ΠR.S. After the first r queries to GRO are programmed
to be 0b, commitments to witness-encoding polynomials are replaced with simu-
lated commitments to randomized polynomials encoding a dummy witness (i.e.,
0-vector). This transition is justified by the evaluation hiding property (Defini-
tion 2.9). Then we stop programming the GRO responses in the next hybrid. At
this stage, simulation of uncorrupted provers is essentially done.
Next, we describe simulation for an uncorrupted verifier. The requirement here
is to extract a witness from whatever (C̃, ϖ̃ = (π̃′, c̃, z̃, ỹ, π̃PCS)) submitted by
uncorrupted verifiers unless they have been created during the simulation of
uncorrupted provers. Here, we first rule out the case where at least one of (z̃,
ỹ, π̃PCS) differs from previously simulated (z, y, πPCS) for the same statement
C̃ and c̃. This can be shown by constructing a reduction to evaluation binding,
evaluation hiding, or unique proof. Finally, the extraction algorithm interpolates
the witness-encoding polynomial f for c̃ by observing GRO queries and decodes
f to a candidate witness w = w ∈ Fn. The analysis concludes by bounding
the probability that extracted w is invalid as follows. We run a non-black-box
SIM-EXT extractor EZ of the underlying proof system against successful Z on
statement the extended circuit C̃′, and proof π̃′ to obtain another candidate wit-
ness w′ = (w∗, ρw, ρc). This fails in the case that π̃′ is a previously simulated
proof. However, we rule this case out by relying on non-extrapolation property.
Given this, the event C̃′(w′) = 0 happens only with negligible probability thanks
to the simulation-extractability property. Hence, assuming C̃′(w′) = 1, it also
holds that C̃(w∗) = 1 by the definition of C̃′. Then we show that w = w∗. Oth-
erwise, one can construct another witness-encoding polynomial f∗ ̸= f that “ex-
plains” the same commitment c̃, breaking evaluation binding. With this we con-
clude that the extracted witness w is a valid witness as w = w∗ and C̃(w∗) = 1.
The above proof sketch describes simulation strategy for a single prover and ver-
ifier. In the formal proof, this is extended to incorporate multiple uncorrupted
provers and verifiers in a session.

Let us turn to formal proof. Complete simulation algorithm is given in Fig. 5.
The environment Z starts a session by initializing a certain number of parties and
adversary A. In a particular session sid, the environment Z instructs the parties
with two commands: prove and verify. The real world behavior is as follows.
11 We thank an anonymous reviewer for bringing this observation to our attension.

21

An honest party Pi on input (prove, sid, ssid, C, w) from Z executes the honest
prover’s algorithm in ΠUC-R to generate the proof. And on receiving (verify,
sid, ssid, C, ϖ), it verifies by running the honest verifier’s algorithm. In the ideal
world, the honest parties forward their inputs to the functionality FNIZK. The
corrupt parties’ behavior is controlled by A in both the worlds. Within a session
sid, we assume that Z issues s1 queries of the type (prove, sid, ssid, C, w) meant
for an honest party, and s2 of the type (verify, sid, ssid, C, ϖ) for either honest
or corrupt party. Let s = s1 + s2. Proofs for indistinguishability of hybrids are
deferred to the full version [43].

– Hyb0 : This is the real world.
– Hyb1: Replace all the honest parties with a single party B. This party is

responsible for simulating the view of the adversary and the environment
for the rest of the protocol. In particular, B acts on behalf of the honest
parties and does exactly what an honest party would do in the real world. In
addition, it intercepts the GRO queries made by any corrupt party Pi within
the session, forwards it the GRO and relays the response back to Pi. Similarly,
it intercepts all FSetup queries made by Pi in the session and relays it back
and forth between FSetup and Pi.

– Hyb2: Instead of forwarding Pi’s calls to FSetup functionality, B answers them
by executing steps in Simulation of FSetup in Sim. The rest of the execution
remains the same as before, i.e., the B executes on behalf of the honest parties
by executing the honest algorithm.

– For j ∈ [s1], Hyb2+j : For the j-th prove command with input (C, w) for an
honest party Pi from Z, replace honest prover’s algorithm with Step 1-7 in
Simulation of uncorrupted prover (in Sim) for input C.

– For j ∈ [s2], Hyb2+s1+j : For the j-th verify command with input (C, ϖ) for
an honest party Pi from Z, replace honest verifier’s algorithm with Step 1-12
in Simulation of uncorrupted verifier (in Sim). We assume that all the
verify commands are made only by the honest parties. This is without loss
of generality as any query that a corrupt party wants to make can instead
be routed through an honest party via the environment.

– Hyb3+s: This is the ideal world execution. Replace B with Sim, where the
steps in Sim are executed for each (prove, sid, ssid, C, w), and (verify, sid,
ssid, C, ϖ) command (as explained in the above hybrids), and sends corre-
sponding (proof, sid, ssid, Pi, ϖ) and (witness, sid, ssid, Pi, w) to FNIZK.

Succinctness. From completeness and simulation analysis we obtain the follow-
ing constraints for parameters r, b, T : T = (λ + log(r)) · 2b and λ = r(b− log(d)).
Consider the simple parameter choice r = λ. This gives, b = log(d) + 1 and T =
2d(λ+log(λ)). More generally, the parameter choices, r = O(λ/ log(λ)) = Oλ(1),
b = O(log(d) + log(λ)) = Oλ(log(d)), and T = O((λ + log(λ/ log(λ)))λd) =
Oλ(d) satisfies the conditions.
Assume that PCS produces constant size (Oλ(1)) commitments and evaluation
proofs, and ΠR produces Oλ(1) size proofs. Later in Section 4 we discuss can-

22

didate schemes satisfying these constraints. The total size of the proof ϖ is one
commitment c of size Oλ(1), vectors z, y consisting of r field elements, r evalua-
tion proofs πi of size Oλ(1), and one NIZK proof π′ for statement C′. Recall that
C′ is composed of C and the circuit that describes the Com and Enc operations.
Thus, C′ is only O(poly(λ, n)) bigger than C, where n is the witness size. Since
ΠR produces constant size proofs, proof for C′ is also of size Oλ(1). Finally,
since, r = Oλ(1), the size of ϖ remains Oλ(1).

Remark 3.2. Here, r is independent of the degree of the polynomial. The proof
size only grows with the number of repetitions and thus remains independent
of the degree, assuming constant size PCS and NIZK ΠR proofs. However, the
prover’s computational effort increases with the increase in degree d.

4 Instantiating our Compiler

In this section, we discuss a few candidates for PCS, PES and NIZK schemes for
instantiating our compiler.

4.1 A Candidate PCS and PES Scheme

We show that using KZG commitments [57] as the PCS scheme along with Coef-
ficient (PES1) or Lagrange (PES2) encoding scheme (§ 2.3) satisfies all necessary
conditions required to instantiate our compiler, i.e., it is succinct, has evaluation
binding, has unique proofs, is evaluation hiding, and has non-extrapolation.

We describe the polynomial commitment scheme PCSKZG = (KGen, Com,
Eval, Check). The formalization below follows the deterministic scheme of [33,
§C.2] supporting multiple degree bounds up to the maximum degree D. Note
that if d = D, one can skip computing/checking ĉ, π̂, and ŷ.

– KGen(1λ, D): Generate the parameters of a bilinear group G = (G1,G2,GT ,
q, g, h, e) where |G1| = |G2| = |GT | = q is prime, ⟨g⟩ = G1, ⟨h⟩ = G2,
and e : G1 ×G2 → GT is an efficiently computable, non-degenerate bilinear
map. The group order q also determines F := Fq and a set of supported
polynomials F<D[X]. Sample α ∈ F uniformly, and compute σ = (g, gα, . . . ,

gαD−1
, h, hα). Output ck = (G, σ).

– Com(ck, f, d): On input ck, a polynomial f ∈ F<d[X], and a degree bound
d ≤ D, compute a shifted polynomial f̂ = XD−d · f , and generate a com-
mitment as c = (gf(α), gf̂(α)) and output c.

– Eval(ck, c, d, z, f(z), f): Compute ω(X) = (f(X)−f(z))/(X−z) and ω̂(X) =
(f̂(X) − f̂(z))/(X − z) where f̂ is computed as above. Output π = (gω(α),

gω̂(α), f̂(z)).
– Check(ck, c, d, z, y, π): Parse c = (c, ĉ) and π = (π, π̂, ŷ). Accept if and only

if e(c/gy, h) = e(π, hα/hz), e(ĉ/gŷ, h) = e(π̂, hα/hz), and ŷ = zD−d · y.

23

Simulator: Sim

Sim is parameterized by λ,F,DEnc, ϕ, T, r, b, D and has access to the global functionality GRO as ΠUC-R
does. It simulates real prover’s proof for arbitrary (C, w) ∈ R, extracts a witness from a valid proof
(C, ϖ) chosen by the environment (as long as it hasn’t been recorded by FNIZK), and simulates the local
setup functionality FSetup. It internally keeps track of the state information st of the underlying NIZK
simulator ΠR.S, which is initially set to ε.

– Initialization follows [50]: We use the notation P̃i for a dummy party in the ideal process, which
simply forwards inputs and outputs between the environment Z and the ideal functionality FNIZK,
and Pi for a simulated party. Sim starts by invoking a copy of a PPT adversary A. It will run a
simulated interaction of A, the parties, and the environment. In particular, whenever A commu-
nicates with Z, Sim just passes this information along. And whenever A corrupts a party Pi, Sim
corrupts the corresponding dummy party P̃i.

– Simulation of FSetup

• Parameters Upon receiving input (genparams, sid) from a party Pi, if no pp has been stored,
run pp← PGen(1λ), let st := pp, and store pp. Send (params, sid, pp) to Pi.

• Commitment Key This is identical to FSetup.
• Setup Upon receiving input (setup, sid, in) from a party Pi, ignore if st has never been ini-

tialized with pp. Otherwise run (out, st) ← ΠR.S(1, st, in) using the current state and send
(setup, sid, out) to Pi.

– Handling GRO queries
1. Initialize empty set Qro.
2. Upon receiving input (query, x) from a party Pi, forward it to the GRO and forward the response

v back to Pi.
3. Record x in Qro.

– Simulation of uncorrupted prover Upon receiving input (prove, sid, C) from FNIZK:
1. Derive the witness size n from the description of C. Compute ℓ and d as Proof of ΠUC-R would

and if d > D abort by outputting (proof,⊥).
2. Generate a polynomial encoding of dummy witness: f ← Enc(0n, n, ℓ; ρw), where ρw ←$ Fℓ.
3. Generate a commitment to the polynomial encoding as Proof of ΠUC-R would: c← Com(ck, f,

d; ρc).
4. Define the circuit C′ as Proof of ΠUC-R would.
5. Run ΠR.S(2, st, C′) to obtain a proof-state pair (π′, st).
6. Create z, y, and πPCS as Proof of ΠUC-R would.
7. Send (proof, ϖ) to FNIZK, where ϖ := (π′, c, z, y, πPCS)

– Simulation of uncorrupted verifier Upon receiving input (verify, sid, C, ϖ) from FNIZK:
1 Perform verification checks similar to Verification of ΠUC-R, but use pp and ck generated

during the simulation of FSetup. Calls to OSetup made by ΠR.V are handled by running (out,
st)← ΠR.S(1, st, in) and forwarding out to V. If invalid, send (witness,⊥1) to FNIZK. This will
eventually cause FNIZK to output (verification, sid, ssid, 0) to a dummy party P̃i.

2 Parse proof ϖ as (π′, c, z, y, πPCS).
3 Query GRO on (observe, sid) and receive the set of illegitimate queries Q|sid.
4 Update Qro = Qro ∪Q|sid.
5 Define circuit C′ as Verification of ΠUC-R would.
6 Define Qc as the set of queries in Qro of the form (query, (sid, (C′, c, ·, ·, ·, ·))) such that evalu-

ation proof is valid. If there are more than one queries with the same evaluation point z then,
irrespective of the iteration i, include only the very first such query in Qc.

7 In the set Qc, if for the same (c, z), there exists (y, π) and (y′, π′) such that y ̸= y′ or π ̸= π′,
then set w := ⊥2 and go to 12.

8 If (C′, π′) was previously generated by ΠR.S then set w := ⊥3 and go to 12.
9 If |Qc| < d then set w := ⊥4 and go to 12.

10 Otherwise, parse Qc as tuples {(C′, c, zj , yj , πj , ij)}, where each zj is distinct. Collect polynomial
evaluations (zj , yj) and interpolate the polynomial f of degree d − 1 such that for j ∈ [d],
yj = f(zj).

11 If (C, Dec(f)) /∈ R set w := ⊥5; Else, set w := Dec(f).
12 Send (witness, w) to FNIZK.

Fig. 5: Simulator for ΠUC-R.

24

The security of PCSKZG relies on the SDH assumption [18].

Definition 4.1 (SDH Assumption). The strong Diffie-Hellman assumption
(SDH) holds with respect to a bilinear group generator BGen if for all PPT ad-
versaries A and degree bound D > 0,

Pr
[
t = g

1
α+c : G ← BGen(1λ); α←$ F; σ := ({gαi

}D−1
i=0 , hα); (t, c)← A(G, σ)

]
≤ negl(λ)

Lemma 4.2. PCSKZG is perfectly unique (Definition 2.7), computationally eval-
uation binding under the SDH assumption, perfectly ϕ-evaluation hiding (Defi-
nition 2.9), and computationally ϕ-non-extrapolation (Definition 2.10) with re-
spect to any polynomial encoding scheme PES with bounded independence (Def-
inition 2.8), where ϕ(r) := r + 1.

Proof. Unique Proof. We prove there exists unique π = (π, π̂, ŷ) for a fixed c =
(c, ĉ), d, z, and y. Due to the pairing equation, a valid π is uniquely determined
by (c/gy)

1
α−z . The same holds for π̂. Finally, a valid ŷ is uniquely determined

by zD−dy.
Evaluation Binding. Suppose the adversary outputs c = (c, ĉ), d, z, y, y′ ̸= y,
π = (π, π̂, ŷ), π = (π′, π̂′, ŷ′) such that both proofs verify. If gz = gα, then SDH
is broken with solution (g1/z, 0). Otherwise, we have (π/π′)

1
y′−y = g

1
α−z thanks

to the pairing equation and thus SDH is broken with solution ((π/π′)
1

y′−y ,−z).12

Evaluation Hiding. Let r = |z| be the number of evaluations requested by the
adversary. Due to the bounded independence of PES, any set of ϕ(r) = r + 1
evaluations of encoded polynomial f in DEnc are independently and uniformly
distributed in F. The commitment c = (c, ĉ) leaks at most a single evaluation
f(α). For i ∈ [r], each proof (πi, π̂i, ŷi) leaks at most f(α) and f(zi). Overall,
the adversary observes at most r + 1 evaluations of f , whose distribution is
independent and uniform in F.
Non-Extrapolation. For KZG polynomial commitment scheme used with PES,
ϕ(r) := r + 1. We show the following hybrids to prove non-extrapolation.
1. Hyb0: The same as the game defined in Definition 2.10, i.e., an all-zero vector

of length n is encoded as a polynomial and the adversary A = (A1,A2) is
provided with up to r distinct evaluations plus proofs.

2. Hyb1: The challenger’s code is changed as: Instead of encoding an all-0 vec-
tor, sample d random evaluations yi ←$ F. Recall, degree of the encoded
polynomial is denoted by d−1. Let |z|u denote the number of distinct values
in z. Let r′ := |z|u and n′ := d − r′. Note that, when there are no repeat
elements in z, r = r′. Sample n′ evaluation points from Dn′

Enc and interpolate
the polynomial f defined by d points (zi, yi), where the first r′ zi’s are from

12 Since the reduction only relies on the first component of the proof the scheme even
satisfies a slightly stronger variant of evaluation binding where the adversary gets
to choose distinct degree bounds for different evaluation proofs.

25

A1, and the rest are sampled by the challenger. Computing commitments
and evaluation proofs is same as before.
This hybrid remains indistinguishable from the previous one because of ϕ-
evaluation hiding of the PCS scheme. In particular, up to r + 1 distinct
evaluations and proofs do not reveal anything about the underlying commit-
ted polynomial. For i ∈ [r], each proof leaks at most one evaluation f(zi) and
f(α). Thus, overall the adversary learns at most r + 1 distinct evaluations
only.
Now, after the execution of Hyb1, A2 outputs a valid evaluation proof for a
new point (z∗, y∗, π∗). Let ỹ = f(z∗). Since, the committed polynomial f is
random and has degree d − 1 = n + r, and A learns at most r + 1, there is
at least one degree of freedom corresponding to which the evaluation of f
is uniformly distributed in F. This implies that the probability of y∗ = ỹ is
1/|F|, which is negligible. In case, y∗ ̸= ỹ, the challenger obtains two different
evaluations and valid proof for the same point which contradicts evaluation
binding for the PCS scheme. Thus, A wins only with negligible probability.

4.2 Candidate NIZK Schemes

Our compiler lifts any simulation extractable SNARK (SE-SNARK) to a UC
NIZK. Plugging in any SE-SNARK therefore yields a UC NIZK under the same
assumptions. However, the security analyses of many SNARKs in the literature
are in idealized models like the Generic Group Model (GGM) or Algebraic Group
Model (AGM) [40], and such analyses do not provide any guarantees outside of
those models. As we wish to prove composition with respect to any environment
(not just algebraic ones, for instance), the most meaningful candidates to plug
into our compiler are those that provide guarantees about any adversary, even
by making use of (non-black-box) knowledge assumptions.
Immediately Compatible SE-SNARKs. Groth and Maller [53] construct an
SE-SNARK from a knowledge assumption that they formulate, called the eX-
tended Power Knowledge of Exponent (XPKE) assumption. Lipmaa [64] presents
SE-SNARKs under ‘hash-algebraic’ knowledge assumptions. Abdolmaleki et al. [2]
show how to lift any zk-SNARK to an SE-SNARK (with non-black-box extrac-
tion), and present a concrete instantiation based on the zk-SNARK of Groth
et al. [52], which in turn relies on knowledge assumptions that they introduce.
One could of course apply Abdolmaleki et al.’s approach to any Oλ(1)-sized
zk-SNARK to obtain a Oλ(1)-sized SE-SNARK under the same knowledge as-
sumptions. All of these SE-SNARKs are Oλ(1)-sized and can be plugged into
our compiler to obtain Oλ(1)-sized UC NIZKs with provably secure composition
with respect to any environment, under the same knowledge assumptions.
Future Work: Alternative Instantiations. While we have been focused on
obtaining Oλ(1)-sized UC NIZKs in this paper, our compiler can be more widely
applicable. In general, given a NIZK that produces proofs of size Oλ(f(|C|+|w|))
and a polynomial commitment scheme that produces evaluation proofs of size
Oλ(g(|w|)) for some functions f, g, our compiler produces a UC NIZK (in the

26

ROM) where the proofs are of size Oλ(f(|C| + |w|) + g(|w|)), under the same
setup and knowledge assumptions as the NIZK and polynomial commitment.
With the right input SNARKs, we can obtain witness-succinct UC NIZKs that
have benefits orthogonal to Oλ(1)-sized proofs. Consider the following:

– A ‘transparent’ input SNARK—one that does not require a structured com-
mon reference string—would result in a transparent UC NIZK with the same
succinctness upon applying our compiler. For instance, the recent work of
Arun et al. [4] gives such a constant sized transparent SNARK using class
groups, however their analysis is in the generic group model, and simulation
extractability of their construction has yet to be analyzed.

– If one were to plug in a SNARK that does not require non-black-box knowl-
edge assumptions, we would obtain a UC NIZK that does not either. For
instance, plugging in Bulletproofs [22] into our compiler with a transparent
polynomial commitment scheme (in the ROM) would result in a Oλ(log(|C|+
|w|)) sized transparent UC NIZK in the ROM alone, that does not rely on
any knowledge assumptions, and only assumes the hardness of computing
discrete logarithms. One hurdle to overcome for such an instantiation is that
while Bulletproofs are known to be simulation extractable in the AGM [44],
there is at present no such analysis in the random oracle model alone (to our
knowledge).
The scope of this paper is limited to the design and analysis of our general

compiler, and so we leave such custom instantiations to future work.

References

1. Abdalla, M., Barbosa, M., Katz, J., Loss, J., Xu, J.: Algebraic adversaries in
the universal composability framework. In: Tibouchi, M., Wang, H. (eds.) ASI-
ACRYPT 2021, Part III. LNCS, vol. 13092, pp. 311–341. Springer, Heidelberg
(Dec 2021). https://doi.org/10.1007/978-3-030-92078-4_11

2. Abdolmaleki, B., Ramacher, S., Slamanig, D.: Lift-and-shift: Obtaining simulation
extractable subversion and updatable SNARKs generically. In: Ligatti, J., Ou, X.,
Katz, J., Vigna, G. (eds.) ACM CCS 2020. pp. 1987–2005. ACM Press (Nov 2020).
https://doi.org/10.1145/3372297.3417228

3. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 2087–2104. ACM Press (Oct / Nov
2017). https://doi.org/10.1145/3133956.3134104

4. Arun, A., Ganesh, C., Lokam, S., Mopuri, T., Sridhar, S.: Dew: Transparent
constant-sized zkSNARKs. Cryptology ePrint Archive, Report 2022/419 (2022),
https://eprint.iacr.org/2022/419

5. Atapoor, S., Baghery, K.: Simulation extractability in groth’s zk-SNARK. Cryptol-
ogy ePrint Archive, Report 2019/641 (2019), https://eprint.iacr.org/2019/641

6. Baghery, K.: Subversion-resistant simulation (knowledge) sound NIZKs. In: Al-
brecht, M. (ed.) 17th IMA International Conference on Cryptography and Coding.
LNCS, vol. 11929, pp. 42–63. Springer, Heidelberg (Dec 2019). https://doi.org/
10.1007/978-3-030-35199-1_3

27

https://doi.org/10.1007/978-3-030-92078-4_11
https://doi.org/10.1007/978-3-030-92078-4_11
https://doi.org/10.1145/3372297.3417228
https://doi.org/10.1145/3372297.3417228
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1145/3133956.3134104
https://eprint.iacr.org/2022/419
https://eprint.iacr.org/2019/641
https://doi.org/10.1007/978-3-030-35199-1_3
https://doi.org/10.1007/978-3-030-35199-1_3
https://doi.org/10.1007/978-3-030-35199-1_3
https://doi.org/10.1007/978-3-030-35199-1_3

7. Baghery, K., Kohlweiss, M., Siim, J., Volkhov, M.: Another look at extraction
and randomization of groth’s zk-snark. In: Borisov, N., Díaz, C. (eds.) FC 2021.
Lecture Notes in Computer Science, vol. 12674, pp. 457–475. Springer (2021).
https://doi.org/10.1007/978-3-662-64322-8_22, https://doi.org/10.1007/
978-3-662-64322-8_22

8. Baghery, K., Pindado, Z., Ràfols, C.: Simulation extractable versions of groth’s
zk-SNARK revisited. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) CANS 20.
LNCS, vol. 12579, pp. 453–461. Springer, Heidelberg (Dec 2020). https://doi.
org/10.1007/978-3-030-65411-5_22

9. Baghery, K., Sedaghat, M.: Tiramisu: Black-box simulation extractable nizks in
the updatable CRS model. In: Conti, M., Stevens, M., Krenn, S. (eds.) CANS
2021. Lecture Notes in Computer Science, vol. 13099, pp. 531–551. Springer (2021).
https://doi.org/10.1007/978-3-030-92548-2_28, https://doi.org/10.1007/
978-3-030-92548-2_28

10. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93. pp. 62–73. ACM Press (Nov 1993). https://doi.org/10.
1145/168588.168596

11. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Paper
2018/046 (2018), https://eprint.iacr.org/2018/046, https://eprint.iacr.
org/2018/046

12. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018), https://eprint.iacr.org/2018/046

13. Ben-Sasson, E., Chiesa, A., Gabizon, A., Virza, M.: Quasi-linear size zero knowl-
edge from linear-algebraic PCPs. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-
A, Part II. LNCS, vol. 9563, pp. 33–64. Springer, Heidelberg (Jan 2016). https:
//doi.org/10.1007/978-3-662-49099-0_2

14. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128. Springer, Heidelberg
(May 2019). https://doi.org/10.1007/978-3-030-17653-2_4

15. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A.D. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 31–60. Springer,
Heidelberg (Oct / Nov 2016). https://doi.org/10.1007/978-3-662-53644-5_2

16. Blum, M., Feldman, P., Micali, S.: Proving security against chosen cyphertext at-
tacks. In: Goldwasser, S. (ed.) CRYPTO’88. LNCS, vol. 403, pp. 256–268. Springer,
Heidelberg (Aug 1990). https://doi.org/10.1007/0-387-34799-2_20

17. Blum, M., Santis, A.D., Micali, S., Persiano, G.: Noninteractive zero-knowledge.
SIAM J. Comput. 20(6), 1084–1118 (1991). https://doi.org/10.1137/0220068,
https://doi.org/10.1137/0220068

18. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (May 2004). https://doi.
org/10.1007/978-3-540-24676-3_14

19. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer,
Heidelberg (May 2016). https://doi.org/10.1007/978-3-662-49896-5_12

28

https://doi.org/10.1007/978-3-662-64322-8_22
https://doi.org/10.1007/978-3-662-64322-8_22
https://doi.org/10.1007/978-3-662-64322-8_22
https://doi.org/10.1007/978-3-662-64322-8_22
https://doi.org/10.1007/978-3-030-65411-5_22
https://doi.org/10.1007/978-3-030-65411-5_22
https://doi.org/10.1007/978-3-030-65411-5_22
https://doi.org/10.1007/978-3-030-65411-5_22
https://doi.org/10.1007/978-3-030-92548-2_28
https://doi.org/10.1007/978-3-030-92548-2_28
https://doi.org/10.1007/978-3-030-92548-2_28
https://doi.org/10.1007/978-3-030-92548-2_28
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
https://doi.org/10.1007/978-3-662-49099-0_2
https://doi.org/10.1007/978-3-662-49099-0_2
https://doi.org/10.1007/978-3-662-49099-0_2
https://doi.org/10.1007/978-3-662-49099-0_2
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/0-387-34799-2_20
https://doi.org/10.1007/0-387-34799-2_20
https://doi.org/10.1137/0220068
https://doi.org/10.1137/0220068
https://doi.org/10.1137/0220068
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12

20. Bowe, S., Gabizon, A.: Making groth’s zk-snark simulation extractable in the ran-
dom oracle model. Cryptology ePrint Archive, Paper 2018/187 (2018), https:
//eprint.iacr.org/2018/187, https://eprint.iacr.org/2018/187

21. Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the
public parameters of the pinocchio zk-SNARK. In: Zohar, A., Eyal, I., Teague, V.,
Clark, J., Bracciali, A., Pintore, F., Sala, M. (eds.) FC 2018 Workshops. LNCS, vol.
10958, pp. 64–77. Springer, Heidelberg (Mar 2019). https://doi.org/10.1007/
978-3-662-58820-8_5

22. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy. pp. 315–334. IEEE Computer Society Press (May 2018).
https://doi.org/10.1109/SP.2018.00020

23. Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Recursive proof composition from
accumulation schemes. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS,
vol. 12551, pp. 1–18. Springer, Heidelberg (Nov 2020). https://doi.org/10.1007/
978-3-030-64378-2_1

24. Camenisch, J., Damgård, I.: Verifiable encryption, group encryption, and their
applications to separable group signatures and signature sharing schemes. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer,
Heidelberg (Dec 2000). https://doi.org/10.1007/3-540-44448-3_25

25. Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The won-
derful world of global random oracles. In: Nielsen, J.B., Rijmen, V. (eds.) EU-
ROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 280–312. Springer, Heidelberg
(Apr / May 2018). https://doi.org/10.1007/978-3-319-78381-9_11

26. Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodríguez, H.: Lunar: A tool-
box for more efficient universal and updatable zkSNARKs and commit-and-prove
extensions. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part III. LNCS,
vol. 13092, pp. 3–33. Springer, Heidelberg (Dec 2021). https://doi.org/10.1007/
978-3-030-92078-4_1

27. Campanelli, M., Ganesh, C., Khoshakhlagh, H., Siim, J.: Impossibilities in succinct
arguments: Black-box extraction and more. Cryptology ePrint Archive, Report
2022/638 (2022), https://eprint.iacr.org/2022/638

28. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press (Oct 2001).
https://doi.org/10.1109/SFCS.2001.959888

29. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable secu-
rity with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 61–85. Springer, Heidelberg (Feb 2007). https://doi.org/10.1007/
978-3-540-70936-7_4

30. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random
oracle. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014. pp. 597–608. ACM
Press (Nov 2014). https://doi.org/10.1145/2660267.2660374

31. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC. pp. 494–503.
ACM Press (May 2002). https://doi.org/10.1145/509907.509980

32. Canetti, R., Sarkar, P., Wang, X.: Triply adaptive UC NIZK. Cryptology ePrint
Archive, Report 2020/1212 (2020), https://eprint.iacr.org/2020/1212

33. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.P.: Marlin: Pre-
processing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai,
Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738–768. Springer,
Heidelberg (May 2020). https://doi.org/10.1007/978-3-030-45721-1_26

29

https://eprint.iacr.org/2018/187
https://eprint.iacr.org/2018/187
https://eprint.iacr.org/2018/187
https://doi.org/10.1007/978-3-662-58820-8_5
https://doi.org/10.1007/978-3-662-58820-8_5
https://doi.org/10.1007/978-3-662-58820-8_5
https://doi.org/10.1007/978-3-662-58820-8_5
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/3-540-44448-3_25
https://doi.org/10.1007/3-540-44448-3_25
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1007/978-3-030-92078-4_1
https://eprint.iacr.org/2022/638
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1145/2660267.2660374
https://doi.org/10.1145/2660267.2660374
https://doi.org/10.1145/509907.509980
https://doi.org/10.1145/509907.509980
https://eprint.iacr.org/2020/1212
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_26

34. Chiesa, A., Ojha, D., Spooner, N.: Fractal: Post-quantum and transparent recursive
proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020,
Part I. LNCS, vol. 12105, pp. 769–793. Springer, Heidelberg (May 2020). https:
//doi.org/10.1007/978-3-030-45721-1_27

35. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Ro-
bust non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 566–598. Springer, Heidelberg (Aug 2001). https://doi.org/10.
1007/3-540-44647-8_33

36. Dodis, Y., Shoup, V., Walfish, S.: Efficient constructions of composable commit-
ments and zero-knowledge proofs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 515–535. Springer, Heidelberg (Aug 2008). https://doi.org/10.
1007/978-3-540-85174-5_29

37. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: 23rd ACM STOC. pp. 542–552. ACM Press (May 1991). https://doi.org/
10.1145/103418.103474

38. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of the
Fiat-Shamir transform. In: Galbraith, S.D., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (Dec 2012). https://doi.org/
10.1007/978-3-642-34931-7_5

39. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–
168. Springer, Heidelberg (Aug 2005). https://doi.org/10.1007/11535218_10

40. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applica-
tions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol.
10992, pp. 33–62. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/
978-3-319-96881-0_2

41. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953 (2019), https://eprint.iacr.org/2019/953

42. Ganesh, C., Khoshakhlagh, H., Kohlweiss, M., Nitulescu, A., Zajac, M.: What
makes fiat-shamir zksnarks (updatable SRS) simulation extractable? In: Galdi,
C., Jarecki, S. (eds.) SCN 2022. Lecture Notes in Computer Science, vol. 13409,
pp. 735–760. Springer (2022). https://doi.org/10.1007/978-3-031-14791-3_
32, https://doi.org/10.1007/978-3-031-14791-3_32

43. Ganesh, C., Kondi, Y., Orlandi, C., Pancholi, M., Takahashi, A., Tschudi, D.:
Witness-succinct universally-composable snarks. Cryptology ePrint Archive, Paper
2022/1618 (2022), https://eprint.iacr.org/2022/1618, https://eprint.iacr.
org/2022/1618

44. Ganesh, C., Orlandi, C., Pancholi, M., Takahashi, A., Tschudi, D.: Fiat-shamir
bulletproofs are non-malleable (in the algebraic group model). In: Dunkelman,
O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol. 13276, pp.
397–426. Springer, Heidelberg (May / Jun 2022). https://doi.org/10.1007/
978-3-031-07085-3_14

45. Ganesh, C., Orlandi, C., Pancholi, M., Takahashi, A., Tschudi, D.: Fiat-shamir
bulletproofs are non-malleable (in the random oracle model). Cryptology ePrint
Archive, Paper 2023/147 (2023), https://eprint.iacr.org/2023/147, https://
eprint.iacr.org/2023/147

46. Garay, J.A., MacKenzie, P.D., Yang, K.: Strengthening zero-knowledge protocols
using signatures. Journal of Cryptology 19(2), 169–209 (Apr 2006). https://doi.
org/10.1007/s00145-005-0307-3

30

https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/978-3-540-85174-5_29
https://doi.org/10.1007/978-3-540-85174-5_29
https://doi.org/10.1007/978-3-540-85174-5_29
https://doi.org/10.1007/978-3-540-85174-5_29
https://doi.org/10.1145/103418.103474
https://doi.org/10.1145/103418.103474
https://doi.org/10.1145/103418.103474
https://doi.org/10.1145/103418.103474
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-031-14791-3_32
https://doi.org/10.1007/978-3-031-14791-3_32
https://doi.org/10.1007/978-3-031-14791-3_32
https://doi.org/10.1007/978-3-031-14791-3_32
https://doi.org/10.1007/978-3-031-14791-3_32
https://eprint.iacr.org/2022/1618
https://eprint.iacr.org/2022/1618
https://eprint.iacr.org/2022/1618
https://doi.org/10.1007/978-3-031-07085-3_14
https://doi.org/10.1007/978-3-031-07085-3_14
https://doi.org/10.1007/978-3-031-07085-3_14
https://doi.org/10.1007/978-3-031-07085-3_14
https://eprint.iacr.org/2023/147
https://eprint.iacr.org/2023/147
https://eprint.iacr.org/2023/147
https://doi.org/10.1007/s00145-005-0307-3
https://doi.org/10.1007/s00145-005-0307-3
https://doi.org/10.1007/s00145-005-0307-3
https://doi.org/10.1007/s00145-005-0307-3

47. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (May 2013).
https://doi.org/10.1007/978-3-642-38348-9_37

48. Goldreich, O., Håstad, J.: On the complexity of interactive proofs with bounded
communication. Inf. Process. Lett. 67(4), 205–214 (1998)

49. Goldreich, O., Vadhan, S., Wigderson, A.: On interactive proofs with a laconic
prover. Computational Complexity 11(1), 1–53 (2002)

50. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 444–459. Springer, Heidelberg (Dec 2006). https://doi.org/10.
1007/11935230_29

51. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fis-
chlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666,
pp. 305–326. Springer, Heidelberg (May 2016). https://doi.org/10.1007/
978-3-662-49896-5_11

52. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable
and universal common reference strings with applications to zk-SNARKs. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol.
10993, pp. 698–728. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/
978-3-319-96878-0_24

53. Groth, J., Maller, M.: Snarky signatures: Minimal signatures of knowledge from
simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part II. LNCS, vol. 10402, pp. 581–612. Springer, Heidelberg (Aug 2017). https:
//doi.org/10.1007/978-3-319-63715-0_20

54. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for
NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358.
Springer, Heidelberg (May / Jun 2006). https://doi.org/10.1007/11761679_21

55. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 11:1–11:35 (2012). https://doi.org/10.1145/
2220357.2220358, https://doi.org/10.1145/2220357.2220358

56. Jain, A., Pandey, O.: Non-malleable zero knowledge: Black-box constructions and
definitional relationships. In: Abdalla, M., Prisco, R.D. (eds.) SCN 14. LNCS,
vol. 8642, pp. 435–454. Springer, Heidelberg (Sep 2014). https://doi.org/10.
1007/978-3-319-10879-7_25

57. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to poly-
nomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 177–194. Springer, Heidelberg (Dec 2010). https://doi.org/10.
1007/978-3-642-17373-8_11

58. Katsumata, S.: A new simple technique to bootstrap various lattice zero-knowledge
proofs to QROM secure NIZKs. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021,
Part II. LNCS, vol. 12826, pp. 580–610. Springer, Heidelberg, Virtual Event (Aug
2021). https://doi.org/10.1007/978-3-030-84245-1_20

59. Kattis, A., Panarin, K., Vlasov, A.: RedShift: Transparent SNARKs from list poly-
nomial commitment IOPs. Cryptology ePrint Archive, Report 2019/1400 (2019),
https://eprint.iacr.org/2019/1400

60. Kerber, T., Kiayias, A., Kohlweiss, M.: Composition with knowledge assumptions.
In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp.
364–393. Springer, Heidelberg, Virtual Event (Aug 2021). https://doi.org/10.
1007/978-3-030-84259-8_13

31

https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/11761679_21
https://doi.org/10.1145/2220357.2220358
https://doi.org/10.1145/2220357.2220358
https://doi.org/10.1145/2220357.2220358
https://doi.org/10.1145/2220357.2220358
https://doi.org/10.1145/2220357.2220358
https://doi.org/10.1007/978-3-319-10879-7_25
https://doi.org/10.1007/978-3-319-10879-7_25
https://doi.org/10.1007/978-3-319-10879-7_25
https://doi.org/10.1007/978-3-319-10879-7_25
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-030-84245-1_20
https://doi.org/10.1007/978-3-030-84245-1_20
https://eprint.iacr.org/2019/1400
https://doi.org/10.1007/978-3-030-84259-8_13
https://doi.org/10.1007/978-3-030-84259-8_13
https://doi.org/10.1007/978-3-030-84259-8_13
https://doi.org/10.1007/978-3-030-84259-8_13

61. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th ACM STOC. pp. 723–732. ACM Press (May 1992). https:
//doi.org/10.1145/129712.129782

62. Kondi, Y., shelat, a.: Improved straight-line extraction in the random oracle model
with applications to signature aggregation. Cryptology ePrint Archive, Report
2022/393 (2022), https://eprint.iacr.org/2022/393

63. Kosba, A., Zhao, Z., Miller, A., Qian, Y., Chan, H., Papamanthou, C., Pass, R.,
shelat, a., Shi, E.: C∅c∅: A framework for building composable zero-knowledge
proofs. Cryptology ePrint Archive, Report 2015/1093 (2015), https://eprint.
iacr.org/2015/1093

64. Lipmaa, H.: Simulation-extractable SNARKs revisited. Cryptology ePrint Archive,
Report 2019/612 (2019), https://eprint.iacr.org/2019/612

65. Lysyanskaya, A., Rosenbloom, L.N.: Efficient and universally composable non-
interactive zero-knowledge proofs of knowledge with security against adaptive cor-
ruptions. Cryptology ePrint Archive, Paper 2022/1484 (2022), https://eprint.
iacr.org/2022/1484, https://eprint.iacr.org/2022/1484

66. Lysyanskaya, A., Rosenbloom, L.N.: Universally composable sigma-protocols in the
global random-oracle model. Cryptology ePrint Archive, Report 2022/290 (2022),
https://eprint.iacr.org/2022/290

67. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In:
Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 2111–2128.
ACM Press (Nov 2019). https://doi.org/10.1145/3319535.3339817

68. Maurer, U.: Constructive cryptography - A new paradigm for security defini-
tions and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) Theory of Security
and Applications - Joint Workshop, TOSCA 2011,. LNCS, vol. 6993, pp. 33–
56. Springer (2011). https://doi.org/10.1007/978-3-642-27375-9_3, https:
//doi.org/10.1007/978-3-642-27375-9_3

69. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–
1298 (2000). https://doi.org/10.1137/S0097539795284959, https://doi.org/
10.1137/S0097539795284959

70. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy. pp. 238–252.
IEEE Computer Society Press (May 2013). https://doi.org/10.1109/SP.2013.
47

71. Pass, R.: On deniability in the common reference string and random oracle model.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Hei-
delberg (Aug 2003). https://doi.org/10.1007/978-3-540-45146-4_19

72. Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-
graphic protocols. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC. pp. 533–
542. ACM Press (May 2005). https://doi.org/10.1145/1060590.1060670

73. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS. pp. 543–553. IEEE Computer Society Press
(Oct 1999). https://doi.org/10.1109/SFFCS.1999.814628

74. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS,
vol. 9057, pp. 755–784. Springer, Heidelberg (Apr 2015). https://doi.org/10.
1007/978-3-662-46803-6_25

32

https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://eprint.iacr.org/2022/393
https://eprint.iacr.org/2015/1093
https://eprint.iacr.org/2015/1093
https://eprint.iacr.org/2019/612
https://eprint.iacr.org/2022/1484
https://eprint.iacr.org/2022/1484
https://eprint.iacr.org/2022/1484
https://eprint.iacr.org/2022/290
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1137/S0097539795284959
https://doi.org/10.1137/S0097539795284959
https://doi.org/10.1137/S0097539795284959
https://doi.org/10.1137/S0097539795284959
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1007/978-3-540-45146-4_19
https://doi.org/10.1007/978-3-540-45146-4_19
https://doi.org/10.1145/1060590.1060670
https://doi.org/10.1145/1060590.1060670
https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25

	Introduction
	Technical Overview
	Related Work

	Preliminaries
	UC Framework
	Succinct Non Interactive Zero-Knowledge Proof
	Succinct Polynomial Commitment Scheme

	Succinctness-Preserving UC NIZK Compiler
	Instantiating our Compiler
	A Candidate PCS and PSE Scheme
	Candidate NIZK Schemes

