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Abstract. The boomerang attack is a cryptanalysis technique that com-
bines two short differentials instead of using a single long differential.
It has been applied to many primitives, and results in the best known
attacks against several AES-based ciphers (Kiasu-BC, Deoxys-BC). In
this paper, we introduce a general framework for boomerang attacks with
truncated differentials.
We show that the use of truncated differentials provides a significant
improvement over the best boomerang attacks in the literature. In par-
ticular, we take into account structures on the plaintext and ciphertext
sides, and include an analysis of the key recovery step. On 6-round AES,
we obtain a competitive structural distinguisher with complexity 287 and
a key recovery attack with complexity 261.
The truncated boomerang attack is particularly effective against tweakable
AES variants. We apply it to 8-round Kiasu-BC, resulting in the best
known attack with complexity 283 (rather than 2103). We also show
an interesting use of the 6-round distinguisher on the full TNT-AES, a
tweakable block-cipher using 6-round AES as a building block. Finally, we
apply this framework to Deoxys-BC, using a MILP model to find optimal
trails automatically. We obtain the best attacks against round-reduced
versions of all variants of Deoxys-BC.

Keywords: Truncated differential · Boomerang attack · AES · Kiasu
· Deoxys · TNT-AES · MILP

1 Introduction

The AES [15] is the most widely used block cipher today, and we have a good
understanding of its security. Its round function is strongly byte-aligned; this
simplifies the analysis with the wide-trail strategy, and many cryptanalysis tech-
niques rely on truncated trails to take advantage of this property. After 20 years
of analysis, we have a high confidence in the design, and many recent tweak-
able proposals reuse the AES round function with different tweakey schedules
(Kiasu-BC [26], Deoxys-BC [28], and TNT-AES [1]). However, an attacker can
introduce a difference in the additional tweak of these constructions, so they
must be analysed in the related-tweak model, and by extension in the related-key
model. In these models, the boomerang attack is particularly effective because
both high-probability differentials composing the boomerang reach more rounds.
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In particular, the best known attacks against Kiasu-BC and Deoxys-BC are
boomerang attacks.

In this work, we carefully and systematically analyse the interaction between
truncated differentials and boomerang attacks. Our approach is similar to the
analysis of impossible differential attacks in [11]: we aim at providing a unified
formula taking into account many details of a broad class of attacks. We integrate
and improve a set of techniques proposed in different variants of the boomerang
attack, leading to the best boomerang attacks against several AES-based ciphers.

Our results. We present a generic framework to describe boomerang attacks
based on truncated differentials (section 3). Instead of first building a boomerang
distinguisher and then appending extra key recovery rounds, we consider the
truncated boomerang attack as a whole, including the key recovery exploiting
the first and last round transitions. The framework integrates and improves on
previous analyses, including structures of plaintexts and ciphertexts [9], and
truncated differentials as introduced by Wagner [39]. Our improvements come
principally from the use of structures of ciphertexts, which were underused in
recent works. We also consider boomerang trails with smaller probability than
the random case, and mount attacks by gathering enough samples to detect the
bias.

We first apply our framework to reduced AES (section 4). On 6-round AES,
we obtain a distinguisher with complexity 287, and a key-recovery with complexity
261, improving the previous best boomerang attack with complexity 271 [10].

We adapt the key-recovery attack to 8-round Kiasu-BC (section 5) by revisiting
a previous boomerang attack with complexity 2103 [18]. Using structures of
ciphertexts, we obtain the best attack against Kiasu-BC, with complexity 283.

We also apply a variant of the 6-round attack to the full TNT-AES [1], and
obtain a marginal distinguisher with complexity slightly below 2128 (section 6).
The attack is not competitive with the generic attack against TNT with complexity
O(
√
n · 23n/4) [25], but it uses a lower memory (232 instead of 296), and it can

distinguish TNT with 6-round AES from TNT with a PRP. Moreover, this is the
first property of 6-round AES that can be used to target a generic construction
using 6-round AES as a building block (to the best of our knowledge). We also
provide an attack on reduced TNT-AES, using a 5-round boomerang trail.

In section 7, we build a MILP model implementing our framework, to find
good parameters for the full attack automatically. The model allows both fixed
differences and truncated differences, and takes into account the complexity of the
key recovery, instead of just optimizing a boomerang distinguisher. It confirms
that our basic attack on AES is optimal within our framework.

Finally, we apply the MILP model to Deoxys-BC, and obtain improved attacks
against most variants (section 8). Although the boomerang trails on AES and
Deoxys-BC are quite different, the underlying analysis is the same.

Due to space constraints, some results are only available in the full version of
this paper [6]. Our code is also available as additional data [7].
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Distinguishers and key-recovery attacks. In this work, we report dinstiguishers
and key-recovery attacks, with key-recovery typically having a lower complexity
on the same number of rounds. Obviously, a key-recovery attack can be used as
a distinguisher, but we focus on structural distinguishers that only use statistical
properties of the block cipher, without guessing subkey material (denoted as
“independent of the secret key” in [24]). Indeed, a series of recent works have
proposed complex distinguishers on 5-round [24] and 6-round AES [2,5,33], and
we obtain similar results with simpler techniques. This notion of distinguisher is
not clearly defined, but our distiguishers can be used with secret S-Boxes, which
is not the case for most key-recovery attacks.

2 Preliminaries

2.1 The AES Round Function

AES was designed in 1998 by Daemen and Rijmen (as Rijndael) and won the
NIST standardization competition in 2000 [15]. Three instances of the cipher
exist, for key sizes of 128, 196 and 256 bits, but we only consider AES-128 in this
paper. Since we do not exploit the AES key schedule, we only describe the round
function. AES-128 operates on a 128-bit state, represented as a 4× 4-byte array,
and iterates on 10 rounds a round function composed of the following operations:

– SubBytes: The AES S-Box is applied to each byte of the state.
– ShiftRows: The second row is shifted by 1 cell to the left, the third row by

2 cells, and the fourth row by 3 cells.
– MixColumns: Each column is multiplied by an MDS Matrix.
– AddRoundKey: Each byte is XORed with a byte of the round key.

There is one extra AddRoundKey operation before the first round, and the last
round omits the MixColumns operation.

Due to the popularity of the AES, and its availability in hardware on several
platforms, many constructions reuse its round function. In particular, Kiasu [27]
and Deoxys [28] are two tweakable block ciphers that reuse the AES round
function, with a modified tweakey schedule (combining the key and tweak) to
compute the round (tweak)keys. Deoxys has been selected in the CAESAR
portfolio. TNT-AES [1] is another tweakable block cipher using the AES round
function, where the tweak is only XORed to the internal state twice.

Kiasu-BC tweakey schedule. Kiasu-BC has a 128-bit key and 64-bit tweak, with
10 rounds. The round tweakeys are computed as ki + t where ki is the round
key following the AES key schedule, and t is the tweak (encoded in the first two
rows). In particular, Kiasu-BC with the zero tweak is the same as the AES.

Deoxys-BC tweakey schedule. Deoxys-BC has two variants: Deoxys-BC-256 has a
256-bit tweakey with 14 rounds, and Deoxys-BC-384 has a 384-bit tweakey with
16 rounds. The tweakey material is composed of a variable length key and tweak
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Table 1. AES distinguisher and key recovery attacks with known and secret S-Boxes.
CP: chosen plaintexts / ACC: chosen plaintexts and adaptively-chosen ciphertexts

Rounds Type Data Time Ref

AES Distinguishers 5 Multiple-of-n 232 CP 236.6 [24]
6 Yoyo 2122.8 ACC 2121.8 [33]
6 Exchange attack 288.2 CP 288.2 [5]
6 Exchange attack 284 ACC 283 [4]
6 Truncated differential 289.4 CP 296.5 [2]

6 Truncated boomerang 287 ACC 287 subsection 4.1

AES Key-recovery 6 Square 232 CP 271 [14]
6 Partial-sum 232 CP 248 [21]
6 Boomerang 271 ACC 271 [10]
6 Mixture 226 CP 280 [3]
6 Retracing boomerang 255 ACC 280 [19]
6 Boomeyong 279.7 ACC 278 [32]

6 Truncated boomerang 259 ACC 261 subsection 4.2

AES Secret S-Box KR 5 Square 240 CP 240 [37]
5 Multiple-of-n 253.3 CP 252.6 [22]
5 Retracing boomerang 225.8 ACC 225.8 [19]
6 Square 264 CP 290 [37]

6 Truncated boomerang 294 ACC 294 subsection 4.3

Table 2. Boomerang (B) and rectangle (R) attacks against variants of Deoxys-BC.
Most attacks succeed with probability 1/2.

Previous New
Model Rnd Data Time Mem Ref Data Time Mem Ref

RTK1 8 B 288 288 273 Full version [6]
9 B 2135 2174 2129 Full version [6]

RTK2 8 B 228 228 227 [34]a B 227 227 227 Full version [6]
9 B 298 2112 217 [34] B 255.2 255.2 255.2 Full version [6]
10 B 298.4 2109.1 288 [42] B 294.2 295.2 294.2 section 8
11 R 2122.1 2249.9 2128.2 [42] B 2129 2223.9 2129 section 8

RTK3 10 B 222 222 217 [34] B 219.4 219.4 218 Full version [6]
11 B 2100 2100 217 [34] B 232.7 232.7 232.7 Full version [6]
12 B 298 298 264 [42] B 267.4 267.4 265 Full version [6]
13 R 2125.2 2186.7 2136 [43] B 2126.7 2170.2 2126.7 section 8
14 R 2125.2 2282.7 2136 [43] B 2129 2278.8 2129 Full version [6]

a The probability of Sasaki’s trail is 2−56 with structures, thus we believe that the
complexity of the attack is actually 230 in data and time and 229 in memory.
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Table 3. Attacks against Kiasu-BC and TNT-AES

Rounds Type Data Time Ref

Kiasu-BC 7 Square (KR) 243.6 CP 248.5 [17]
8 Meet-in-the-Middle (KR) 2116 CP 2116 [38]
8 Imposs. Diff (KR) 2118 CP 2118 [18]
8 Boomerang (KR) 2103 ACC 2103.1 [18]

8 Truncated boomerang (KR) 283 ACC 283 section 5

TNT-AES ∗-5-∗ Boomerang (dist.) 2126 ACC 2126 [1]
5-∗-∗ Impossible differential (KR) 2113.6 CP 2113.6 [25]
∗-∗-∗ Generic (dist.) 299.5 CP 299.5 [25]

∗-5-∗ Truncated boomerang (dist.) 276 ACC 276 Full version [6]
5-5-∗ Truncated boomerang (KR) 287 ACC 287 Full version [6]
∗-6-∗ Truncated boomerang (dist.) 2127.8 ACC 2127.8 section 6

summing to 256 or 384 bits; for simplicity, we assume that the key length is a
multiple of 128. The tweakey material is divided in words of 128 bits (denoted
TKi). Eventually, the round tweakey of round j is defined as:

STKj =
{
RCj + TK1

j + TK2
j For Deoxys-BC-256

RCj + TK1
j + TK2

j + TK3
j For Deoxys-BC-384

TKi
j is the tweakey state, initialized as TKi

0 = TKi and updated with

TK1
j+1 = h(TK1

j ) TK2
j+1 = h(LFSR2(TK2

j )) TK3
j+1 = h(LFSR3(TK3

j ))

where h is a byte permutation, and LFSR2 and LFSR3 are LFSRs that operate in
parallel on each byte of the tweakey. This construction (the STK construction [27])
ensures that differences in subtweakey byte position may only cancel out up to
i− 1 times every 15 rounds if differences are introduced in i tweakey words.

Notations. We denote E a block cipher operating on a state of n bits. In a
4× 4 matrix, the bytes are numbered in the AES order (column-major). When
ki is a sub(twea)key, we denote keqi = MixColumns−1(ki).

2.2 Differentials and Truncated Differentials

We use + to denote the XOR operation (the addition in Fv2u). A differential is de-
fined by an input difference ∆in ∈ {0, 1}n and an output difference ∆out ∈ {0, 1}n.
We use the notation ∆in

p−→
E

∆out when a differential exists with probability p,
where the probability is defined over a random plaintext P :

p = Pr[∆in −→E ∆out] = Pr [E(P ) + E(P +∆in) = ∆out]
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Fig. 1. Example of a truncated differential trail on 3-round AES.

Since E is a permutation, we have Pr[∆in −→E ∆out] = Pr[∆out −−−→
E−1 ∆in].

A truncated differential is defined by a set of input differences Din and a set of
output differences Dout. We use the notation Din

p−→
E
Dout to denote the existence

of a truncated differential with probability ~p, defined as (with Avg denoting the
average):

~p = Avg
∆in∈Din

Pr [E(P ) + E(P +∆in) ∈ Dout]

We also define the probability of the reverse truncated differential as

~p = Avg
∆out∈Dout

Pr
[
E−1(P ) + E−1(P +∆out) ∈ Din

]
In general, the two probabilities are different, and related as follow:

~p

|Dout|
= ~p

|Din|
= Avg
∆in∈Din,∆out∈Dout

Pr [E(P ) + E(P +∆in) = ∆out]

Figure 1 gives an example of a truncated differential on 3 rounds of AES, with
respectively 4, 1, and 4 active S-Boxes in each round. Din and Dout are vector
spaces with |Dout| = |Din| = 232. The probability of the truncated differential is
~p = 2−24 and the reverse probability is ~p = 2−24.

2.3 Boomerang Attacks

Boomerang attacks, introduced by Wagner in 1999 [39], use adaptive plaintext
and ciphertext queries to generate quartets with specific differences at an inter-
mediate state of the cipher. The attacker decomposes the full cipher E into two
subciphers E0 (the upper part) and E1 (the lower part), with E = E1 ◦E0, with
high probability differentials on E0 and E1 (of probabilities p and q), denoted
respectively ∆in

p−−→
E0

∆out and ∇in
q−−→
E1
∇out. The attack proceeds as follows:

1. Generate pairs of plaintext (P, P ′) such that P + P ′ = ∆in, and query the
corresponding ciphertexts (C,C ′) = (E(P ), E(P ′)).

2. Shift the ciphertexts pairs into new pairs (C,C ′) = (C +∇out, C
′ +∇out)

and query their decryptions (P , P ′) = (E−1(C), E−1(C ′)).
3. Look for pairs with P + P ′ = ∆in.
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Fig. 2. Construction of a boomerang quartet.

Analysis. We have E0(P ) = E−1
1 (C) because E = E1 ◦ E0. In particular,

E0(P ) + E0(P ′) = E−1
1 (C) + E−1

1 (C ′) + E0(P ) + E−1
1 (C) + E0(P ′) + E−1

1 (C ′)

Moreover, the differentials in E0 and E1 imply that:

Pr[E0(P ) + E0(P ′) = ∆out] = p

Pr[E−1
1 (C) + E−1

1 (C) = ∇in] = q

Pr[E−1
1 (C ′) + E−1

1 (C ′) = ∇in] = q

When the three events are satisfied, we obtain E0(P ) +E0(P ′) = ∆out and with
an additional probability p, P + P

′ = ∆in. Finally, assuming that all events are
independent, we compute the boomerang trail probability pb as a lower bound of
the probability of the boomerang relation P + P ′ = ∆in:

Pr
[
E−1(E(P ) +∇out) + E−1(E(P +∆in) +∇out) = ∆in

]
≥ pb = p2 × q2

Figure 2 shows the construction of a boomerang quartet. When p2 × q2 � 2−n,
this gives a distinguisher for the cipher using O(p−2 × q−2) quartets because
the probability of detecting a quartet is 2−n for a random permutation. In most
cases, the distinguisher can be converted into a key recovery by exploiting key
dependencies in the distinguisher.

2.4 Improvements of the Boomerang Attack

Analysis of the Connection Probability. The analysis above assumes that the
four pairs involved in a boomerang quartet follow their corresponding differentials
independently. In practice, we usually obtain a probability higher than p2q2, but
it is also possible for the four events to be incompatible [30]. Several techniques
have been proposed to improve this analysis.
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Multiple Differentials. Since the differences ∆out and ∇in are not used by the
attacker, boomerang quartets can be detected with any internal difference, as
long as the same difference is obtained with both pairs. Following the analysis
of [39,8], this increases the probability to

pb = p̂2q̂2 p̂ =
√∑
∆out

Pr[∆in −−→E0
∆out]2 q̂ =

√∑
∇in

Pr[∇in −−→E1
∇out]2

The Sandwich Attack. Instead of splitting the cipher E into two parts E =
E1 ◦ E0, Dunkelman, Keller and Shamir [20] proposed to split it in three parts
E = E1 ◦Em ◦E0 with a small Em in the middle. For the analysis, they evaluate
the probability of the boomerang trail using the connection probability r of Em:

Pr
[
P + P

′ = ∆in

]
≥ pb = p2q2r

r = Pr
[
E−1
m (Em(X) +∇in) + E−1

m (Em(X +∆out) +∇in) = ∆out
]

The connection probability r can be evaluated experimentally, and some specific
choices of Em result in r = 1 (in particular, when Em is the identity, we fall back
to the standard analysis of boomerangs). The Boomerang Connectivity Table
(BCT) was later introduced [13] to analyze the case where Em is an S-Box layer.
The case where Em is composed of several rounds has been analyzed in further
works [36,40,16]. Recent works also show that setting Em to a single S-Box layer
might lead to unaccurate connection probabilities [41].

Structures. Biham, Dunkelman and Shamir have introduced a variant of the
boomerang attack using structures for the key recovery [9]. They start from
a boomerang distinguisher with fixed differences ∆in and ∇out, and add extra
rounds at the beginning and at the end. By propagating the differences ∆in and
∇out, they obtain a set of possible input differences Din and output differences
Dout. In a typical SPN cipher, these sets are vector spaces.

The attacker builds a structure P + Din = {P + δ : δ ∈ Din}, and uses it
as starting point for the attack. A structure of |Din| elements defines |Din|2/2
pairs, and |Din|/2 of them lead to the fixed difference ∆in. Therefore, the use of
structures covers additional rounds without increasing the data complexity.

Structures can also be used on the ciphertext side, by shifting each ciphertext
with all differences in Dout. However, many later works do not use structures on
the ciphertext side.

Retracing Boomerang. Dunkelman et al. [19] proposed an improvement where
the ciphertexts are chosen so that the two returning pairs (C,C) and (C ′, C ′) are
dependant: if one passes the trail on E1, the other passes it too. This increases
the probability of the trail to pb = p2q. In the same spirit, Rahman et al. [32]
recently proposed a boomerang attack embedding a yoyo distinguisher.
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3 Truncated Boomerang Attacks

We consider boomerang attacks with truncated differentials, as introduced by
Wagner in the original paper [39]. We obtain a key-recovery attack, improving on
the use of structures of Biham et al. [9] by considering truncated differentials for
the full cipher, instead of starting from a shorter boomerang distinguisher with
fixed input/output differences and adding truncated trails for the key-recovery
rounds. Some boomerang attacks of this type have been proposed on AES [10] and
Kiasu-BC [18], but they only use structures on the plaintext side. Our framework
unifies and improves on previous boomerang attacks, using truncated differentials
for E0 and E1, and structures on both sides.

3.1 Truncated Boomerang Distinguisher

Let us consider two truncated differentials D0
in

p−−→
E0
D0

out and D1
in

q−−→
E1
D1

out with
probabilities ~p, ~p and ~q, ~q on E0 and E1. We assume that D0

in is a vector subspace
of {0, 1}n and 0 /∈ D1

out. The truncated boomerang attack proceeds as follows:

1. Choose a random plaintext P0, and query the encryption oracle over the
structure P0 +D0

in; for each i ∈ D0
in, we define Pi = P0 + i and Ci = E(Pi).

2. For each ciphertext Ci, query the decryption oracle over the set Ci +D1
out:

for each j ∈ D1
out, we define Ci

j = Ci + j and Pi
j = E−1(Ci

j).
3. Count the number of pairs (Pi

j
, Pi′

j′) with Pi
j + Pi′

j′ ∈ D0
in (and i 6= i′).

This can be done efficiently by projecting the plaintext values on the orthog-
onal complement of D0

in in {0, 1}n, and looking for collisions.
4. If needed, repeat steps 1 to 3 with different plaintext structures.

Analysis. We consider a potential quartet (P, P ′, P , P ′) corresponding to
(C,C ′, C, C ′), with P + P ′ ∈ D0

in and C + C,C ′ + C ′ ∈ D1
out. We have:

Pr[E0(P ) + E0(P ′) ∈ D0
out] = ~p

Pr[E−1
1 (C) + E−1

1 (C) ∈ D1
in] = ~q

Pr[E−1
1 (C ′) + E−1

1 (C ′) ∈ D1
in] = ~q

Following the sandwich attack analysis (with Em = id), we define the connection
probability:

r = Pr

E0(P ) + E0(P ′) ∈ D0
out

∣∣∣∣∣∣∣
E0(P ) + E0(P ′) ∈ D0

out

E−1
1 (C) + E−1

1 (C) ∈ D1
in

E−1
1 (C ′) + E−1

1 (C ′) ∈ D1
in


If the four events hold, we have P + P ′ ∈ D0

in with an additional probability ~p.
This analysis of the truncated boomerang distinguisher is the same as proposed
by Wagner [39], but our attack is more general with structures on both sides.
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In general, we have E−1
1 (C)+E−1

1 (C) and E−1
1 (C ′)+E−1

1 (C ′) in D1
in, therefore

they are equal with probability |D1
in|−1, and this implies E0(P ) +E0(P ′) ∈ D0

out;
hence r ≥ |D1

in|−1. Moreover, if D1
in and D0

out are vector subspaces, then Σ =
E0(P )+E0(P ′)+E0(P )+E0(P ′) ∈ D1

in; in particular, Σ ∈ D0
out with probability

|D0
out∩D1

in|/|D1
in|; this implies E0(P )+E0(P ′) ∈ D0

out hence r ≥ |D0
out∩D1

in|/|D1
in|.

Assuming that all the events are independent, each quartet (Pi, Pi′ , Pi
j
, P

j′

i′ ),
defined by a pair (i, j), (i′, j′), follows the truncated boomerang trail with proba-
bility pb, and randomly satisfies Pi

j + Pi′
j′ ∈ D0

in with probability p$:

pb = ~p · ~p · ~q2 · r r ≥ |D1
in|−1 (1)

p$ = |D0
in|/2n (2)

We assume that the boomerang probability can be well approximated as pb+p$.
We distinguish the cipher E from a random permutation when the expected
number of remaining quartets (quartets with Pi

j + Pi′
j′ ∈ D0

in) is significantly
higher for E than for a random permutation. We define the signal-to-noise ratio:

σ = pb/p$ (3)

When σ � 1, we obtain a distinguisher using Q = O(p−1
b ) quartets. More

precisely, with Q = µ · p−1
b (µ a small constant) we expect µ remaining quartets

with the cipher E, versus µ · σ−1 � 1 for a random permutation. A distinguisher
that detects the presence of at least one quartet has a success rate of 1− e−µ.

When σ is smaller, we need to collect a large number of quartets, and compare
the expected number of remaining quartets qb for E and q$ in the random case:

qb = Q× (p$ + pb) = Q× p$(1 + σ) q$ = Q× p$

We detect the bias with Q = O(p−1
$ σ−2) = O(p−1

b σ−1) samples, following [29,
Theorem 2]. Using Q = c×p−1

b σ−1 with a small constant c and setting a threshold
at Q× p$(1 + σ/2), the distinguisher has a success rate of Φ(

√
c/2), with Φ the

cumulative distribution function of the standard normal distribution.
If Q is smaller than the number of quartets in a full structure (|D0

in|2|D1
out|2/2),

we use a partial structure with only
√

2Q elements. Otherwise, we need N =
2Q× |D0

in|−2|D1
out|−2 structures of S = |D0

in||D1
out| elements. Finally, we obtain a

distinguisher with a constant probability of success with the following complexity
in number of quartets, time, data, and memory:

Q = O
(
max(p−1

b , σ−1 · p−1
b )
)

(4)

T = D = max(
√

2Q, 2Q× |D0
in|−1|D1

out|−1) (5)
M = min(D, |D0

in||D1
out|) (6)

Application to 6-round AES. To explain the truncated boomerang distin-
guisher in practice, we give a truncated boomerang trail on 6-round AES in
figure 3, using the 3-round trail of figure 1 twice. D0

in and D1
in are the sets of all
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Fig. 3. A truncated boomerang trail on 6-round AES.

states that have zeros on all diagonals except the main one. D0
out is the same as

the output set of figure 1, and D1
out is active on the main anti-diagonal (it differs

because we omit the last MixColumns operation). We have

|D0
in| = |D0

out| = 232 ~p = 2−24 ~p = 2−24

|D1
in| = |D1

out| = 232 ~q = 2−24 ~q = 2−24

Since D0
out ∩ D1

in = {0}, we have r = |D1
in|−1, and the analysis above gives the

following parameters:

pb = ~p · ~p · ~q2 × |D1
in|−1 = 2−128 σ = 2−32

p$ = |D0
in|/2n = 2−96 Q = c · 2160

Using c = 4 and the formulas of Equations (4), (5), and (6), we obtain a
distinguisher with complexity:

T = D = 299 M = 264
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The distinguisher is given in algorithm form in the full version [6]. It makes 267

encryption queries and 299 decryption queries, for a total data complexity of
D = 267 + 299 ≈ 299. In total, we have Q = 235 × 264 × 264/2 = 2162 quartets
(Pi, Pi′ , Pi

j
, Pi′

j′), so that the expected number of remaining quartets is:

q$ = Q× 2−96 = 266 qE = Q× (2−96 + 2−128) = 266 + 234

The distinguisher returns the correct answer with probability Φ(
√
c/2) ≈ 0.84.

This distinguisher is interesting because it is very generic: it does not re-
quire knowledge of the S-Box or the MDS matrix, and it can be considered
as “key-independent” in the sense of [24]. As seen in Table 1, the complexity
is slightly higher than previous distinguishers with similar properties. However,
the simplicity of this distinguisher makes it more likely to be applicable when
6-round AES is used as a building block in a more complex structure, as shown
in section 6 against TNT-AES.

3.2 Truncated Boomerang Key-recovery Attack

We now consider key-recovery attacks. As opposed to typical differential or linear
attacks, we do not add rounds on top of the distinguisher. Instead, we assume
that the truncated boomerang covers the full targeted cipher, and we design a
key-recovery attack with smaller complexity than the corresponding distinguisher.

When σ ≥ 1, the truncated boomerang distinguisher is easy to turn into a
key-recovery attack, but we cannot reduce the complexity. Indeed, the bottleneck
of the distinguisher is to have enough data so that a boomerang quartet exists.
When a quartet with P +P ′ ∈ D0

in is found, it has a high probability of following
the boomerang, and standard methods can be used to recover key candidates.
Therefore, we focus on the case σ � 1, where the distinguisher requires multiple
quartets following the boomerang.

Given a candidate quartet with P + P ′ ∈ D0
in, we can extract some key

information assuming that it follows the boomerang. If this is the case, we
have two pairs of known plaintexts (P, P ′) and (P , P ′) following the truncated
differential D0

in
p−−→
E0
D0

out, and two pairs of known ciphertexts (C,C) and (C ′, C ′)
following the truncated differential D1

in
q−−→
E1
D1

out. Using standard techniques
from differential cryptanalysis, we can usually extract partial information about
the first and last subkeys. We denote by κ the number of key bits that can
be extracted, and by ` the average number of κ-bit key candidates suggested
by a quartet. Note that the key information suggested by a quartet might be
incompatible between both pairs of plaintexts following the upper differential (or
between both pairs of ciphertexts following the lower differential), in this case
the quartet is discarded.

We follow the standard approach to identify the most likely candidates for the
κ bits of key: we build a table of 2κ counters corresponding to key candidates, and
we increment the counter of each key suggested by each quartet. With enough
data, the right key is expected to be among the top 2κ−a counters (a denotes
the advantage of the attack).
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Analysis. Following the previous analysis, we expect Q× (p$ +pb) quartets with
P + P ′ ∈ D0

in: Q × pb quartets following the boomerang trail (right quartets),
and Q × p$ false positives. For a right quartet, the correct key is among the
deduced key candidates, and for a wrong quartet, we expect that ` random key
candidates are deduced. Assuming that all the quartets behave independently,
the wrong counters follow the binomial distribution B(Q, (p$ + pb) × ` × 2−κ)
and the right counter follows the distribution B(Q, p$× `× 2−κ + pb). We denote
the probabilities of suggesting a wrong key and the right key as:

pw = (p$ + pb)× `× 2−κ ≈ p$ × `× 2−κ (7)
p0 = p$ × `× 2−κ + pb ≈ pw + pb (8)

We obtain a higher signal-to-noise ratio σ̃ than previously:
σ̃ = pb/pw = σ × 2κ/` (9)

When σ̃ � 1, only a handful of right quartets are necessary to have the right
key ranked first, so that Q = O(p−1

b ).
When σ̃ � 1, the counters can be approximated by normal distributions, and

we use the work of Selçuk [35, Theorem 3] to evaluate the number of samples
needed to have the right key among the top 2κ−a key candidates (depending on
the success rate). For a fixed value of a, we need Q proportional to p−1

b σ̃−1, and
the complexity increases linearly in a. Finally, the increased signal-to-noise ratio
σ̃ � σ reduces the data complexity to:

Q = O
(
max(p−1

b , σ̃−1 × p−1
b )
)

(10)

D = max(
√

2Q, 2Q× |D0
in|−1|D1

out|−1) (11)
The time complexity is harder to evaluate; it can be bounded with TE the cost
of an oracle call (by convention, TE = 1), and TC the cost of deducing key
candidates from a quartet:

T = D × TE +Q× p$ × TC (12)

When TC � 2n × |D0
in|−2|D1

out|−1, we have Q × p$ × TC � D and the second
term is negligible; the cost of the attack is thus dominated by the oracle queries.
Otherwise, it is often possible to reduce the second term with more advanced
filtering, but this requires a dedicated analysis for each attack.

After recovering 2κ−a candidates for the κ-bit partial key, the full key can be
recovered by exhaustive search of the remaining bits with complexity 2n−a, or
by launching a variant of the attack on a different set of key bits.

Success Probability. When σ̃ � 1, the average values of right and wrong
counters are high enough to approximate them with normal distributions. In
that case, the success rate can be evaluated using the formula given by [35],
under additional assumptions about the independence of key counters, and order
statistics:

PS = Φ

(√
µσ̃ − Φ−1(1− 2−a)√

σ̃ + 1

)
(13)
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with µ = Q× pb the expected number of right quartets.
When σ̃ is high, the binomial distributions of right and wrong counters have

their average values respectively Q× pb ≈ 1 and Q× pw � 1. As discussed in [35,
section 3.2.1], the normal approximation is inaccurate in this case; we obtain a
more accurate estimate of the success probability using a Poisson approximation.

Extracting Key Candidates. When the truncated differentials are described
by truncated trails (with a set of intermediate differences at each step), the
parameters ` and κ can often be deduced directly from the trail. We assume that
E0 starts with the addition of a subkey K0, followed by an S-Box layer SB, and
we denote the set of differences after the S-Box layer by D0

mid:

E0 = Ẽ0 ◦ SB ◦ AKK0 D0
in

p0−→
SB
D0

mid D0
mid

p1−−→̃
E0
D0

out

We also assume that D0
in is a vector subspace aligned with the S-Box layer (each

S-Box is either inactive, or active with all possible differences). D0
mid is a subset

of D0
in; typically it is constructed so that some parts of the state have fixed

differences after the linear layer. For instance, in the AES trail of Figure 1, D0
mid

corresponds to differences δ such that MixColumns(ShiftRows(δ)) is active only
on the first cell, with |D0

mid| = 28 and ~p0 = 2−24. In general, we have:

~p0 = |D0
mid|/|D0

in| ~p = ~p0 × ~p1 (14)

We consider a pair (P, P ′), and assume that it follows the truncated trail, i.e.
SB(P +K0) + SB(P ′ +K0) ∈ D0

mid. This constrains the partial subkey K0|D0
in

corresponding to the active S-Boxes in SB. More precisely, for each difference δ in
D0

mid, we expect on average 0.5 unordered pairs {X,X ′} such thatX+X ′ = P+P ′
and SB(X) + SB(X ′) = δ (restricted to the active bytes D0

mid). This pair can be
recovered efficiently after pre-computing the DDT of the S-Box, and we deduce
two possible keys X+P and X+P ′. Therefore, we have the following parameters
when extracting key candidates from a pair (P, P ′):

`0 = |D0
mid| κ0 = log2(|D0

in|) T 0
C = `0 = |D0

mid|

Starting from a candidate quartet, we have two different pairs (P, P ′) and
(P , P ′) assumed to follow the upper differential. Therefore, we expect only
|D0

mid|2/|D0
in| key candidates compatible with both pairs. We apply the same

reasoning to the lower trail (using ciphertext pairs), and deduce the parameters
` and κ for a quartet in the general case:

` = |D0
mid|2 · |D1

mid|2 · |D0
in|−1 · |D1

out|−1 κ = log2(|D0
in| · |D1

out|) (15)
Using the probability ~p0 for the first round and ~q0 for the last round, we have
` · 2−κ = ~p0

2 · ~q0
2 (16)

For the lower trail, we only have to process a fraction |D0
mid|2/|D0

in| of the
candidate quartets (with a key compatible with both pairs). In particular, when
|D0

mid|2 � |D0
in|, the time complexity is dominated by the first extraction step:

TC = |D0
mid|.
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Application to 6-round AES. This attack can directly be applied to AES,
using the same 3-round trails as in the previous section (see Figure 3):

|D0
in| = |D0

out| = 232 |D0
mid| = 28 ~p = 2−24 ~p = 2−24

|D1
in| = |D1

out| = 232 |D1
mid| = 28 ~q = 2−24 ~q = 2−24

Using the parameters of the key extraction, our analysis results in

` = |D0
mid|2 · |D1

mid|2 · |D0
in|−1 · |D1

out|−1 = 2−32 κ = log2(|D0
in| · |D1

out|) = 64
pb = ~p · ~p · ~q2 × |D1

in|−1 = 2−128

pw = |D0
in| × 2−n × `× 2−κ = 2−192 σ̃ = 264

Since σ̃ � 1, we only need a few right quartets; with µ = 4 we obtain

Q = µ× p−1
b = 2130 D = 267

Time complexity. With these parameters, the attack complexity is dominated
by the oracle queries. We use 8 structures of 264 elements; in each structure we
detect 264 × 263 × p$ = 231 pairs with P + P

′ ∈ D0
in, resulting in 8× 231 = 234

candidate quartets in total. Each quartet suggests on average 2−32 candidates
for 64 bits of key (for most of the quartets, there is no key compatible with both
sides of the quartet). Finally, we expect 22 suggestions of wrong keys (each key
is suggested 2−62 times on average), and µ = 4 suggestions for the correct key.
With high probability, the key with the most suggestions is the correct one.

We implemented the attack on a reduced AES with 4-bit S-Boxes, and it
behaves as expected [7].

4 Optimized Boomerang Attacks on 6-round AES

As shown by Biryukov [10], boomerang attacks on AES can be optimized using
multiple trails. We now present improved versions of our attacks using this
technique, including a 6-round key-recovery attack with complexity 261. The
improvement compared to the attack of Biryukov with complexity 271 is due to
the use of structures on the ciphertext side.

4.1 Optimized distinguisher

Instead of only considering the trail of Figure 1 with fixed positions for all the
active bytes, we consider a collection of four different trails for upper part:{

, , ,

}
The collection can be considered as a truncated differential D0

in
p−−→
E0
D0

out with

~p = 2−22 ~p = 2−24 |D0
in| = 232 |D0

out| = 234
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Similarly, we consider four trails for the lower part:{
, , ,

}
Again, this can be considered as a truncated differential D1

in
q−−→
E1
D1

out with

~q = 2−24 ~q = 2−22 |D1
in| = 234 |D1

out| = 232

The analysis of the previous sections can be applied as-is with these trails. We
obtain a better attack because we increase ~p and ~q by a factor 4, even though |D1

in|
increases by a factor 4; we obtain pb = 2−124 instead of 2−128. The distinguisher
is exactly the same because D0

in and D1
out are the same, but this improved analysis

shows that the complexity of the distinguisher can be reduced to T = D = 291

(with c = 4, σ = 2−28 and Q = 2154).

Larger set D1
out. We further improve the distinguisher using a collection of 16

trails with the following input and output sets for the lower trail:{
, , ,

}
→
{

, , ,

}
This collection can be considered as a truncated differential D1

in
q−−→
E1
D1

out with

~q = 2−22 ~q = 2−22 |D1
in| = 234 |D1

out| = 234

This does not affect the probability pb, but generates larger structures; the
complexity is reduced to T = D = 289 with Q = 2154.

Different Set D0
in for Returning Pairs. Following Biryukov [10], we use a

higher probability differential for the returning pair (P , P ′), different from for
the initial pair (P, P ′), and with a larger set D0

in. We consider the same collection
of 16 trails as above, corresponding to a truncated differential D0

in
p̄−−→
E0
D0

out with

~̄p = 2−22 ~p̄ = 2−22 |D0
in| = 234 |D0

out| = 234

This corresponds to keeping quartets with a single active diagonal in P + P ′,
but not necessarily the main one. We adapt our analysis to account for the two
distinct upper differentials and we obtain

pb = ~p · ~p̄ · ~q2 × |D1
in|−1 = 2−122 σ = 2−28

p$ = |D0
in|/2n = 2−94 Q = 2152

Finally, we obtain a distinguisher with complexity T = D = 287 (with c = 4).
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4.2 Optimized Key-recovery Attack

For a key-recovery attack, we can use the trails above to obtain an attack with
complexity T = D = 262.5. We keep the set D1

out active only in the first column
(|D1

out| = 232) in order to extract information on the same key for each quartet.
More details are given in the full version [6].

In order to further reduce the complexity of this attack, we use truncated
boomerang characteristics with lower signal-to-noise ratios, taking advantage of
the additional filter provided by the key extraction. Following [10], we modify
the truncated trail on the returning side (P , P ′) to allow any combination of two
active diagonals in input, leading to the following parameters:

D0
in =

{
, , , , ,

}

~p = 2−22 ~p = 2−24 |D0
in| = 232 |D0

out| = 234 |D0
mid| = 210

~̄p = 2−46 ~p̄ = 6× 2−16 = 2−13.4 |D0
in| = 6× 264 |D0

out| = 234

~q = 2−24 ~q = 2−22 |D1
in| = 234 |D1

out| = 232 |D1
mid| = 210

When extracting the key, we recover information about the main diagonal of
k0 from (P, P ′), and information about the first anti-diagonal of k6 from (C,C)
and (C ′, C ′) (note that (P , P ′) is not necessarily active in the main diagonal).
Moreover, the key suggested by (C,C) and (C ′, C ′) must lead to the same active
byte in z4, so that

`0 = 210 κ0 = 32 `1 = 2−14 κ1 = 32 ` = 2−4 κ = 64

Using the previous analysis, we obtain

pb = ~p · ~p̄ · ~q2 × |D1
in|−1 = 2−113.4

pw = |D0
in|2−n × `× 2−κ = 2−129.4 σ̃ = 216

Since σ̃ � 1, a few right quartets are sufficient for the success of this attack;
we use µ = 8, this corresponds to Q = 2116.4 and we use a partial structure of
D = 258.7 elements.

Success probability. We assume that the attacker keeps key candidates with
counter values of at least 5. With σ̃ � 1, we approximate the wrong key counters
by Poisson distributions with λ = Q× pw = 2−13, each of which equal 5 or more
with probability 1− e−λ(1 + λ+ λ2/2 + λ3/6 + λ4/24) ≈ 2−71.9; we don’t expect
to keep any wrong keys. On the other hand, the counter for the right key follows
a Poisson distribution with λ = µ = 8. It reaches a value of 5 or more with
probability ≈ 0.9.
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Time complexity. After recovering a candidate for 64 bits of key (32 bits of k0
and 32 bits of k6), we repeat the attack with D0

in in a different diagonal and
use the partial knowledge of k6 to increase the probability ~q. This step has a
negligible complexity.

The time complexity is balanced between oracle queries and extracting key
candidates. Indeed, we filter 258.7 × 257.7 × |D0

in| × 2−n = 255 candidates with
P + P

′ ∈ D0
in using 6 hash tables indexed by each combination of two active

columns. The complexity TC to generate key candidates for a given quartet is
essentially 4× 210 accesses to a small table; we approximate it as TC ≈ 25.4TE
(since one encryption has 6× 16 S-Boxes). Finally, the time complexity is

T = 258.7TE + 255TC ≈ 260.8TE

4.3 Key-recovery with Secret S-Boxes

The techniques described in subsection 3.2 assume that the S-Box and MDS
matrix are known to the attacker in order to extract key information. However,
it is also possible to extract key information with an unknown S-Box under some
conditions. Following [23], we assume that all S-Boxes in a column are identical,
and that the MDS matrix has two identical coefficients in each row.

As a concrete example, we consider the AES MixColumns matrix

MC =
[

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

]
We consider a pair (C,C) following the truncated trail of Figure 3. According to
the trail, the difference before the last round (w4) is in a set of 28 differences; in
particular, the difference in cell 1 is equal to the difference in cell 2:

w4 + w4 ∈
{[

2δ 0 0 0
δ 0 0 0
δ 0 0 0
3δ 0 0 0

]
: δ ∈ {0, 1}8

}
=
{

MC ·
[
δ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

]
: δ ∈ {0, 1}8

}
Moreover, we assume that the differences in cells 13 and 10 of the ciphertext are
equal (they are moved to cell 1 and 2 by ShiftRows)

C + C =
[
α 0 0 0
0 0 0 β
0 0 β 0
0 γ 0 0

]

In this case, S-Boxes 1 and 2 in the last round follow the same transition δ → β.
With high probability, this implies that the unordered pairs of input/output are
equal; in particular {C[13] + k6[13], C[13] + k6[13]} = {C[10] + k6[10], C[10] +
k6[10]}. This suggests two key candidates:

k6[13] + k6[10] ∈
{
C[13] + C[10], C[13] + C[10]

}
In order to use this property in a truncated boomerang attack, we use the

multiple upper trails of subsection 4.1, and a single lower trail with a restricted
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D1
out of size 224 to ensure that C + C and C ′ + C

′ have the required properties
for all quartets considered:

D1
out =

{[
a 0 0 0
0 0 0 b
0 0 b 0
0 c 0 0

]
: a, b, c ∈ {0, 1}8

}
The corresponding parameters are:

~p = 2−22 ~p = 2−24 |D0
in| = 232 |D0

out| = 234

~̄p = 2−22 ~p̄ = 2−22 |D0
in| = 234 |D0

out| = 234

~q = 2−32 ~q = 2−24 |D1
in| = 232 |D1

out| = 224

For each quartet, the pair (C,C) suggests two values for k6[13] + k6[10], and
C ′, C ′ also suggests two values. Therefore a quartet suggests on average ` = 2−6

values for κ = 8 bits of key. Using the analysis of subsection 3.2, we obtain:

pb = ~p · ~p̄ · ~q2 × |D1
in|−1 = 2−124 σ̃ = 2−16

pw = |D0
in| × 2−n × ` · 2−κ = 2−108 Q = O(2140)

To obtain a high probability of success we use Q = 2145, i.e. D = 290. Since
σ̃ � 1, the counter distribution of the right key can be approximated to the
normal distribution N (237 + 221, 237) while wrong key counters distributions can
be approximated to N (237, 237). We expect the correct key to be ranked first
with very high probability (PS > 0.99 using the formula from [35]).

The time complexity is dominated by the oracle queries: for each structure
of 256 plaintexts/ciphertexts, we filter 256 × 255 × |D0

in| × 2−n = 217 candidate
quartets with P + P

′ ∈ D0
in, and the time to extract the key candidates is

negligible. We can repeat the attack to recover up to 16 key bytes in different
positions, with a complexity of D = T = 294 (but only 12 recovered bytes are
linearly independent).

5 Application to 8-round Kiasu-BC

Kiasu-BC [26] is an instance of the TWEAKEY framework [27], reusing the AES
round function in a tweakable block cipher. The 6-round boomerang attack on
the AES can be extended to 8-round Kiasu-BC by taking advantage of the tweak
input to cancel state differences in order to have one inactive round in the upper
and lower trails. Indeed, the best known attack on Kiasu-BC is an 8-round attack
with complexity 2103 in data and time [18] following this idea. Following our
framework, we improve this attack with a better use of structures.

Truncated Boomerang. Since we use a tweak difference ∆tw, we slightly
generalize our truncated differential framework to allow a set of tweak differences
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Dtw. We start from a 4-round truncated trail (Din,Dtw) p−→
E
Dout with probability

2−32, similar to the 3-round trail of previous sections:

Dtw is the set of differences active in the first cell of the tweak; following the
tweakey schedule of Kiasu-BC, this results in a tweakey difference in Dtw at each
round. We obtain an 8-round boomerang with two 4-round differentials:

~p = 2−32 ~p = 2−32 |D0
in| = 232 |D0

out| = 232 |D0
tw| = 28

~q = 2−32 ~q = 2−32 |D1
in| = 232 |D1

out| = 232 |D1
tw| = 28

Following the analysis of the AES attack in subsection 3.2, we deduce on average
` = 2−32 candidates of κ = 64 key bits per quartet. Therefore, we obtain

pb = ~p · ~p · ~q2 × |D1
in|−1 = 2−160

pw = |D0
in|/2n × `× 2−κ = 2−192 σ̃ = 232

Since σ̃ � 1, we only need a few right quartets. Taking µ = 4, we obtain an attack
with Q = 2162 quartets. We take advantage of the tweak to build larger structures
(iterating over the tweak and data inputs), of size |D0

in| · |D0
tw| · |D1

out| · |D1
tw| = 280.

Thus we only need 8 structures, with data complexity D = 283. In each structure
of 280 elements, we expect 263 quartets with P + P

′ ∈ D0
in, therefore the time

complexity for the key recovery is negligible, and T = D = 283.

Success Probability. There are 266 quartets with P + P
′ ∈ D0

in, suggesting on
average 2−32 key candidates each; hence a total of 234 candidates for 64 bits of
key. We keep key candidates whose counter reaches 2 or more. Modeling counters
for wrong keys with a Poisson distribution with λ = 2−30, the probability for a
specific wrong key counter to be at least 2 is 1− e−λ(1 + λ) ≈ 2−61; therefore we
expect to keep 8 wrong keys. On the other hand, the counter for the right key
follows a Poisson distribution with λ = 4. It reaches a value of 2 or more with
probability ≈ 0.9.

As in the AES attacks, we recover the full key by repeating the attack with
D0

in in a different diagonal. Taking advantage of the recovered values of the last
round key, this adds a negligible complexity.

6 Application to TNT-AES
TNT-AES is a tweakable block cipher reusing the AES round function published
at Eurocrypt 2020 [1]. It is part of the Tweak-aNd-Tweak framework, building a
tweakable block cipher Ẽ from a block cipher E:

ẼK0,K1,K2 : P, T 7→ C = EK2

(
T + EK1

(
T + EK0(P )

))
In order to improve its efficiency, TNT-AES uses a 6-round AES as building block
E. The designers of TNT proved its security up to 22n/3 queries, and conjectured
a higher security bound. Later work [25] proved the bound to be at least Ω(23n/4)
queries, and exhibited a distinguisher with O(

√
n · 23n/4) queries.
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Truncated Boomerang. Our attack focuses on the middle cipher EK1 , between
both tweak additions. In order to skip the initial and final ciphers EK0 and EK2 ,
we introduce differences in the tweak, instead of introducing them in the plaintext
and ciphertext. We fix a plaintext P , and consider four tweaks T, T ′, T , T ′ to
create quartets as follows:

1. Query C = Ẽ(P, T ) and C ′ = Ẽ(P, T ′)
2. Query P = Ẽ−1(C, T ) and P

′ = Ẽ−1(C ′, T ′)
3. Detect when P = P

′

We denote the inputs and outputs of EK1 as X and Y , with Y = EK1(X):

X = EK0(P ) + T X ′ = EK0(P ) + T ′ X = EK0(P ) + T X
′ = EK0(P ′) + T

′

Y = E−1
K2

(C) + T Y ′ = E−1
K2

(C ′) + T ′ Y = E−1
K2

(C) + T Y
′ = E−1

K2
(C ′) + T

′

When P = P
′, we have a boomerang quartet for EK1 with differences

X +X ′ = T + T ′ = ∆in X +X
′ = T + T

′ = ∆′in

Y + Y = T + T = ∇out Y ′ + Y
′ = T ′ + T

′ = ∇′out

When using a truncated boomerang trail (with a fixed P and a set of tweaks),
there are two important limitations compared to the previous attacks:

– We only detect when the difference X+X
′ matches exactly T +T

′, instead of
detecting a set of differences D0

in. The boomerang trail probability decreases.
– We necessarily have ∆in + ∆′in = ∇out +∇′out. For the 6-round AES trun-

cated boomerang trail of figure 3, this implies ∆in = ∆′in and ∇out = ∇′out.
Therefore, we cannot take advantage of structures on the ciphertext side.

Nonetheless, truncated boomerangs can be used with structures of tweaks on the
plaintext side, and the analysis of the middle rounds as truncated differentials
significantly reduces the complexity compared to the analysis of [1].

Upper Differential. We use the same collection of 4 upper trails as in our optimized
attack on AES:{

, , ,

}
We have the following parameters

~p = 2−22 ~p = 2−24 |D0
in| = 232 |D0

out| = 234

For the return trail, we must hit a fixed T + T ′ = ∆0
in:

~̄p = 2−22 ~p̄ = 2−56 |D0
in| = 20 |D0

out| = 234
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Lower Differential. Since we cannot use structures on the ciphertext side, we
use a fixed value ∆1

out to maximize the probability of the trail. We observe
that in an AES column, the transition δ → (∗, 0, 0, 0) through a layer of inverse
S-Boxes followed by inverse MixColumns happens with probability 2272/232 ≈
2−20.85 with δ = (L(β/2), L(β), L(β), L(β/3)), with L the linear transform inside
the AES S-Box (see the full version [6] for more details). We choose ∆1

out =
MixColumns(ShiftRows(δ)):

~q = 2−52.85 ~q = 2−20.85 |D1
in| = 232 |D1

out| = 20

Boomerang Trail Probability. We obtain:

pb = ~p · ~p̄ · ~q2 × |D1
in|−1 = 2−151.7 p$ = |D0

in|/2n = 2−128

As shown in the full version, we obtain a slightly better probability pb by carefully
analyzing the boomerang, and correlation between the sides:

pb = 2−151.4

It is not possible to recover actual key material with this attack because X
is unkown. However, we can use EK0(P ) + K1 as an equivalent subkey if all
queries are made with the same P . Using the pair (X,X ′) we extract ` = 210

candidates for κ = 32 key bits. Unfortunately, we cannot use the pairs (Y, Y )
for filtering on the ciphertext side since the unkown value Y is different in each
quartet. Similarly, the pair (X,X ′) is unusable for key extraction. Therefore,

pb = 2−151.4 pw = p$ × `× 2−κ = 2−150 σ̃ = 2−1.4

With σ̃ < 1, we need Q = c · σ̃−1 · p−1
b with a small constant c; we take c = 64,

Q = 2158.8. Since we have structures of size 232, this corresponds to D = 2127.8.

Distinguisher. With 2127.8 queries we obtain a distinguisher between TNT-AES
(using 6-round AES as the building block) and a PRP (or TNT using a PRP).
This obviously does not threaten the security of TNT-AES, but we believe that
it is an interesting use case showing that a 6-round boomerang distinguisher can
be extended to a larger scheme, even if the attack is marginal.

In order to minimize the number of queries, we use the 255 possible values of
∆1

out = (L(β/2), L(β), L(β), L(β/3)) with β ∈ F256 \{0}, so that each encryption
query is amortized: we obtain 2158.8 quartets with 2127.8/255 encryption queries
and 2127.8 decryption queries. After collecting the quartets, we expect that the
counter corresponding to the right key follows the distribution N (28.8 + 27.4, 28.8)
while counters for the wrong keys follow the distributionN (28.8, 28.8) (the distance
between the expected values is 8 times the standard deviation).

We obtain a distinguisher by observing whether the maximum counter is
higher than a threshold t = 28.8 + 7× 24.4. The probability that all counters for
wrong keys are lower than t is Φ(7)232 ≈ 0.995, therefore the probability of false

22



positive is 0.005. The probability that the counter for the right key is higher than
t is Φ(1) = 0.84 so the probability of false negative is 0.16.

Finally, we can increase the success rate by running three attacks in parallel
using three input sets D0

in, D′0in, D′′0in on three different diagonals. Using super-
structures of 296 values, we run all three attacks with the same queries, and
generate counters for three sets of 232 equivalent keys. Using a threshold of
t = 28.8 + 7.1× 24.4, we keep the probability of false positive below 1%, while the
probability that at least one of the three counters corresponding to right keys is
higher than the threshold increases to 99%.

TNT with 5-round AES. A reduced version of TNT-AES with 5 AES rounds
can be attacked more efficiently, using a probability-one truncated differential
for one half of the cipher. In the full version [6] we give a distinguisher with 276

queries, and a key-recovery with complexity 287.

7 Modeling the framework using MILP

MILP modelling encodes a cryptographic problem as a Mixed Integer Linear
Programming problem, and uses an available solver to find optimal solutions.
This method was applied to the search of boomerang distinguisher on Deoxys by
Cid et al. [12]. Their MILP model encodes the activity of each state byte with a
binary variable that equals 1 if its corresponding byte is active and 0 if not, and
that is constrained depending on the activity pattern of Deoxys operations. In
order to build a boomerang trail, their model includes two separate differential
trails with two overlapping rounds in the middle (in order to account for the
ladder switch and the BCT analysis). The objective function to minimize is
roughly the number of active S-Boxes, i.e. the sum of all variables representing
the activity of S-Box input (or output) bytes.

After generating the optimal boomerang template, they instantiate active
bytes with concrete differences that maximize S-Box transition probabilities. An
important contribution of their work is an analysis of the degrees of freedom of
the tweakey differences. Their MILP model counts the number of linear relations
between the tweakey differences and ensures that at least one degree of freedom
remains in the final trail, otherwise it is unlikely to find concrete differences for
the tweakey.

In 2019, Zhao et al. [42,43] improved this MILP model by adding two extra
rounds at the end of the lower trail, containing truncated differences.

Our MILP model. Previous works [12,34,43] showed that the best attack is
not always obtained with the best distinguisher. Therefore we follow the same
high-level approach as in [31]: our main objective is to cover the full boomerang
attack with the MILP model. We give an overview of the model in the full
version [6], and for more details the full code is available [7]. Our model is based
on [12]; the main improvement is to allow 4 possible states for each byte of the
trail, instead of only 2 (active or inactive):
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– inactive, with a zero difference, denoted as ;
– active with a fixed non-zero difference, denoted as ;
– active with an unknown (truncated) difference, denoted as .
– active with an equal (but unknown) difference for both pairs, denoted as ∗ .

From these possible states, we can deduce the parameters of the attacks,
including the structure size, which allows us to ask the MILP solver to minimize
the formula for the data complexity of the attack given in subsection 3.2.

Bytes with equal differences encode relations between the two different pairs
that follow the same trail, rather than properties of a trail by itself. This allows
the MILP model to capture trails like the 6-round AES boomerang of Figure 3.
The model does not encode linear relations between active bytes (e.g. the set of
differences for w2 of Figure 3 is active on all bytes but has size 232), but using
this type of constraint is sufficient in many cases because it is propagated through
the linear layer.

Our model generates boomerang trails without instanciating the differences.
In order to derive concrete attacks from the trail, we instantiate the trail with
differences that optimize the different S-Box transitions.

Limitations of the MILP model. Our model handles only fixed differences in
the tweakey. More importantly, although our model takes into account the ladder
switch to compute the boomerang connection probability, it does not accurately
compute the connection probability. Some boomerang trails given in a previous
version of this paper were even found incompatible by Song et al. [41]. More
generally, some boomerang trails returned by the MILP are not instantiable.
When that happens in practice, we modify the boomerang trail squeleton or we
generate a different trail using the MILP solver.

To instantiate boomerang trails generated by the MILP, we use the tables
DDT, BCT [13], UBCT, LBCT and EBCT, introduced in [36,40,16]. In order
to ensure that the trails are not incompatible, we verified experimentally the
probability of the middle rounds [7]. For each trail, we indicate the rounds that
have been checked, with the theoretical probability pth for the middle rounds,
and the experimental value observed pexp. In some attacks, the experimental
probability slightly differs from the theoretical one; we deduce an adjusted trail
probability p̃b that is used to calculate the complexity of the attack.

7.1 Results on AES-128 and Kiasu-BC

We use the MILP model to search for attacks on AES-128 and Kiasu-BC and
compare them with the results of the previous sections.

On AES-128, the model returns a trail corresponding to Figure 3 with a full
equal state in w2. This confirms the optimality of our truncated trail within our
framework. However, the model does not handle multiple trails, so that it cannot
suggest the improved attack of section 4.

On Kiasu-BC, the model cannot find the attack of section 5, because it does
not handle truncated differences in the tweak. With fixed difference in the tweak,
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the best trail found by the solver is unfortunately not instantiable, because of
incompatibilities in the middle rounds. The solver nevertheless ensures that no
attack with complexity less than 280 exist in that framework.

8 Application to Deoxys-BC

Deoxys-BC [28] is a tweakable block cipher of the TWEAKEY framework [27]
based the AES round function, on which the best known attacks are based on
boomerangs [12,34,42,43]. Due to the large choice of tweakey differences, finding
the best truncated boomerang trails manually is a tedious work. Instead, we use
our MILP model of section 7.

In the single tweakey model, the analysis is exactly that of the AES, and the
best known boomerang attack is given in section 4.

In the related tweakey model, the attacker can insert differences in some of
the tweakey words TKi. Depending on the tweak size and differences used, this
can be either a single-key attack with chosen tweaks, or a related-key attack. We
denote as RTKr a model with differences in r 128-bit states, corresponding to:

– RTK1: single-key attacks on any variant with at least 128 bits of tweak.
– RTK2: single-key attacks on Deoxys-BC-384 with 256 bits of tweak, or

related-key attacks on Deoxys-BC-256.
– RTK3: related-key attacks on Deoxys-BC-384.

For 13-round Deoxys-BC in the RTK3 model, we selected a non-optimal trail
in terms of data complexity, which was better in time complexity. For 8-round and
9-round Deoxys-BC in the RKT1 model and 10-round Deoxys-BC in the RTK2
model, we modified the squeleton of the trail returned by the MILP because
the original one was not instantiable. During other difference instantiations, we
sometimes applied slight manual improvements. For instance, for minor gains,
we introduced state changing bytes: fixed on the forward trail but truncated on
the return trail.

Description of the attacks. In the related-tweakey model, the attacker queries
two sets of |D0

in| plaintexts (under tweaks T and T ′), and each ciphertext is shifted
|D1

out| times with a new tweak (T and T
′ respectively). In total a structure of

size S = |D0
in| × |D1

out| requires 2S decryption queries (or 4S if |D1
out| = 1) and

generates S2 quartets.
The values of ` and κ mentioned on the figures are the one used in our

attacks, corresponding either to a 1-round or to a 2-round key-recovery. Each
attack recovers a partial key, aiming for a success rate of 1/2, comparable to
previous analysis; we assume that the rest of the key can be recovered efficiently
afterwards. When σ̃ � 1, the number µ of right quartets required varies from 1
to 4. In particular, if pb � ` · p$, we expect no wrong quartet and µ = 1 suffices,
else several right quartets are needed to get the correct key ranked first.
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10-round Deoxys-BC in the RTK2 model (Figure 4). Query one partial
structure of 293.2 ciphertexts, so that on average, µ = 293.2+93.2 · p̃b = 2 quartets
follow the trail. For each element of the structure, deduce on average 1 candi-
date for 30 bits of key on the plaintext side: 1 candidate for tk0[4, 9, 14] and 1
representant of the 4 possible candidates each for tk0[3]1. In total, there are on
average 293.2+93.2−56−30 = 2100.4 candidate quartets matching on the ciphertext
bytes with a known difference and on the key candidate.

For each quartet, retrieve 2−8 candidates for tk10[9] with 2 table accesses. This
costs 2101.4 table accesses, and since an encryption makes 10× 16 = 27.3 S-Box
calls, this step costs 294.1 equivalent encryptions. For each of the 2100.4−8 = 292.4

remaining quartets, retrieve on average 2−32 candidates of tk10[0, 1, 2, 3, 4, 5, 6, 7].
Finally, recover 2−16 candidates for tkeq9 [1, 6]. There remains 292.4−32−16 = 244.4

quartets with a 118-bit key candidate. The only candidate suggested twice is
expected to be the right candidate. The time complexity is 294.2 + 294.1 ≈ 295.2,
thus (D,T,M) = (294.2, 295.2, 294.2).

11-round Deoxys-BC in the RTK2 model. The MILP solver did not return
a pertinent trail for this key setting. Instead, we use the 10-round trail and
append a round at the beginning. First, query the full encryption codebook
with T , T

′ and store it. Then, guess the full tk0. Perform the 10-round attack,
by using the same ciphertext structure for each guess of tk0 and simulating
encryption queries with fetches in the codebook. We chose µ = 4 and for each
key guess, the 10-round attack with partial structures of 293.7 elements gives
245.4 candidates for 118 bits, for a time complexity of 295.1. If we suppose that a
fetch to the codebook costs an encryption in time complexity, we end up with
T = 2128(294.7 + 295.1) = 2223.9. The probability that one of the counters is at
least 4 is 2−295+116+128 = 2−51, so in average, the correct key is ranked first.
This gives (D,T,M) = (2129, 2223.9, 2129).

13-round Deoxys-BC in the RTK3 model (Figure 5). Query a partial
structure of 2125.65 plaintexts. On average, µ = 2125.65 · 2125.65 · p̃b = 4 quartets
follow the trail.

1. For each element of the structure, retrieve the representant k of the 26 possible
key values of tk13[13, 14, 15] that satisfy the transition y12 → x12. k defines
18 key bits.

2. Guess the value of the tweakey material tk0[2, 7, 8, 13]. Set δ = 0x7e42c465
and δin = 0x00007a00, and look for collisions between:

v = y0[2, 7, 8, 13] ‖ y0[2, 7, 8, 13] ‖ P [0, 5, 10, 15] ‖ k
v′ = y′0[2, 7, 8, 13] + δ ‖ y′0[2, 7, 8, 13] + δ ‖ P ′[0, 5, 10, 15] + δin ‖ k′

1 S-Box 3 on the plaintext side has two pairs (x, x + δ), (x′, x′ + δ) following the
transition fixed by the trail. Instead of listing four key candidates, we identify one of
the 26 cosets of 〈δ, x+ x′〉.
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This step costs 232 · 2 · 2125.65 = 2158.65 in time complexity. On average,
2125.65 · 2125.65 · 2−114 = 2137.3 quartets remain for each tk0[2, 7, 8, 13] (2169.3

in total).
3. For each quartet, retrieve 27+7−32 = 2−18 values of tk0[3, 4, 9, 14] such that

the difference in w0[4] is compatible with the S-Box transition in the next
round. In order to minimize the complexity, first deduce the 27+7−8 = 26

pairs of column differences compatible with a key candidate for tk0[3], by
only checking the first S-Box. Then, deduce the 26−8 = 2−2 pairs of columns
compatible with a key candidate for tk0[4] with the second S-Box. Finally
deduce tk0[9, 14].
This step requires 28 + 27 = 28.6 table accesses per quartet, therefore a total
of 28.6+169.3 = 2177.9 accesses; and 232+137.3−18 = 2151.3 quartets remain.

4. For each quartet, retrieve 27+7−32 = 2−18 values of tk0[1, 6, 11, 12] and
224+24−32 = 216 key candidates for tk13[8, 9, 10, 11]. Recover x12[8, 9, 10, 11]
and the difference in y11[2, 7, 8]. Retrieve 2−24 candidates for tkeq12[2, 7, 8].
2151.3−18+16−24 = 2125.3 quartets remain.

5. For each quartet, recover the difference in x1[4, 14] and the value of w0[4, 14]
from the known key bytes of tk0. Retrieve 2 · 2 · 2−8 = 2−6 values of tk1[4]
and 2−6 values for tk1[14] (2 candidates are deduced per pair because the
differences are already compatible). 2125.3 · 2−12 = 2113.3 quartets remain.

6. Eventually, each of the 2113.3 quartets determines in average 1 candidate of
18 + 32 + 32 + 32 + 32 + 24 + 16 = 186 bits. We model a wrong counter
with a poisson distribution with λ = 2−72.7. The probability that any wrong
counter is at least 3 is (1− e−λ(1 + λ+ λ2/2)) · 2184 ≈ 2−34.7. The correct
counter follows the poisson distribution with λ = 4 and it is at least 3 with
probability 0.76. Therefore, the success probability of this attack is 0.76.

Complexity analysis. The time complexity is dominated by the 2177.9 table
accesses of step 3. An encryption of 13-round Deoxys-BC has 16× 13 S-Boxes,
so the time complexity is equivalent to 2177.9/208 = 2170.2 encryptions. Thus
(D,T,M) = (2126.7, 2170.2, 2126.7).

Other variants. Due to space constraints, the attacks found on other variants
of Deoxys-BC are detailed in the full version of this paper [6].

9 Conclusion

In this paper, we develop a framework for truncated boomerang attacks. Instead
of extending a distinguisher with additional key-recovery rounds, we integrate
them inside the distinguisher. This results in a simple and generic formula for
the data complexity of the attack, while the classical approach to add rounds
strongly depends on the shape of input/output differences of the distinguisher.
In particular, the formula can be integrated in a MILP model, leading to better
results than a separate search for distinguishers and attacks.
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Fig. 4. Truncated boomerang attack on 10-round Deoxys-BC in the RTK2 model,
starting from the ciphertext side. This attack succeeds with probability 1/2.
Middle rounds are analyzed with UBCT, LBCT and EBCT (probabilities on the trail).
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Fig. 5. Truncated boomerang attacks on 13-round Deoxys-BC in the RTK3 model,
starting from the plaintext side. This attack succeeds with probability 0.76.
Middle rounds are analyzed with the ladder switch and single BCT (probability r).
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