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Abstract. We investigate the best-possible (asymptotic) efficiency of
functional encryption (FE) and attribute-based encryption (ABE) by
proving inherent space-time trade-offs and constructing nearly optimal
schemes. We consider the general notion of partially hiding functional
encryption (PHFE), capturing both FE and ABE, and the most efficient
computation model of random-access machine (RAM). In PHFE, a secret
key skf is associated with a function f , whereas a ciphertext ctx(y) is tied
to a public input x and encrypts a private input y. Decryption reveals
f(x, y) and nothing else about y.

We present the first PHFE for RAM solely based on the necessary
assumption of FE for circuits. Significantly improving upon the efficiency
of prior schemes, our construction achieves nearly optimal succinctness
and computation time:
– Its secret key skf is of constant size (optimal), independent of the

function description length |f |, i.e., |skf | = poly(λ).
– Its ciphertext ctx(y) is rate-2 in the private input length |y| (nearly

optimal) and independent of the public input length |x| (optimal),
i.e., |ctx(y)| = 2|y|+ poly(λ).

– Decryption time is linear in the instance running time T of the RAM
computation, plus the function and public/private input lengths, i.e.,
TDec = (T + |f |+ |x|+ |y|) poly(λ).

As a corollary, we obtain the first ABE with both keys and ciphertexts
being constant-size, while enjoying the best-possible decryption time
matching the lower bound by Luo [ePrint ’22]. We also separately achieve
several other optimal ABE subject to the known lower bound.

We study the barriers to further efficiency improvements. We prove
the first unconditional space-time trade-offs for (PH-)FE:
– No secure (PH-)FE can have |skf | and TDec both sublinear in |f |.
– No secure PHFE can have |ctx(y)| and TDec both sublinear in |x|.

Our lower bounds apply even to the weakest secret-key 1-key 1-ciphertext
selective schemes. Furthermore, we show a conditional barrier towards
the optimal decryption time TDec = T poly(λ) while keeping linear size
dependency — any such (PH-)FE scheme implies doubly efficient private
information retrieval (DE-PIR) with linear-size preprocessed database,
for which so far there is no candidate.



1 Introduction

Functional encryption (FE) [15,50] and attribute-based encryption (ABE) [34,
52] are powerful enhancement of public-key encryption with many fascinating
applications. In this work, we investigate the best-possible efficiency of these
primitives, proving inherent space-time trade-offs for FE and presenting nearly
optimal constructions of FE and ABE.

To this end, we consider the general notion of partially hiding functional
encryption (PHFE) [5,33,38] capturing both FE and ABE. In PHFE, a secret
key skf is associated with a function f , whereas a ciphertext ctx(y) is tied
to a public input x and encrypts a private input y. Their decryption recovers
the computation output f(x, y). Collusion-resistant (indistinguishability-based)
security ensures that given unboundedly (polynomially) many secret keys
{skfq}q for different functions {fq}q, ciphertexts ctx(y0) and ctx(y1) tied to
the same public input x and encrypting different private inputs y0, y1 remain
indistinguishable so long as none of the keys separate them by functionality,
i.e., fq(x, y0) = fq(x, y1). Put simply, the only information revealed about the
private input y is the outputs {fq(x, y)}q.

Over the past decade, significant progress has been made in establishing the
feasibility of (PH-)FE, for various classes of computation, with different levels
of efficiency and security, and from different assumptions. However, we are yet
to understand the asymptotic optimality and theoretical limits of its efficiency.
We ask:

What is the best-possible asymptotic efficiency of PHFE?
Are there trade-offs among different aspects of efficiency?

Can we construct optimally efficient PHFE?

We make progress towards answering the above questions.
For the lower bounds, we prove inherent trade-offs between the size of keys

or ciphertexts and the decryption time, and show barriers towards achieving the
optimal decryption time.

On the constructive front, we present the first collusion-resistant PHFE
for RAM solely based on the necessary assumption of (polynomially secure)
collusion-resistant FE for circuits, which in turn can be based on well-
studied assumptions [39,40]. Our scheme has nearly minimally sized keys and
ciphertexts, and nearly optimal decryption time matching our lower bounds. As
a corollary, we obtain the first ABE with both constant-size keys and constant-
size ciphertexts, and the best-possible decryption time matching the recently
discovered lower bound [48]. By slighting tweaking the construction, we also
obtain ABE with linear-size keys and/or ciphertexts and the optimal decryption
time subject to the known lower bound.

Dream Efficiency. Before describing our results, we first picture the dream
efficiency with respect to three important dimensions. Each dimension has been
a consistent research theme across many primitives in cryptography.



Efficient Computation Model. Functions should be represented by random-access
machines (RAM), the most efficient computation model subsuming both circuits
and Turing machines. RAM is also closer to real-world computers.

We consider a RAM U (fixed3 at set-up time) with random access to three
tapes, a function tape containing f , an input tape containing x∥y, and a working
tape. It may produce arbitrarily long output, e.g., one bit at every step. This
flexible model captures many natural scenarios, e.g., binary search where the
database could be part of f, x, y. It can emulate the evaluation of a circuit C on
input (x, y) by putting the circuit description on the function tape. In ciphertext-
policy ABE, each ciphertext is tied to a predicate P , which can be captured by
setting x = P . These examples tell us that any or even all of f, x, y could be
long, and we want to optimize the efficiency dependency on their lengths.

Succinctness. Enjoying low communication and storage overhead means having
short master public key mpk, secret keys skf , and ciphertexts ctx(y). At the
most basic level, the size of each component should be polynomial in the length
of the information it is associated with — |mpk| = O(1),4 |skf | = poly(|f |),
and |ctx(y)| = poly(|x|, |y|), where |f |, |x|, |y| are the description lengths of
f, x, y, respectively — referred to as polynomial efficiency.5 However, there is
much to be desired beyond this basic level of efficiency. For instance, linear
efficiency means |skf | = O(|f |) and |ct| = O(|x|+ |y|), and rate-1 efficiency
means |skf | = |f |+O(1) and |ct| = |x|+ |y|+O(1).

In fact, even smaller parameters are possible. Since (PH-)FE does not aim to
hide the function f , it is allowed to put the description of f in the clear in the
secret key, and the non-trivial part of the secret key may be shorter than f . In
this case, the right measure of efficiency should be the size of the non-trivial part
(i.e., the overhead), which we now view as the secret key. We can aim for secret
keys of size independent of that of the function — i.e., |skf | = O(1) — referred
to as constant-size keys. The same observation applies to the public input x
tied to the ciphertext and we can hope for ciphertexts of size independent of |x|
while having optimal, rate-1 dependency on the private input length |y| — i.e.,
|ctx(y)| = |y|+O(1). In summary:

Ideal SuccinctnessIdeal Succinctness: |mpk| = O(1), |skf | = O(1), |ctx(y)| = |y|+O(1).

Note that the ideal component sizes are completely independent of the running
time or the output length of the computation.

3 We can think of U as a universal RAM.
4 In this introduction, O(·) hides a multiplicative factor of poly(λ).
5 It may appear that polynomial efficiency is the bare minimum. However, it is possible
to consider components whose sizes depend on an upper bound of the length of some
information not tied to them. Many early schemes are as such, e.g., the FE scheme
of [26] has |mpk| = O(poly(max |y|)), and the celebrated ABE scheme by [14] has
|mpk|, |ct| growing polynomially with the maximum depth of the computation. When
a scheme requires fixing an upper bound on parameter Z (e.g., input length, depth,
or size), it is said to be Z-bounded.



Decryption Time. Decryption is also a RAM computation, Decf,x,skf ,ctx(y)(mpk),
which on input mpk and with random access to f, x, skf , ctx(y), computes the
output Uf,x∥y(). We want decryption to be efficient, ideally taking time linear
in the instance running time T of the RAM computation in the clear:

Ideal Decryption TimeIdeal Decryption Time: TDec = O(T ).

Organization. In Sect. 1.1, we describe our results. In Sect. 1.2, we present an
overview of our techniques. In Sect. 1.3, we discuss the related works. In Sect. 2,
we lay out our formulations of succinct garbled RAM and PHFE. In Sect. 3, we
formally prove our unconditional lower bounds. Due to the space constraint, we
refer the readers to the full version [37] for the complete details on definitions,
constructions, applications, and proofs.

1.1 Our Results

The question is whether the dream efficiency is attainable simultaneously in
all above three dimensions. Towards understanding this, we present both new
constructions and lower bounds.

New PHFE for RAM with Nearly Optimal Succinctness. Starting from
selectively and polynomially secure bounded FE for circuits, i.e., all of |mpk|,
|skf |, |ct(y)| are just poly(|f |, |y|), which in turn can be constructed from three
well-studied assumptions [39,40], we construct an adaptively secure (unbounded)
PHFE for RAM with nearly optimal succinctness.

Theorem 1 (informal). Assuming polynomially secure FE for circuits, there
exists an adaptively secure PHFE for RAM:

PHFE EfficiencyPHFE Efficiency: |mpk| = O(1), |skf | = O(1), |ctx(y)| = 2|y|+O(1),

TDec = O(T + |f |+ |x|+ |y|).

Our construction gives the first collusion-resistant (PH-)FE for RAM, and also
the first (PH-)FE for any model of computation (e.g., circuit or TM) with nearly
optimal succinctness. The only gap to optimality is that the ciphertext is rate-2
in |y| instead of rate-1. Prior constructions work with either circuits [26,39,40] or
Turing machines [1,8,42], except for the recent concurrent and independent work
of [3], which also constructs FE for RAM. All of them only achieve polynomial
efficiency as summarized in Table 1. We further discuss related works in Sect. 1.3.

As a corollary, we obtain the first ABE for RAM from falsifiable assumptions,
and the first for any model of computation with both constant-size keys and
constant-size ciphertexts. The only prior construction of ABE for RAM by [31]
relies on non-falsifiable assumptions like SNARK and differing-input obfuscation.
In terms of succinctness, existing schemes achieve either constant-size keys or
constant-size ciphertexts [9–11,45,46,53–55]. Achieving constant-size keys and
ciphertexts simultaneously has been an important theoretical open question (see
discussion in [45]). The state-of-the-art is summarized in Table 2.



Table 1. Comparison among some (PH-)FE schemes. All rows except this work are FE,
and this work is PHFE. C is the circuit. T is the instance running time of TM/RAM.
All poly(·) and O(·) implicitly contains λ. For assumptions, FE is always for circuits,
“sls” means sublinearly succinct, “subexp” means subexponentially secure, and “PK-
DE-PIR” means public-key doubly efficient private information retrieval.

reference functionality |sk| |ct| TDec adaptive assumption

GGHRSW [26] circuit poly(|C|) poly(|y|) poly(|C|) iO
KNTY [42] circuit poly(|C|) poly(|y|) poly(|C|) ✓ 1-key sls FE
GWZ [35] circuit poly(|C|) |y|+O(1) poly(|C|) iO

AS [8] TM poly(|f |) poly(|y|) poly(|f |, |y|)T ✓ iO
AJS [6] TM c|f |+O(1) c|y|+O(1) poly(|f |, |y|)T ✓ subexp iO
AM [1] TM poly(|f |) O(|y|) poly(|f |)T ✓ FE

KNTY [42] TM poly(|f |) poly(|y|) poly(|f |, |y|)T 1-key sls FE
ACFQ [3] RAM poly(|f |) poly(|y|) O(T ) PK-DE-PIR & FE

this work RAM O(1) 2|y|+O(1) O(T + |f |+ |x|+ |y|) ✓ FE

Table 2. Comparison among some KP-ABE schemes. Notations shared with Table 1.
ABP means arithmetic branching programs (also using C). For assumptions, “k-Lin”
means k-Linear in pairing groups, “GGM” means generic pairing group model, and
“diO” means differing-input obfuscation.

reference functionality |sk| |ct| TDec adaptive assumption

BGGHNSVV [14] circuit poly(d) |x| poly(d) |C| poly(d) LWE
LL [46] ABP O(|C| · |x|) O(1) O(|C| · |x|) ✓ k-Lin

LLL [45] circuit O(1) poly(d) |C| poly(d) ✓ GGM & LWE
GKPVZ [31] RAM O(1) poly(|x|) O(T + |f |+ |x|) SNARK & diO
this work RAM O(1) O(1) O(T + |f |+ |x|) ✓ FE

Corollary 2 (informal). Assuming polynomially secure FE for circuits, there
exists an adaptively secure key-policy ABE (KP-ABE) for RAM as well as an
adaptively secure ciphertext-policy ABE (CP-ABE) for RAM:

KP-ABE EfficiencyKP-ABE Efficiency: |mpk| = O(1), |skf | = O(1), |ctx| = O(1),

TDec = O(T + |f |+ |x|);
CP-ABE EfficiencyCP-ABE Efficiency: |mpk| = O(1), |skx| = O(1), |ctf | = O(1),

TDec = O(T + |f |+ |x|).

The decryption time of our PHFE and ABE appears suboptimal. In addition to
the necessary linear dependency on T , it also grows linearly with |f |, |x|, |y|. It
turns out that ideal succinctness and ideal decryption time are at conflict. We
prove that under sublinear succinctness, the linear dependency of TDec on |f |, |x|
is inherent. We also show barriers towards removing the dependency of TDec on
|y| or |f |, |x| while maintaining linear succinctness.

Our PHFE scheme matches the lower bounds and barriers — it is Pareto-
optimal with respect to the dependency on |f |, |x|. For ABE, our lower bounds
and barriers do not apply. Nevertheless, our ABE scheme matches an existing
lower bound by [48], which states that any moderately expressive ABE must



satisfy |ctx| · TDec = Ω(|x|) and |skf | · TDec = Ω(|f |).6 Given that our scheme has
constant-size keys and ciphertexts, its decryption time matches the lower bound
of [48], hence it is thus Pareto-optimal. By tweaking the construction, we obtain
several other Pareto-optimal ABE schemes:

Theorem 3 (informal). Assuming polynomially secure FE for circuits, there
exist adaptively secure KP-/CP-ABE schemes for RAM:

KP-ABE EfficiencyKP-ABE Efficiency: |mpk| = O(1), |skf | = |f |α +O(1), |ctx| = |x|β +O(1),

TDec = O(T + |f |1−α + |x|1−β).
CP-ABE EfficiencyCP-ABE Efficiency: |mpk| = O(1), |skx| = |x|β +O(1), |ctf | = |f |α +O(1),

TDec = O(T + |f |1−α + |x|1−β).

All four combinations of α, β ∈ {0, 1} are possible for both KP- and CP-ABE.

Contention Between Succinct Components and Fast Decryption. We
now describe our lower bounds in more detail. Consider the efficiency dependency
on the lengths of public information f and x. We show that unconditionally, it
is impossible to simultaneously achieve key size sublinear in |f | and decryption
time sublinear in |f |. Similarly, it is impossible to have both ciphertext size and
decryption time sublinear in |x|. In fact, these trade-offs apply to the weakest
secret-key 1-key 1-ciphertext selectively secure PHFE, and the first trade-off
with respect to |f | also applies to plain FE. More precisely:

Theorem 5 (informal). For a secret-key 1-key 1-ciphertext selectively secure
moderately expressive PHFE with

|sk| = O(|f |α) and TDec = (T + |f |β + |y|) poly(|x|),

it must hold that α ≥ 1 or β ≥ 1. The same (without x) is true for FE.

Theorem 6 (informal). For a secret-key 1-key 1-ciphertext selectively secure
moderately expressive PHFE with

|ct| = |x|α poly(|y|) and TDec = (T + |f |+ |x|β) poly(|y|),

it must hold that α ≥ 1 or β ≥ 1.

Our PHFE scheme achieves one profile of Pareto-optimality, α = 0 and β = 1.
A natural question that our work leaves open is whether the other Pareto-

optimal profile, α = 1 and β = 0 (or even just β < 1), is attainable. Another
question is whether the decryption time must grow with the length of the private
input y.

6 The lower bounds apply as long as the ABE scheme supports broadcast encryption.
Theorem 14 in [48] is the first trade-off between |ctx| and TDec. Essentially the same
proof yields the second trade-off between |skf | and TDec.



Barriers to Ideal Decryption Time. We illustrate barriers to positive
answers to the above two questions. We show that PHFE with decryption
time independent of |y|, |x|, or |f | implies secret-key doubly efficient private
information retrieval (SK-DE-PIR) with small preprocessed database.

Theorem 4 (informal). Suppose a moderately expressive secret-key PHFE with
selective security has

|skf | = ℓsk(λ, |f |), |ctx(y)| = ℓct(λ, |x|, |y|),
TDec = (|f |ef + |x|ex + |y|ey ) poly(T ).

Then the following hold:

– If ex = 0, there exists an SK-DE-PIR scheme with preprocessed database size
ℓct(N, poly(λ), λ), where N is the length of the original database. The PHFE
only has to be 1-ciphertext secure.

– If ey = 0, the SK-DE-PIR preprocessed database will have size ℓct(0, N, λ).
The PHFE only has to be 1-ciphertext secure.

– If ef = 0, the SK-DE-PIR preprocessed database will have size ℓsk(N,λ).
The PHFE only has to be 1-key secure.

SK-DE-PIR, introduced by [17,22], allows a client to privately encode a database

D into D̃ while keeping a secret key k. Later, client can outsource the encoded
database D̃ to a remote storage server, and obliviously query the database using k
hiding the logical access pattern. Different from ORAM, the server never updates
the encoded database nor keeps any additional state. Different from PIR, SK-
DE-PIR allows the database to be privately encoded in exchange for double
efficiency — for each query, the complexities of both the client and the server
are, ideally, independent of the database size |D|, whereas PIR necessarily has
server complexity Ω(|D|). The double efficiency of SK-DE-PIR makes it highly
desirable. The initial works [17,22] presented candidate constructions based on
a new conjecture that permuted local-decoding queries (for a Reed–Muller code
with suitable parameters) are computationally indistinguishable from uniformly
random sets of points. More recently, a simple “toy conjecture” inspired by
(though formally unrelated to) those SK-DE-PIR schemes has been broken [16].
Very recently, in a concurrent and independent work, Lin, Mook, and Wichs [47]
constructed DE-PIR with public preprocessing from the ring-LWE assumption.
The most important efficiency metrics of DE-PIR are the preprocessed database
size and the complexity per query. None of the existing schemes simultaneously
achieve constant complexity per query and linear-size preprocessed database.

Our theorem shows that constructing PHFE with short decryption time
entails constructing SK-DE-PIR with preprocessed database size inherited
from ciphertext/key size. In particular, a PHFE scheme with decryption time
independent of |y| and ciphertext size linear in |y| implies an SK-DE-PIR
with preprocessed database of length O(N) and constant complexity per query.
Since no such SK-DE-PIR is known even under non-standard assumptions, this
represents a barrier towards improving the decryption time dependency on |y|
in our PHFE construction.



Succinct Garbled RAM and Constant-Overhead iO. The main tool in
our construction of PHFE for RAM is succinct garbled RAM (GRAM). Initiated
by [13,21,43], a sequence of works have constructed succinct garbled RAM [2,
19,20,23] based on subexponentially secure FE for circuits and succinct garbled
Turing machines [6,7,30,43] based on polynomially secure FE for circuits.

In this work, we formulate a new notion of succinct GRAM (informally
described in the technical overview and formally defined in Sect. 2.1) geared for
building highly efficient PHFE for RAM, and construct it based on polynomially
secure FE for circuits. Our construction has two consequences: i) we obtain the
first succinct GRAM (our or the standard notion) based on polynomial hardness,
as opposed to subexponential hardness as in prior constructions, and 2) using
iO for circuits, we obtain iO for RAM with constant overhead — the size of the
obfuscated program is 2|M |+ poly(λ, ℓ), where M is the original RAM and ℓ is
the input length. Previously, constant-overhead iO was only known for Turing
machines [6].

1.2 Technical Overview

We start with an overview of our negative results.

Unconditional Lower Bounds. As introduced earlier, we show that it is
impossible for a secure PHFE to enjoy sublinear dependency on |f | (resp. |x|)
simultaneously for |skf | (resp. |ctx(y)|) and TDec when TDec is linear in T, |x|, |y|
(resp. T, |f |, |y|). We illustrate our ideas of proving the contention between

|skf | = O(|f |α) and TDec = O(T + |f |β + |x|+ |y|) for α < 1 and β < 1

by exhibiting an efficient adversary breaking the security of PHFE for RAM
(polynomial factors in the security parameter are ignored).

Adversarial Function and Strategy. The adversary will selectively request one
secret key and one ciphertext. Let n < N be determined later.

– The function f is described by a string R ∈ {0, 1}N .
– There is no public input, so x = ⊥.
– The private input y is either (I ⊆ [N ], w ∈ {0, 1}n) or z ∈ {0, 1}n, where I

is a set containing n indices and w is a one-time pad.

The functionality is simply reading and XORing or outputting as-is, i.e.,

f(x, y) =

{
R[I]⊕ w, if y = (I, w);

z, if y = z;

where R[I] means the n bits of R at the indices in I. Clearly,

|f | = O(N), |x| = O(1), |y| = O(n), T = O(n),

|sk| = O(Nα), TDec = O(n+Nβ).



More precisely, |y| = O(n log n), but the log n factor is absorbed by the poly(λ)
factor hidden in O(·).

The adversary chooses

key query f with R $← {0, 1}N ,

challenge x← ⊥, y0
$← random (I, w), y1 ← z = R[I]⊕ w.

By our choice, f(x, y0) = R[I]⊕ w = z = f(x, y1), so the challenge is well-
formed. Upon receiving sk and ct, the adversary simply runs the decryption
algorithm on (sk, ct) with random access to the function, i.e., R, in the clear.
Let L ⊆ [N ] be the set of indices in R that is read during decryption.

R[I]⊕ w ← DecR,x=⊥(sk, ct), where Dec reads R[L]

The adversary determines that

ct is an encryption of

{
y0 = (I, w), if |L ∩ I| is large;
y1 = z, if |L ∩ I| is small;

where the threshold for large and small is described below.

Intuition and Toy Proof. The intuition behind the adversary’s strategy is
simple. Let Lb be the index set L that decryption accessed when decrypting
ct encrypting yb.

– When ct encrypts y0, decryption must correctly recover R[I] (as the
adversary knows w). The decryption algorithm can only obtain information
of R[I] either from sk or via accesses to the tape R. Since R[I] contains n bits
of information, by setting |sk| = O(Nα)≪ n, decryption must read a large
portion of information of R[I] from the tape R, implying |L ∩ I| is large,
namely, Ω(n).

– In contrast, when ct encrypts y1, observe that the joint distribution of
(R, ct, sk) is independent of I, as w is a one-time pad and completely hides I
in y1 = R[I]⊕ w. Therefore, the behavior of Dec is independent of I. Since
Dec runs in a short time O(n+Nβ)≪ N , without knowing I, where it reads
in R cannot overlap with I for a large portion. Therefore, |L∩ I| is likely to
be small.

It remains to analyze how large and small |L ∩ I| is in the above two cases. Let us
first consider a toy proof, under the hypothesis that sk contains no information
about R[I] at all. We will remove this hypothesis below. By this hypothesis,
when ct encrypts y0, the decryption algorithm must read the entire R[I] from
the tape R and hence |L ∩ I| = n. When ct encrypts y1, since the indices L1 that
the decryption algorithm reads from R is independent of I, the intersection size
|L1 ∩ I| follows a hypergeometric distribution, and hence

E
[
|L1 ∩ I|

]
≤ TDec · n

N
≪ n (1)

This means the adversary can distinguish when ct encrypts y0 or y1 with good
probability, and contradicts the security of PHFE.



Removing the Hypothesis. The hypothesis that sk contains no information about
R[I] at all may well be false. When it is removed, we can no longer argue that
I ⊆ L0, as the adversary may obtain some information of R[I] from sk. Our
intuition is |L0 ∩ I| ≥ |I| − |sk|, but proving this formally is not trivial as sk
may contain arbitrary information of R[I].

We employ a compression argument. The basic idea behind a compression
argument is that there is no pair of encoding and decoding algorithms (Encode,
Decode), with arbitrarily long shared randomness s, is able to transmit an n-bit
random string u (independent of s) from one end to the other, via an encoding
v containing less than n bits. Informally,

if Pr

s
$← Ds

u $← {0, 1}n

v ← Encode(s, u)

: Decode(s, v) = u

 = 1, then |v| ≥ |u|.

(Lemma 9 is the formal statement by [24].) We show that if |L0 ∩ I| < |I| − |sk|,
then we can design a pair of (Encode,Decode) violating the above information-
theoretic bound.

– The shared randomness s is the PHFE randomness and I, w,R[[N ] \ I].
– To encode u ∈ {0, 1}n, the procedure Encode first sets R[I] = u. Using s,

it then generates a PHFE key sk for R and a ciphertext ct encrypting
y0 = (I, w), runs Dec to obtain the locations L0 in R that decryption reads.
Lastly, it sets the codeword to be v = (sk, R[L0 ∩ I]).

– To decode, Decode regenerates ct using s, and runs Dec to obtain the output
z = R[I]⊕ w and recover u = z ⊕ w. During decryption, Dec queries for
locations L0 in R. Every query is in either R[[N ] \ I] or R[L0 ∩ I]; the former
can be answered by finding the right element in s and the latter in v.

Suppose |L0 ∩ I| < |I| − |sk|, then |v| is less than |I| = |u|, which contradicts the
incompressibility of u. (In the formal proof, we make v fixed-length and suffer
from incorrect decoding, hence the statements are probabilistic. See Sect. 3.1 for
more details.)

Stepping back, the compression argument shows that |L0 ∩ I| ≥ |I| − |sk|. In
contrast, by Eq. (1), |L1 ∩ I| ≤ n/2 with high probability. To show that the
adversary can distinguish ct encrypting y0 or y1, we can set, e.g., n = N (α+1)/2,
so that |sk| = O(Nα)≪ n, and |L0 ∩ I| ≥ |I| − |sk| ≥ n/2. (In the formal proof,
N itself is a large poly(λ) to overwhelm poly(λ) factors, which is ignored in
this overview.) In summary, any PHFE with both |sk| sublinear in |f | and TDec

sublinear in |f | (and linear in T, |x|, |y|) is insecure.

Technical Barrier Towards Fast Decryption. As described earlier, we show
barriers in current techniques against constructing a PHFE scheme with fast
decryption. Consider a PHFE scheme whose decryption time is

O(T βT

φ(f,x,y) + |f |
βf + |x|βx + |y|βy )



for constants βT , βf , βxβy. We show that even if just one of βx, βy, and βf is zero,
then the scheme implies SK-DE-PIR (an informal description of SK-DE-PIR is
in the introduction and formal definition in the full version [37]).

To illustrate our main idea, we start by describing this transformation for the
case when the decryption is efficient in the length of the public input x, namely
when βx = 0. The ideas naturally extend to the other cases.

Since the decryption is efficient in |x|, as a first attempt, we set DB ∈ {0, 1}n
as x, and y as empty. The client processes the database DB by first sampling
(mpk,msk) for the PHFE scheme and then encodes the database into

D̃B = (DB, ctPHFE = PHFE.Enc(mpk, (x = DB, y = ⊥)))

and sends it over to the server. To look up a location DBij , the client can compute
a PHFE function key skfj for the program fj that looks up and outputs DBij

and sends the key as the query to the server.

The server responds to the query by decrypting ctPHFE in D̃B using the key
skfj and with random access to DB, and learns DBij . Note that double efficiency
requirement is already satisfied. Client only needs to compute a function key
skfj that can be computed in time polynomial in the description length of fj ,
and hence polynomial in λ and log n. On the other hand, due to the supposed
efficiency of decryption, the decryption time is polynomial in Tfj(x,y), |fj |, |y|,
which are also polynomial in λ and log n.

While this idea solves the core issue, we have completely missed one
important aspect. The scheme reveals the indices {ij}j to the server as the keys
{skfj}j are not guaranteed to hide the function descriptions {fj}j . To resolve
this issue, we observe that if we had a function-hiding PHFE scheme, we would
have been done. To enable this, we will use similar techniques as used to convert
any FE to a function-hiding FE [18]. Namely, we will compute a symmetric-key
encryption SKE of the index i (denoted as ctk1). We will hardwire ctk1 in the
function secret key instead of the index i. The corresponding secret key SKE.sk1
will be put in the private component y, which will be used to decrypt ctk1 to
learn index i. While this might seem to be enough, we face yet another issue.
Learning DBij in the clear upon decryption can reveal information about the
index ij to the server. To fix this, the decryption will output an encryption of
DBij under another secret key SKE.sk2 of the secret-key encryption scheme. We
will put this key in the private input y along with a PRF key to derive randomness
to compute the encryption.

D̃B = (DB, ctPHFE = PHFE.Enc(mpk, (DB, (SKE.sk1,SKE.sk2,PRF.k)))),

query = skfj where fj [ckt1(ij), $]
DB,(SKE.sk1,SKE.sk2,PRF.k)

= SKE(SKE.sk2,DBij ; PRF(PRF.k, $)).

Double efficiency is still preserved. We have increased the complexity of fj
multiplicatively by a polynomial amount (in λ and log n), similarly the size
of y is also polynomial in λ to store secret keys of SKE and a PRF key. There
are a few more subtleties. To make the proof go through, we need to use the



Trojan method in the FE literature [25], which requires another encryption key
SKE.sk3 and additional programming.

Overview of Our PHFE for RAM. At a very high level, we use a succinct
garbled RAM (GRAM) scheme to lift a FE for circuits to a PHFE for RAM. This
former can be viewed as a 1-key, 1-ciphertext, secret-key FE for RAM, where
succinctness implies that the running time of key generation and encryption
is independent of the running time of the RAM computation. The (collusion-
resistant) FE for circuits is then used to lift the one-time security to many-
time security. This high-level approach first appeared in [8] for building FE
for TM. In this work, towards nearly optimally efficient FE for RAM, we first
observe that existing definitions and constructions of succinct GRAM [2,13,19–
21,23] are insufficient. Therefore, we first formulate a new variant of succinct
GRAM, termed laconic GRAM, and then construct it using polynomially hard
FE for circuit. Along the way, we weaken the assumption underlying succinct
GRAM schemes from iO, which requires subexponentially hard FE for circuit,
to polynomially-hard FE for circuits.

Let us first review the syntax and security of standard GRAM schemes. They
consist of the following algorithms. The encoding algorithm encodes a database
D into D̂ and outputs a private state τ . The garbling algorithms uses τ to garble a
RAM M into M̂ and outputs a collection of input labels {Li,b}i,b. The evaluation
algorithm given the garbled RAM M̂ , a subset of labels Lk corresponding to
an input k, and random access to D̂, returns the output MD(k) of the RAM
computation. Simulation based security ensures that D̂, M̂ , Lk = {Li,ki

}i can be
simulated using only the output MD(k). The efficiency of different algorithms
is is described below.

(D̂, τ)← Encode(D) , M̂ , {Li,b}i,b ← Garble(M, τ) , MD(k) = EvalD̂(M̂, Lk)

|D̂| = |D|poly(λ) , |M̂ | = poly(λ), TEval = T poly(|M |, λ)

We now describe why the standard notion falls short for our purpose of building
very efficient FE for RAM and how to address these issues. An informal definition
of our succinct GRAM is provided in Fig. 1.

– many-tape v.s. single-tape: To start with, we consider RAM computation
with multiple tapes Ux,y,f (1) instead of a single tape MD(k).

– public-tape v.s. private-tape: Some of the tapes we consider, such as x and
f , are public. But standard GRAM only provides a mechanism for encoding
private tape, and the encoding is necessarily at least as long as the tape
itself. However, optimal succinctness requires the FE ciphertext- and key-
size to be independent of |x| and |f |. Hence we cannot afford to encode x, f
as in standard GRAM. Instead, our new notion of succinct GRAM has a
Compress algorithm that compresses the public tapes into hashes/digests hx

and hf ; the Garble algorithm “ties” these hashes to the garbled program Û ;
and finally Eval makes random access to x and f in the clear directly (just
as the decryption algorithm of RAM-FE does).



– rate-2 encoding v.s. rate-poly(λ) encoding of private tape: Our setting also
has private tape, namely y. But optimal succinctness requires concretely
efficient, rate-1 or rate-2, encoding of y, whereas standard GRAM allows
much worse rate poly(λ). To achieve concretely efficient encoding, we can
only encrypt y using a rate-1 encryption scheme. To bind the encryption
ŷ with a garbled program, we simply treat ŷ as yet another public tape
just like x, f . In other words, we consider the modified RAM computation
Ūx,ŷ,f (k) = Ux,y,f (1), where k is the secret key of the rate-1 encryption. As
such, our succinct GRAM only need to handle public tapes.

In our construction of FE, additional care needs to be taken to ensure that
our GRAM security implies that y is hidden. To achieve this, We rely on
existing techniques [49], which requires two (rate-1) encryption of y with
independent keys so that different security hybrids can invoke the semantic
security of different encryption. This is is why our FE has rate-2 dependency
on |y|, instead of rate-1. We omit details in this overview.

– reusable digests v.s. one-time encoding: In standard GRAM, the database
encoding D̂ can only be used, once, by a single garbled program M̂ generated
using the right state τ . The technical cause of the one-time security of D̂
is due to the use of ORAM in order to hide the access pattern of M to D;
the same ORAM storage D̂ cannot be used by multiple garbled programs.7

The one-time security means that when using succinct GRAM to construct
RAM-FE, the decryption of every ciphertext and key pair must generate
fresh encoding D̂ (and M̂). Such fresh encoding can only be generated using
the underlying FE for circuit, by encoding D in its key or ciphertext, which
would lead to large polynomial dependency on |D|.
Our notion of succinct GRAM compresses the public tapes into hashes
hx, hf , hŷ. For the same reasons, we cannot afford to generate fresh hashes
at decryption of every pair of ciphertext and key. Instead, our hashes are
reusable – they can be tied to multiple garbled programs; this is ensured by
the fact that our Garble algorithm does not take any private state from the
Compress algorithm. A technical issue we must resolve is how to hide access
pattern to the public tapes x, ŷ, f since they are not encoded using ORAM,
which we discuss later.

– Difference in decryption time: The reusability comes at a cost. In our new
notion, evaluation time is (T + |x| + |y| + |f |) poly(λ) whereas standard
GRAM has evaluation time T poly(|M |, λ) independent of tape size |D|.
Nevertheless, our lower bound for RAM-FE implies that the dependency on
|x|, |y|, |f | is hard to get around (as our succinct GRAM implies RAM-FE
with the same decryption time).

7 This should be distinguished from the scenario of GRAM with persistent database

where a sequence of garbled program (M̂1, M̂2, · · · )D̂ are executed sequentially
with D̂. The difference lies in that in sequential execution, each garbled RAM can
modify D̂ and the changes are kept persistently to the next computation. Here, we
are considering the scenario where the unmodified D̂ is used by multiple garbled
program, which breaks ORAM security.



– RAM with long outputs v.s. single-bit output: Standard succinct GRAM
handles RAM computation with a single-bit output. To handle RAM with
m-bit output, it reduces to creating m instances of garbled RAM, one for
each output bit. Under simulation security, the size of the garbled RAM
necessarily grows linearly with the output length m.
In our notion, we require garbling RAM with arbitrarily long outputs,
without efficiency degradation in the output length. To do so, we switch
to indistinguishability based security instead of simulation security.

Putting the above pieces together, we formulate succinct GRAM as in Fig. 1.

Our Notion of Succinct Garbled RAM

– Compress(τ,Dτ ) compresses the τ ’th public tape Dτ into a short hash digestτ of
length poly(λ). It runs in time O(|Dτ |).

– Garble(U, {digestτ}τ∈[T ]) outputs a garbled program Û tied with hashes of the
public tapes, and pairs of labels {Li,b}i,b. It runs in time poly(λ) (U has constant-
size).

– EvalD1,...,DT (U, {digestτ}τ∈[T ], Û , Lk) returns the (long) output of RAM compu-
tation UD1,...,DT (k) if Lk = {Li,ki}i. It runs in time (T +

∑
τ |Dτ |) poly(λ).

Security guarantees that for two computations UD1,...,DT (k0) and UD1,...,DT (k1)
with different inputs but identical outputs and running time, the distributions of
(Û , {digestτ}τ∈[T ], Lk0) and (Û , {digestτ}τ∈[T ], Lk1) are indistinguishable. This
holds when the tapes {Di} are chosen adaptively dependent on the hashes of
previously chosen tapes, before the program U and inputs k0, k1 are chosen.

Fig. 1. Our notion of succinct GRAM.

Our Construction of Succinct GRAM. One approach towards constructing
succinct GRAM for TM or RAM is starting from a non-succinct GRAM for TM
or RAM where the size of the garble program scales with the worst-case time
complexity of the TM/RAM U , into one that is succinct. First introduced in [13],
this approach uses iO to obfuscate a circuit that on input an index t, outputs
the t’th component in the non-succinct GRAM. If every component of the non-
succinct GRAM can be locally generated using a small circuit of size poly(|U |, λ),
then the obfuscated circuit also has size poly(|U |, λ) and can be viewed as
the succinct garbled program. To prove security, [13] identified that the non-
succinct garbling scheme must satisfy another property, articulated later by [7],
called local simulation. Informally, it requires that the non-succinct garbled
scheme is proven secure via a sequence of hybrids, where components of every
hybrid garbled program can be locally generated using a small circuit, and in
neighboring hybrids, only a few components changes. Beyond succinct garbling,
local simulation has also found application in achieving adaptive security [12]
of garbling schemes. A sequence of works developed local simulation strategies



for garbled circuit [29,36], TM [7,30], and RAM [27]. Most notably, the work by
Garg and Srinivasan [29] introduced a beautiful pebbling technique for realizing
local simulation.

Our construction of succinct GRAM proceeds in steps. First, we use the
Garg–Srinivasan [29] pebbling technique to obtain a non-succinct GRAM that
has a local simulation proof for, however, weak indistinguishability security
called fixed memory security. Indistinguishability only holds when the two
RAM computations have not only identical outputs and running time, but also
identical memory access pattern and content. Then by the same approach of [7,
13,30], we turn it into a succinct GRAM, still with only fixed memory security,
relying on iO for polynomial-size domain which is implied by polynomially-hard
FE for circuits. Many details need to be ironed out in order to realize our new
notion of succinct GRAM. For example, prior works [7,29,30] deal with single-bit
output RAM and can build intermediate security hybrid where the suffix (i.e.,
the last certain number of steps) of a computation is simulated by hardwiring
the single-bit output. In contrast, we directly garble RAM with arbitrarily long
outputs. Hardwiring the long output would compromise the local simulation
property (since the hybrid garbled program can no longer be locally generated
by a small circuit). To avoid this, we build a hybrid GRAM that runs with
one input k0 in the prefix of the computation and with another input k1 in the
suffix (recall that these two inputs produce identical memory). This ensures that
the output is always correctly computed, while keeping local simulation. Similar
hybrids appeared in [27] for different reasons.

Finally, we lift fixed memory security to full security using punctured PRF
and ORAM to protect the memory content and access pattern. One issue is that
in our succinct GRAM, the public input tapes D1, · · · , DT are not encoded using
ORAM, and evaluation is given random access to them in the clear. Yet, to ensure
security, evaluation must access these tapes in an oblivious way, independent of
the input k0 or k1. To solve this issue, we consider a modified RAM program
U ′, which has random access to D1, · · · , DT and additionally a work-tape that
contains an ORAM storage that initially contains no elements. The program U ′

starts with linearly scanning every tape Dτ and inserting every element into the
ORAM storage. Only after that, it emulates the execution of the original RAM
program U ; every time U read from/write to a location in tape Dτ , U

′ accesses
the corresponding location on its work-tape through ORAM, which hides the
access pattern of U . The intuition is that since the access pattern of U ′ is
independent of the input, it suffices to garble it using GRAM with fixed memory
security. Clearly, the running time of U ′ scales linearly with the total length of all
tapes

∑
τ |Dτ |. This is why the evaluation time of our succinct GRAM is linear

in
∑

τ |Dτ |. Nevertheless, our lower bound shows that this dependency is hard
to circumvent. Lastly, we mention that to prove security, one must ensure that
the use of ORAM does not hurt local simulation. Fortunately, the techniques
by [20] provide a solution.



1.3 Related Works

Our new construction significantly improve upon the efficiency of prior FE and
ABE schemes. The state-of-the-art is summarized in Tables 1 and 2. Below, we
compare with prior works in more detail.

FE for Circuits. The first construction of collusion-resistant FE for polynomial-
size circuits is by [26] and based on iO, which in turn relies on subexponential
hardness. Later works [28,41,42,44] improved the assumption from iO to 1-key
FE with sublinearly compact ciphertext, |ct(y)| = poly(|y|)|Tf |1−ε, where ε is a
positive constant and Tf is the circuit complexity of f . The latter has been re-
cently constructed by [39,40] from the polynomial hardness of three well-studied
assumptions. However, these circuit-FE schemes have polynomial efficiency. The
only exception is the recent construction by [35], which has rate-1 ciphertext,
i.e., |ct(y)| = |y|+O(1), but still large secret keys |skf | = poly(Tf ).

FE for Turing Machines. Several works constructed FE for Turning machines
with arbitrary-length inputs, first from the assumption of iO [8], then from
FE for circuits [1], and more recently from 1-key sublinearly compact FE [42]
(which implies collusion-resistant FE for circuits). The construction of [8] relies
on a 1-key 1-ciphertext secret-key FE for TM, which is essentially a succinct
garbling scheme for TM with indistinguishability security. They constructed it
by modifying the succinct garbling for TM of [43]. Later, the works of [7,30]
improved and simplified the construction of succinct garbling for TM. The work
of [42] improved the assumption to the existence of 1-key sublinearly succinct FE,
and showed that their garbling scheme can be combined with [8] to obtain FE for
TM. On the other hand, the work of [1] presented an alternative direct approach
to FE for TM from FE for circuits without going through succinct garbling for
TM. Prior constructions of FE for TM [1,8,42] focus more on weakening the
underlying assumptions, and only show polynomial efficiency. Examining their
schemes, we conclude that they achieve efficiency listed in Table 1.

FE for Bounded-Input RAM. A line of research obtained bounded-input
iO for Turning machines [6,30,43] and RAM [2,13,19–21,23]. Plugging these iO
schemes into the construction of [26] yields bounded-input FE for TM and RAM.
Unfortunately, these schemes are not full-fledged FE for TM or RAM for the
following reason: Existing iO only handles bounded-input TM and RAM in the
sense that the obfuscator needs to know the maximum input length max |y| to the
TM/RAM f being obfuscated. (Constructing iO for unbounded input TM/RAM
remains a major open question.) Plugging them into [26] yields schemes where
the key generation algorithm needs to know the maximum input length max |y|,
despite that the TM/RAM f could process arbitrarily long inputs. Such FE is
said to have bounded input. In terms of efficiency, the secret key contains an
obfuscated program of size poly(|f |,max |y|) when using the RAM-iO of [20,21],
and poly(|f |,max |y|, S), where S is the space complexity of f when using the
RAM-iO of [13].



In summary, our construction gives the first full-fledged (PH-)FE scheme
for RAM computation with arbitrarily long inputs and outputs, significantly
improves the efficiency of prior FE schemes, and matches newly proven lower
bounds.

ABE for Circuits and Turing Machines. Since FE implies ABE, the
aforementioned FE schemes immediately imply ABE with the same level of
efficiency. The literature on ABE focuses on constructing ABE from weaker
assumptions, and achieving better efficiency, among others. The celebrated
works of [14,32] showed that ABE for bounded-depth circuits can be constructed
from the learning With errors (LWE) assumption. Parameters of these schemes
however depend polynomially on the maximum depth d of the circuits
supported, namely, |mpk| = poly(d), |skf | = poly(d), |ct(x,m)| = poly(d)|x|, and
the decryption time is TDec = poly(d)T . A recent work [45] improved it to obtain
constant-size keys while keeping the sizes of master public key and ciphertext
intact, but at the cost of additionally relying on the generic (pairing) group
model (GGM). ABE for low-depth computation such as NC1 or (arithmetic)
branching programs can be constructed using pairing groups, where several
schemes have either constant-size keys or constant-size ciphertexts, but never
both [9–11,46,53–55].

The work of [31] constructed ABE for Turing machines and RAM with
constant-size secret keys |skf | = O(1), but still large ciphertexts |ctx| = poly(|x|).
Their scheme uses SNARK and differing-input iO, which cannot be based on
falsifiable assumptions. Another work [4] tries to construct ABE for RAM from
LWE, at the cost of making the master public key, secret keys, and ciphertexts
all grow polynomially with the maximum running time of the RAM supported,
i.e., it is an ABE for bounded-time RAM.

In summary, we give the first ABE for RAM from falsifiable assumptions,
simultaneously having constant-size secret keys, constant-size ciphertexts, and
the best-possible decryption time matching the known lower bound [48] under
the constraint of having constant-size keys and ciphertexts.

Concurrent and Independent Work on FE for RAM. Concurrently
and independently of our work, the recent work by Ananth, Chung, Fan, and
Qian (ACFQ) [3] also considers the question of FE for RAM. Despite an
apparent overlap between both these works, there are many differences. The
two works start with different motivations. Our goal is to understand the
optimal succinctness and efficiency of PHFE, both constructively and from
a lower-bound perspective, whereas ACFQ aims to construct FE for RAM
with optimal decryption time TDec = O(T ). Consequently, the two works obtain
mostly complementary results.

First, we prove unconditional trade-offs between the sizes of secret
keys/ciphertexts and decryption time; it shows that no PHFE can have both
optimal succinctness and optimal decryption time. We then construct PHFE
for RAM with (nearly) optimal succinctness, while minimizing the decryption
time to the best-possible matching our lower bounds. ACFQ, on the other hand,



constructs FE for RAM with optimal decryption time. (They did not attempt
to simultaneously minimizing the sizes of secret keys and ciphertexts.)

On the common front, both works show that any (PH-)FE scheme for RAM
with optimal decryption time implies SK-DE-PIR. We regard this as a barrier to
optimal efficiency due to lack of DE-PIR schemes from well-studied assumptions,
whereas in ACFQ, public key version of DE-PIR (PK-DE-PIR) is used as a
building block to realizing such PHFE. As a result their scheme relies on ideal
obfuscation and a new assumption of permuted puzzles inherited from current
candidate PK-DE-PIR, whereas our storage optimal PHFE scheme is based
on circuit-FE, which is necessary and can in turn be based on well-studied
assumptions.

There are two other major differences in the schemes: Our scheme handles
arbitrarily long output, where as ACFQ consider single-bit output. To handle
long output, they proposes to generate a separate key for computing each output
bit, meaning that the key-size grows linearly with the output length, which could
be as long as the running time in many scenarios. Moreover, our scheme achieves
adaptive security, whereas that ACFQ scheme is only selectively secure.

In terms of techniques, both works demonstrate that the main bottleneck
towards (PH-)FE for RAM is that existing notions of succinct GRAM are
insufficient — it needs GRAM with reusable tape encoding. The two works
develop different techniques to achieve this: Our construction lets an GRAM
instance build fresh ORAM storage at the beginning of every evaluation and
hence ORAM is never reused, whereas ACFQ uses PK-DE-PIR which is
essentially a reusable ORAM.

2 Preliminaries

We present our formulations of laconic garbled RAM and partially hiding
functional encryption, essential for considering the optimal succinctness and
efficiency and the lower bounds. The details can be found in the full version [37].

Multi-Tape RAM. We consider T -tape RAM for natural number T . Such a
machine has T read-only input tapes and one read/write working tape. Each
input tape consists of multiple ℓcell-bit cells indexed by ℓaddr-bit addresses. For
the working tape, the lengths are ℓcell and ℓaddr. The machine is also given an
ℓin-bit (short) input that remains constant during one execution, and it maintains
an ℓst-bit internal state. At each step, the machine could produce an optional
output bit. We denote an execution of M with input tape contents D1, . . . , DT
and short input w by MD1,...,DT (w), and write time(M,D1, . . . , DT , w) and
outS(M,D1, . . . , DT , w) for its running time and its output sequence (a sequence
of elements in {⊥, 0, 1}).

2.1 Laconic Garbled RAM

Our notion of garbling RAM laconically involves two steps. First, a reusable
short digest is created for each input tape. The digest has length independent of



that of the tape itself and must be computable in linear time. Second, the RAM
and the short digests are put together to produce a garbled program and the
labels. This procedure runs in time poly-logarithmic in the RAM running time.
Given a garbled program and one set of labels (selected by the bits of the short
input), the evaluation procedure computes the output sequence in time linear in
the RAM running time.

We consider indistinguishability-based security for the short input. The input
tape contents can be chosen adaptively, but the short input cannot depend on
the garbled program (i.e., selectiveness).

Definition 1 (LGRAM). Let T be a natural number. A laconic garbling scheme
for T -tape RAM consists of three algorithms:

– Compress(1λ, 1ℓcell , 1ℓaddr , τ,Dτ ) takes as input a cell length ℓcell, an address
length ℓaddr, an input tape index τ ∈ [T ], and the content of that input tape,

Dτ ∈ ({0, 1}ℓcell)≤2ℓaddr . It outputs a short digest digestτ . The algorithm runs
in time |Dτ |poly(λ, ℓcell, ℓaddr) and its output length is poly(λ, ℓcell, ℓaddr).

– Garble(1λ, Tmax,M, {digestτ}τ∈[T ]) takes as input a time bound Tmax ∈ N+,

a T -tape RAM M , and T input tape digests. It outputs a garbled program M̂
and ℓin pairs of labels {Li,b}i∈[ℓin],b∈{0,1} in polynomial time.

– EvalD1,...,DT (1λ, Tmax,M, {digestτ}τ∈[T ], M̂ , {Li}i∈[ℓin]) takes as input Tmax,

M , the input tape digests, M̂ , and one set of labels. Given random access to
the input tapes, it is supposed to compute the output sequence. The algorithm
runs in time(

min
{
Tmax, time(M,D1, . . . , DT , w)

}
+

T∑
i=1

|Dτ |
)
poly(λ, |M |, log Tmax),

where w is the short input corresponding to the labels.

The scheme must be correct, i.e., for all λ, ℓin ∈ N, ℓcell, ℓaddr, Tmax ∈ N+, input

tape contents D1, . . . , DT ∈ ({0, 1}ℓcell)≤2ℓaddr , short input w ∈ {0, 1}ℓin , T -tape
RAM M such that MD1,...,DT (w) halts in time at most Tmax,

Pr


digestτ

$← Compress(1λ, 1ℓcell , 1ℓaddr , τ,Dτ ) ∀τ ∈ [T ]

(M̂, {Li,b}i∈[ℓin],b∈{0,1})
$← Garble(1λ, Tmax,M, {digestτ}τ∈[T ])

:
EvalD1,...,DT (1λ, Tmax,M, {digestτ}τ∈[T ], M̂ , {Li,w[i]}i∈[ℓin])

= outS(M,D1, . . . , DT , w)

 = 1.

Remark 1 (unboundedness). Our notion of LGRAM is unbounded, i.e., it is
not necessary to know a polynomial upper bound of the instance running time
upon garbling. By choosing an exponentially large Tmax, one garbling works
for all polynomial-time computation. In contrast is a bounded scheme for all
polynomial-time computation, where Tmax can be any polynomial, but it must
be a polynomial, hence every garbling is restricted to some polynomial time
bound upon creation. Unboundedness is reflected in both efficiency and security
(below), where Tmax is written in binary.



Definition 2 (LGRAM security). An LGRAM scheme (Definition 1) is (tape-
adaptively, indistinguishability-based) secure if Exp0LGRAM ≈ Exp1LGRAM, where

ExpβLGRAM(1λ,A) proceeds as follows:

– Setup. Launch A(1λ) and receive (1ℓcell , 1ℓaddr) from it.
– Tape Choices. Repeat this for T rounds. In each round, A chooses τ ∈ [T ]

and Dτ ∈ ({0, 1}ℓcell)≤2ℓaddr . Upon receiving such choice, run

digestτ
$← Compress(1λ, 1ℓcell , 1ℓaddr , τ,Dτ )

and send digestτ to A.
– Challenge. A chooses an instance running time bound 1T (in unary), a time

bound Tmax (in binary), a T -tape RAM M , and two inputs (w0, w1). Run

(M̂, {Li,b}i∈[ℓin],b∈{0,1})
$← Garble(1λ, Tmax,M, {digestτ}τ∈[T ])

and send (M̂, {Li,wβ [i]}i∈[ℓin]) to A.
– Guess. A outputs a bit β′. The output of the experiment is β′ if all of the

following conditions hold:
• The τ ’s in all rounds of Tape Choices are distinct.
• Both MD1,...,DT (w0) and MD1,...,DT (w1) halt in time T ≤ T ≤ Tmax

with identical output sequences outS(· · ·).
Otherwise, the output is set to 0.

Remark 2 (polynomial security). Although Tmax can be exponentially large,
we only require security for polynomially large instance running time, which

is captured by the requirement that the adversary must produce 1T , an upper
bound of the instance running time in unary.

2.2 Partially Hiding Functional Encryption and FE for Circuits

We define partially hiding functional encryption with respect to functionality

φ : F ×X × Y → {⊥} ∪ (N+ × Z),

where F,X, Y, Z are the sets of function description, public input, private input,
and output, respectively. Each key is associated with some f ∈ F , and each
ciphertext encrypts some private input y ∈ Y and is tied to some public input
x ∈ X. The decryptor should be able to recover z if φ(f, x, y) = (T, z), in which
case T is the time to compute z from f, x, y in the clear and serves as a baseline
for decryption efficiency. For security, we only consider f, x, y for which T is
polynomially bounded. On the other hand, if φ(f, x, y) = ⊥, we require neither
correctness nor security. This can be used to exclude non-halting computation.

Definition 3 (PHFE). Let Φ = {Φλ}λ∈N be a sequence of functionality families

with φ : Fφ ×Xφ × Yφ → {⊥} ∪ (N+ × Zφ) for each φ ∈ Φλ.

A partially hiding functional encryption scheme for Φ consists of four algorithms,
with efficiency defined in Definition 4:



– Setup(1λ, φ) takes a functionality φ ∈ Φλ as input, and outputs a pair of
master public/secret keys (mpk,msk).

– KeyGen(1λ,msk, f) takes as input msk and a function description f ∈ Fφ. It
outputs a secret key skf for f .

– Enc(1λ,mpk, x, y) takes as input mpk, a public input x ∈ Xφ, and a private
input y ∈ Yφ. It outputs a ciphertext ctx of y tied to x.

– Decf,x,skf ,ctx(1λ,mpk) takes mpk as input and is given random access to f, x,
skf , ctx. It is supposed to compute z in φ(f, x, y) = (T, z) efficiently.

The scheme must be correct, i.e., for all λ ∈ N, φ ∈ Φλ, f ∈ Fφ, x ∈ Xφ, y ∈ Yφ

such that φ(f, x, y) = (T, z) ̸= ⊥, it holds that

Pr

(mpk,msk) $← Setup(1λ, φ)

skf
$← KeyGen(1λ,msk, f)

ctx
$← Enc(1λ,mpk, x, y)

: Decf,x,skf ,ctx(1λ,mpk) = z

 = 1.

Definition 4 (PHFE efficiency). The basic efficiency requirements for a PHFE
scheme (Definition 3) are as follows:

– Setup,KeyGen,Enc are polynomial-time.
– Dec runs in time poly(λ, |φ|, |f |, |x|, |y|, T ) if φ(f, x, y) = (T, z) ̸= ⊥.

The following time-efficiency properties are considered:

– It has linear-time KeyGen [resp. Enc] if KeyGen [resp. Enc] runs in time
|f |poly(λ, |φ|) [resp. (|x|+ |y|) poly(λ, |φ|)];

– It has (T eT + |f |ef + |x|ex + |y|ey )-time Dec (for constants eT , ef , ex, ey) if
Dec runs in time

(T eT + |f |ef + |x|ex + |y|ey ) poly(λ, |φ|),

where φ(M,f, x, y) = (T, z) ̸= ⊥. Furthermore, the scheme has f -fast [resp. x-
fast, y-fast] Dec if it has (T eT + |f |ef + |x|ex + |y|ey )-time Dec with ef = 0
[resp. ex = 0, ey = 0].

The following size-efficiency properties are considered:

– It is f -succinct if |skf | = poly(λ, |φ|), independent of |f |.
– It is x-succinct if |ctx| = poly(λ, |φ|, |y|), independent of |x|.
– It has rate-c ciphertext for some constant c if |ctx| = c|y|+ poly(λ, |φ|).

Security. We consider adaptive IND-CPA for polynomially bounded T :

Definition 5 (PHFE security). A PHFE scheme (Definition 3) is (adaptively

IND-CPA) secure if Exp0PHFE ≈ Exp1PHFE, where ExpβPHFE(1
λ,A) proceeds as

follows:

– Setup. Launch A(1λ) and receive from it some φ ∈ Φλ and 1T . Run

(mpk,msk) $← Setup(1λ, φ)

and send mpk to A.



– Query I. Repeat the following for arbitrarily many rounds determined by A.
In each round, A submits some fq ∈ Fφ. Upon receiving such query, run

skq
$← KeyGen(1λ,msk, fq)

and send skq to A.
– Challenge. A submits x ∈ Xφ and y0, y1 ∈ Yφ. Upon the challenge, run

ct $← Enc(1λ,mpk, x, yβ)

and send ct to A.
– Query II. Same as Query I.
– Guess. A outputs a bit β′. The outcome of the experiment is β′ if

|y0| = |y1|,
and φ(fq, x, y0) = φ(fq, x, y1) = (Tq, zq) ̸= ⊥ for all q,

and Tq ≤ T for all q.

Otherwise, the outcome is set to 0.

FE for Circuits. As an example, we show how to instantaite Definition 3 into
FE for circuits, a building block of our construction (see the full version [37]).

Definition 6 (FE for circuits). A functional encryption scheme for circuits is
a PHFE scheme (Definition 3) for

Φ = {Φλ}λ∈N, Φλ = {φℓ,s}ℓ,s∈N+
,

φℓ,s : Fℓ,s ×X × Yℓ → {⊥} ∪ (N+ × Z),

Fℓ,s = { circuits of input length ℓ and size at most s },

X = {⊥}, Yℓ = {0, 1}ℓ, Z = {0, 1}∗,
φℓ,s(f,⊥, y) =

(
1, f(y)

)
,

where the functionality φℓ,s is represented by (1ℓ, 1s).

Remark 3. The first output of φℓ,s is just a placeholder value and all efficiency
parameters (Definition 4) are always allowed arbitrary polynomial dependency
on λ, ℓ, s by our choice of representing φℓ,s by (1ℓ, 1s). This is intended as we
use FE for circuits as a building block and do not wish to start with too strong
a scheme.

2.3 Universal RAM and PHFE for RAM

In this section, we define PHFE for RAM after explaining some rationales behind
certain subtleties in our formulation.

To obtain PHFE for RAM, we will employ the standard transformation [51] of
using FE for circuits to compute LGRAM. However, in LGRAM (Definition 1),



the running time of Garble depends on the machine size. This dependency is
inherited by every efficiency parameter of the resultant PHFE for RAM if we
associate each key with a RAM. To get rid of this dependency, we fix some
universal RAM U of size poly(λ)8 upon setting up the scheme, and associate
with each key a piece of code interpreted by U .

The other issue is that LGRAM puts an upper bound on the running time
and its incorrectness in case of exceeding the time limit is propagated to the
PHFE scheme. We avoid it9 by defining φ = ⊥ if the running time exceeds some
super-polynomial value prescribed upon set-up.

The above explains the intended usage of PHFE for RAM, yet we define it for
general machines. Moreover, as an intermediate primitive, we will first consider
PHFE for RAM with bounded private input, where the private input is simply
the short input to the machine:

Definition 7 (PHFE for RAM with bounded private input). A PHFE scheme
for RAM with bounded private input is a PHFE scheme (Definition 3) for

Φ = {Φλ}λ∈N, Φλ = {φM,Tmax}M is a 2-tape RAM and Tmax∈N+ ,

φM,Tmax : FM ×XM × YM → {⊥} ∪ (N+ × Z),

FM = XM = ({0, 1}ℓcell)≤2
ℓaddr

, YM = {0, 1}ℓin , Z = {⊥, 0, 1}∗,

φM,Tmax
(f, x, y) =

{(
T, outS(M,f, x, y)

)
, if time(M,f, x, y) = T ≤ Tmax;

⊥, otherwise;

where φM,Tmax
is represented by (M,Tmax).

In a full-fledged PHFE for RAM, the machine has no short input, and the private
input is encoded on a tape:

Definition 8 (full-fledged PHFE for RAM). A full-fledged PHFE scheme for
RAM is a PHFE scheme (Definition 3) for

Φ = {Φλ}λ∈N, Φλ = {φM,Tmax
}M is a 2-tape RAM with ℓin=0, and Tmax∈N+

,

φM,Tmax
: FM ×XM × YM → {⊥} ∪ (N+ × Z),

FM = XM = YM = ({0, 1}ℓcell)≤2
ℓaddr

, Z = {⊥, 0, 1}∗,

φM,Tmax
(f, x, y) =


(
T, outS(M,f, x∥y, ε)

)
,

if |x|+ |y| ≤ 2ℓaddr and time(M,f, x∥y, ε) = T ≤ Tmax;

⊥, otherwise;

where ε is the empty string and φM,Tmax is represented by (M,Tmax).
8 U is not the same RAM across different values of λ — its input address length should
be ω(log λ) to accommodate all polynomially long input.

9 An alternative solution is to blatantly reveal everything if the running time is too
large so that correctness in that case can be implemented by executing the machine
in the clear. Security is not affected because the adversary is not allowed to choose
keys and ciphertexts with super-polynomial instance running time. However, non-
halting computation still needs to be handled separately.



Remark 4 (unbounded scheme and polynomial security). When Definitions 3
and 5 are instantiated into PHFE for RAM (Definitions 7 and 8), the scheme
is unbounded, meaning that Tmax can be exponentially large, yet security only
holds for polynomially bounded instance running time. This is similar to the
case in Sect. 2.1.

3 Efficiency Trade-Offs of PHFE for RAM

We present the unconditional lower bounds. Additional contents about technique
barriers can be found in the full version [37].

3.1 Contention Between Storage Overhead and Decryption Time

In this section, we show that it is impossible to achieve

|sk| = O(|f |α) and TDec = O(T + |f |β + |x|+ |y|)

simultaneously for a secure PHFE for RAM when α, β < 1, where polynomial
factors in the security parameter are ignored. This leaves us with two candidate
optima:

– α = 0 and β = 1 for succinct keys; or
– α = 1 and β = 0 for f -fast decryption.

Similarly, it is impossible to achieve

|ct| = O(|x|α) poly(|y|) and TDec = O(T + |f |+ |x|β + |y|)

simultaneously if α, β < 1, which implies a contention between succinct
ciphertexts and x-fast decryption.

Formally, our theorems are slightly stronger than the discussion above:

Theorem 5 (contention of |f |-dependency between |sk| and TDec; ¶). For a
secure full-fledged PHFE for RAM (Definitions 3, 5, and 8), if

|sk| ≤ |f |α(λ+ |φ|)C and TDec ≤ (T + |f |β + |y|)(λ+ |φ|+ |x|)C

for infinitely many λ, where α, β, C are constants, then α ≥ 1 or β ≥ 1.

Theorem 6 (contention of |x|-dependency between |ct| and TDec). For a secure
full-fledged PHFE for RAM (Definitions 3, 5, and 8), if

|ct| ≤ |x|α(λ+ |φ|+ |y|)C and TDec ≤ (T + |f |+ |x|β)(λ+ |φ|+ |y|)C

for infinitely many λ, where α, β, C are constants, then α ≥ 1 or β ≥ 1.

We will only prove Theorem 5. The proof of Theorem 6 is similar.

Proof (Theorem 5). Let (Setup,KeyGen,Enc,Dec) be a secure PHFE for RAM.
Suppose for contradiction that α, β < 1− 5ε for some 0 < ε ≤ 1

5 . By enlarging C
as needed, we could assume |φ| ≤ λC − λ− 1 for all sufficiently large λ, where

φ = (Mλ, 2
λ), f = R ∈ {0, 1}≤2

λ

, x = ⊥,



y =

{
(I, w) = (i1, w[1], . . . , in, w[n]) ∈ ( [2λ]× {0, 1})≤2λ ;

z = (⊥, z[1], . . . , ⊥, z[n]) ∈ ({⊥} × {0, 1})≤2λ ;

Mf,x∥y() =

{
(R[i1]⊕ w[1], . . . , R[in]⊕ w[n]), if y = (I, w);

( z[1] , . . . , z[n] ), if y = z.

Under appropriate encoding and step circuit design, y has exactly n cells and
M halts in exactly (2n+ 1) steps.

We focus on the values of λ (hereafter, “λ with efficiency”) such that

|sk| ≤ |f |α(λ+ |φ|)C and TDec ≤ (T + |f |β + |y|)(λ+ |φ|+ |x|)C

By setting

|R| = N =
⌈
λ(C2+1)/ε

⌉
, n = ⌊N1−3ε⌋,

we would have n < N < 2λ for sufficiently large λ. Consider the following
adversary A (Definition 5):

– Upon launching, it computes φ,N, n defined above, sets up the PHFE scheme
for φ, and submits 12n+1 as the time bound.

– It samples R $← {0, 1}N and requests a key sk for f = R.
– It samples w $← {0, 1}n and a list I of n distinct random elements from [N ],

sets

z = (R[i1]⊕ w[1], . . . , R[in]⊕ w[n]).

It challenges with

x = ⊥, y0 = (I, w), y1 = z,

and obtains a ciphertext ct encrypting either y0 or y1.
– It runs Decf,x,sk,ct(mpk) and notes down the list L of indices into R = f

where it is read during decryption. A outputs 1 if and only if

|L ∩ I| > N1−4ε,

where L and I are regarded as sets (unordered and deduplicated) for the
intersection operation.

Clearly, A would be efficient and its challenge would satisfy the constraints of
PHFE security for sufficiently large λ. We claim:

Claim 7 (¶). For sufficiently large λ with efficiency,

Pr
[
|L ∩ I| > N1−4ε in Exp0PHFE

]
≥ 3

4
.

Claim 8 (¶). For sufficiently large λ with efficiency,

Pr
[
|L ∩ I| > N1−4ε in Exp1PHFE

]
≤ 1

4
.



The two claims together would contradict the security of PHFE, as the advantage
of A would be at least 1

2 for infinitely many λ. Therefore, α ≥ 1 or β ≥ 1.

To prove Claim 7, we need the following lemma about incompressibility of
information:

Lemma 9 ([24]). Suppose E : S × U → V and D : S × V → U are functions
and S is a distribution over S, then

|V | ≥ |U | · Pr
s $←S
u $←U

[D(s, E(s, u)) = u].

Proof (Claim 7). We use the PHFE scheme to compress a string u of length n.
To encode, we embed u into a string R of length N at random locations (i.e., I)
and generate a PHFE key for R. The encoding is the key plus some bits in R
used during decryption. To decode, run the decryption algorithm. Lemma 9 will
generate the following inequality equivalent to the desired one:

Pr
[
|L ∩ I| ≤ ⌊N1−4ε⌋ in Exp0PHFE

]
≤ 1

4
.

Formally, let

S =


(
mpk,msk, I, w,R′,

rKeyGen, rEnc, rDec

)
:

(mpk,msk) $← Setup(φ)

(I, w) as how A samples it

R′[i] $← {0, 1} for i ∈ [N ] \ I
rKeyGen, rEnc, rDec

$← algorithm randomness

 ,

U = {0, 1}n, V = {0, 1}⌊N
1−4ε⌋ × {0, 1}⌊N

1−4ε⌋
.

The encoding procedure E(s, u) works as follows:

– Parse I = (i1, . . . , in) and set

R[i] =

{
R′[i], if i ∈ [N ] \ I;
u[j], if i = ij .

– Run

sk← KeyGen(msk, R; rKeyGen),

ct← Enc(mpk,⊥, (I, w); rEnc),
u⊕ w ← DecR,⊥,sk,ct(mpk; rDec),

and note down the list L = (ℓ1, . . . ) of indices into R read by Dec.

– Output v = (v1, v2) with v1, v2 ∈ {0, 1}⌊N
1−4ε⌋

and

v1 = 0⌊N
1−4ε⌋−|sk|−11∥sk,

v2[i] =

{
R[ℓj ], if |{ℓ1, . . . , ℓj−1} ∩ I| = i− 1 and |{ℓ1, . . . , ℓj−1, ℓj} ∩ I| = i;

0, if no such j exists.



Here, v1 is a fixed-length encoding of sk and is indeed well-defined since

|sk| ≤ |f |α(λ+ |φ|)C ≤ N1−5ε(λ+ (λC − λ− 1)
)C ≤ N1−5ελC2

< ⌊N1−4ε⌋ − 1

for sufficiently large λ with efficiency. The string v2 records, sequentially, the
bits in R at each distinct index read by Dec that are part of u and not known
from R′, for at most ⌊N1−4ε⌋ bits.

The decoding procedure D(s, v) works as follows:

– Run ct← Enc(mpk,⊥, (I, w); rEnc).
– Parse v = (v1, v2) and recover sk from v1 as specified in E.
– Initialize j, an index into v2, by j ← 0, and initialize R by

R[i] =

{
R′[i], if i ∈ [N ] \ I;
⊥, if i ∈ I.

Run z ← DecR,⊥,sk,ct(mpk; rDec) with R filled on the fly. When Dec reads R[i]:
• if R[i] = ⊥ and j < ⌊N1−4ε⌋, then let j ← j + 1 and set R[i]← v2[j];
• if R[i] = ⊥ and j = ⌊N1−4ε⌋, then abort by outputting 0n;
• otherwise, R[i] ̸= ⊥, then just proceed without aborting;

and return R[i] to Dec if not aborting.
– Output z ⊕ w.

D will fill v2 into the correct indices of R since the PHFE algorithms are
derandomized with the same randomness as in E.

The sampling of s, u and the setting of R in E(s, u) simulate A in Exp0PHFE.
If s and u are such that |L ∩ I| ≤ ⌊N1−4ε⌋ in E(s, u), then D will successfully
recover u. By Lemma 9,

Pr
[
|L ∩ I| ≤ ⌊N1−4ε⌋ in Exp0PHFE

]
= Pr

s $←S
u $←U

[
|L ∩ I| ≤ ⌊N1−4ε⌋ in E(s, u)

]

≤ Pr
s $←S
u $←U

[D(s, E(s, u)) = u] ≤ |V |
|U |

=
22⌊N

1−4ε⌋

2n
= 22⌊N

1−4ε⌋−⌊N1−3ε⌋ ≤ 1

4

for sufficiently large λ with efficiency.

Proof (Claim 8). For sufficiently large λ with efficiency,

|L| ≤ TDec ≤ (T + |f |β + |y|)(λ+ |φ|+ |x|)C

≤
(
(2n+ 1) +N1−5ε + n

)(
λ+ (λC − λ− 1) + 1

)C
≤
(
3N1−3ε +N1−5ε + 1

)
λC2

≤ N1−2ε.

In Exp1PHFE, the input to Dec is independent of I, which only symbolically
appears in ct as

y1 = z = (R[i1]⊕ w[1], . . . , R[in]⊕ w[n])



and is fully hidden by the one-time pad w. Therefore, the list of indices into R
read by Dec (i.e., L) is independent of I. Conditioned on L, the intersection size
|L ∩ I| follows a hypergeometric distribution. By the law of total expectation,

E
[
|L ∩ I|

]
= E

[
E
[
|L ∩ I|

∣∣ L ]] = E
[
|I| · |L|

N

]
≤ N1−3ε ·N1−2ε

N
= N1−5ε

for sufficiently large λ with efficiency, which implies, by Markov’s inequality,

Pr[ |L ∩ I| > N1−4ε in Exp1PHFE ] ≤
E
[
|L ∩ I|

]
N1−4ε ≤ N1−5ε

N1−4ε = N−ε ≤ 1

4
.
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