Randomized Half-Ideal Cipher on Groups
with applications to UC (a)PAKE

Bruno Freitas Dos Santos[0009—0009—5474—0008] yap i G[0000—-0001—6577-2704]
and Stanislaw Jareckil0000—0002-5055-2407]

)

University of California, Irvine. Email: {brunof,yanqigl,sjarecki}@uci.edu

Abstract. An Ideal Cipher (IC) is a cipher where each key defines a
random permutation on the domain. Ideal Cipher on a group has many
attractive applications, e.g., the FEncrypted Key Fxzchange (EKE)
protocol for Password Authenticated Key Exchange (PAKE) [8]|, or
asymmetric PAKE (aPAKE) [33] 31]. However, known constructions
for IC on a group domain all have drawbacks, including key leakage
from timing information [12], requiring 4 hash-onto-group operations if
IC is an 8-round Feistel [22], and limiting the domain to half the group
[9] or using variable-time encoding [47, |39] if IC is implemented via
(quasi-) bijections from groups to bitstrings [33].

We propose an IC relaxation called a (Randomized) Half-Ideal Cipher
(HIC), and we show that HIC on a group can be realized by a modified
2-round Feistel (m2F), at a cost of 1 hash-onto-group operation, which
beats existing IC constructions in versatility and computational cost.
HIC weakens IC properties by letting part of the ciphertext be
non-random, but we exemplify that it can be used as a drop-in
replacement for IC by showing that EKE [8] and aPAKE of [33] realize
respectively UC PAKE and UC aPAKE even if they use HIC instead of
IC. The m2F construction can also serve as IC domain extension,
because m2F constructs HIC on domain D from an RO-indifferentiable
hash onto D and an IC on 2k-bit strings, for k a security parameter.
One application of such extender is a modular lattice-based UC PAKE
using EKE instantiated with HIC and anonymous lattice-based KEM.

1 Introduction

The Ideal Cipher Model (ICM) dates back to the work of Shannon [46], and
it models a block cipher as an Ideal Cipher (IC) oracle, where every key, even
chosen by the attacker, defines an independent random permutation. Formally,
an efficient adversary who evaluates a block cipher on any key k of its choice
cannot distinguish computing the cipher on that key in the forward and backward
direction from an interaction with oracles Ej(-) and E; '(:), where {E;} is a
family of random permutations on the cipher domain. The Ideal Cipher Model
has seen a variety of applications in cryptographic analysis, e.g. [48| 44} 28 |45
38, 24, 13} [37], e.g. the analysis of the Davies-Meyer construction of a collision-
resistant hash [45, |13], of the Even-Mansour construction of a cipher from a

public pseudorandom permutation [28], or of the DESX method for key-length
extension for block ciphers [38]. A series of works [26] |18} |36, (19, [22] shows
that ICM is equivalent to the Random Oracle Model (ROM) [7]. Specifically,
these papers show that n-round Feistel, where each round function is a Random
Oracle (RO), implements IC for some n, and the result of Dai and Steinberger
[22] shows that n = 8 is both sufficient and necessary. Other IC constructions
include iterated Even-Mansour and key alternating ciphers [21} 4, [27], wide-input
(public) random permutations |11} |10} 20], and domain extension mechanisms,
e.g. [17) [34], constructions based on

Ideal Ciphers on Groups: Applications. All the IC applications above
consider IC on a domain of fixed-length bitstrings. However, there are also
attractive applications of IC whose domain is a group. A prominent example is
a Password Authenticated Key Exchange (PAKE) protocol called Encrypted
Key Exzchange (EKE), due to Bellovin and Meritt [8]. EKE is a compiler from
plain key exchange (KE) whose messages are pseudorandom in some domain
D, and it implements a secure PAKE if parties use an IC on domain D to
password-encrypt KE messagesEI The EKE solution to PAKE is attractive
because it realizes UC PAKE given any key-private (a.k.a. anonymous) KEM
[5], or KE with a mild “random message” property, at a cost which is the same
as the underlying KE(M) if the cost of IC on KE(M) message domain(s) is
negligible compared to the cost of KE(M) itself. However, instantiating EKE
with e.g. Diffie-Hellman KE (DH-KE) [25] requires an IC on a group because
DH-KE messages are random group elements.

Recently Gu et al. [33] and Freitas et al. [31] extended the EKE paradigm
to cost-minimal compilers which create UC asymmetric PAKE (aPAKE), i.e.
PAKE for the client-server setting where one party holds a one-way hash of
the password instead of a password itself, from any key-hiding Authenticated
Key Exchange (AKE). The AKE-to-aPAKE compilers of [33, [31] are similar to
the “EKE” KE-to-PAKE compiler of [§] in that they also require IC-encryption
of KE-related values, but they use IC to password-encrypt a KEM public key
rather than KE protocol messages. The key-hiding AKE’s exemplified in 33} |31],
namely HMQV [40] and 3DH [42], are variants and generalizations of DH-KE
where public keys are group elements, hence the AKE-to-aPAKE compilers of
[33, 131] instantiated this way also require IC on a group.

Ideal Ciphers on Groups: Existing Constructions. The above motivates
searching for efficient constructions of IC on a domain of an arbitrary group.
Note first that a standard block cipher on a bitstring domain does not work.
The elements of any group G can be encoded as bitstrings of some fixed length
n, but unless these encodings cover almost all n-bit strings, i.e. unless (1—|G|/2™)
is negligible, encrypting G elements under a password using IC on n-bit strings

! Bellare et al. [6] showed that EKE+IC is a game-based secure PAKE, then Abdalla
et al. |1] showed that EKE variant with explicit key confirmation realizes UC PAKE,
and recently McQuoid et al. [43] showed that a round-minimal EKE variant realizes
UC PAKE as well (however, see more on their analysis below).

exposes a scheme to an offline dictionary attack, because the adversary can
decrypt a ciphertext under any password candidate and test if the decrypted
plaintext encodes a G element.

Black and Rogaway [12] showed an elegant black-box solution for an IC on G
given an IC on n-bit strings provided that ¢ = (2" /|G|) is a constant: To encrypt
element x € G under key k, use the underlying n-bit IC in a loop, i.e. set xg to
the n-bit encoding of x, and z;41 = IC.Ency(x;) for each ¢ > 0, and output as the
ciphertext the first x; for i > 1 s.t. z; encodes an element of group G. (Decryption
works the same way but using 1C.Dec.) This procedure takes expected ¢ uses of
IC.Enc, but timing measurement of either encryption or decryption leaks roughly
log ¢ bits of information on key k per each usage, because given the ciphertext
one can eliminate all keys which form decryption cycles whose length does not
match the length implied by the timing data.

To the best of our knowledge there are only two other types of constructions
of IC on a group. First, the work of |26, |18} 36} |19, |22] shows that n-round Feistel
network implements an IC for n > 8. Although not stated explicitly, these results
imply a (randomized) IC on a group, where one Feistel wire holds group elements,
the xor gates on that wire are replaced by group operations, and hashes onto
that wire are implemented as RO hashes onto the group. However, since n = 8
rounds is minimal [22], this construction incurs four RO hashes onto a group
per cipher operation. Whereas there is progress regarding RO-indifferentiable
hashing on Elliptic Curve (EC) groups, see e.g. |29], current implementations
report an RO hash costs in the ballpark of 25% of scalar multiplication. Hence,
far from being negligible, the cost of IC on group implemented in this way would
roughly equal the DH-KE cost in the EKE compiler. The second construction of
(randomized) IC combines any (randomized) quasi-bijective encoding of group
elements as bitstrings with an IC on the resulting bitstrings [33]. However, we
know of only two quasi-bijective encodings for Elliptic Curve groups, Elligator2
of Bernstein et al. [9] and Elligator? of Tibouchi et al. [47, |39], and both have
some practical disadvantages. Elligator2 works for only some elliptic curves, and
it can encode only half the group elements, which means that any application
has to re-generate group elements until it finds one in the domain of Elligator2.
Elligator? works for a larger class of curves, but its encoding procedure is non-
constant time and it appears to be significantly more expensive than one RO hash
onto a curve. Elligator? also encodes each EC element as a pair of underlying
field elements, effectively doubling the size of the EC element representation.

IC Alternative: Programmable-Once Public Function. An alternative
path was recently charted by McQuoid et al. [43], who showed that a 2-round
Feistel, with one wire holding group elements, implements a randomized cipher
on a group which has some IC-like properties, which [43] captured in a notion
of Programmable Once Public Function (POPF). Moreover, they argue that
POPF can replace IC in several applications, exemplifying it with an argument
that EKE realizes UC PAKE if password encryption is implemented with a
POPF in place of IC. This would be very attractive because if 2-round Feistel
can indeed function as an IC replacement in applications like the PAKE of

[8] or the aPAKE’s of |33} |31], this would form the most efficient and flexible
implementation option for these protocols, because it works for any group which
admits RO-indifferentiable hash, and it uses just one such hash-onto-group per
cipher operation.

However, it seems difficult to use the POPF abstraction of [43] as a
replacement for IC in the above applications because the POPF notion
captures 2-round Feistel properties with game-based properties which appear
not to address non-malleability. For that reason we doubt that it can be proven
that UC PAKE is realized by EKE with IC replaced by POPF as defined in
[43]. (See below for more details.) The fact that the POPF abstraction appears
insufficient does not preclude that UC PAKE can be realized by EKE with
encryption implemented as 2-round Feistel, but such argument would not be
modular. Moreover, each application which uses 2-round Feistel in place of IC
would require a separate non-modular proof. Alternatively, one could search for
a “POPF+” abstraction, realized by a 2-round Feistel, which captures
sufficient non-malleability properties to be useful as an IC replacement in
PAKE applications, but in this work we chose a different route.

Our Results: Modified 2-Feistel as (Randomized) Half-Ideal Cipher.
Instead of trying to work with 2-Feistel itself, we show that adding a block
cipher BC to one wire in 2-Feistel makes this transformation non-malleable, and
we capture the properties of this construction in the form of a UC notion we call
a (Randomized) Half-Ideal Cipher (HIC). In Figure [l| we show a simple pictorial
comparison of 2-Feistel, denoted 2F, and our modification, denoted m2F. The
modified 2-Feistel has the same efficiency and versatility as the 2-Feistel used
by McQuoid et al. [43]: Tt works for any group with an RO-indifferentiable hash
onto a group, it runs in fixed time, and it requires only one RO hash onto a
group per cipher operation.

One drawback of m2F is that the ciphertext is longer than the plaintext
by 2k bits, where & is a security parameter. However, that is less than any IC
implementation above (including POPF, which does not realize IC) except for
Elligator2: IC results from m-round Feistel have loose security bounds, hence
they need significantly longer randomness to achieve the same provable security;
Elligator2 adds « bits for general moduli, due to encoding of field elements as
random bitstrings; Elligator? uses an additional field element, which adds at
least 2k bits, plus another s bits for the field-onto-bits encoding; Finally, 2-
Feistel requires at least 3x bits of randomness when used in EKE [43].

The UC HIC notion is a relaxation of an Ideal Cipher notion, but it does not
prevent applicability in protocols like [8} |33}, |31], which we exemplify by showing
that the following protocols remain secure with (any realization of) IC replaced
by (any realization of) HIC:

(I) UC PAKE is realized by an EKE variant with IC replaced by HIC, using
round-minimal KE with a random-message property;

(IT) UC PAKE is realized by an EKE variant with IC replaced by HIC, using
anonymous KEM with a uniform public keys property;

r e {0,1}" McG r € {0,1}" MeG

0 0

(+ \ B o

s€{0,1}" TeG s € {0,1}" TeG

Fig. 1: Left: two-round Feistel (2F) used in McQuoid et al. [43]; Right: our circuit
m2F. The change from 2F to m2F is small: If k¥ = H'(pw,T), then 2F sets
s = k @ r, whereas m2F sets s = BC.Enc(k, r), where BC is a block cipher.

(III) UC aPAKE is realized by KHAPE [33] with IC replaced by HIC, using key-
hiding AKE.

Regarding the first two proofs, we are not aware of full proofs exhibited
for the corresponding statements where these EKE variants use IC instead of
HIC, but the third proof follows the blueprint of the proof given in 33| for the
KHAPE protocol using IC, and it exemplifies how little such proof changes if 1C
is replaced by HIC.

Half-Ideal Cipher. The first difference between IC on group G and HIC on
group G is that the latter is a cipher on an extended domain D = R x G
where R = {0, 1}" is the randomness space, for n > 2k where & is the security
parameter. In the decryption direction, HIC acts exactly like IC on domain D,
i.e. unless ciphertext ¢ € D is already associated with some plaintext in the
permutation table defined by key k, an adversarial decryption of ¢ under key
k returns a random plaintext m, chosen by the HIC functionality with uniform
distribution over those elements in domain D which are not yet assigned to
any ciphertext in the permutation table for key k. However, in the encryption
direction HIC is only half-ideal in the following sense: If plaintext m is not yet
associated with any ciphertext in the permutation table for key k then encryption
of m under key k returns a ciphertext ¢ = (s,7) € D =R x G s.t. the T € G
part of ¢ can be freely specified by the adversary, and the s € R part of ¢ is then
chosen by the HIC functionality at random with uniform distribution over s’s s.t.
¢ = (s,T) is not yet assigned to any plaintext in the permutation table for key
k. In short, HIC decryption on any (k, ¢) returns a random plaintext m (subject
to the constraint that HIC(k,) is a permutation on D), but HIC encryption on
any (k,m) returns ¢ = (s,T) s.t. T can be correlated with other values in an

arbitrary way, which is modeled by allowing the adversary to choose it, but s is
random (subject to the constraint that HIC(k,-) is a permutation)ﬂ

Intuitively, the reason the adversarial ability to manipulate part of IC
ciphertext does not affect typical IC applications is that these applications
typically rely on the following properties of IC: (1) that decryption of a
ciphertext on any other key from the one used in encryption outputs a random
plaintext, (2) that any change to a ciphertext implies that the corresponding
plaintext is random and hence uncorrelated to the plaintext in the original
ciphertext, and (3) that no two encryption operations can output the same
ciphertext, regardless of the keys used, and moreover that the simulator can
straight-line extract the unique key used in a ciphertext formed in the forward
direction. Only properties (2) and (3) could be affected by the adversarial
ability to choose the T part of a ciphertext in encryption, but the fact that the
s part is still random, and that |s| > 2k, means that just like in IC, except for
negligible probability each encryption outputs a ciphertext which is different
from all previously used ones. Consequently, just like in IC, a HIC ciphertext
commits the adversary to (at most) a single key used to create that ciphertext
in a forward direction, the simulator can straight-line extract that key, and the
decryption of this ciphertext under any other key samples random elements in
the domain.

Further Applications: IC domain extension, LWE-based UC PAKE.
The modified 2-Feistel construction can also be used as a domain extender for
(randomized) IC on bitstrings. Given an RO hash onto {0,1}" and an IC on
{0,1}2%, the m2F construction creates a HIC on {0,1}!, for any ¢t = poly(k).
The modified 2-Feistel is simpler than other IC domain extenders, e.g. [17] |34],
and it has better exact security bounds, hence it is an attractive alternative in
applications where HIC can securely substitute for IC on a large bitstring
domain. For example, by our result (II) above, m2F on long bitstrings can be
used to implement UC PAKE from any lattice-based IND-secure and
anonymous KEM. This includes several post-quantum LWE-based KEM
proposals in the NIST competition, including Saber [23], Kyber [14],
McEliece [2], NTRU [35], Frodo [3], and possibly othersﬂ Such UC PAKE
construction would add only 3k bits in bandwidth to the underlying KEM, and
its computational overhead over the underlying KEM operations would be
negligible, i.e. the LWE-based UC PAKE would have essentially exactly the
same cost as the LWE-based unauthenticated Key Exchange, ie. an

2 This describes only the adversarial interface to the HIC functionality. Honest parties’
interface is as in IC in both directions, except that it hides encryption randomness,
i.e. encryption takes only input M € G and decryption outputs only the M € G part
of the “extended” HIC plaintext m € D.

3 Two recent papers [41} 49] investigate anonymity of several CCA-secure LWE-based
KEMs achieved via variants of the Fujisaki-Okamoto transform [32] applied to the
IND-secure versions of these KEM’s. However, the underlying IND-secure KEM’s
are all anonymous, see e.g. [41] [49] and the references therein.

IND-secure KEM. We show a concrete construction of UC PAKE from Saber
KEM in the full version [30].

Half-Ideal Cipher versus POPF. Our modified 2-Feistel construction and
the UC HIC abstraction we use to capture its properties can be thought of as a
“non-malleability upgrade” to the 2-Feistel, and to the game-based POPF
abstraction used by McQuoid et al. [43] to capture its properties. One reason
why the UC HIC notion is an improvement over the POPF notion is that a UC
tool is easier to use in protocol applications than a game-based abstraction.
More specifically, the danger of game-based properties is that they often fail to
adequately capture non-malleability properties needed in protocol applications,
e.g. in the EKE protocol, where the man-in-the-middle attacker can modify the
ciphertexts exchanged between Alice and Bobﬁ Indeed, POPF properties seem
not to capture ciphertext non-malleability. As defined in [43], POPF has two
security properties, honest simulation and uncontrollable outputs. The first one
says that if ciphertext c¢ is output by a simulator on behalf of an honest party,
then decrypting it under any key results in a random element in group G,
except for the (key,plaintext) pair, denoted (z*,y*) in [43], which was
programmed into this ciphertext by the simulator. The second property says
that any ciphertext ¢* output by an adversary decrypts to random elements in
group G for all keys except for key k*, denoted x* in [43], which was used by
the adversary to create c¢* in the forward direction, and which can be
straight-line extracted by the simulatorﬂ However, these properties do not say
that the (key,plaintext) pairs behind the adversary’s ciphertext ¢* cannot bear
any relation to the (key,plaintext) pairs behind the simulator’s ciphertext c.

Note that non-malleability is necessary in a protocol application like EKE,
and for that reason we think that it is unlikely that EKE can provably realize
UC PAKE based on the POPF properties alone. Consider a cipher Enc on a
multiplicative group s.t. there is an efficient algorithm A s.t. if ¢ = Enc(k, M)
and ¢* = A(c) then M* = Dec(k, c*) satisfies relation M* = M? if Isb(k) = 0,
and m* = m? if Isb(k) = 1. If this cipher is used in EKE for password-encryption
of DH-KE messages then the attacker would learn Isb of password pw used by
Alice and Bob: If the attacker passes Alice’s message ¢4 = Enc(pw, g*) to Bob,
but replaces Bob’s message cg = Enc(pw, ¢g¥) by sending a modified message
¢y = A(cg) to Alice, then ¢ = Enc(pw,g? +?)) where b = Isb(pw), hence
an attacker who sees Alice’s output k4 = ¢*¥' (2% and Bob’s output kg =
g*¥, can learn bit b by testing if k4 = (kB)(2+b). More generally, any attack A
which transforms ciphertext ¢ = Enc(k, M) to ciphertext ¢* = Enc(k*, M*) s.t.
(k, M, k*, M*) are in some non-trivial relation, is a potential danger for EKE.

4 A potential benefit of a game-based notion over a UC notion is that the former
could be easier to state and use, but this does not seem to be the case for the POPF
properties of [43], because they are quite involved and subtle.

5 Technically [43] state this property as pseudorandomness of outputs of any weak-
PRF on the decryptions of ¢* for any k # k*, and not the pseudorandomness of the
decrypted plaintexts themselves.

We do not believe that 2-Feistel is subject to such attacks, but POPF properties
defined in [43] do not seem to forbid them.

If one uses 2-Feistel directly rather than the POPF abstraction then it
might still be possible to prove that EKE with 2-Feistel realizes UC PAKE. We
note that 2-Feistel is subject to the following restricted form of “key-dependent
malleability”, which appears not to have been observed in [43] and which
would have to be accounted for in such proof. Namely, consider an adversary
who given ciphertext ¢ = (s,T) outputs ciphertext ¢* = (s*,7*) for any T* and
s* st. s* @ H(pw*,T*) = s @ H'(pw*,T). Note that this adversary is not
performing a decryption of ¢ under pw*, because it is not querying H(pw™*,r)
for r = s ® H'(pw*,T), but plaintexts M* = Dec(pw, c¢*) and M = Dec(pw, ¢)
satisfy a non-trivial relation M*/M = T*/T if pw = pw* and not otherwise.
On the other hand, since this adversarial behavior seems to implement just a
different form of an online attack using a unique password guess pw*, it is still
possible that EKE realizes UC PAKE even when password encryption is
implemented as 2-Feistel. However, rather than considering such non-modular
direct proofs for each application of IC on a group, in this paper we show that
a small change in the 2-Feistel circuit implies realizing a HIC relaxation of the
IC model, and this HIC relaxation is as easy to use as IC in the security proofs
for protocols like EKE [8] or aPAKE’s of Gu et al. 33} 31].

Finally, we note that an extension of the above attack shows that 2-Feistel
itself, without our modification, cannot realize the HIC abstraction. Observe that
if the adversary computes ¢ hashes Z; = H(pw, ;) for some pw and 1, ..., r; and
then ¢ hashes k; = H'(pw, T}) for some T1, ..., T}, then it can combine them to
form ¢? valid (plaintext, ciphertext) pairs (M;;, ¢;;) under key pw where M;; =
Z; - T; and ¢;; = (r;®k;,T;). Note that the 2 plaintexts are formed using just
2t group elements (Z1,T1), ..., (Z, Tt), so they are correlated. For example, the
value of quotient M;;/M;:; is the same for every j. Creating such correlations
on plaintexts is impossible in the UC HIC, hence 2-Feistel by itself, without our
modification, does not realize it.

Roadmap. In Section [2] we recall the syntax and properties of Key Exchange
(KE) and Key Encapsulation Mechanism (KEM). In Section [3| we define the UC
notion of Half-Ideal Cipher (HIC). In Sectionwe present the modified 2-Feistel
construction, and we show that it realizes UC HIC. In Section |5 we define two
variants of the EKE protocol, denoted EKE and EKE-KEM, based on respectively
KE and KEM, with password encryption implemented as HIC, and we show that
both variants realizes UC PAKE.

Because of space constraints we defer some parts to the full version of this
paper [30]. Specifically, the full version contains the details of game changes
used in the security proofs of the above two results, i.e. that modified 2-Feistel
realizes UC RIC, and that EKE with encryption using HIC realizes UC PAKE.
It also contains the security proof of the EKE-KEM protocol, and the proof that
the KHAPE protocol of [33] realizes UC aPAKE with IC encryption replaced
by HIC. It also illustrates an instantiation of EKE-KEM protocol with Saber
KEM |[23], and compares the resulting protocol to prior lattice-based PAKEs.

2 Preliminaries

We focus our treatment of the EKE protocol to instantiations that use Key
Exchange (KE) with either a single simultaneous flow or 2 flows. Since a 2-flow
KE is equivalent to a key encapsulation mechanism (KEM), we will use “KE” to
refer to a single-round key exchange, and “KEM” to a KEM and to a two-flow
key exchange implied by it.

2.1 Single-round Key Exchange (KE) Scheme

A (single-round) KE scheme is a pair of algorithms KA = (msg, key), where:

— msg, on input a security parameter x, generates message M and state x;
— key, on input state x and incoming message M’, generates session key K.

The correctness requirement is that if two parties exchange honestly generated
messages then they both output the same session key, ie. if
(x1, M) < msg(1®) and (z2, Ma) < msg(1”) then key(z1, Ma) = key(xq, My).
The KE security requirement is that a KE transcript hides the session key, but
as noted by Bellare et al. [6], the EKE protocol requires an additional property
of KE called a random-message property, namely that messages output by msg
are indistinguishable from values sampled from a uniform distribution over
some domain M. (In the security analysis of EKE by [6], the EKE employs an
Ideal Cipher on domain M for password-encryption of KE protocol messages.)

Definition 1. KE scheme (msg, key) is secure if distributions {(Mi, Ms, K)}
and {(My, My, K*)} are computationally indistinguishable, where (x1,My) +
msg(lﬁ)7 (x27M2) — msg(l”), K + key(xlvM2): and K* < {Oa]-}K

Definition 2. KE scheme (msg,key) has the random-message property on
domain M, indexed by sec. par. x, if the distribution {M | (z, M) < msg(1¥)}
is computationally indistinguishable from uniform over set M|k].

2.2 Key Encapsulation Mechanism (KEM)

A KEM scheme is a tuple of efficient algorithms KEM = (kg, enc, dec), where:

— kg, on input secpar x, generates public and private keys pk and sk;
— enc, on input a public key pk, generates ciphertext e and session key K;
— dec, on input a private key sk and a ciphertext e, outputs a session key K.

The correctness requirement is that if (sk, pk) < kg(1") and (e, K') « enc(pk)
then dec(sk, e) = K. Note that KEM models any 2-flow key exchange scheme,
where the public key pk is the initiator’s message, and the ciphertext e is the
responder’s message. We require IND security of KEM, and two additional
randomness/anonymity properties: First, public keys must be uniform in the
sense that their distribution must be indistinguishable from a uniform
distribution over some set P/C. Secondly, KEM must be anonymous [5], i.e.

ciphertexts must be unlinkable to public keys. Note that these are slightly
weaker properties than we asked of KA. Since a key exchange implied by KEM
takes 2 flows, the EKE variant using KEM, see Figure in Section [5.1] can
use the (randomized) ideal cipher only for the first flow, i.e. the public key,
while the second flow, i.e. the KEM ciphertext, can be sent as is, as long as the
responder attaches to it a key confirmation message. Consequently, the second
message must be unlinkable to the first, but it does not have to be
indistinguishable from a random element in a domain of an ideal cipher.

Definition 3. KEM scheme is IND secure if distributions {(pk,e, K)} and
{(pk, e, K*)} are computationally indistinguishable, where (sk,pk) < kg(1%),
(e, K) <~ enc(pk) and K* <~ {0,1}".

Definition 4. KEM scheme has uniform public keys for domain PK, indexed
by the security parameter k, if the distribution {pk|(sk,pk) < kg(1¥)} is
computationally indistinguishable from uniform over set PK|x]

Definition 5. KEM scheme is anonymous if distributions {(pk, pk,, €0)} and

{(pky, pki,e1)} are computationally indistinguishable, where (sko,pky) <+
kg(1%), (sk1, pky) < kg(1%), (eo, Ko) < enc(pky), and (e1, K1) - enc(pk).

Note that the last two properties are trivially achieved by the Diffie-Hellman
KEM, where both the public keys and ciphertexts are random group elements.
However, both properties are also achieved by several lattice-based KEM’s, as
discussed in Section [

3 Universally Composable Half-Ideal Cipher

We define a new functionality Fyc in the UC framework ([15]), called a
(Randomized) Half-Ideal Cipher (HIC), where the ‘half’ in the name refers to
the fact that only half of the ciphertext is random to the adversary during
encryption, as we explain below.

UC HIC is a weakening of the UC Ideal Cipher notion. Intuitively, we allow
adversaries to predict or control part of the output of the cipher while the
remainder is indistinguishable from random just as in the case of IC. Formally,
we can interpret this as allowing the adversary to embed some tuples in the
table that the functionality uses - but in a very controlled manner. We define
the UC notion of Half-Ideal Cipher via functionality Fyc defined in Figure

Notes on Fyc interfaces. A half-ideal cipher functionality Fuc is
parametrized by the (randomized) cipher domain D = R x G, where the first
component is the randomness and the second is the plaintext. Figure
separates between JFyc interfaces Enc and Dec which are used by honest

5 In Figure [2| we use pw to denote keys used in the HIC cipher because we use
variables £ and K for other keys in the later sections. Moreover, in PAKE and
aPAKE applications the role of a HIC key is played by a password.

10

Notation: Functionality Fuic is parametrized by domain D = R x G, and it is
indexed by a session identifier sid which is a global constant, hence we omit it
from notation. We denote HIC keys as passwords pw to conform to the usage of
Fric in PAKE and aPAKE applications, but keys pw are arbitrary bitstrings.

Initialization: For all pw € {0,1}", initialize THIC,,, as an empty table.

Interfaces for Honest Parties P:

on query (Enc, pw, M) from party P, for M € G:

r< R

if 3e s.t. ((r, M), c) € THIC,,, then return c to P, else do:
c{eeD: Pmst. (m,é) € THIC,,}
add ((r, M), c) to THIC,, and return ¢ to P

on query (Dec, pw, ¢) from party P, for ¢ € D:

query (r, M) < Fric.AdvDec(pw, ¢) and return M to P

Interfaces for Adversary A (or corrupt parties):

on query (AdvEnc, pw, (r, M),T) from adversary A, for (r, M) € D and T € G:
if e s.t. ((r, M), c) € THIC,,, then return c¢ to A, else do:
s {5€R: P st. (1, (5,T)) € THIC,,}
set ¢ < (s,7), add ((r, M), c) to THIC,y, and return ¢ to A

on query (AdvDec, pw, ¢) from adversary A, for ¢ € D:

if 3m s.t. (m, c) € THIC,, then return m to A, else do:
m <& {fm € D: Bé st. (17,¢) € THIC,u}
add (m, c) to THIC,,, and return m to A

Fig. 2: Ideal functionality Fuic for (Randomized) Half-Ideal Cipher on D = R xG

parties, and the adversarial interfaces AdvEnc and AdvDec. Interfaces Enc and
Dec model honest-party’s usage of HIC, i.e. a real-world implementation of
HIC will consists of two algorithms, Enc and Dec, where Enc on input key pw
and plaintext M € G outputs a ciphertext ¢ € D and Dec on input key pw and
ciphertext ¢ € D outputs a plaintext M € G. Our target realization of these
procedures is a randomized cipher, i.e. a family of functions I, s.t. for each
pw € {0,1}*, II,, is a permutation on D, and both II,, and I} are
efficiently evaluable given pw. Given cipher I1, algorithm Enc(pw, M) picks
r <~ R and outputs ¢ II,,(m) for m = (r, M), while Dec(pw,) computes

m < I, (c) and output M for (r, M) = m.

Functionality walk-through. Functionality JFyic reflects honest user’s
interfaces to randomized encryption: When an honest party P encrypts a
message it specifies only M € G and delegates the choice of randomness 7 + R
to the functionality. Similarly, when an honest party decrypts a ciphertext, the
functionality discards the randomness r and reveals only M to the application.

11

This implies that honest parties must use fresh randomness at each encryption
and must discard it (or at least not use it) at decryption. By contrast, an
adversary 4 has stronger interfaces than honest parties (for notational
simplicity we assume corrupt parties interact to Fuic via A), namely: (1)
When A encrypts it can choose randomness r at will; (2) When A decrypts it
learns the randomness r and does not have to discard it; (3) A can manipulate
the (plaintext, ciphertext) table of each permutation IT,,, in the following way:
If we denote ciphertexts as ¢ = (s,T) € R x G, the adversary has no control of
the s component of the ciphertext at encryption, i.e. it is random in R (up to
the fact that the map has to remain a permutation), but the adversary can
freely choose the T' component. Items (1) and (2) are consequences of the fact
that HIC is a randomized cipher, but item (3) is what makes this cipher
Half-1deal, because the adversary can control part of the value ¢ = Enc(pw,m)
during encryption, namely its G component.

The above relaxations of Ideal Cipher (IC) properties are imposed by the
modified 2-Feistel construction, which in Section [d we show realizes this model.
However, this relaxation is harmless for many IC applications the following
reason: In a typical IC application the benefit of ciphertext randomness is that
it (1) hides the plaintext, and (2) it prevents the adversary from creating the
same ciphertext as an encryption of two different plaintexts under two different
keys. For both purposes randomness in the s € R component of the ciphertext
suffices as long as R is large enough to prevent ever encountering collisions.

The adversarial interfaces AdvEnc and AdvDec of Fyc reflect the above, and
give more powers than the honest party’s interfaces Enc and Dec. In encryption
query AdvEnc, the adversary is allowed to pick its own randomness r and the
T € G part of the resulting ciphertext, while its s part is chosen at random in R.
In decryption AdvDec, the adversary can decrypt any ciphertext ¢ = (s,T) and
it learns the full plaintext m = (r, M), but Fyc chooses the whole plaintext m
at random. (This is another motivation for the monicker ‘half-ideal’: Fyic lets
the adversary have some control over ciphertexts in encryption but it does not
let the adversary have any control over plaintexts in decryption.)

Our goal when designing Fyic was to keep all IC properties which are useful
in applications while allowing for efficient concrete instantiation of Fyic for a
group domain G. Most importantly, ciphertext collisions in encryption can occur
only with negligible probability, which is crucial in our HIC applications: An
adversarial ciphertext ¢ commits the adversary to a single key pw on which the
adversary could have computed ¢ as an encryption of some message of its choice.
Secondly, just as with an ideal cipher, the adversary cannot learn any information
on encrypted plaintexts except via decryption with correct decryption key.

4 Half-Ideal Cipher Construction: Modified 2-Feistel

We modify the two-round Feistel construction of the Programmable Once Public
Functions (POPF) of McQuoid et al. [43] by replacing the xor operation in the
second round by an application of an ideal block cipher BC on bitstrings, with

12

keys and plaintext block both of size 2x where k is the security parameter.
We call this construction a modified 2-Feistel, denoted m2F. This construction
takes (1) an ideal cipher BC on bitstrings, i.e. an ideal cipher whose domain
is {0,1}™ and key space is {0,1}*, (2) a random oracle hash H' with range
{0,1}#, and (3) a random oracle hash H whose range is an arbitrary group G,
and creates a (Randomized) Half-Ideal Cipher (HIC) over domain D = R x G
where R = {0,1}". In essence, we combine a random oracle hash onto a group
and a bitwise ideal cipher to create a half-ideal cipher over a group. The exact
security analysis of the m2F construction shows that g and n can both be set to
2k for this construction to realize UC HIC.

For each key pw, function m2F,,, is pictorially shown in Figure El Here we
define it by the algorithms which compute m2F,,, and m2F;u1,. (Throughout the
paper we denote group G operation as a multiplication, but this is purely a
notational choice, and the construction applies to additive groups as well.)

m2F,, : {0,1}" xG — {0,1}" xG (1)
where: 1
m2F ., (r, M): m2F,, (s, T):
1. T+ M/H(pw,r) 1. k+ H'(pw,T)
2. k+ H(pw,T) 2. r + BC.Dec(k, s)
3. s+ BC.Enc(k,r) 3. M+ H(pw,r)-T
4. Output (s,T) 4. Output (r, M)

The following theorem captures the security of the m2F construction:

Theorem 1. Construction m2F realizes functionality Fyc in the domain R xG
for R = {0,1}™ 4f H : {0,1}* x {0,1}" — G, H' : {0,1}* x G — {0,1}* are
random oracles, BC : {0,1}* x {0,1}" — {0,1}™ is an ideal cipher, and p and
n are both (k).

Proof. The proof for Theorem [I] must exhibit a simulator algorithm SIM, which
plays a role of an ideal-world adversary interacting with functionality Fyc, and
then show that no efficient environment Z can distinguish, except for negligible
probability, between (1) a real-world game, i.e. an interaction with (1a) honest
parties who execute Z’s encryption and decryption queries using Enc and Dec
implemented with circuit m2F (see Section, and (1b) RO/IC oracles H, H’, BC,
BC™!, and (2) an ideal-world game, i.e. an interaction with (2a) parties P who
execute Z’s encryption and decryption using interfaces Enc,Dec of Fyic, and
(2b) simulator SIM, who services Z’s calls to H, H', BC, BC™! using interfaces
AdvEnc and AdvDec of FHIC-

We start by describing the simulator algorithm SIM, shown in Figure 3] Note
that SIM interacts with an adversarial environment algorithm Z by servicing
2’s queries to the RO and IC oracles H, H', BC,BC™'. Intuitively, SIM populates
input, output tables for these functions, TH, TH' and TBC, in the same way as
these idealized oracles would, except when SIM detects a possible encryption or

13

Initialization
Let TH be a set of tuples in {0,1}* x {0,1}" x G,

TH’ be a set of tuples in {0,1}* x G x {0, 1}*,
and TBC be a set of triples in {0, 1}* x {0,1}"™ x {0,1}".

on adversary’s query H(pw,) on adversary’s query H'(pw, T')
if Bh s.t. (pw,r, h) € TH: if Bk s.t. (pw, T, k) € TH':
h< G k< {0,1}#
add (pw,r, h) to TH if I(pw,T) s.t. (pw, T, k) € TH' then abort
return h (col.abort)
if 3(#,8) s.t. (k,7,8) € TBC then abort
(bckey.abort)
add (pw, T, k) to TH’
return k
on adversary’s query BC.Enc(k,) on adversary’s query BC.Dec(k, s)
if Bs s.t. (k,r,s) € TBC: if #r s.t. (k,r,s) € TBC:
if k = TH' (pw, T)} if k= TH (pw, T):
M < H(pw,r) - T (r, M) < Fuic.AdvDec(pw, (s,T))
(s, T) < Fuic.AdvEnc(pw, (r, M), T) if 38 s.t. (k,r,8) € TBC then abort
if ' # T then abort (advenc.abort) | (advdec.abort)
else: if 3h s.t. (pw,r,h) € TH then abort
s <& {5 €{0,1}" : # s.t. (k, 7, s) € TBC}|(reol-abort) .
add (k,r,s) to TBC add (pw,r, M -T~") to TH
return s else: .
r <+ {re{0,1}": A5 s.t. (k,r 8 € TBC}
- add (k,r,s) to TBC
@ If it exists, we denote by TH'(pw,T) the| returnr
(unique) k s.t. (pw, T, k) € TH’

Fig. 3: Simulator SIM for the proof of Theorem

decryption computation of the modified 2-Feistel circuit. In case SIM decides
that these queries form either computation of m2F or m2F ™! on new input, SIM
detects that input, invokes the adversarial interfaces AdvEnc or AdvDec of Fyc
to find the corresponding output, and it embeds proper values into these tables
to emulate the circuit leading to the computation of this output. The detection of
m2F and m2F ! evaluation is relatively straightforward: First, SIM treats every
BC.Dec query (k,s) as a possible m2F ! evaluation on key pw and ciphertext
c=(s,T) for T s.t. k =H (pw,T). If it is, SIM queries Fyic.AdvDec on (pw,c)
to get m = (r, M). Since this is a random sample from the HIC domain, with
overwhelming probability H was not queried on 7 so SIM can set H(pw,r) to
M/T. Second, SIM treats every BC.Enc query (k,r) as possible m2F evaluation
on (r,M) st. M = H(pw,r)-T for T s.t. k = H (pw, T'). However, here is where
the difference between IC and HIC shows up: The Fyc.AdvEnc query fixes the
encryption of m = (r, M) to ¢ = (s,T), and whereas s can be random (and
SIM can set BC.Enc(k,r) := s for any ¢ = (s,T) returned by Fpic.AdvEnc as
encryption of m under key pw), value T was fixed by H' output k (except for
the negligible probability of finding collisions in H’). This is why our Fyc model

14

must allow the simulator, i.e. the ideal-world adversary, to fix the T" part of the
ciphertext in the adversarial encryption query AdvEnc.

Proof Overview. The proof must show that for any environment Z, its view
of the real-world game defined by algorithms Enc,Dec which use the
randomized cipher m2F, and the ideal-world game defined by functionality
Fuic and simulator SIM of Figure The proof starts from the ideal-world
view, which we denote as Game 0, and via a sequence of games, each of which
we show is indistinguishable from the next, it reaches the real-world view,
which we denote as Game 9. For space-constraint reasons we include the
details of the game changes and reductions to the full version [30], but we show
the code of all successive games in Figures [4] [f] and [] Figure [4] describes the
ideal-world Game 0 and its mild modification Game 1. All these games,
starting from Game 0 in Figure [4] interact with an adversarial environment Z,
and each game provides two types of interfaces corresponding two types of Z’s
queries: (a) the honest party’s interfaces Enc, Dec, which Z can query via any
honest party, and (b) RO/IC oracles H,H’,BC,BC™!, which Z can query via
its “real-world adversary” interface. Figure [4 defines two sub-procedures,
Fuic-AdvEnc and Fyc.AdvDec, whose code matches exactly the corresponding
interfaces of Fyc. These subprocedures are used internally by Game 0: They
are invoked by the code that services Z’s queries BC.Enc and BC.Dec, because
Game 0 follows SIM’s code on these queries, and AdvDec is also invoked by
Dec, because this is how Fyc implements Dec.

Figures [5] and [f] describe the modifications created by all subsequent games,
except for the last one, the real-world game denoted Game 9, which is very
similar to Game 8, which is the last game shown in Figure[6] By the arguments
for indistinguishability of successive games shown in the full version [30], the
total distinguishing advantage of environment Z between the real-world and
the ideal-world interaction is upper-bounded by the following expression, which
sums up the bounds given by equations shown in the proof, see [30]:

10 4 6 14 6
Py— Py <= — <@ =+=
|O 9|7C] <2n+2n.|G|+2u>q (271—’_2#)

Since this quantity is negligible, this implies Theorem O

Notes on Exact Security. By the above equation, the distinguishability
advantage implies by our proof can be upper-bounded as O(¢?/2") + O(q?/2").
We assert that both of these factors are unavoidable for our m2F construction.
First, while in the Fyc functionality we allow the T' component of two AdvEnc
adversarial calls to be completely independent, this is not the case in our
modified two-round Feistel encryption: reuse of a (pw,r) pair implies relations
between the T component of different encryption calls that are not seen in
Fuic. Hence we must avoid r collisions in Enc calls, irrespective of how our
proof is structured, and asymptotically this gives a ¢?/2" factor in the
distinguishing advantage.

15

Initialization

Let TH be a set of tuples in {0,1}* x {0,1}" X G,
TH’ be a set of tuples in {0,1}* x G x {0, 1}*,
and TBC be a set of triples in {0, 1}* x {0,1}" x {0,1}".

For each pw € {0, 1}", initialize empty sets THIC,,, and usedRy,,.

define Fyic.AdvEnc(pw, (r, M), T):

if Ac s.t. ((r, M), c) € THIC,y:
s+ {5€{0,1}": (x,(5,T)) &€ THIC,, }
c+ (s,T)
add ((r, M), c) to THIC,,,

return c

define Fyic.AdvDec(pw, (s,T)):

if 4(r, M) s.t. ((r, M), (s,T)) € THIC,,:
(r, M) &< D
if 3¢ s.t. ((r, M), &) € THIC,, then abort
abort if r € usedRy,, else add r with tag m2F

add ((r, M), (s,T)) to THIC,,
return M

on query Enc(pw, M):

r <= {0,1}"
abort if r € usedR,,,, else add r with tag m2F
if Ac s.t. ((r, M), c) € THIC,y:
c <& {é: P st (1, &) € THIC,,}
add ((r, M), c) to THIC,,,
return c

on query Dec(pw, ¢):

(r, M) < Fuic.AdvDec(pw, c)
return M

on query H(pw,)

abort if r € usedR,,, tagged m2F, else add r
if Bh s.t. (pw,r, h) € TH:

h+ G

add (pw,r, h) to TH
return h

on query H' (pw, T)

if Bk s.t. (pw, T, k) € TH':
k< {0,1}*
if 3 (pw, T) s.t. (pw, T, k) € TH' then abort
(col.abort)
if 3 (7,8) s.t. (k,7,8) € TBC then abort
(bckey.abort)
add (pw, T, k) to TH’
return k

on query BC.Enc(k, r)

if k = TH (pw, T):
if r € usedR,,, is tagged m2F then abort

else add r to usedR,,,
if 35 s.t. (k,r,s) € TBC:
if k = TH' (pw, T):
M < H(pw,r) - T
(s, T) + Finc.AdvEnc(pw, (r, M), T)
if T' # T then abort
else:
s+ {s€{0,1}" : #7 s.t. (k,#,s) € TBC}
add (k,r, s) to TBC
return s

(advenc.abort)

on query BC.Dec(k, s)

if #r s.t. (k,7,s) € TBC:
if k= TH (pw, T):
(r, M) < Fuic.AdvDec(pw, (s,T))
if 35 s.t. (k,7,8) € TBC then abort
(advdec.abort)
if 3 h s.t. (pw,r, h) € TH then abort
(rcol.abort)
add (pw,r, M - T_l) to TH
else:
r < {r € {0,1}" : A5 s.t. (k,r, 8) € TBC}
add (k,r,s) to TBC
if k = TH’ (pw, T):

remove tag m2F from record r € usedR,,,

return r

Fig.4: The ideal-world Game 0, and its modification Game 1 (text in gray)

16

Game 2: replacing decryption by circuit
on query m2F.Dec(pw, (s,T)):
k + H (pw, T)
r < BC.Dec(k, s)
M «+ H(pw,r) T
if m2F.Dec query was fresh, add tag m2F to r €
usedR,,,
return M

Game 3: Enc calls AdvDec

on query m2F.Enc(pw, M):
- & {0, 1)"
if » € usedR,, abort, else add 7 to it with tag
m2F
if fic s.t. ((r, M), c) € THIC,y:
T+ G
¢ + Fuic.AdvEnc(pw, (r, M), T)
return c

Game 4: replacing encryption by circuit
on query m2F.Enc(pw, M):

r < {0,1}"

if r € usedR,,, abort

T < M/H(pw,r)

k + H (pw, T)

s < BC.Enc(k, r)

assign tag m2F to r in the set usedR,,
return (s, T)

Game 5: H is a random oracle

Fhic.AdvDec not used anymore

on query BC.Dec(k, s):

if 3 rs.t. (k,r,s) € TBC:
if k = TH (pw, T):
r < {0,1}"
if r € usedR,,, abort, else add r to it
h + H(pw,r)
M <« h-T
if 3¢ s.t. ((r, M), ¢) € THIC,,, then abort
add ((r, M), (s, T)) to THIC,,
else:
r < {re{0,1}" : #5 s.t. (k,r,8) € TBC
add (k,r, s) to TBC
remove tag m2F from record r € usedR,, if k =
TH (pw, T)
return r

Game 6: simplifying parameters
define Fyic.AdvEnc(pw, r, T):
if #s s.t. (r,(s,T)) € THIC,,:
s < {8 € {0,1}" : Prst. (7,(3,T)) €
THIC,, }
add (r, (s, T)) to THIC,,
return s

on query BC.Dec(k, s):
if #r s.t. (k,r,s) € TBC:
if k = TH (pw, T):
r < {0,1}"
if r € usedRy,, abort, else add r to it
query H(pw, r) and discard the output
if 3¢ s.t. (r, é) € THIC,, then abort
add (r, (s,T)) to THIC,,
else:
r < {re{0,1}": Ps s.t. (k,r,5) € TBC
add (k,r,s) to TBC
remove tag m2F from record r € usedR,, if k =
TH' (pw, T)
return r

on query BC.Enc(k, r):
if k = TH (pw, T):
if r € usedR,,, is tagged m2F then abort
else add 7 to usedR,,
if s s.t. (k,r,s) € TBC:
if k = TH (pw, T):
query H(pw, r) and discard the output
s < Fric.AdvEnc(pw,r, T)
else:
s < {s€{0,1}" : 37 s.t. (k,7,s) € TBC}
add (k,r,s) to TBC

return s

Game T7: using k

Initialization: V k initialize empty THICy

define Fyc.AdvEnc(k, r):

if #s s.t. (1, 5) € THIC:
s <~ {5€{0,1}" : 37 s.t. (#,8) € THIC,}
add (r, s) to THICy

return s

on query BC.Dec(k, s):
if r s.t. (k,7,s) € TBC:
if k = TH (pw, T):
r < {0,1}"
if r € usedRy,, abort, else add r to it
if 35 s.t. (7, 8) € THICk then abort
add (r, s) to THICy
else:
r < {re{0,1}" : #5 s.t. (k,7,8) € TBC
add (k,r,s) to TBC
remove tag m2F from r €
TH (pw, T)
return r

usedR,,, if &k =

on query BC.Enc(k, r):
if k = TH (pw, T):
if € usedRy,, is tagged m2F then abort
else add r to usedR,,,
if #s s.t. (k,7,s) € TBC:
if k = TH (pw, T):
s < Fuic.-AdvEnc(k, r)
else:
s <& {s€{0,1}" : B7 s.t. (k,7,s) € TBC}
add (k,r,s) to TBC
return s

Fig. 5: Game-changes (part 1) in the proof of Theorem

17

Game 8: THIC is redundant

on query BC.Dec(k, s):
if r s.t. (k,r,s) € TBC:
if A(pw, T) s.t. (pw, T, k) € TH:

Initialization: Drop THIC usage.
Fhic.-AdvEnc not used anymore

on query BC.Enc(k, r):

r < {0,1}"
if k = TH'(pw, T): if r € usedR,,, abort, else add r to it
if r € usedR,,, is tagged m2F, abort, else add else:
T € usedRy, r& {re{0,1}":#sst. (k,7,3) € TBC
if s s.t. (k,r,s) € TBC: add (k,{r, s) Eo T]éC () }
s < {s€{0,1}" : $7 s.t. (k,7,s) € TBC} remove tag m2F from record r € usedR,,, if k =
add (k,r,s) to TBC TH' (pw, T)
return s return r

Fig.6: Game-changes (part 2) in the proof of Theorem

Secondly, we need to avoid H' collisions. Indeed, if H' (pw,T) = H’(piu,T)
then m2F’s decryptions using (pw,T') and (ph),j“) create the same s — r map,
which would be in stark contrast to our functionality’s ideal-cipher like
decryption behavior. We conclude that the ¢*/2* term also can’t be avoided.
Notice that these two terms dominate the probability of the environment
distinguishing m2F from our functionality Fyic. In particular, they do not
involve |G|, i.e., the size of the message space of our Fyc.

5 Encrypted Key Exchange with Half-Ideal Cipher

We show that the Encrypted Key Exchange (EKE) protocol of Bellovin and
Meritt [8] is a universally composable PAKE if the password encryption is
implemented with a (Randomized) Half-Ideal Cipher on the domain of
messages output by the key exchange scheme, provided that the key exchange
scheme has the random-message property (see Section . As discussed in the
introduction, the same statement was argued by Rosulek et al. [43] with
regards to password-encryption implemented using a Programmable Once
Public Function (POPF) notion defined therein, which can also be thought of
as a weak form of ideal cipher. However, since as we explain in the
introduction, the POPF notion is unlikely to suffice in an EKE application, so
we need to verify that the notion of UC (Randomized) Half-Ideal Cipherdoes
suffice in such application.

In Figure 7| we show the Encrypted Key Exchange protocol EKE, specialized
to use a Half-Ideal Cipher for the password-encryption of the message flows of
the underlying Key Agreement scheme KA. In Figure [7] we assume that KA is a
single-round scheme. In Section we extend this to the case of two-flow KA,
i.e. to EKE protocol instantiated with a KEM scheme. We note that these two
treatments are incomparable because in the case of single-flow KA we start from
a more restricted KA scheme and we argue security of a single-flow version of
EKE, whereas in the case of two-flow KA, i.e. if KA = KEM, we start from a more
general KA scheme but we argue security of a two-flow version of EKE.

18

The EKE instantiation shown in Figure [7] assumes that the Half-Ideal Cipher
HIC works on domain D = R x M where M is the message domain of the
scheme KA. The “randomness” set R is arbitrary, but its size influences the
security bound we show for such EKE instantiations. In particular we require
that log(|R|) > 2x. If HIC is instantiated with the modified 2-Feistel construction
m2F of Section 4} one can set R = {0,1}%, and this instantiation of EKE will
send messages whose sizes match those of the underlying KA scheme extended
by 2k bits of randomness due to the Half-Ideal Cipher encryption.

In Figure[7]for presentation clarity we assume that party identifiers Pg, Py are
lexicographically ordered. The full protocol will use two helper functions order
and bit, defined as order(sid, P, CP) = (sid, P, CP) and bit(P, CP) = 0 if P <., CP,
and order(sid, P, CP) = (sid, CP,P) and bit(P,CP) = 1 if CP <, P m Party P
on input (NewSession,sid, P, CP, pw) will then set fullsid < order(sid, P, CP) and
b «+ bit(P,CP) and it will use HIC.Enc on key pw, = (fullsid, b, pw) to encrypt
its outgoing message, and it will use HIC.Dec on key pw_, = (fullsid, —b, pw) to
decrypt its incoming message.

e Single-round Key Exchange KA = (msg, key) with message space M
e Half-Tdeal Cipher HIC on domain R x M for R = {0,1}2®)

Po on NewSession(sid, Po, P1, pw,) P1 on NewSession(sid, P1, Po, pw;)

(Assume Py <, P1 and let fullsid = (sid, Pg, P1))
(w0, Mo) <~ KA.msg (w1, M71) < KA.msg
¢co < HIC.Enc((fullsid, 0, pwy), Mo) o 1 HIC.Enc((fullsid, 1, pw,), M)
1

Co
— y —

M, < HIC.Dec((fullsid, 1, pw,), c1) Mo < HIC.Dec((fullsid, 0, pw,), co)
output Ko < KA.key(xo, M) output K; < KA.key(z1, Mo)

Fig. 7: EKE: Encrypted Key Exchange with Half-Ideal Cipher

In Theorem [2| below we show that protocol EKE realizes the (multi-session
version of) the PAKE functionality of Canetti et al. [16], denoted Fpuke (e.8.,
see [30]). The reason we target the multi-session version of PAKE functionality
directly, rather than targeting its single-session version and then resorting to
Canetti’s composition theorem [15] to imply the security of an arbitrary (and
concurrent) number of EKE instances, is that for the latter to work we would
need the underlying UC HIC to be instantiated separately for each EKE session
identifier sid. Our UC HIC notion of Section [3|is a “global” functionality, i.e. it
does not natively support separate instances indexed by session identifiers. The
modified 2-Feistel construction could support such independent instances of HIC
by prepending sid to the inputs of all its building block functions H, H’, BC, where
in the last case value sid would have to be prepended to the key of the (ideal)

7 We assume that no honest P ever executes (NewSession, sid, P, CP,-) for CP = P.

19

block-cipher BC. However, this implies longer inputs for each of these blocks,
which is especially problematic in case of the block cipher, so it is preferable not
to rely on it and show security for a protocol variant where each EKE instance
accesses a single HIC functionality, and hence can be implemented with the same
instantiation of the modified 2-Feistel HIC construction.

Theorem 2. If KA is a secure key-exchange scheme with the random-message
property on domain M and HIC is a UC Half-Ideal Cipher over domain R x M,
then protocol EKE, Fz‘gure@ realizes the UC PAKE functionality Fowke.

Proof. Let Z be an arbitrary efficient environment. In the rest of the proof we
will assume that the real-world adversary A is an interface of Z. In Figure [§]
we show the construction of a simulator algorithm SIM, which together with
functionality Fowke defines the ideal-world view of Z. As is standard, the role
of SIM is to emulate actions of honest parties executing protocol EKE given the
information revealed by functionality Fowke, and to convert the actions of the
real-world adversary into queries to Fpwke. (In Figure [8 we use Psid to denote
P’s session indexed by sid which is emulated by SIM.) The proof then consists
of a sequence of games, shown in Figure [9] starting from the real-world game,
Game 0, where Z interacts with the honest parties running protocol EKE, and
ending with the ideal-world game, Game 7, where Z interacts via dummy honest
parties with functionality Fpwke which in turn interacts with simulator SIM.
(This last game is not shown in Figure [J] because its code can be derived from
the code of simulator SIM, Figure |8 and functionality Fypwke, €.g., see [30].) We

note that in each game in Figure g we write | output [...] | for output of queries

that service Z’s interaction with EKEinstances, and we write “return [...]” for
output of queries that service Z’s interaction with Fyc.

At each step we prove that the two consecutive games are indistinguishable,
which implies the claim by transitivity of computational indistinguishability.
Note that we argue security of EKE in the Fyc-hybrid model. Specifically,
algorithm SIM emulates a “global” Fyc functionality which services any
number of EKE protocol instances. Note that Z or A can call Fyic on keys
which correspond to all strings pw = (fullsid,b, pw) including for fullsid
corresponding to sessions which were not (yet) started by Z. Indeed, algorithm
SIM treats queries pertaining to any key pw equally, and embeds random
ciphertext ¢ in response to Enc queries, random partial ciphertext s in response
to AdvEnc queries, and random KA message M in response to AdvDec and Dec
queries, saving the corresponding KA local state in (backdoor,...) records.
Since Dec is a wrapper over AdvDec we assume that the adversary uses only
interface AdvDec, and we implement the EKE code of P54 using AdvDec as well.

The intuition for the simulation is that it sends an outgoing EKE message
on behalf of P$¢ at random, since this is how HIC encryptions are formed. SIM
services HIC encryption queries as Fpic does except that it collects the
ciphertexts created by any encryption query and the ciphertexts chosen for
every honest session in set Cset, and aborts if either process regenerates a

20

SIM interacts with environment Z’s interface A and with functionality Fpwke.
W.l.o.g. we assume that A uses AdvDec to implement Dec queries to Fuic.

Initialization: Set Cset = {}, set THIC,; as an empty table and c2pw]c] := L for
all values pw and c.

Notation (used in all security games in Figure [9)

Let THIC,4,.5[T] be a shortcut for set {s € R : #n s.t. (1, (5,T)) € THIC,,}.
Let THIC,s,.c be a shortcut for set {c € D : I s.t. (17, ¢) € THIC,3 }-

Let THIC,,.m be a shortcut for set {m € D : $é s.t. (m,é) € THIC, }.

On query (NewSession, sid, P, CP) from Fpuke:

Set fullsid «— order(sid, P, CP), b < bit(P, CP), ¢ +- D (abort if ¢ € Cset), add c to
Cset, record (sid, P, CP, fullsid, b, ¢), return c.

Emulating functionality Fuic:

e On A’s query (Enc,pw, M) to Fuic: Set r + R, m <+ (r,M). If (m,c) €
THIC,, return c; Else pick ¢ <~ THIC,s,.c (abortif ¢ € Cset), set c2pw][c] « puw,
add ¢ to Cset and (m, c) to THIC, return c.

e On A’s query (AdvEnc, pw, m,T) to Fuic: If (m,c) € THIC,;, return c; Else
pick s <~ THIC,.s[T], set ¢ <+ (s,T) (abort if ¢ € Cset), set c2pw[c] « pw,
add ¢ to Cset and (m, ¢) to THIC,, return c.

e On A’s query (AdvDec, pw, ¢) to Fuic: If (m,c) € THICy, return m; Else pick
r + R and (z, M) <+ KA.msg, set m < (r, M), add (m,c) to THIC, (abort
if 3 é# ¢ s.t. (m,é) € THIC,,), save (backdoor, ¢, pw,), return m.

On A’s message ¢ to session PS¢ (accept only the first such message)
Retrieve record (sid, P, CP, fullsid, b, ¢) and do:
1. If there is record (sid, CP, P, fullsid, —b, é): send (NewKey,sid, P, L) to Fowke;
2. Otherwise set pw + c2pw[¢] and do the following:
(a) If pw = L or pw = (fullsid,b,-) for (fullsid,b) # (fullsid,—b), send
(TestPwd, sid, P, 1) and (NewKey,sid, P, L) to Fpwke;
(b) If pw = (fullsid, =b, pw™*) retrieve ((#, M),) from THIC,;, and:
i. service Fuic’s query (AdvDec, (fullsid, b, pw™),c), retrieve
(backdoor, ¢, (fullsid, b, pw™), z);
ii. set K« KAkey(z, M), send (TestPwd,sid, P, pw*) and
(NewKey, sid, P, K) to FpwKe-

Fig. 8: Simulator SIM for the proof of Theorem

21

ciphertext in Cset. Here we use the fact that even though an adversary can set
the T part of the ciphertext ¢ = (s,T') resulting from an adversarial encryption
query AdvEnc, the s part of ¢ is chosen at random, and this prevents ciphertext
collisions (except with negligible probability) if |R| > 22¢. Hence, assuming
that R is big enough, we have that (1) each adversarial ciphertext can be
matched to (at most) one password on which it decrypts to a non-random
value in space M, and (2) the simulator can extract this unique password and
retrieve the corresponding plaintext (SIM stores the key pw which was used to
create ciphertext ¢ in the c2pw table by setting c2pw[c] + pw). Moreover, since
by the same collision-resistant property of Fyc ciphertexts the adversary
cannot “hit” any honest session P¥¢’s ciphertext ¢ via an encryption query, the
decryption of Ps9’s ciphertext on each password is also a random value in M.
By the message-randomness property of KA, simulator SIM can embed
messages of fresh KA instances into each decryption query, and combining this
with fact (1) above allows for a reduction of EKE instances corresponding to
“wrong” password guesses to the KA’s security.

Let gqr¢ be the bound on the number of queries Z makes to the interfaces of
the (randomized) ideal cipher Fyc, and let gp be the upper-bound on the number
of honest EKE sessions P5® which Z invokes for any identifiers P, sid. ﬁ Let
EKA.sec AN EKA rand be the upper-bounds on the distinguishing advantage against,
respectively, the security and the random-message properties of the key exchange
scheme KA (see Section [2)) of an adversary whose computational resources are
roughly those of an environment Z extended by execution of q;¢ + gp instances
of the key exchange scheme KAE|

For space-constraint reasons we defer the details of the game changes and
reductions to the full version [30], but we show the code of all successive games
in Figure [0] By the arguments for indistinguishability of successive games, the
total distinguishing advantage of environment Z between the real-world and
the ideal-world interaction is upper-bounded by the following expression, which
sums up the bounds argued in the full proof, see [30]:

qrc +qp

M} + EKA.rand T 4P * EKA.sec (2>

(grc +qp) { {2qP+qlc+2'

1
R
Since this quantity is negligible if R = {0,1}" for n = O(k), it implies
Theorem [2] O

Notes on Exact Security. The dominating factors are (grc + qp)?/|R| and
(g1c + qp) - (EkA.rand + P - Ekasec)- The first factor is due to possible collisions
in Half-Ideal Cipher, and it is unavoidable using an arbitrary HIC realization
because it is the probability of generating the same ciphertext ¢ as an
encryption of two different KA instances under two different passwords, which
would also form an explicit attack on the security of EKE (the adversary would

8 We assume that Z invokes at most two sessions for any fixed identifier sid.
9 This bound involves gr¢ + gp instead of gp key exchange instances because our
reductions to KA security run KA.msg for each adversarial AdvDec query to Fhic.

22

Game 0: real-world interaction
initialization
Initialize Cset = {} and V pw empty THIC,
on (NewSession, sid, P, CP, pw) to P:
fullsid < order(sid, P, CP), b <« bit(P,CP), pw «
(fullsid, b, pw)

(z, M) < KA.msg
¢ <+ Fuic.Enc(pw, M)

save (sid, P, CP, fullsid, b, pw, z, ¢, L),

on message ¢ to session P¥¢ (accept only one):
if 3 record (sid, P, CP, fullsid, b, pw, z, -, L):
(7, M) < Fric.AdvDec((fullsid, =b, pw), &)
K + KA.key(z, M) and | output (sid, P, K)

on query Fuic.Enc(pw, M):

r <= R, set m < (r, M)
If 3 ¢ s.t. (m,c) € THIC;,:
return c
else:
pick ¢ ¢~ THIC,,.c,
add ¢ to Cset and (m, c¢) to THIC;,
return c

on query Fyic.AdvEnc(pw,m,T):

if 3 ¢s.t. (m,c) € THIC,,:
return c

else:
5 4= THIC,3,.s[T], set ¢ « (s, T),
add c to Cset and (m, c) to THIC;,
return c

on query Fuic.AdvDec(pw, c):
if 3 m s.t. (m,c) € THICy,:
return m
else:
m <= THIC,,.m, add (m, c) to THIC,,
return m

Game 1: randomizing protocol
communication

on (NewSession, sid, P, CP, pw) to P:

set (fullsid, b, pw) as in Game 0

(z, M) & KA.msg, 7 &~ R, c < D

abort if ((r, M), *) € THIC;, or ¢ € Cset
add ((r, M), ¢) to THIC,

save (sid, P, CP, fullsid, b, pw, z, ¢, L),

Game 2: binding adversarial ciphertexts
to passwords

on Fuic.Enc(pw, M) or Fuic.AdvEnc(pw, m,T):
Before adding ¢ to Cset, do the following:
abort if ¢ € Cset
set c2pwlc] + pw

Game 3: adding trapdoors to decryption

on query Fuic.AdvDec(pw, c):

if 3m s.t. (m, c) € THIC,, return m, otherwise:
(z, M) < KA.msg(1%), 7 <~ R, m + (r, M)
abort if (m, x) € THIC,
add (m, c) to THIC,
save (backdoor, ¢, pw, z), return m

Game 4: KA messages via AdvDec
on (NewSession, sid, P, CP, pw) to P:
set (fullsid, b, pw) as in Game 0
¢ < D, abort if ¢ € Cset, otherwise add ¢ to Cset

query Fuic.AdvDec(pw, c)
retrieve (backdoor, ¢, pw, x)

save (sid, P, CP, fullsid, b, pw, z, ¢, L),

Game 5: extracting passwords

on message é to session P¥9:
if 3 record rec = (sid, P, CP, fullsid, b, pw, z, ¢, L):
if 3 record (sid, CP, P, fullsid, =b, pw, -, ¢, k)
s.t. Z sent ¢ to CP¥¢:
K+ K
else:
pw < c2pwlé]
if pw = (fullsid, =b, pw):
retrieve ((7, M), ¢) from THIC,;,,
set K + KA.key(x, M)
else:
K & {0,1}"
reset rec < (sid, P, CP, fullsid, b, pw, z, ¢, K)

output (sid, P, K)

Game 6: delaying password usage

on (NewSession, sid, P, CP, pw) to P:
fullsid < order(sid, P, CP), b « bit(P, CP)
¢ <~ D, abort if ¢ € Cset, otherwise add ¢ to Cset

save (sid, P, CP, fullsid, b, pw, L, ¢, L),

on message ¢ to session psid:
if 3 record (sid, P, CP, fullsid, b, pw, L, ¢, L):
if 3 record (sid, CP, P, fullsid, =b, pw, L, ¢, k)
K+ K
else:
pw < c2pwlé]
if pw = (fullsid, —b, pw):
query Fuic.AdvDec((fullsid, b, pw), ¢),
retrieve (backdoor, ¢, -, z)
retrieve ((7, M), &) from THIC,,,
set K < KA.key(z, M)
else:
K < {0,1}"
reset rec «— (sid, P, CP, fullsid, b, pw, z, ¢, K)

output (sid, P, K)

Fig.9: Game changes for the proof of Theorem [2[(compare Fig. |8 for notation)

23

effectively make two password guesses in one on-line interaction). However,
whereas the bound (qrc)?/|R| is tight if the encryption is modeled as a
Half-Ideal Cipher, we do not know if it is tight in relation to the specific
modified 2-Feistel instantiation of Half-Ideal Cipher, because we do not know
how to stage an explicit attack on EKE using modified 2-Feistel along these
lines. This relates to the fact that whereas the modified 2-Feistel realizes
functionality Fpic, this functionality allows more freedom to the adversary
than the modified 2-Feistel construction. Namely, whereas Fyc allows the
adversary to encrypt any messages M using a ciphertext ¢ = (s,7") where T
can be freely set, the same is not true about the modified 2-Feistel
construction, where for any fixed M the adversary can choose T from the set of
values of the form T'= M /H(pw, r) for some r.

The second factor is due to reductions to KA security properties. Note that
some KA schemes, e.g. Diffie-Hellman, have perfect message-randomness, i.e.
€kA.rand = 0. Further, if the KA scheme is random self-reducible, as is Diffie-
Hellman, then this factor can be reduced to eka.sec because a reduction to KA
security for the transition between Games 4 and 5, see the proof in [30], can then
be modified so that it deals with all honest sessions at once instead of staging a
hybrid argument over all sessions, and it embeds randomized versions of the KA
challenge into each decryption query rather than guessing a target query.

5.1 EKE with Half-Ideal Cipher: the KEM version

In Figure [10| we show protocol EKE-KEM, which is a KEM version of the EKE
protocol using a Half-Ideal Cipher. In the 1-flow protocol EKE considered in
Figure[7] the message flows are generated by a single-round KA scheme, whereas
here we consider an EKE variant which is built from any two-flow key exchange,
i.e. KEM, see Section [2.2] The drawback is that it is 2-flow instead of 1-flow, but
the benefits are that the HIC can be used only for one message, so if KEM is
instantiated with Diffie-Hellman and HIC is implemented using m2F, this implies
a single RO hash onto a group per party instead of two such hashes. Moreover,
this version of EKE can use any CPA-secure KEM as a black box, as long as the
KEM satisfies the anonymity and uniform public keys properties, which implies,
e.g., lattice-based UC PAKE given any lattice-based KEM with these properties.

Note that in the protocol of Fig. party Pg outputs a random session key
if the key confirmation message 7 fails to verify. This is done only so that the
protocol conforms to the implicit-authentication functionality F,wke. In practice
Py could output L in this case, and this would implement explicit authentication
in the Pq-to-Pg direction.

Theorem 3. If KEM is IND secure, anonymous, and has uniform public keys
in domain PK (see Section , HIC is a UC Half-1deal Cipher in domain
R x PK, and H is an RO hash, then protocol EKE-KEM realizes the UC PAKE
functionality Fowke-

The proof of Theorem [3| is deferred to the full version [30]. It follows the
same blueprint as the proof of Theorem 2] The most important intuition needed

24

e KEM scheme KEM = (kg, enc, dec) with public key space PK
e Half-Tdeal Cipher HIC on domain R x PK for R = {0, 1}
e Random oracle hash H onto {0,1}"

Po on NewSession(sid, Po, P1, pw,) P1 on NewSession(sid, P1, Po, pw,)

(Assume Pg <je, P1 and let fullsid = (sid, P, P1))
(sk, pk) < kg
¢ < HIC.Enc((fullsid, pw,), pk) ¢ . pk < HIC.Dec((fullsid, pw,), c)
(e, K) + enc(pk’),
T+ H(K, pk')
output K « H(K)

e, T

K + dec(sk,e)
if 7 = H(K, pk) output Ko < H(K), else Ko < {0,1}"

Fig. 10: EKE-KEM: Encrypted Key Exchange with Half-Ideal Cipher (KEM version)

for the adaptation of the proof of Theorem [2| to the proof of Theorem [3|is why
it works for KEMs that satisfy the anonymity property: The key issue is that
we need anonymity of the KEM ciphertext e only for honest keys pk and not
for adversarial ones, and the reason for this is that the only non-random pk
under which an honest party encrypts is the key pk decrypted under a unique
password guess pw* used in the adversarial ciphertext ¢ this party receives. If
pw* equals to Py’s password pw then this session is already successfully attacked,
so the non-randomness of P;’s ciphertext is not an issue. But if pw* # pw
then KEM ciphertext e is effectively encrypted under key pk’ = AdvDec(pw, c)
which is random, and the key confirmation works as a commitment to the KEM
key pk decrypted from HIC ciphertext ¢, hence also to the password used in
that decryption. This commitment is also effectively encrypted under the KEM
session key K, hence it can be verified only by a party which created pk and
HIC-encrypted it under the right pw. Here we again rely on the property of HIC,
which just like IC assures that decryption under any password except for the
unique password committed in the ciphertext results in a random plaintext, i.e.
a random KEM public key pk, which makes the KEM session key K encrypted
under such pk hidden to the adversary by KEM security.

We note that the key confirmation could involve directly pw instead of pk,
but pk is a commitment to pw unless the adversary creates a collision in HIC
plaintext, and using pk instead of pw lets Py erase pw after sending its first
message. This way an adaptive compromise on party Py during protocol
execution allows for offline dictionary attack on the password, but does not
leak it straight away. (Note that adaptive party compromise is not part of our
security model.) We note also that RO hash H can probably be replaced by a
key derivation function which is both a CRH (because it needs to commit to
pk) and a PRF (because it must encrypt this commitment under K'), but since
HIC implies RO hash (and indeed our m2Fuses it) we opt for the simpler
option of RO hash to compute the authenticator.

25

6 Applications of Half-Ideal Cipher to aPAKE

Gu et al. [33] proposed an asymmetric PAKE protocol called KHAPE which is a
generic compiler from any UC key-hiding Authenticated Key Exchange (AKE),
using an Ideal Cipher on the domain formed by (private, public) key pairs of the
AKE. We show that KHAPE realizes UC aPAKE if IC is replaced by HIC. For
lack of space the proof of the following Theorem is deferred to the full version
[30]. For reference, for AKE functionality Funake see e.g., [33], and for aPAKE
functionality Fapake see e.g., |30].

Theorem 4. Protocol KHAPE of [35] realizes the UC aPAKE functionality
Fapake if the AKE protocol realizes the Key-Hiding AKE functionality Frnake
assuming that kdf is a secure PRF and HIC is a half-ideal cipher over message
space of private and public key pairs in AKE.

We note that Freitas et al. [31] showed a UC aPAKE which improves upon
protocol KHAPE of [33] in round complexity. The aPAKE of [31] relies on IC in
a similar way as protocol KHAPE, and the proof therein should also generalize
to the case when IC is replaced by HIC.

References

1. Abdalla, M., Catalano, D., Chevalier, C., Pointcheval, D.: Efficient two-party
password-based key exchange protocols in the UC framework. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 335-351. Springer, Heidelberg (Apr 2008).
https://doi.org/10.1007/978-3-540-79263-5_22

2. Albrecht, M.R., Bernstein, D.J., Chou, T., Cid, C., Gilcher, J., Lange, T., Maram,
V., von Maurich, I., Misoczki, R., Niederhagen, R., Paterson, K.G., Persichetti,
E., Peters, C., Schwabe, P., Sendrier, N., Szefer, J., Tjhai, C.J., Tomlinson, M.,
Wang, W.: Classic mceliece: Nist round 3 submission, https://csrc.nist.gov/
Projects/post-quantum-cryptography/round-3-submissions (2021)

3. Alkim, .E., Bos, J.W., Ducas, L., Longa, P., Mironov, I., Naehrig, M.,
Nikolaenko, V., Peikert, C., Raghunathan, A., Stebil, D.: Frodokem: Nist round
3 submission, https://csrc.nist.gov/Projects/post-quantum-cryptography/
round-3-submissions| (2021)

4. Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the
indifferentiability of key-alternating ciphers. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 531-550. Springer, Heidelberg (Aug
2013). https://doi.org/10.1007/978-3-642-40041-4_29

5. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASTACRYPT 2001. LNCS, vol. 2248, pp. 566-582.
Springer, Heidelberg (Dec 2001). https://doi.org/10.1007/3-540-45682-1_33

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Advances in Cryptology — EUROCRYPT 2000. pp.
139-155. Springer (2000)

7. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93. pp. 62-73. ACM Press (Nov 1993). https://doi.org/10.
1145/168588.168596

26

https://doi.org/10.1007/978-3-540-79263-5_22
https://doi.org/10.1007/978-3-540-79263-5_22
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-642-40041-4_29
https://doi.org/10.1007/978-3-642-40041-4_29
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In: IEEE Computer Society Symposium on
Research in Security and Privacy — S&P 1992. pp. 72-84. IEEE (1992)

Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve
points indistinguishable from uniform random strings. In: Sadeghi, A.R., Gligor,
V.D., Yung, M. (eds.) ACM CCS 2013. pp. 967-980. ACM Press (Nov 2013).
https://doi.org/10.1145/2508859.2516734

Bernstein, D.J., Kolbl, S.; Lucks, S., Massolino, P.M.C., Mendel, F., Nawaz, K.,
Schneider, T., Schwabe, P., Standaert, F.X., Todo, Y., Viguier, B.: Gimli : A cross-
platform permutation. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol.
10529, pp. 299-320. Springer, Heidelberg (Sep 2017). https://doi.org/10.1007/
978-3-319-66787-4_15

Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313-314. Springer,
Heidelberg (May 2013). https://doi.org/10.1007/978-3-642-38348-9_19
Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.)
CT-RSA 2002. LNCS, vol. 2271, pp. 114-130. Springer, Heidelberg (Feb 2002).
https://doi.org/10.1007/3-540-45760-7_9

Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based
hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 320-335. Springer, Heidelberg (Aug 2002). https://doi.org/10.
1007/3-540-45708-9_21

Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehle, D.: Crystals - kyber: A cca-secure module-lattice-
based kem. In: 2018 IEEE European Symposium on Security and Privacy (EuroS
P). pp. 3563-367 (2018). https://doi.org/10.1109/EuroSP.2018.00032

Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: IEEE Symposium on Foundations of Computer Science — FOCS 2001.
pp. 136-145. IEEE (2001)

Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable
password-based key exchange. In: Advances in Cryptology - EUROCRYPT 2005.
pp. 404-421. Springer (2005)

Coron, J.S., Dodis, Y., Mandal, A., Seurin, Y.: A domain extender for the ideal
cipher. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 273—-289. Springer,
Heidelberg (Feb 2010). https://doi.org/10.1007/978-3-642-11799-2_17
Coron, J.S., Patarin, J., Seurin, Y.: The random oracle model and the ideal
cipher model are equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 1-20. Springer, Heidelberg (Aug 2008). https://doi.org/10.1007/
978-3-540-85174-5_1

Dachman-Soled, D., Katz, J., Thiruvengadam, A.: 10-round Feistel is
indifferentiable from an ideal cipher. In: Fischlin, M., Coron, J.S. (eds.)
EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 649-678. Springer, Heidelberg
(May 2016). https://doi.org/10.1007/978-3-662-49896-5_23

Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: The design of Xoodoo and Xoofff.
IACR Trans. Symm. Cryptol. 2018(4), 1-38 (2018). https://doi.org/10.13154/
tosc.v2018.14.1-38

Dai, Y., Seurin, Y., Steinberger, J.P., Thiruvengadam, A.: Indifferentiability of
iterated Even-Mansour ciphers with non-idealized key-schedules: Five rounds are
necessary and sufficient. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III.
LNCS, vol. 10403, pp. 524-555. Springer, Heidelberg (Aug 2017). https://doi.
org/10.1007/978-3-319-63697-9_18

27

https://doi.org/10.1145/2508859.2516734
https://doi.org/10.1145/2508859.2516734
https://doi.org/10.1007/978-3-319-66787-4_15
https://doi.org/10.1007/978-3-319-66787-4_15
https://doi.org/10.1007/978-3-319-66787-4_15
https://doi.org/10.1007/978-3-319-66787-4_15
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/3-540-45760-7_9
https://doi.org/10.1007/3-540-45760-7_9
https://doi.org/10.1007/3-540-45708-9_21
https://doi.org/10.1007/3-540-45708-9_21
https://doi.org/10.1007/3-540-45708-9_21
https://doi.org/10.1007/3-540-45708-9_21
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1007/978-3-642-11799-2_17
https://doi.org/10.1007/978-3-642-11799-2_17
https://doi.org/10.1007/978-3-540-85174-5_1
https://doi.org/10.1007/978-3-540-85174-5_1
https://doi.org/10.1007/978-3-540-85174-5_1
https://doi.org/10.1007/978-3-540-85174-5_1
https://doi.org/10.1007/978-3-662-49896-5_23
https://doi.org/10.1007/978-3-662-49896-5_23
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.1007/978-3-319-63697-9_18
https://doi.org/10.1007/978-3-319-63697-9_18
https://doi.org/10.1007/978-3-319-63697-9_18
https://doi.org/10.1007/978-3-319-63697-9_18

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Dai, Y., Steinberger, J.P.: Indifferentiability of 8-round Feistel networks. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814,
pp. 95-120. Springer, Heidelberg (Aug 2016). https://doi.org/10.1007/
978-3-662-53018-4_4

D’Anvers, J.P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: Module-lwr
based key exchange, cpa-secure encryption and cca-secure kem. In: Joux, A.,; Nitaj,
A., Rachidi, T. (eds.) Progress in Cryptology — AFRICACRYPT 2018. pp. 282—
305. Springer International Publishing, Cham (2018)

Desai, A.: The security of all-or-nothing encryption: Protecting against exhaustive
key search. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 359-375.
Springer, Heidelberg (Aug 2000). https://doi.org/10.1007/3-540-44598-6_23
Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644-654 (1976)

Dodis, Y., Puniya, P.: Feistel networks made public, and applications. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 534-554. Springer, Heidelberg
(May 2007). https://doi.org/10.1007/978-3-540-72540-4_31

Dodis, Y., Stam, M., Steinberger, J.P., Liu, T.: Indifferentiability of confusion-
diffusion networks. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II.
LNCS, vol. 9666, pp. 679-704. Springer, Heidelberg (May 2016). https://doi.org/
10.1007/978-3-662-49896-5_24

Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASTACRYPT’91.
LNCS, vol. 739, pp. 210-224. Springer, Heidelberg (Nov 1993). https://doi.org/
10.1007/3-540-57332-1_17

Faz-Hernandez, A., Scott, S., Sullivan, N., Wahby, R., Wood, C.: Hashing
to elliptic curves, irft-cfrg active draft, https://datatracker.ietf.org/doc/
draft-irtf-cfrg-hash-to-curve/| (2022)

Freitas Dos Santos, B., Gu, Y., Jarecki, S.: Randomized half-ideal cipher on groups
with applications to UC (a)PAKE. Cryptology ePrint Archive, Report 2023/295
(2023), http://eprint.iacr.org/2023/295

Freitas Dos Santos, B., Gu, Y., Jarecki, S., Krawczyk, H.: Asymmetric PAKE
with low computation and communication. In: EUROCRYPT 2022 - 41st Annual
International Conference on the Theory and Applications of Cryptographic
Techniques. Springer (2022)

Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric
encryption schemes. In: Wiener, M.J. (ed.) CRYPTO’99. LNCS, vol. 1666,
pp. 537-554. Springer, Heidelberg (Aug 1999). https://doi.org/10.1007/
3-540-48405-1_34

Gu, Y., Jarecki, S., Krawczyk, H.: KHAPE: Asymmetric PAKE from key-hiding
key exchange. In: Advances in Cryptology - Crypto 2021. pp. 701-730 (2021),
https://ia.cr/2021/873

Guo, C., Lin, D.: Improved domain extender for the ideal cipher.
Cryptography Commun. 7(4), 509-533 (dec 2015). https://doi.org/10.
1007/s12095-015-0128-7, https://doi.org/10.1007/s12095-015-0128-7
Hoffstein, J., Pipher, J., Silverman, J.H.: Ntru: A ring-based public key
cryptosystem. In: Buhler, J.P. (ed.) Algorithmic Number Theory. pp. 267-288.
Springer Berlin Heidelberg, Berlin, Heidelberg (1998)

Holenstein, T., Kiinzler, R., Tessaro, S.: The equivalence of the random oracle
model and the ideal cipher model, revisited. In: Fortnow, L., Vadhan, S.P. (eds.)
43rd ACM STOC. pp. 89-98. ACM Press (Jun 2011). https://doi.org/10.1145/
1993636.1993650

28

https://doi.org/10.1007/978-3-662-53018-4_4
https://doi.org/10.1007/978-3-662-53018-4_4
https://doi.org/10.1007/978-3-662-53018-4_4
https://doi.org/10.1007/978-3-662-53018-4_4
https://doi.org/10.1007/3-540-44598-6_23
https://doi.org/10.1007/3-540-44598-6_23
https://doi.org/10.1007/978-3-540-72540-4_31
https://doi.org/10.1007/978-3-540-72540-4_31
https://doi.org/10.1007/978-3-662-49896-5_24
https://doi.org/10.1007/978-3-662-49896-5_24
https://doi.org/10.1007/978-3-662-49896-5_24
https://doi.org/10.1007/978-3-662-49896-5_24
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/3-540-57332-1_17
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
http://eprint.iacr.org/2023/295
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://ia.cr/2021/873
https://doi.org/10.1007/s12095-015-0128-7
https://doi.org/10.1007/s12095-015-0128-7
https://doi.org/10.1007/s12095-015-0128-7
https://doi.org/10.1007/s12095-015-0128-7
https://doi.org/10.1007/s12095-015-0128-7
https://doi.org/10.1145/1993636.1993650
https://doi.org/10.1145/1993636.1993650
https://doi.org/10.1145/1993636.1993650
https://doi.org/10.1145/1993636.1993650

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Jaulmes, E., Joux, A., Valette, F.: On the security of randomized CBC-MAC
beyond the birthday paradox limit: A new construction. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 237-251. Springer, Heidelberg (Feb 2002).
https://doi.org/10.1007/3-540-45661-9_19

Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search. In:
Koblitz, N. (ed.) CRYPTO’96. LNCS, vol. 1109, pp. 252-267. Springer, Heidelberg
(Aug 1996). https://doi .org/10.1007/3-540-68697-5_20

Kim, T., Tibouchi, M.: Invalid curve attacks in a GLS setting. In: Tanaka, K.,
Suga, Y. (eds.) IWSEC 15. LNCS, vol. 9241, pp. 41-55. Springer, Heidelberg (Aug
2015). https://doi.org/10.1007/978-3-319-22425-1_3

Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546-566. Springer, Heidelberg
(Aug 2005). https://doi.org/10.1007/11535218_33

Maram, V., Grubbs, P., Paterson, K.G.: Anonymous, robust post-quantum public
key encryption. In: EUROCRYPT 2022 - 41st Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer (2022)
Marlinspike, M., Perrin, T.: The X3DH key agreement protocol, https://signal.
org/docs/specifications/x3dh/| (2016)

McQuoid, I., Rosulek, M., Roy, L.: Minimal symmetric PAKE and 1-out-
of-n OT from programmable-once public functions. In: CCS ’20: 2020 ACM
SIGSAC Conference on Computer and Communications Security, Virtual Event,
USA, November 9-13, 2020. (2020). https://doi.org/10.1145/3372297.3417870,
https://eprint.iacr.org/2020/1043

Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.)
CRYPTO’89. LNCS, vol. 435, pp. 428-446. Springer, Heidelberg (Aug 1990).
https://doi.org/10.1007/0-387-34805-0_40

Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block
ciphers: A synthetic approach. In: Stinson, D.R. (ed.) CRYPTO’93. LNCS,
vol. 773, pp. 368-378. Springer, Heidelberg (Aug 1994). https://doi.org/10.
1007/3-540-48329-2_31

Shannon, C.E.: Communication theory of secrecy systems. The Bell System
Technical Journal 28(4), 656-715 (1949). https://doi.org/10.1002/j.
15638-7305.1949.tb00928.x

Tibouchi, M.: Elligator squared: Uniform points on elliptic curves of prime order as
uniform random strings. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS,
vol. 8437, pp. 139-156. Springer, Heidelberg (Mar 2014). https://doi.org/10.
1007/978-3-662-45472-5_10

Winternitz, R.S.: Producing a one-way hash function from DES. In: Chaum, D.
(ed.) CRYPTO’83. pp. 203-207. Plenum Press, New York, USA (1983)

Xagawa, K.: Anonymity of NIST PQC round 3 KEMs. In: EUROCRYPT 2022
- 41st Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer (2022)

29

https://doi.org/10.1007/3-540-45661-9_19
https://doi.org/10.1007/3-540-45661-9_19
https://doi.org/10.1007/3-540-68697-5_20
https://doi.org/10.1007/3-540-68697-5_20
https://doi.org/10.1007/978-3-319-22425-1_3
https://doi.org/10.1007/978-3-319-22425-1_3
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/11535218_33
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/
https://doi.org/10.1145/3372297.3417870
https://doi.org/10.1145/3372297.3417870
https://eprint.iacr.org/2020/1043
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/3-540-48329-2_31
https://doi.org/10.1007/3-540-48329-2_31
https://doi.org/10.1007/3-540-48329-2_31
https://doi.org/10.1007/3-540-48329-2_31
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1007/978-3-662-45472-5_10
https://doi.org/10.1007/978-3-662-45472-5_10
https://doi.org/10.1007/978-3-662-45472-5_10
https://doi.org/10.1007/978-3-662-45472-5_10

	Randomized Half-Ideal Cipher on Groups with applications to UC (a)PAKE

