
Password-Authenticated TLS via OPAQUE

and Post-Handshake Authentication

Julia Hesse1⋆, Stanislaw Jarecki2, Hugo Krawczyk3, and Christopher Wood4

1 IBM Research Europe � Zurich
jhs@zurich.ibm.com

2 UC Irvine
stanislawjarecki@gmail.com

3 Algorand Foundation
hugokraw@gmail.com

4 Cloud�are
caw@heapingbits.net

Abstract. OPAQUE is an Asymmetric Password-Authenticated Key
Exchange (aPAKE) protocol being standardized by the IETF (Inter-
net Engineering Task Force) as a more secure alternative to the tra-
ditional �password-over-TLS� mechanism prevalent in current practice.
OPAQUE defends against a variety of vulnerabilities of password-over-
TLS by dispensing with reliance on PKI and TLS security, and ensur-
ing that the password is never visible to servers or anyone other than
the client machine where the password is entered. In order to facilitate
the use of OPAQUE in practice, integration of OPAQUE with TLS is
needed. The main proposal for standardizing such integration uses the
Exported Authenticators (TLS-EA) mechanism of TLS 1.3 that supports
post-handshake authentication and allows for a smooth composition with
OPAQUE. We refer to this composition as TLS-OPAQUE and present
a detailed security analysis for it in the Universal Composability (UC)
framework.
Our treatment is general and includes the formalization of components
that are needed in the analysis of TLS-OPAQUE but are of wider appli-
cability as they are used in many protocols in practice. Speci�cally, we
provide formalizations in the UC model of the notions of post-handshake
authentication and channel binding. The latter, in particular, has been
hard to implement securely in practice, resulting in multiple protocol
failures, including major attacks against prior versions of TLS. Ours is
the �rst treatment of these notions in a computational model with com-
posability guarantees.
We complement the theoretical work with a detailed discussion of practi-
cal considerations for the use and deployment of TLS-OPAQUE in real-
world settings and applications.

Keywords: Transport Layer Security, Passwords, Authentication

⋆ This work was supported by the Swiss National Science Foundation (SNSF) under
the AMBIZIONE grant �Cryptographic Protocols for Human Authentication and
the IoT�

1 Introduction

For a multitude of reasons, passwords remain a ubiquitous type of authenticator.
Despite the existence of tools for improving passwords (password managers)
and password-less authentication protocols (e.g., WebAuthn), password-based
authentication remains commonplace. Legacy software and lack of support for
modern alternatives, integration issues for better tooling to improve password
quality , and usability problems in adopting any new form of authenticator have
all contributed in one way or another to the prolonged usage of passwords for
authentication onn the Internet (and beyond).

As a result, much of the security infrastructure depends to a large extent on
passwords. And, yet, the prime mechanism of client-server password authentica-
tion in practice has not changed in the last decades and remains the traditional
password-over-TLS (more generally, the transport of passwords over channels
protected by public key encryption). Weaknesses of this mechanism include,
though are not limited to: visibility of plaintext passwords to the application
server and to other decrypting intermediaries, accidental storage of passwords in
the clear (as several high-pro�le incidents have shown [1,2]), and ease of password
leakage in the event of phishing attacks.

Recently, the IETF (Internet Engineering Task Force) has initiated a pro-
cess of standardizing a much stronger mechanism, the so-called Asymmetric
Password-Authenticated Key Exchange (aPAKE) that does not rely on PKI (ex-
cept, optionally, at user registration time) and ensures that user passwords are
never visible outside the client machine. Essentially, aPAKE protocols are as se-
cure as possible, restricting attacks to unavoidable password guesses and o�ine
attacks upon server compromise. The speci�c protocol chosen for instantiation of
the aPAKE standard is OPAQUE [18,9]. In addition to enjoying the aPAKE secu-
rity (including an enhancement in the form of security against pre-computation
attacks), OPAQUE o�ers the �exibility of working with any authenticated key
exchange mechanism. Hence, it is a natural candidate for integration with exist-
ing protocols such as TLS 1.3, IKEv2, etc.

Clearly, integration with TLS is desirable for improving the security of pass-
word authentication in TLS, but also because while OPAQUE provides authenti-
cation and key exchange, it does not o�er the secure channels required to protect
data; TLS provides such functionality via its record layer. Additionally, integra-
tion with TLS allows for protection of user account information during a login
protocol.

A natural approach to such integration is to use the post-handshake authen-
tication (PHA) mechanism of TLS 1.35 [23] that allows clients to authenticate
after the TLS handshake (the key establishment component of TLS) has com-
pleted, and within the ensuing record-layer session (where data is exchanged
under the protection of the keys established by the handshake). For example, a
server can serve public webpages to an unauthenticated client but may require
client authentication once the client requests access to restricted pages, thus

5 Except if said otherwise, we use `TLS' to refer to TLS 1.3.

2

triggering post-handshake authentication by the client. More general support
for PHA is provided in a TLS 1.3 extension standard called Exported Authenti-
cators (TLS-EA) [26] (we often shorten TLS-EA to EA). EA extends the post-
handshake client authentication component of TLS 1.3 and can support multi-
ple authentications within the same TLS session for both clients and servers.
As such, EA is a natural tool for integrating OPAQUE into TLS 1.3 as a way
to enable strong password authentication within TLS connections. While EA
natively supports certi�cate-based authentication, its �elds can easily be repur-
posed for transporting OPAQUE's signature-based authentication. This integra-
tion of OPAQUE and TLS-EA, referred to here as TLS-OPAQUE, has been
proposed for standardization in the TLS Working Group of the IETF [27].

Fig. 1: (Post-)Authentication options for TLS channels. Left: The Exported Au-
thenticators TLS extention (TLS-EA) allows both channel endpoints to subse-
quently add more public-key identities to a TLS channel. Right: TLS-OPAQUE
allows to subsequently add (asymmetric) password identities to a TLS channel.

In this work we investigate the security of the above schemes: TLS-EA as a
general post-handshake mechanism and TLS-OPAQUE for password-authenticated
TLS. However, our treatment is more general and independent of any particular
protocol instantiation. We formalize the notion of post-handshake authentication
in the Universal Composability (UC) setting [11] with two authentication �avors:
via public-key certi�cates as the EA protocol [26] speci�es and via passwords as
TLS-OPAQUE requires.

While this formalization of PHA serves the analysis of EA and TLS-OPAQUE,
post-handshake authentication is a more general notion implemented in practice
as extension to multiple protocols, including IPsec, SSH as well as previous ver-
sions of TLS. In general terms, the PHA main functionality is to enable multiple
authentications (possibly using di�erent credentials and identities) of a previ-
ously established channel between two endpoints; it guarantees that in each of
these authentications, the authenticating parties are the same as those that es-
tablished the channel in the �rst place.

Thus, a crucial ingredient in the implementation of any PHA protocol is
a mechanism for binding the PHA authentications to the original channel. A
common design, that we follow in our PHA instantiations, is to de�ne a channel

3

binding value generated at the time of the original channel establishment and
passed to PHA for inclusion in all subsequent authentications. This channel
binder can take the form of a handshake transcript digest, a cryptographic key, or
a combination of both. While the notion itself is simple, its implementation in the
real world has been remarkably challenging and has led to serious security failures
against multiple protocols, including major attacks against previous versions of
TLS such as the notorious renegotiation [22,24,25] and triple-handshake attacks
[5]. See [6] for an account of attacks on multiple protocols based on PHA failures
due to wrong channel binding designs. It is a main goal and motivation of our
work to set an analytical framework and proofs to prevent this type of failures
in new designs such as those presented here.

To capture the channel binding requirements, we extend the traditional for-
malism of secure channel functionalities [12] with a channel binder element that
is output from the channel generation module (e.g., a key exchange) and used by
parties engaging in a PHA as a way to bind their post-handshake authentication
to the original channel establishment. Informally, we set two requirements on the
channel binder: being unique among all channels established by an honest party
and being pseudorandom. The latter property enables the use of the binder as a
cryptographic key in the process of post-handshake authentication. The unique-
ness element is crucial for defeating what is known as channel synchronization
attacks [3,6], the source of many of the serious attacks against PHA mechanisms
in practice. We formally prove in Theorem 1 in Section 4 that TLS 1.3 with
its Exporter Main Secret (EMS) implements a secure channel with such binder
qualities.

We frame the security of post-handshake authentication via a UC function-
ality that enforces that only valid credentials presented by the original end-
points of the channel (technically, those that know the binder's cryptographic
key) are accepted. Our PHA formalism comes in two �avors: one that supports
public keys as the post-handshake authentication means and one that supports
password-based authentication. The �rst �avor captures the essence of the se-
curity requirements of TLS-EA, namely, the ability to support any number of
PK-based authentications6 by the creators of a TLS channel, and only by those.
Therefore formally proving the security of the TLS-EA protocol from [26] re-
duces to showing that the protocol realizes the PK-based PHA functionality.
This is shown in Theorem 2 in Section 5. In particular, the proof of this theorem
validates that the channel binder de�ned by TLS 1.3 (called EMS, for Exporter
Master Secret) has the required properties for the purpose of implementing a
secure post-handshake authentication mechanism.

We now consider the TLS-OPAQUE protocol [19,27] that uses the TLS-EA
mechanism to transport the OPAQUE messages for providing password-based
post-handshake authentication to the TLS channel. To prove security of this
protocol, we show it realizes our password-based PHA functionality. The latter
functionality essentially ensures that any mechanism that realizes the function-
ality provides authentication guarantees similar to those of an aPAKE. Namely,

6 In the particular case of TLS-EA, it is signature-based authentication.

4

the key established upon channel creation (even if anonymous at the time) is
authenticated by the client and server; the only way to subvert the protocol
is by an online password guessing attack or an o�ine dictionary attack if the
server is compromised. Furthermore, not only does the password-based PHA
functionality ensure the correct authentication by the endpoints of the original
channel but it also guarantees that no other than these endpoints will succeed
in such authentication. By proving that TLS-OPAQUE realizes the password-
based PHA functionality (Theorem 3 in Section 6) we get that TLS-OPAQUE
enjoys all these aPAKE-like security properties.

On a technical level, our analysis of TLS-OPAQUE builds on the proven
guarantees of EA detailed above. In a nutshell, TLS-OPAQUE strips the key
exchange part from OPAQUE, and uses only OPAQUE's password authentica-
tion mechanism to authenticate the already established TLS key material. This
authentication is signature-based and can be outsourced to EA. We detail in
Section 2 how exactly TLS-OPAQUE is combined from both EA and (parts
of) OPAQUE. A main goal of our analysis is to tame the complexity of TLS-
OPAQUE by modularizing the security proof: we �rst prove the security of EA,
and then analyze the security of TLS-OPAQUE assuming that EA is already
secure. We refer the reader to the technical roadmap below for a summary of all
formal results in the paper, and how they combine with each other.

Altogether, our work delivers the �rst formal analysis of TLS-EA in the
UC framework, and of TLS-OPAQUE overall. Our modular approach yields
formal models for widely-used concepts such as channel binders as well as public-
key and password-based post-handshake authentication. Our models deepen the
understanding of these concepts, and we expect them to be useful for real-world
protocol analysis beyond our work.

Finally, we would like to highlight a fundamental element in our treatment:
We do not assume the original channel to be authenticated upon creation, only
that no one other than the endpoints of the channel can transmit over the
channel (as enforced by the encryption and authentication keys created within
the channel, e.g., via a plain Di�e-Hellman exchange). Therefore, the security of
TLS-OPAQUE depends on the Di�e-Hellman key exchange of TLS 1.3 but not
on the server and/or client authentication of this exchange. Thus, TLS-OPAQUE
is secure even if the original channel was anonymous. On the other hand, if
this channel was originally authenticated, say by the server, that authentication
property is additional to the password-based authentication provided by TLS-
OPAQUE.

Deployment considerations. TLS-OPAQUE provides real improvements for
password-based authentication systems in a variety of environments. Mobile ap-
plications, for example, can use TLS-OPAQUE for secure password authentica-
tion without any risk of disclosing the password to the server, and without any
noticeable change in user experience. Use cases where TLS-OPAQUE is used
without fallback to password-over-TLS also mitigate common phishing vectors:
even if an attacker can intercept the underlying TLS connection, clients never
reveal the plaintext password to the attacker. TLS-OPAQUE also complements

5

modern authentication technologies such as password managers and multi-factor
authentication protocols such as WebAuthn [16].

Using TLS-OPAQUE is not without tradeo�s, however, as TLS-OPAQUE
requires changes to applications and the underlying TLS implementations. How-
ever, such changes are not insurmountable in practice. Additionally, in environ-
ments where fallback to password-over-TLS authentication must be supported
for backwards compatibility purposes, such as the web, concerns such as phishing
remain. Client-side user interface changes may help mitigate such risks, though
additional user studies are required to demonstrate feasibility.

Technical roadmap. The analysis of real-world protocols in abstract complexity-
theoretic formalisms like the UC framework typically requires simpli�cations
that ignore many technical aspects of the full speci�cations. Yet, such analysis
serves to validate the core cryptographic design at the basis of the protocols. To
be concrete, in Section 2 (Figures 3 and 5), we present the core cryptographic
elements extracted from IETF RFCs and Internet Drafts [23,26,27] that we an-
alyze and that we use as the basis for abstract representation of these protocols
in subsequent sections.

Our formal treatment includes the following elements. In Section 4 we formal-
ize secure channels exporting pseudorandom and unique channel binders in the
UC framework (functionality FcbSC in Figure 6), and prove in Theorem 1 that
the TLS handshake protocol implements such functionality. We then formalize in
Section 5 secure channels with post-handshake public-key authentication (func-
tionality FPHA in Figure 8), and present a modular version of TLS-EA (ΠEA

in Figure 9) that uses secure channels with binders (i.e., FcbSC) as an abstract
building block. Theorem 2 proves that this modular version of TLS-EA imple-
ments FPHA. Invoking the UC composition theorem on Theorems 1 and 2 yields
our �rst main result, namely that �real� EA, which corresponds to ΠEA with calls
to the handshake part of TLS 1.3 instead of FcbSC, securely implements FPHA.

We then turn to analyze TLS-OPAQUE. First, we formalize secure channels
with post-handshake password authentication (functionality FpwPHA in Figure
10), and present a modular version of TLS-OPAQUE (ΠTLS−OPAQUE in Figure
12) that uses secure channels with post-handshake public-key authentication
(i.e., FPHA) as an abstract building block. Theorem 3 proves that this modular
version of TLS-OPAQUE implements FpwPHA. Invoking again the UC composi-
tion theorem on Theorems 2 and 3 yields our second main result, namely that
�real� TLS-OPAQUE, which corresponds to ΠTLS−OPAQUE with calls to TLS-EA
(i.e., ΠEA) instead of FPHA, securely implements FpwPHA.

The full version of this paper [15] provides previously known security notions
for signatures and MACs, as well as details on Oblivious Pseudorandom Func-
tions (OPRFs), a detailed walk-through of functionality FcbSC, considerations
for implementing, deploying, operating, and using TLS-OPAQUE in a variety of
use case, and full proofs and sketches of all our Theorems.

Related work. TLS 1.3 is perhaps one of the most carefully analyzed security
protocols used on the Internet today. Our work analyzes, in the UC model, the

6

aspects of TLS 1.3 that are directly relevant to TLS-EA and TLS-OPAQUE,
yet it may set a basis for a broader UC analysis of TLS 1.3. Our study of
these protocols also �ts with the analysis-prior-to-deployment approach that
characterized the development of TLS 1.3,

Partial study of post-handshake authentication in a game-based model ap-
pears in [21] which focused on post-handshake client authentication as a way
of upgrading a unilaterally authenticated key exchange to a mutually authenti-
cated one, but did not consider the server side or multiple authentications. In
particular, it did not analyze the security of the TLS-EA mechanism.

Most relevant to the subject of our work is the analysis of channel binding
and post-handshake authentication techniques (under the notion of compound
authentication) presented in [6]. The paper analyzes these techniques in several
deployed protocols (but not TLS 1.3), showing a variety of attacks due to short-
comings in the channel binding design. They carry a formal analysis of these
mechanisms using the protocol analyzer ProVerif [8]. Extending this work, [17]
presents an automated analysis of the Exported Authenticators (TLS-EA) pro-
tocol [26] based on a symbolic model of the protocol using the Tamarin Prover.
Additional papers relevant to the analysis of channel binding mechanisms in
practice (particularly pointing to vulnerabilities) include [3,25,7,13,4]. Finally,
we mention [10] who formalize (using game-based de�nitions) a notion of chan-
nel binding but with a di�erent functionality than ours. In their case the binding
is between identities and a key in a 3-party key exchange setting. Their mecha-
nisms and formal treatment do not seem to apply to our setting.

2 TLS-OPAQUE Speci�cation

In this section we describe the protocols we study in this work: OPAQUE, TLS
1.3 Handshake, TLS-EA, and TLS-OPAQUE. We start by recalling OPAQUE
[18,9] in schematic form in Figure 2 (more details are included in the presentation
of TLS-OPAQUE in Fig. 5).

Figure 2 (simplified schematic OPAQUE protocol). During registration,
the user creates an �envelope� containing a user's private key and a server's
public key. The envelope is protected (for secrecy and authentication) by a key
computed jointly between user and server using an Oblivious PRF (OPRF) (to
which the user inputs its password and the server inputs a secret user-speci�c
OPRF key; neither party learns the other's input). The server stores the envelope
as well as the user's public key and the server's own private key. For login, the
user receives the envelope from the server and obtains the key to unlock the
envelope by running the OPRF with the client using the same password as upon
registration. Now, user and server have the keys to run an authenticated key
exchange between them (for TLS-OPAQUE, these keys will be signature keys
similar to those used in TLS).

Next, we recall the elements from the TLS 1.3 handshake that play a role in
this work, and which serve as a basis for TLS-EA and TLS-OPAQUE.

7

Client (pw) Server

generate (sk, pk) generate keyOPRF and (sk′, pk′)

pw −→ ←− keyOPRF
OPRF

envelope key k ←−

�← AEnck(sk, pk
′) � -

pk′

� , pk
store (� ,sk′, pk, keyOPRF)

pw −→ ←− keyOPRF
OPRF

k ←−
sk← ADeck(�) � �

sk, pk′ −→ ←− sk′, pk
AKE

output key K ←− −→ output key K

Fig. 2: OPAQUE registration (top) and key exchange (bottom).

Client C Server S

randC ← {0, 1}λ, x← Zp � -randC , g
x

randS , g
y

randS ← {0, 1}λ, y ← Zp

m′ ← (CertS , SigS(tr1),MACHSmS (tr2))

m← ([CertC ,SigC(tr3),]MACHSmC (tr4))

authC ← EncHSeC (m) � -
authS

authC
authS ← EncHSeS (m

′)

Fig. 3: Schematic representation of TLS 1.3 Handshake (showing subset consid-
ered in our analysis).

gxy

HS

HTS MS

HSe HSm ATS EMS

AEK HSC MK

Fig. 4: Key Derivation in TLS 1.3

8

Simplified schematic TLS Handshake (Figure 3). The �gure shows a
schematic representation of a subset of the TLS 1.3 handshake, the key exchange
part of TLS. It is intended to show the components that play a role in the proto-
cols studied here. The �rst two �ows show the exchange of nonces (randC , randS)
and an unauthenticated Di�e-Hellman run between client and server resulting
in a key gxy from which a key, HS (for Handshake Secret), is extracted as shown
in the key derivation tree in Fig. 4. In the next message, the server authenti-
cates to the client using TLS's sign-and-mac mechanism. The signature (called
CertificateVerify in TLS) is applied to the handshake transcript and is veri-
�ed by the client using the server's public key transported in a certi�cate CertS .
The MAC part (known as the Finish message) uses key HSmS derived from
HS and is applied to the transcript as well. The following message shows client
authentication mimicking the server's where the signature part is optional; only
the MAC part is mandatory in TLS 1.3. Messages authS and authC are protected
using an authenticated encryption with keys HSeS and HSeC also derived from
HS. Our analysis in the following sections proves security of TLS-EA and TLS-
OPAQUE even if the handshake DH is unauthenticated, hence from the point
of view of this analysis these authentication messages can be omitted.7 Each of
the transcripts tr1, ..., tr4 cover all previous elements in the handshake until the
point of use of the transcript. However, since our analysis does not require the
sending of the auth messages, we can set tr← (randC , g

x, randS , g
y).

Handshake's key derivation (Figure 4). The �gure shows a key derivation
tree used by TLS 1.3. Some of the keys have separate server and client derivations
(e.g., HSCS ,HSCC) but for simplicity we show them as one key. The root of
the tree, gxy, is the product of the handshake's DH exchange. A key HS (for
Handshake Secret) is extracted from gxy and from it a tree of keys is derived;
we explain their roles. Key HTS (for Handshake Tra�c Secret) spawns two keys:
HSe for encrypting messages authS and authC , and HSm used as a MAC key in
server and client authentication. Key MS (for Main Secret) has two siblings ATS
(Application Tra�c Secret) and EMS (Exporter Main Secret). Key AEK, derived
from ATS, is used to derive Authenticated Encryption keys for protecting data
exchanged in the record layer (that follows the handshake) - it can be thought
as the session key in a traditional AKE. EMS spawns HSC and MK which play
the critical role (see below) of channel binders in TLS-EA and TLS-OPAQUE.
The extraction of HS from gxy and the derivation of MS use HKDF-Extract while
all other derivations use a PRF implemented via HKDF-Expand (because of the
particular way that the derivation of MS uses HKDF-Extract, also this derivation
can be seen as produced by a PRF). All derivations use public labels and parts of
the transcript to enforce domain separation and (computational) independence
of the keys.

7 Proving our results in the case of an unauthenticated handshake, shows that although
TLS handshake is commonly authenticated by the server, TLS-EA's security does not
depend on this authentication. On the other hand, when certi�cate-based server au-
thentication is present during the handshake that precedes a run of TLS-OPAQUE,
one gets the bene�ts of both certi�cate-based and password-based authentications.

9

C(pw, IDC ,EMS,ATS,EACertC) S(file ,EMS,ATS,EACertS)

-

�Application tra�c (protected by AEK-derived keys)

CCR.nonce← {0, 1}λ

a← OPRF.Blind(pw) -CCR.nonce,CCR.ext(IDC , a)

parse file as (IDC , envC ,K, skS , pkS , pkC)

b← OPRF.Eval(K, a)

σS ← SignskS (H(HSCS ,CCR,EACertS))
macS ← MACMKS (H(HSCS ,CCR,EACertS , σS))

�EACertS , σS ,macS SCR.nonce← {0, 1}λ

rw← OPRF.Unblind(b) SCR.nonce,SCR.ext(b, envC)

(skC , pkS)← ADec(rw, envC)

abort if σS or macS veri�cation fails
σC ← SignskC (H(HSCC ,SCR,EACertC))
macC ← MacMKC (H(HSCC ,SCR,EACertC , σC))

-EACertC , σC ,macC abort if σS or macS veri�cation fails
-

�Application tra�c (protected by AEK-derived keys)

Fig. 5: The TLS-OPAQUE protocol, formed by the subset of the TLS handshake
shown in Fig. 3 and the present �gure. Omitting blue-colored parts (which corre-
spond to the OPAQUE envelope decryption) one obtains two TLS-EA instances.

Figure 5 (TLS-EA and TLS-OPAQUE protocols). We are now ready
to explain TLS-EA and TLS-OPAQUE. We show protocol TLS-OPAQUE in
Figure 5. However, if one ignores all the blue-colored elements in Fig. 5, one
obtains two instances of the TLS-EA protocol [26], the �rst one authenticating
the server to the client, the second one vice versa. This presentation shows how
TLS-OPAQUE is built as an extension of TLS-EA, because all the additional
cryptography required by OPAQUE is carried using CCR and SCR extension
�elds of TLS-EA. Note that Fig. 5 shows only the post-handshake authentication
parts of TLS-OPAQUE and TLS-EA, while the full protocols are obtained by
running the TLS handshake shown in Fig. 3 followed by the post-handshake
authentication shown in Fig. 5.

TLS-EA allows an application that established a TLS connection via the
handshake to request its peer (client or server) to authenticate at any time af-
ter the handshake is completed. For the client to request server authentication,
TLS-EA de�nes a message ClientCertificateRequest (abbreviated CCR) that
includes a nonce called certificate_request_context and which we denote by
CCR.nonce. In addition, CCR has an extensions �eld (we denote it CCR.ext) where
an application can carry additional auxiliary information. The analogous mes-
sage ServerCertificateRequest (SCR) (or simply called CertificateRequest

in the case of the server) is used by the server to request client authentica-
tion. The response to such requests is an authentication message by the re-
sponder that includes a certi�cate, a signature and a MAC, implementing the
regular sign-and-mac mechanism of TLS with elements σ and mac (i.e., TLS's

10

CertificateVerify and Finish messages). The keys for generating and verify-
ing σ correspond to the public keys transported in the certi�cates (this changes
in the case of OPAQUE � see below). The goal of this authentication is not only
to validate the identity of the peer but also to tie this peer to the speci�c con-
nection (or handshake session) on which TLS-EA is executed and to the secure
channel (record layer) established by this handshake. A party accepting a set of
credentials via TLS-EA is linking these credentials to the party with whom it
originally ran the handshake even if that party did not authenticate with these
credentials during the handshake, and possibly did not authenticate during the
handshake at all.

Linkage of an authentication to the handshake is obtained via a channel
binder that in TLS-EA (and in our modeling in Section 4) is composed of two
elements: a transcript digest (HSC) included under the signature σ and a MAC
key (MK) used to produce the value mac. Key MK needs to have properties
similar to a session key in a regular key exchange protocol. Informally, it can
be seen in the derivation tree of Fig. 4 that MK is a descendant of the original
key gxy and is independent (via PRF derivations) from keys used elsewhere by
the protocol such as ATS and HTS (exact requirements and proofs are provided
in our extensive formal treatment in the following sections). What is less clear
is why HSC quali�es as a handshake transcript digest. This property follows
from the fact that EMS is computed as an output of a PRF computed on input
the handshake's transcript tr, with the PRF instantiated by HKDF [20]. Hence
EMS is the product of a chain of hashes computed on tr, and since none of these
hash computations is truncated, this ensures that EMS is an output of a collision
resistant function computed on tr. The digest property also applies to HSC which
is derived from EMS using HKDF, hence as the output of a chain of collision
resistant hashes.

The uncolored part of Fig. 5 shows the �ows for the case where a client re-
quest is followed by a server response and then a server request is followed by a
client response. Protocol TLS-OPAQUE adds the colored elements that trans-
port OPAQUE messages inside the extension �elds of TLS-EA. This includes
OPAQUE's OPRF messages and the user's envelope transmitted from server to
client. In this case, signature authentication uses the OPAQUE keys rather than
the normal certi�cate-based keys of TLS. For the client, it uses the private key
contained in the envelope and for the server it is the server's signing key stored
at the server and whose corresponding public key is included in the envelope.
Veri�cation at the server uses the user's public key stored at the server.

Note on the record layer protection of TLS-OPAQUE messages. When the TLS-
EA messages are transported over TLS's record layer, all the messages in Figure
5 are protected by the record layer keys (derived from AEK). In our treatment
we ignore this protection as TLS-EA does not mandate transmission within the
channel8. Thus our results establish that TLS-EA and TLS-OPAQUE security
does not depend on this protection. On the other hand, the addition of this

8 From [26]: �The application MAY use the existing TLS connection to transport the
authenticator.� The use of MAY makes this protected transport optional.

11

layer of protection does not jeopardize security; this is so since AEK is derived
from ATS which is (computationally) independent from any element used in
TLS-EA. Indeed, the latter only uses keys derived from EMS which is a sibling
of ATS in the derivation from MS, hence independent from AEK (formally, one
can simulate the record layer encryption using a random independent ATS).
Finally, we note that while not required for TLS-OPAQUE security, running
TLS-OPAQUE over a protected record layer can provide privacy to user account
information transmitted as part of the protocol.

3 Preliminaries

Notation. We denote by x← A the assigment of the outcome of A to variable
x if A is an algorithm or a function. In case A is a set, x← A denotes that x is
sampled uniformly at random from A.

Oblivious PseudoRandom Functions. An Oblivious Pseudorandom Func-
tion (OPRF) is a 2-party protocol between an evaluator and a server, where
the evaluator contributes an input x and the server contributes a PRF key k.
The outcome of the protocol is that the evaluator learns PRFk(x) but nothing
beyond, and the server learns nothing at all. OPRFs have been extensively used
in password-based protocols, and they are also the main building block of the
OPAQUE protocol [18]. We use a UC formalization of OPRFs by Jarecki et
al. [18], modi�ed regarding its output of transcripts which we now describe on a
high level. The OPRF functionality of [18] has a (session-wise unique) �transcript
pre�x� prfx that the adversary contributes. If the view of both parties of this pre-
�x match, the adversary cannot use the honest evaluation session anymore to
evaluate the PRF himself (e.g., by modifying the transcript). For the purpose of
analyzing TLS-OPAQUE, we introduce two changes to their functionality:

1. We add a �transcript post�x� pstfx, which is also determined by the ad-
versary. prfx and pstfx together constitute the full transcript of the OPRF
protocol. In particular, if the view of both parties on prfx and pstfx match,
then the OPRF output computed by the evaluator is guaranteed to be cor-
rect.

2. We let the evaluator output prfx and require the sender to input prfx. Like-
wise, the sender outputs pstfx and the evaluator requires it as input to com-
plete the evaluation. These changes are only syntactical since as outputs both
prfx and pstfx are adversarially-determined, and as inputs both are leaked
to the adversary. However, in TLS-OPAQUE the OPRF transcript is trans-
ported over EA messages, hence making it fully visible to the environment
enables a modular usage of FOPRF in our analysis of TLS-OPAQUE.

Furthermore, our functionality FOPRF �xes an important omission in the OPRF
functionality as written in [18]. Namely, if the adversary compromises server
PS , the adversary gains the ability not only to o�ine evaluate the (O)PRF
values, via interface Eval (as in [18]), but also to perform server-side operations in

12

the online protocol instances, via interface SndrComplete. Our functionality
FOPRF is shown in the full version of this paper [15], where we also present a slight
modi�cation of the 2HashDH protocol of [18] which UC-emulates our modi�ed
FOPRF.

Corruption model. In this paper we consider two types of corruption. First,
every party can be statically and maliciously corrupted by the adversary us-
ing standard �corrupt party P� instructions that can be issued by the adver-
sary in the UC model at the beginning of the protocol, against any party
P [11]. This means that party P will be corrupted from its �rst activation
on, and can deviate arbitrarily from the protocol code. Second, our function-
alities FOPRF,FPHA,FpwPHA have a special type of corruption we call �com-
promise� (modeled, respectively, by adversarial interfaces Compromise and
StealPwdFile). If such corruption happens to a party which stores long-term
protocol data, such as in our setting a server storing an OPRF key or password
�les, the adversary obtains the stored data. However, the server continues to
follow the protocol honestly. Formally, a compromise is hence an adaptive but
passive corruption.

4 Secure Channels with Binders

In this section we analyze the security of TLS 1.3 Handshake, Fig. 3 as a uni-
versally composable unauthenticated secure channel establishment protocol. The
Key Exchange (KE) part of the TLS 1.3 Handshake generates a communication
key which is subsequently used to implement a secure channel, i.e. the secure
message transmission, and a channel binder, which can be subsequently used by
TLS-EA and TLS-OPAQUE to bind post-execution authentication decisions to
this secure channel.9

In Figure 6 we show functionality FcbSC which models both parts, i.e. an
(unauthenticated) secure channel establishment extended by outputting an (ex-
ported) channel binder, and a secure communication using this channel. The
�rst part is implemented by interfaces NewSession, Attack, and Connect,
the second by interfaces Send, Deliver, and interface ExpireSession allows
any party to close the channel. Functionality FcbSC in Figure 6 is a standard
unauthenticated secure channel functionality (e.g., [12]), extended with a chan-
nel binder CB. We mark this extension with gray boxes. The channel binder
CB is output to both channel endpoints. The code that determines CB is very
similar to the way in which (unauthenticated) key exchange (KE) is modeled
in UC [12]. Just like a session key created by KE, CB is a random bitstring
if the adversary allows two parties to passively �connect� by transmitting the

9 TLS Handshake includes authentication, implemented by messages authS and authC
in Fig. 3. However, as mentioned in footnote 7, we treat it as unauthenticated key
exchange / secure channel establishment, because this allows us to show that the
security of TLS-EA and TLS-OPAQUE is independent of the security of the initial
authentication performed within the TLS 1.3 Handshake.

13

messages between them. However, if the adversary plays a man-in-the-middle,
which is modeled by the Attack interface, it can arbitrarily set the channel
binder the attacked parties output, subject to it being unique among all channel
binders output by honest parties. This is how channel binders di�er from ses-
sion keys: It makes no di�erence if P and P ′ use the same session key on two
attacked sessions, because the adversary can anyway decrypt all messages sent
by P and it can re-encrypt them so they are successfully received by P ′. On
the contrary, any authentication action, whether via TLS-EA or TLS-OPAQUE
done by P will pertain to its channel binder CB for that session, and because
FcbSC enforces that the channel binder output CB′ of P ′ satis�es CB′ ̸= CB, the
signatures issued in protocols TLS-EA and TLS-OPAQUE protocols by P (cf.
Fig. 5) are useless for creating signatures that can be accepted by P ′. In Fig. 5
the channel binder role is played by key EMS, and since value HSCC is derived
from EMS using HKDF-Expand, which is both a PRF and a collision-resistant
hash, if EMS ̸= EMS′ then HSCC ̸= HSC′

C , and since HSCC is one of the signed
�elds, unforgeability of a signature implies that the signature σC issued by P is
not useful in authenticating to P ′. In our analysis of TLS-HS below we will argue
that it realizes functionality FcbSC with CB implemented as EMS, see Fig. 6.

We refer the reader to the full version of this paper [15] for an explanation
of FcbSC interfaces.

4.1 TLS 1.3 as UC secure channel with binder

We analyze TLS 1.3 as a realization of the ideal functionality FcbSC. In Figure 7
we specify how TLS 1.3 implements FcbSC commands NewSession and Send,
used resp. to start a handshake, shown in Fig. 3, and to send a message on a se-
cure channel established by it, and we show how parties form their outputs based
on received network messages, resp. in Finalize which �nalizes the handshake,
and Received which stands for receiving a message on the channel.

The implementation in Fig. 7 follows the schematic protocol of Fig. 3 except
for adding cid �elds to the handshake messages, which model sender TCP port
number. Also, in Fig. 7 for brevity we denote function HKDF-Extract used to
derive the handshake secret HS from the Di�e-Hellman value gxy as H, treated
as a Random Oracle in the security analysis, and we shortcut the derivation
of the Exporter Main Secret EMS (which is output as channel binder) and
the tra�c-encrypting keys AEKC ,AEKS from HS using key derivation function
KDFf (MS, tr) for �ags f ∈ {0, 1, 2}, where KDFf (k, x) stands for KDF(k, (x|f)).
The key derivation procedure in Fig. 3 can be rendered by setting each derived
key in this way. Since function HKDF-Expand used in TLS 1.3 is implemented
as HMAC, it implies that KDF is both a secure PRF and a collision-resistant
hash on full input (k, x|f) [20], and we use both properties in the security anal-
ysis. Finally, we emulate TLS message transport by implementing command
(Send, cid,m) of P as sending (cid′, c) where cid′ is the presumed counterparty
channel identi�er for session (P, cid) and c = AEnc(AEKP , (ctr,m)) where ctr
is the current value of the counter for this tra�c direction. (Note that each
direction, P-to-P ′ and P ′-to-P, uses a separate key AEK and counter ctr.)

14

The functionality talks to arbitrarily many parties P = {P,P ′, ...} and to the adversary

A. It maintains list CBset of all created channel binders.

Channel establishment

On (NewSession, cid,P ′, role) from party P:
[N.1] If role∈{clt, srv} and ∄ record (session,P, cid, ∗) then create record (session,P, cid, role) labeled wait and

send (NewSession,P, cid,P ′, role) to A.

On (Attack,P, cid, cid∗, CB∗) from A:
[A.1] If ∃ record (session,P, cid, role) labeled wait and CB∗ ̸∈ CBset then add CB∗ to CBset , re-label this record

att, and send (Finalize, cid, cid∗, role, CB∗) to P.

On (Connect,P, cid,P ′, cid′, cid∗, CB∗) from A, if ∃ record (session,P, cid, role) labeled wait:

[C.1] If ∃ rec. (session,P ′, cid′, role′) labeled conn(P, cid) s.t. role′ ̸= role

[C.1.1] then set CB← CB′ for CB′ used in message (Finalize, cid′, cid, role′,CB′) sent formerly to P ′;

[C.1.2] otherwise:

[C.1.2.1] If P honest and (P ′ honest ∨ P ′ = ⊥) then CB← {0, 1}λ;

[C.1.2.2] If P or P ′ is corrupted and CB∗ ̸∈ CBset then CB← CB∗ (if CB∗ ∈ CBset

then drop this query);

[C.2] Initialize an empty queue Queue(P, cid,P ′, cid′), re-label record (session,P, cid, role) as conn(P ′, cid′),

add CB to CBset, and send (Finalize, cid, cid∗, role, CB) to P.

Using the channel

On (Send, cid,m) from party P, if ∃ record (session,P, cid, role) marked flag then:
[S.1] If flag = att send (Send,P, cid,m) to A;
[S.2] If flag = conn(P ′, cid′) add m to the back of queue Queue(P, cid,P ′, cid′) and send (Send,P, cid, |m|) to A;
[S.3] If flag ∈ {wait, exp} ignore this query.

On (Deliver,P ′, cid′,m∗) from A, if ∃ record (session,P ′, cid′, role′) marked flag then:
[D.1] If flag = att send (Received, cid′,m∗) to P ′;
[D.2] If flag = conn(P, cid) remove m from the front of Queue(P, cid,P ′, cid′) (ignore this query if this queue does

not exist or is empty) and send (Received, cid′,m) to P ′;
[D.3] If flag ∈ {wait, exp} ignore this query.

On (ExpireSession, cid) from P, if ∃ record (session,P, cid, role):
[E.1] label it exp and send (ExpireSession,P, cid) to A.

Fig. 6: Secure channel functionality FcbSC. Without gray parts, the functionality
implements secure unauthenticated channels. The gray parts provide both ends
of a channel with a high-entropy unique �channel binder� CB that can be used
for, e.g., subsequent authentication.

15

parameters: group ⟨g⟩ of order p, sec. par. λ, hash H onto {0, 1}λ

Party P on input (NewSession, cidC ,P ′, clt) [here P is a Client]:
� Pick randC ← {0, 1}λ, x← Zp, send (cidC , randC , g

x) to P ′;
� On receiving network message (cid′S , rand

′
S , Y

′),
• set K ← (Y ′)x,HS← H(K), tr← (randC , g

x, rand′S , Y
′),

• EMS← KDF0(HS, tr), AEKC ← KDF1(HS, tr), AEKS ← KDF2(HS, tr),
• save (cidC ,P ′, cid′S ,AEKC ,AEKS , 0, 0),
• output (Finalize, cidC , cid

′
S , clt,EMS).

Party P on input (NewSession, cidS ,P ′, srv) [here P is a Server]:
� On receiving network message (cid′C , rand

′
C , X

′),
• pick randS ← {0, 1}λ, y ← Zp, send (cidS , randS , g

y) to P ′,
• set K ← (X ′)y,HS← H(K), tr← (rand′C , X

′, randS , g
y),

• EMS← KDF0(HS, tr), AEKC ← KDF1(HS, tr), AEKS ← KDF2(HS, tr),
• save (cidS ,P ′, cid′C ,AEKS ,AEKC , 0, 0),
• output (Finalize, cidS , cid

′
C , srv,EMS).

Party P on local input (Send, cid,m):
� Retrieve (cid,P ′, cid′,AEK,AEK′, ctr, ctr′) (abort if it is not found),
• send (cid′,AEnc(AEK, (ctr,m))) to P ′ and increment ctr.

Party P on network message (cid′, c):
� Retrieve (cid,P ′, cid′,AEK,AEK′, ctr, ctr′) (abort if it is not found),
• (ctr∗,m)← ADec(AEK′, c), abort if output doesn't parse as such pair
• if ctr∗ = ctr′ then output (Received, cid,m) and increment ctr′.

Party P on input (ExpireSession, cid):
� Erase record (cid,P ′, cid′,AEK,AEK′, ctr, ctr′).

Fig. 7: TLS 1.3 as realization of functionality FcbSC

The security of TLS handshake and message transport is captured as follows:

Theorem 1 (Security of TLS as unauthenticated secure channel). TLS
1.3 handshake and message transport protocol speci�ed in Fig. 7 UC-emulates
functionality FcbSC in the FRO-hybrid model, with H modeled as random oracle,
if function KDF is both a PRF and a CRH, AEnc is CUF-CCA secure, and the
Gap CDH assumption holds on group ⟨g⟩, assuming static malicious corruptions.

We refer to the full version of this work [15] for the cryptographic assumptions
in this theorem, and for its full proof. Sketching it brie�y, we exhibit simulator
S which sends Zi = gzi for random zi on behalf of each session i = (P, cid),
hence it can predict its outputs in case of active attacks, but if two honest
parties are passively connected S picks a random key AEK (which it uses to
emulate secure channel communication) while FcbSC picks channel binder EMS
independently at random. Since in the protocol AEK and EMS are derived via
KDF from HS = H(K) for K = gzi∗zj , computing this value given passively
observed values Zi = gzi and Zj = gzj is related to breaking Di�e-Hellman. By
hybridizing over all sessions, and guessing the identity of a passively connected
counterparty and the H query which computes the key, it is possible that one
could base security on a standard computational DH assumption, albeit with
very loose security reduction. Instead, we show a tight reduction to the gap
version of the Square DH assumption (which is equivalent to Gap CDH). The
reduction embeds a randomization of a single SqDH challenge into all Zi values,
and uses the DDH oracle to detect hash queries H(K) for K = DH(Z ′

i, Z
′
j) into

which it can either embed a chosen key HS, if one of Z ′
i, Z

′
j is adversarial, or

16

which it can map to the SqDH challenge, if both Z ′
i and Z ′

j come from honest
parties.

5 Post-Handshake Authentication

In this Section we provide a model for post-handshake authentication (PHA),
that is, a secure channel that allows for later public key authentication of the
channel endpoints after already establishing the (unautenticated) channel. As a
side product, we will prove security of �real-world� TLS-EA. Namely, we demon-
strate that Exported Authenticators is a secure post-handshake authentication
protocol.

5.1 Post-Handshake Authentication Model

Figure 8 shows a UC model FPHA for post-handshake authentication, which
allows establishing an unauthenticated secure channel between any two parties,
and then performing subsequent authentication of that channel with public keys.
On a very high level, FPHA provides the following guarantees:

� Unforgeability: Eve cannot authenticate to Bob under Alice's public key;
� Channel binding: Eve cannot authenticate (even with her own keys) on
channels that she is not an endpoint of.

An honest walk-through. We exemplarily describe channel establishment
and authentication for two parties C and S, with C authenticating to S. We ask
the reader to ignore �elds mode, ak, ske of FPHA for the sake of this walk-through;
an explanation of these special �elds follows further below.
FPHA inherits [C.1] all channel interfaces of FcbSC, but without channel binder

CB, imlementing secure but unauthenticated channels. Both C and S call
NewSession of FPHA to establish a channel. Let us assume that the adversary
decides to connect their requests. Both parties receive a Finalize noti�cation
and learn the channel identi�er cidC/cidS under which the other endpoint knows
the channel. We note however that neither C nor S learn with whom they ac-
tually got connected. The established channel can be used to send messages
securely.

To tell his peer on channel cidC who he is actually connected to, C �rst
generates a key by querying FPHA with (KeyGen, kid, ε, ε, std), resulting in
output (key, kid, ε, ε, ε, pk) with [G.1] adversarially-chosen but [G.2] fresh pk.
kid denotes a non-secret identi�er which helps C managing her public keys. ε
denotes an empty string � these �elds are only used in a special mode of FPHA

called transportable key mode (mode = tk, see explanation further below). For
this walkthrough, we use standard key generation (mode = std). FPHA adds
pk to [G.3] lists pkReg and pkey[C]. pkReg contains all public keys generated
through FPHA (in any mode). pkey[C] is a list containing all standard public

17

The functionality talks to arbitrarily many parties P = {P,P ′, ...} and to the adversary A. It maintains
lists pkReg (all registered public keys), pkComp (all compromised keys), pkey[pid] (standard public keys
generated by party pid), keReg (all key envelopes) and an array tkey[aux, h] associating transportable
keys with handle h and auxiliary information aux.

Channel establishment and Use

[C.1] NewSession, Attack, Connect, Send, Deliver, and ExpireSession, as in FcbSC,
Figure 6, but without gray parts.

Key Generation and Corruption

On (KeyGen, kid, ak, aux, mode) from pid ∈ P ∪ {A}:
[G.1] Send (KeyGen, kid, pid, aux, mode) to A and receive back (kid, ske, pk).
[G.2] If (pid ̸= A ∧ pk ∈ pkReg), or if (mode = tk ∧ ske ∈ keReg) then abort;
[G.3] Else,

• If mode = std then add pk to pkey[pid];
• If mode = tk then set tkey[ak, ske]← (aux, pk);
• Add pk to pkReg, and if pid = A then also add pk to pkComp;
• Finally, output (key, kid, ak, ske, aux, pk) to party pid.

On (Compromise,P) from A (requires permission from Z):
� Add pkey[P] to pkComp.

On (GetAuxData, ak, ske) from pid ∈ P ∪ {A}:
[T.1] If pid = A then parse (∗, pk)← tkey[ak, ske] and add pk to pkComp;
[T.2] Output tkey[ak, ske] to pid;

Active Attack

On (ActiveAttack,P, cid, ssid, ctx∗, pk∗) from A
[A.1] If ∃ record (session,P, cid, role) marked att, or ∃ record (session,P, cid, role) marked

conn(P ′, cid′) with P ′ corrupt, then do:
• If pk∗ /∈ pkReg \ pkComp then record (Auth, ε, ε,P, cid, ssid, ctx∗, pk∗).

[A.2] Output (AuthSend, cid′, ssid) to P ′.

Unilateral Public-Key Authentication

On (AuthSend,P ′, cid, ssid, ctx, ak, ske, pk, mode) from P:
[S.1] If mode = tk and tkey[ak, ske] is not de�ned then send (ssid, ak, ske) to A and receive back

activation;
[S.2] If ∃ record (session,P, cid, role) marked conn(P ′, cid′) then initialize b← 0 and:

• If mode = std and [S.2.1] pk ∈ pkey[P] then set b← 1;
• If mode = tk and tkey[ak, ske] = (∗, pk′) then set pk← pk′ and b← 1.
• If b = 1 then record (Auth,P, cid,P ′, cid′, ssid, ctx, pk)

[S.3] Send (AuthSend,P,P ′, cid, ssid, ctx, pk, mode, b) to A and receive back activation.
[S.4] Output (AuthSend, cid′, ssid) to P ′.

On (AuthVerify, cid′, ssid, ctx, pk) from P ′

[V.1] Send (AuthVerify,P ′, cid′, ssid, ctx, pk) to A and receive back �ag f .
[V.2] If f = 1 and ∃ record (Auth, ∗, ∗,P ′, cid′, ssid, ctx, pk) then b← 1 else b← 0;
[V.3] Send (AuthVerify, cid′, ssid, b) to P ′.

Fig. 8: FPHA model for post-handshake authentication, which allows for public
key authentication on an already existing unauthenticated channel. FPHA o�ers
mode = std key generation as used by, e.g., EA, as well as transportable-key mode
tk, which makes FPHA a useful modular building block for, e.g., TLS-OPAQUE.
For brevity we omit the overall session identi�er from all interfaces.

18

keys that C generated through FPHA, and which C can use for authenticating
on her channels.

Now that C has created pk, C wants to use pk to authenticate to S on
channel cidC . To do so, C queries (AuthSend, S, cidC , ssid, ctx, ε, ε, pk, std). ctx
denotes optional auxiliary public context information that C wants to transmit
alongside the authentication request. If [S.2.1] C is allowed to authenticate under
pk, FPHA records (Auth, C, cidC , S, cidS , ssid, ctx, pk), representing the fact that
C successfully performed authentication under pk in this channel. FPHA then
informs the adversary about the authentication attempt, including all its data
and whether authentication was successful (the bit b).

To receive the result of C's authentication, the receiver S has to choose a
public key and a context for veri�cation. This data is contributed by S via inter-
face AuthVerify, allowing applications to actively choose under which public
key and context veri�cation should be performed. Hence, we assume these public
values to be transmitted by the application. In case the veri�er wants to perform
veri�cation under the same pk and ctx that C performed the authentication with,
FPHA [V.2] outputs success.

Transportable key mode. FPHA as described above binds usage of pk to S,
the party who generated pk via interface KeyGen. This is however not realistic
in dynamic settings, where, e.g., S transfers her keys to another machine in en-
crypted form. A concrete example is OPAQUE, where secret keys are encrypted
and the resulting envelopes are sent to the server, who then stores them. In
order to enable a modular analysis of such �key-handling� protocols, we intro-
duce the notion of transportable keys to the UC framework, and to our FPHA.
When generating a transportable key by querying (KeyGen, kid, ak, aux, tk), a
party provides a key identi�er kid, an application key ak and an optional la-
bel aux. FPHA keeps the application key secret but [G.1] leaks all other values
to the adversary. The requesting party then receives back [G.1] adversarially-
generated key envelope ske and public key pk. One can think of these values
as ske being an encryption of sk belonging to pk, encrypted symmetrically with
key ak. FPHA stores (aux, pk) in tkey[ak, ske]. The semantics of the tkey array are
as follows: whoever provides input i, where tkey[i] = (aux, pk), can authenticate
under pk (see below), and [T.2] retrieve label aux and public key pk via interface
GetAuxData. Hence, knowledge of both application key ak and envelope ske
will be su�cient to authenticate under pk. Since the requesting party outputs
ske, ske can be used by applications which require secret keys to be objects that
can be sent around, stored, further encrypted etc.

To authenticate with transportable keys, S calls AuthSend with inputs
ak, ske and mode = tk. In case [S.1] ak, ske are not known to FPHA (i.e., tkey[ak, ske]
does not store any pk), no security is guaranteed and the adversary obtains
ak, ske. FPHA then [S.2] checks again whether tkey[ak, ske] stores pk, and if so, it
grants authentication by creating the corresponding Auth record including pk,
and noti�es the adversary about the authentication attempt, including all its
data and whether authentication was successful (bit b). We note that the double

19

check of tkey[ak, ske] is necessary since the adversary could have registered ak, ske
in between both checks.

Adversarial interfaces. The adversary A can register both std and tk keys
via interface KeyGen. FPHA adds such compromised keys to set pkComp. For
transportable keys ak, ske, the adversary can also reveal which public key they
�work for�, by querying (GetAuxData, ak, ske). FPHA returns [T.2] (aux, pk) =
tkey[ak, ske] (or ⊥ if empty) and [T.1] adds pk to pkComp, accounting for A now
knowing transportable keys for pk. Altogether, in pkComp we �nd all keys gener-
ated in any mode by FPHA that are compromised: the adversary can authenticate
with these keys (as well as unknown keys /∈ pkReg) on his channels [A.1] using
the ActiveAttack interface. A can always make authentication fail by [V.1-2]

sending f = 0 in its AuthVerify query to FPHA. Regarding leakage, A learns
all inputs of AuthSend except for uncompromised transportable keys ak, ske,
as well as public veri�cation values pk, ctx. With such a strong adversary, FPHA

guarantees that an authentication mechanism does not rely on the secrecy of
messages.

On usage of party identifiers. Our modeling of PHA, just as our modeling
of unauthenticated channels in Section 4, does not provide any initial guarantees
about the identity of a peer. Hence, throughout this paper, party identi�ers are
interpreted only as process identi�ers. For example, pid could be a unique com-
bination of IP address and port, and we make only the minimal assumption that
it is always the same process sending from this addresses' port. Consequently,
party identi�ers are used by functionalities only to determine which messages
were generated by the same process. In protocol instructions, sending a message
requires speci�cation of an intended recipient, and hence we add the intended
recipient to input AuthSend of FPHA. However, since our modeling of unau-
thenticated channels is weak in the sense that parties are oblivious of which
process (i.e., which pid) their channel actually got connected to, the intended
recipient might not coincide with the process holding the other end of the chan-
nel. By this we capture an authentication-less setting with a network adversary
who is freely rerouting/rewriting messages. Consequently, FPHA overlooks any
mismatch in a party's perception and instead bases authentication decisions for
a speci�c channel and pk solely on whether an endpoint (=pid) is eligible to
authenticate under pk.

5.2 The Exported Authenticators Protocol

The EA protocol that we consider for our analysis is depicted in Figure 9. It
generalizes Exported Authenticators as speci�ed in 2 in several aspects:

1. ΠEA abstracts from the channel establishment and can provide post-handshake
authentication for any �handshake� protocol that securely instantiates FcbSC

2. ΠEA works with standard signature keys and transportable keys (see below),
which enable ΠEA to use key material provided by an application

3. ΠEA does not hash messages before signing/mac'ing

20

C public parameters: PRF, λ, lblMK,clt, lblHSC,clt, sid S
SIG = (KG,PKGen,Sign,Vfy),MAC = (Gen,Mac,Vfy)

Channel creation

On input (NewSession, cidC , S, clt) On input (NewSession, cidS , C, srv)

-(NewSession, cidC , S, clt) �(NewSession, cidS , C, srv)

FcbSC

sid

�(Finalize, cidC , cidS , clt,EMS) -(Finalize, cidS , cidC , srv,EMS)

MKC = PRF(EMS, lblMK,clt) /* MAC Key Client */
HSCC = PRF(EMS, lblHSC,clt) /* Handshake Context C */

On input (Send, ·, ·) or (ExpireSession, ·) forward this query to FcbSC.
On output (Received, ·, ·) from FcbSC output this query.

Key generation and retrieval of auxiliary data from transportable keys (can be called by any party)

On input (KeyGen, kid, ak, aux, mode) with mode ∈ {std, tk} On input (GetAuxData, ak, ske)

(pk, sk)← KG(1λ), (ak, ske)← (ε, ε) parse (nonce, ae)← ske

If mode = tk then k ← H(ak, nonce), (aux, sk)← ADeck(ae)

nonce← {0, 1}λ, k ← H(ak|nonce), ae← AEnck(aux, sk) pk← PKGen(sk)

ske← (nonce, ae), erase sk, k Output (aux, pk)

Output (key, kid, ak, ske, pk)

Unilateral public-key authentication (exemplarily for C-to-S authentication)

On input (AuthSend, S, cidC , ssid, ctx, ak, ske, pk, mode)
Get cidS from output (Finalize, cidC , cidS , ∗, ∗)
If mode = tk then

parse (nonce, ae)← ske, k ← H(ak, nonce), (aux, sk)← ADeck(ae)

If mode = std retrieve sk associated with
pk
m← (HSCC , ssid, ctx)
σ ← Signsk(m), mac← MacMKC (m,σ) -ssid, cidS , σ,mac

Output (AuthSend, cidS , ssid)

On input (AuthVerify, cidS , ssid, ctx, pk)
m′ ← (HSCC , ssid, ctx)

If SIG.Vfypk(σ,m
′) = 1 and MAC.VfyMKC

(mac, (m′, σ)) = 1

then output (AuthVerify, cidS , ssid, 1)
else output (AuthVerify, cidS , ssid, 0)

Fig. 9: Protocol ΠEA is a unidirectional post-handshake authentication of chan-
nel binder EMS provided by hybrid functionality FcbSC. We depict a C-to-S
authentication �ow with either std key mode or transportable key mode tk .
For brevity we omit the functionality's identi�er sid from all queries and mes-
sages.

21

4. ΠEA sends messages in the clear instead of sending them over the channel-
to-authenticate

5. Public key and context are veri�cation is provided by the application instead
of being sent by the authenticator

6. Fields EACert and extensions ext are subsumed in the ctx object, about which
no further assumptions are made

In ΠEA, parties can establish channels by calling FcbSC. If the channel is
�nalized, the endpoints share a unique channel binder EMS (cf. Section 4 for
details). The endpoints, let's call them C and S, then derive transcript digest
and MAC keys MKC ,MKS ,HSCC ,HSCS from EMS. We note that this is the
only place in this paper where the roles clt, srv have an e�ect: these are
roles that parties have in some application, such as TLS, and they help us
here to derive di�erent digest and MAC key for C and S from public labels
lblMK,clt, lblMK,srv, lblHSC,clt, lblHSC,srv that re�ect these roles.

ΠEA is a multi-party protocol that allows arbitrary parties to establish chan-
nels with each other, allows unlimited generation of keys and unlimited numbers
of unilateral authentication sessions per channel. We exemplarily describe such
an authentication performed by C for a channel with S as depicted in Figure 9.
We start with standard signing keys and for now ignore the gray parts of the
�gure. Upon input (KeyGen, kid, ak, aux, std), C generates a key pair (sk, pk)
by running the key generation of the signature scheme (values ak, aux are ig-
nored in normal mode), and outputs pk to the application. When C wants to
authenticate on her channel cidC , she looks up

10 identi�er cidS in the Finalize
output of FcbSC, and signs message (HSCC , ssid, ctx) with sk, where ssid is the EA
nonce and ctx is the EACert �eld (containing identity information such as, e.g.,
a certi�cate) that C wants to convey. Then C macs the message together with
the signature under mac key MKC . C then sends all values to S, who accepts or
rejects depending on whether signature and mac verify for HSCC ,MKC that S
computes from channel binder EMS for her channel cidS .

Instantiating transportable keys. A transportable key is a protected secret
key, also called envelope throughout the paper. One can think of an envelope as,
e.g., an encryption of the secret key. ΠEA allows parties to export such envelopes
to the application. Since this way envelopes can �travel� to other parties who
can then attempt to extract the secret key from them, transportable keys can be
used by any party who possesses both the envelope and whatever is required to
unlock the secret key from it. A transportable key requires a signature key pair
(pk, sk)← KG(1λ). Then, an encryption key k is generated as k ← H(ak, nonce),
where ak is an application key, and H hashes to the key space of a symmetric ci-
pher. The envelope is then ske← (nonce, ae), where ae is an encryption of aux, sk
under k, for auxiliar information (e.g., a label) aux. Obviously, the application

10 We assume C to learn this information as otherwise, when sending messages over
plain connections, we would have no mean of informing S which channel the authen-
tication is intended for. This can be avoided by instead sending messages over the
secure channel.

22

key ak is enough to decrypt sk from envelope ske. Hence, the authentication
step in ΠEA can alternatively be conducted by an authenticator C running on
inputs ak, ske, pk (cf. gray parts in Figure 9): before signing and mac'ing, C �rst
recovers sk from ak, ske.

This concludes our description of ΠEA, and we are ready to state its security.
We refer to the full version [15] for the formal de�nitions of the cryptographic
assumptions within the Theorem and for the full proof.

Theorem 2 (Security of ΠEA). Protocol ΠEA depicted in Figure 9 UC-emulates
functionality FPHA in the (FRO,FcbSC)-hybrid model, PRF is both a secure PRF
and a collision-resistant hash function, with H modeled as random oracle, (KG,
PKGen,Sign,Vfy) a perfectly complete and EUF-CMA-secure signature scheme,
MAC is perfectly complete and EUF-CMA-secure MAC, and (AEnc,ADec) a
CUF-CCA- and RKR-secure encryption scheme that is equivocable, and restric-
tion to static malicious corruptions and adaptive server compromise.

There are 6 discrepancies described above between ΠEA and EA as described
in Section 2. As already argued in Section 1, (4) does not void security, and
neither does hashing (3). (1),(2),(5),(6) are strict generalizations of the Exported
Authenticators protocol. Hence, the security of TLS-EA follows from the security
of ΠEA, with FcbSC instantiated with the TLS-HS through the standard UC
composition theorem [11].

Corollary 1. Protocol TLS-EA speci�ed in Section 2 securely realizes FPHA.

6 Security of TLS-OPAQUE

6.1 Password-based post-handshake authentication

We give a model FpwPHA for password-based post-handshake authentication in
Figure 10. On a high level, FpwPHA guarantees the following:

� Limitation to one guess per online attack: Each run of the protocol
reveals at most one bit of information about the opponent's password to
each participant;

� Resistance to o�ine attacks: Dictionary attacks on passwords are pre-
vented unless a server is compromised;

� Resistance to precomputation attack: An attacker cannot speed up dic-
tionary attacks through computation performed prior to server compromise;

� Enable rate limiting: Servers can map login attempts to registered user
accounts;

� Channel binding: One cannot authenticate (even with correct password)
on channels one is not an endpoint of;

We explain how the functionality can be used by a client C and server S
to �rst establish an unauthenticated channel, and then subsequently authen-
ticate to each other using a password (client) and password �le (server). We

23

The functionality talks to arbitrarily many parties P = {P,P ′, ...} and to the adversary A. It maintains counters
ctr[P, uid] initially set to 0.
Channel establishment and Use

NewSession, Attack, Connect, Send, Deliver, and ExpireSession, as in FcbSC, Figure 6, but without gray
parts.

Password Registration, Compromise, and O�ine Dictionary Attack

On (StorePwdFile, ssid,P, uid, pw,) from P ′:
[F.1] If ∄ record (Store,P, ssid, ·, ·), record (Store,P, ssid, uid, pw) and send (Store,P ′, ssid,P, uid) to A.

On (StorePwdComplete,P∗, ssid) from A:
[C.1] If ∃ record (Store, ∗, ssid, uid, pw) but ∄ record (file,P∗, uid, ·) then record (file,P∗, uid, pw) and mark

it uncompromised.

On (StealPwdFile,P, uid) from A (requires permission from Z):
[S.1] If ∄ record (file,P, uid, pw), return �no �le� to A;
[S.2] Else mark this record compromised and return ��le stolen�.

On (OfflTestPwd,P, uid, pw′) from A (requires permission from Z):
[O.1] If ∃ record (file,P, uid, pw) marked compromised then return �correct guess� if pw = pw′ and �wrong

guess� if pw ̸= pw′.

Active Attacks
On (ActiveAttack, ssid′,P, cid, uid) from A:
[A.1] If ∃ record (session,P, cid) marked att, or if ∃ record (session,P ′, cid′) marked conn(P, cid) where P ′ is

corrupted, then create record (pwAuth, ssid′,A, ε,P, cid, uid, ε, init, 0)
[A.2] Output (pwInit, ssid′, cid, uid) to P.

On (TestPwd,P, uid, pw′) from A:
[T.1] If ∃ record (file,P, uid, pw) and ctr[P, uid] > 0 then do:

[T.1.1] If pw = pw′ then return �correct guess� and rewrite init to match in all records
(pwAuth, ∗,A, ε,P, ∗, uid, ε, init, 0);

[T.1.2] If pw ̸= pw′ then return �wrong guess�;
[T.1.2] Set ctr[P, uid]−−.

On (Impersonate, ssid′,P, uid, pw∗) from A:
[Im.1] If pw∗ = ε and ∃ record (file,P, uid, pw′) marked compromised and record

(pwAuth, ssid′, ∗, ∗,A, ε, uid, pw, init, 0), if pw = pw′ overwrite init with match and reply with �cor-
rect guess�, otherwise overwrite init with fail and reply with �wrong guess�;

[Im.2] If pw∗ ̸= ε and ∃ record (pwAuth, ssid′, ∗, ∗,A, ε, uid, pw, init, 0), if pw = pw∗ then overwrite init with
match and reply with �correct guess�, otherwise overwrite init with fail and reply with �wrong guess�.

Asymmetric Password Authentication
On (pwInit,P ′′, cid, ssid′, uid, pw) from P ∈ P:
[In.1] Drop the query if it is not the �rst one for ssid′;
[In.2] Send (pwInit,P,P ′′, cid, ssid′, uid) to A and receive back (pwInit,P,P ′′, cid, ssid′, uid, ok);
[In.3] If ∃ record (session,P, cid) marked att, create record (pwAuth, ssid′,P, cid,A, ε, uid, pw, init, 0), set
P ′′ ← A;

[In.4] If ∃ record (session,P, cid) marked conn(P ′, cid′) create record
(pwAuth, ssid′,P, cid,P ′, cid′, uid, pw, init, 0), set P ′′ ← P ′, cid← cid′;

[In.5] Output (pwInit, cid, ssid′, uid) to P ′′

On (pwProceed, ssid′) from P:
[P.1] Send (pwProceed,P, cid, ssid′, uid) to A;
[P.2] If ∃ record (pwAuth, ssid′,A, ε,P, ∗, uid, ε, init, 0) then set ctr[P, uid] + +;
[P.3] If ∃ records (pwAuth, ssid′, ∗, ∗,P, ∗, uid, pw, init, 0) with pw ̸= ε and (file,P, uid, pw′), then overwrite

init with match if pw = pw′ and with fail otherwise.

On (pwDeliver, ssid′,P, b) from A
[D.1] If b = 0 output (pwDecision, ssid′, fail) to P.
[D.2] Find record (pwAuth, ssid′,P ′, ∗,P ′′, ∗, ∗, ∗, state, ctr) with P = P ′′ or P = P ′′, otherwise drop query;
[D.3] Rewrite state from init to fail, then set result = state and ctr + +; if ctr = 2 overwrite state with

completed in the record;
[D.4] Output (pwDecision, ssid′, result) to P.

Fig. 10: FpwPHA model of password-based post-handshake authentication, again
omitting session identi�er sid.

24

emphasize how FpwPHA enforces the above guarantees alongside our explanation.
To start, the client registers [F.1] with the server by storing some password-
dependent information (called password �le), under some user name uid. This
results in FpwPHA registering that a �le with uid, pw was stored at S, by [C.1]

installing record file. This process can be stopped by the adversary by not
sending StorePwdComplete, allowing analysis of protocols with interactive
registration phase and without guaranteed delivery of messages.

Parties C and S can establish an unauthenticated channel by calling FpwPHA's
NewSession interface. See Sec. 4 or description of FPHA in Sec. 5.1 for more
details. We note that registration and channel establishment do not rely on each
other and can thus be performed in arbitrary order.

Having concluded registration and channel establishment, parties connected
via a channel can now authenticate to each other using password (client) and
�le (server). Password authentication is always initialized by the client calling
pwInit with credential uid, pw. The client also speci�es the channel to authen-
ticate, cidC , and intended recipient S. Similar to our modeling of EA, FpwPHA

ignores intended recipients and instead [In.4] refers to (session, ∗, ∗) records to
�gure out who the end points of a channel are. Assuming that C's channel cidC
is with S, FpwPHA [In.4] stores a record (pwAuth, ssid, C, cidC , S, cidS , uid, pw,
init, 0) and [In.5] noti�es S of the authentication session, the channel and the
uid, where disclosure of the uid enables rate-limiting. This record re�ects ini-
tiator and responder roles by order of mention. Having been noti�ed, S can now
either accept or decline to participate by calling pwProceed for said session. An
application can hence apply rate-limiting policies, such as �at most 5 authentica-
tion attempts for uid per minutes� by calling pwProceed in a policy-conforming
way. pwProceed will only move authentication forward [P.3] if there is a �le
stored for S and uid: if the password in that �le matches pw, then the state of
the pwAuth record is rewritten to match, otherwise it is rewritten to fail. It
is instructive to see that FpwPHA bases this decision on password data held by
corresponding channel endpoints [In.4], ensuring that authentication can only be
successful for parties sharing a channel (channel binding). Finally, FpwPHA cre-
ates adversarially-scheduled (via interface pwDeliver) outputs [D.4] re�ecting
the state of the pwAuth record [D.2-3], namely fail or match, towards both C
and S, notifying them about the outcome of authentication. As soon as two out-
puts are delivered, FpwPHA [D.3] marks a record as completed, which concludes
the authentication �ow.

Adversarial interfaces. FpwPHA has a very simple leakage pattern - all in-
puts are public except for passwords (see messages to A in [F.1],[In.2] and [P.1]).
To account for interactive protocols, we let adversary A acknowledge all hon-
est inputs ([C.1],[In.1] and [P.1]), modeling Denial-of-Service attacks at di�erent
stages of the execution, and we let A make any authentication session fail [D.1].
StealPwdFile,OfflTestPwd and Impersonate model adaptive compro-
mise of server's password �les. If the attacker wants to compromise a �le, say,
for uid stored at server S, it informs FpwPHA by sending (StealPwdFile, S, uid).
FpwPHA [S.2] marks the corresponding �le as compromised, which �unlocks� in-

25

terfaces OfflTestPwd and Impersonate (resistance to o�ine attacks): A
can now make unlimited password guesses against the �le via OfflTestPwd
[O.1], and it can use the �le to actively play the role of the honest server S
in authentication sessions described above, using (Impersonate, ssid, S, uid, ε)
[Im.1]. We capture the ability of the attacker of compute its own password �les
by an optional input pw to Impersonate. If this input [Im.2] is set, A is spec-
ifying which password it wants to use for �le creation. A can only mount such
attacks on an attacked channel, which is enforced by FpwPHA by [In.3] checking
whether the attacked client a channel that is �agged att. If so, FpwPHA creates
[In.3] a pwAuth record with A as server and follows the procedure of honest
authentication, except that it expects A to use an Impersonate query instead
of pwProceed. This concludes already the description of active attacks that
FpwPHA allows to mount against a client. We further note that FpwPHA features
a strong OfflTestPwd interface since it enforces resistance to precompu-
tation attacks [18]: FpwPHA does not allow to pre-register guesses11 and obtain
a batched reply upon �le compromise. Further, as common for asymmetric pass-
word authentication models, server compromise constitutes a form of corruption,
which requires permission from the environment Z, and hence StealPwdFile
and OfflTestPwd can only be queried by A upon being instructed by Z.

ActiveAttack and TestPwd interfaces allow an adversary to actively at-
tack server S, guessing which password was used to generate a �le. A initializes
such attack by calling ActiveAttack, specifying S, uid. FpwPHA initializes the
[A.1] corresponding pwAuth record with A in client role and [A.2] noti�es the
server. A can postpone the password guess, allowing analysis of protocols such
as TLS-OPAQUE, where the attacker is not committed to a password guess
from the very beginning of the attack. We complement the ActiveAttack
interface with interface TestPwd, with inputs S, uid and password guess pw.
Since cracking a password �le of S, uid results in the insecurity of all ongoing
and future authentication session with S, uid, interface TestPwd is not session-
based but �le-based, and a successful guess results in all ongoing active attacks
against this �le being successful (i.e., FpwPHA [T.1.1] rewrites the correspond-
ing pwAuth records to match). To make sure that the number of adversarial
TestPwd queries does not exceed the number of active attacks against a speci�c
�le, i.e., to ensure limitation to one guess per online attack, we let FpwPHA

maintain a counter ctr[S, uid] for every �le ([P.2],[T.1] and [T.1.2]), indicating the
remaining password guesses that A can issue against the �le for uid.

On registration and authentication. Typically, user registration will assume some
form of authenticated channels for the user and servers to identify each other.
This authentication can take many forms from PKI to physical rendezvous. How-
ever, we do not force authentication into the model so it can also support, for
example, anonymous settings where no authentication, or one-way authentica-

11 As a real-world example of an attack that is excluded by FpwPHA, imagine an adver-
sary preparing a list of hashed password guesses and, upon compromise, searching
this list for a match. See [14] for a �non-strong� aPAKE functionality allowing for
such attacks.

26

tion, is deemed su�cient. We stress that besides optional authentication during
registration, our modeling (and TLS-OPAQUE in particular) is �password-only"
where the user is not assumed to carry any information other than the password.

6.2 A UC version of TLS-OPAQUE

We now give a modular representation of TLS-OPAQUE in Figure 12, called
ΠTLS−OPAQUE, which allows for asymmetric password authentication on an unau-
thenticated channel. ΠTLS−OPAQUE is a UC protocol where parties issue calls to
one instance of each functionality FPHA for PHA, and FOPRF for an oblivious
pseudorandom function (OPRF), (see the full version [15] for details on OPRFs).

In a nutshell, parties use the OPRF to turn their passwords into an applica-
tion key rw. During registration, rw is used to generate a key pair at FPHA, of
which the server stores the public key. To authenticate, a client then recomputes
rw from pw, then uses rw to recover (pk, sk) from FPHA, and subsequently au-
thenticates to the server using sk and the public-key authentication interface of
FPHA. The �ow is depicted in Figure 11. It is important to note that, due to our
modular modeling, the client never actually sees the key pair (pk, sk), because
FPHA never gives out actual keys. However, FPHA has the option to bootstrap
key generation from any string, in our case the PRF value rw. Since the client
can recover rw from only a password, it can, during authentication, re-claim the
key pair at FPHA from only pw. This concept of transportable keys in FPHA was
explained in more detail in the previous section, and it is the central tool that
allows us to abstract the public-key building block of TLS-OPAQUE, i.e., write
TLS-OPAQUE modularly with calls to FPHA.

Fig. 11: Flows of TLS-OPAQUE using calls to hybrid functionalities FOPRF and
FPHA. Left: registration and channel establishment. Right: password authenti-
cation of the unautenticated channel. Note that the key pair (pk, sk) is implicit
in FPHA and is never seen by P. It is generated and can be re-claimed from the
application key rw.

ΠTLS−OPAQUE consists of three phases: registration, channel establishment
and asymmetric password authentication.

27

Registration: If client C with username uidC and password pwC wants to
register with server S, then C initiates by sending uidC to S. S then creates a
(normal) public key pkS at FPHA and sends it to C. Both parties engage in an
OPRF protocol, where S plays the server role on random key K and C evaluates
rw = PRFK,S||uid(pwC). Finally C then generates a transportable key at FPHA

with application key ak = rw and aux = pkS , receiving back ske, pkC , C sends
ske, pkC to S and erases her memory, and S stores (uidC , ske, pkS , pkC) as the
password �le.

Channel Establishment: C and S establish an unauthenticated channel as
in Figure 9. If establishment goes unattacked, the channel is established between
C and S, but both parties are oblivious of whether they actually got connected
to the intended process. From their point of view, they might be connected to
the adversary, or to a di�erent honest process.

Password Authentication: In order to establish some knowledge about the
counterparty in their channel, a party can initiate a password authentication. In
our example, C initiates such authentication on his channel cidC , with username
uidC and password pwC . On a high level, both C and S will now each perform
one public-key authentication, where S uses pkS stored in the password �le,
and C uses key material contained in the envelope ske that S piggy-backs to
his own authentication �ow using the ctx �eld of FPHA's interface AuthSend.
To authenticate with public keys, both parties invoke FPHA. S, using �normal�
public key pkS to authenticate, invokes it in std mode. C, who receives ske
from S, recovers application key rw = PRFK,S||uid(pwC) by engaging with S
in one PRF evaluation of FOPRF with session identi�er sid = S||uid. C then
starts an authentication using transportable keys rw, ske. Both parties piggy-
back the OPRF transcript values a′, b′ to their authentication �ows using ctx
�elds of FPHA. If C sees a successful authentication under public key pkS , which
C retrieves as auxiliary data from ske using FPHA interface GetAuxData, then
C outputs success, else it outputs failure. If S sees a successful authentication
under pkC from the password �le, C outputs success, else C outputs failure.
Due to the guarantees of FPHA, both parties can only output success if they are
connected to each other, and if S has a password �le that corresponds to pwC

entered by C.

ΠEA generalizes TLS-OPAQUE as speci�ed in Section 2 in several aspects:

1. ΠTLS−OPAQUE abstracts from the exact secure channel with post-handshake
public-key authentication and can provide post-handshake password authen-
tication based on any protocol that securely instantiates FPHA

2. ΠTLS−OPAQUE sends messages in the clear instead of sending them over the
channel-to-authenticate

3. ΠTLS−OPAQUE abstracts from the underlying OPRF protocol and can be in-
stantiated with any OPRF that securely realizes FOPRF.

We are now ready to state the security of TLS-OPAQUE. We refer to the
full version [15] for the de�nition of FOPRF and the full proof.

28

C public parameters: λ S

Registration phase (creating a password �le)

On input
(StorePwdFile, ssid, S, uidC , pwC)
Ignore if not the �rst for the pair S, uidC -ssid, uidC choose fresh kid′, set sid← S||uidC

(KeyGen, kid′, std)→ FPHA

set sid← S||uidC (key, kid′, ε, ε, pkS)← FPHA

FOPRF ← (Eval, sid, ssid, S, pwC) (Init, sid)→ FOPRF

FOPRF → (Tr, sid, ssid, a) -ssid, a
(SndrComplete, sid, ssid, a)→ FOPRF

�ssid, pkS , b (Tr, sid, ssid, b)← FOPRF

FOPRF ← (Finalize, sid, ssid, b)

FOPRF → (Eval, sid, ssid, rw)

choose fresh kid

FPHA ← (KeyGen, kid, rw, pkS , tk)

FPHA → (key, kid, rw, ske, pkS , pkC) -ssid, ske, pkC if no �le (uidC , ...) stored yet then

erase memory store (uidC , ske, pkS , pkC)

On input (pwInit, S, cidC , ssid
′, uidC , pwC)

Get cidS from output
(Finalize, cidC , cidS , ∗, ∗)
set sid← S||uidC
FOPRF ← (Eval, sid, ssid′, S, pwC)

FOPRF → (Tr, sid, ssid′, a′) -ssid′, cidS , uidC , a
′

Output (pwInit, cidS , ssid
′, uidC)

On input (pwProceed, ssid′)
ignore if 0 or multiple (pwInit, ∗, ssid′, ∗)
outputs
retrieve �le (uidC , ske, pkS , pkC)

�(AuthSend, ssid
′, cidC) �(AuthSend, C, cidS , ssid

′, (uidC , a
′), ε, ε, pkS , std)FPHA

(SndrComplete, sid, ssid′, a′)→ FOPRF

FOPRF ← (Finalize, sid, ssid′, b′) � ske, b′ (Tr, sid, ssid′, b′)← FOPRF

FOPRF → (Eval, sid, ssid′, rw)

FPHA ← (GetAuxData, rw, ske)

FPHA → (pkS , pkC)

FPHA ← (AuthVerify, cidC , ssid
′, (uidC , a

′), pkS)

FPHA → (AuthVerify, cidC , ssid
′, d′)

ssid′′ ← ssid′||ssid∗, ssid∗ ← {0, 1}λ

-(AuthSend, S, cidC , ssid
′′, (ske, b′), rw, ske, ε, tk) -(AuthSend, ssid′′, cidS)FPHA

parse ssid′′ = ssid′||∗, else ignore
(AuthVerify, cidS , ssid

′, (ske, b′), pkC)→
FPHA

(AuthVerify, cidS , ssid
′′, d′′)← FPHA

If d′ = 0 output (pwDecision, ssid′, fail) If d′′ = 0 output (pwDecision, ssid′, fail)
Else output (pwDecision, ssid′, match) Else output (pwDecision, ssid′, match)

Fig. 12: Protocol ΠTLS−OPAQUE, using channel and public-key authentication fa-
cilities provided by FPHA. We exemplarily show C registering a password with
S, and subsequent authentication of a channel between C, providing a clear-
text password, and S, using the data stored at registration. ε denotes the empty
string. For brevity we omit handling of NewSession, Send and ExpireSession
inputs, which are simply relayed to FPHA. We also omit the identi�ers with which
FPHA and FOPRF are called. An application can simply set those to be, e.g.,
tls-opaque_pha and tls-opaque_oprf.

29

Theorem 3 (Security of ΠTLS−OPAQUE). Protocol ΠTLS−OPAQUE (Figure 12)
UC-emulates functionality FpwPHA in the (FPHA,FOPRF)-hybrid model with re-
spect to static malicious corruptions and adaptive server compromise.

Corollary 2. Protocol TLS-OPAQUE speci�ed in Section 2 securely realizes
FpwPHA.

The corollary follows from instantiating FPHA with ΠEA (Thm. 2) using the UC
composition theorem [11], where in turn FcbSC is instantiated with the TLS 1.3
protocol snippet from Figure 7 (Thm. 1), and FOPRF instantiated with 2HashDH
[15]

References

1. Facebook stored hundreds of millions of passwords in
plain text, https://www.theverge.com/2019/3/21/18275837/

facebook-plain-text-password-storage-hundreds-millions-users. 2019.
2. Google stored some passwords in plain text for four-

teen years, https://www.theverge.com/2019/5/21/18634842/

google-passwords-plain-text-g-suite-fourteen-years. 2019.
3. N. Asokan, Valtteri Niemi, and Kaisa Nyberg. Man-in-the-middle in tunnelled au-

thentication protocols. In Security Protocols, 11th International Workshop, Cam-
bridge, UK, volume 3364 of LNCS, pages 28�41. Springer, 2003.

4. Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Veri�ed models and
reference implementations for the TLS 1.3 standard candidate. In IEEE Symposium
on Security and Privacy, pages 483�502. IEEE Computer Society, 2017.

5. Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Alfredo
Pironti, and Pierre-Yves Strub. Triple handshakes and cookie cutters: Breaking
and �xing authentication over TLS. In IEEE Symposium on Security and Privacy,
pages 98�113. IEEE Computer Society, 2014.

6. Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and Alfredo Pironti. Veri�ed
contributive channel bindings for compound authentication. In NDSS, 2015.

7. Karthikeyan Bhargavan and Gaëtan Leurent. Transcript collision attacks: Breaking
authentication in tls, ike and ssh. In 23rd Annual Network and Distributed System
Security Symposium, NDSS, 2016.

8. Bruno Blanchet. An e�cient cryptographic protocol veri�er based on prolog rules.
In IEEE Computer Security Foundations Workshop CSFW-14, pages 82�96. IEEE
Computer Society, 2001.

9. D. Bourdrez, H. Krawczyk, K. Lewi, and C. Wood. The OPAQUE Asym-
metric PAKE Protocol, draft-irtf-cfrg-opaque, https://tools.ietf.org/id/

draft-irtf-cfrg-opaque, July 2022.
10. Chris Brzuska and Håkon Jacobsen. A Modular Security Analysis of EAP and

IEEE 802.11. In PKC'2017. Cryptology ePrint Archive, Paper 2017/253, 2017.
11. Ran Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In IEEE Symposium on Foundations of Computer Science � FOCS 2001,
pages 136�145. IEEE, 2001.

12. Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange
and secure channels. In EUROCRYPT, pages 337�351. Springer, 2002.

30

https://www.theverge.com/2019/3/21/18275837/facebook-plain-text-password-storage-hundreds-millions-users
https://www.theverge.com/2019/3/21/18275837/facebook-plain-text-password-storage-hundreds-millions-users
https://www.theverge.com/2019/5/21/18634842/google-passwords-plain-text-g-suite-fourteen-years
https://www.theverge.com/2019/5/21/18634842/google-passwords-plain-text-g-suite-fourteen-years
https://tools.ietf.org/id/draft-irtf-cfrg-opaque
https://tools.ietf.org/id/draft-irtf-cfrg-opaque

13. Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. Automated
analysis and veri�cation of TLS 1.3: 0-rtt, resumption and delayed authentication.
In IEEE Symposium on Security and Privacy, pages 470�485. IEEE Computer
Society, 2016.

14. Craig Gentry, Philip MacKenzie, and Zul�kar Ramzan. A method for making
password-based key exchange resilient to server compromise. In Advances in Cryp-
tology � CRYPTO 2006, pages 142�159. Springer, 2006.

15. Julia Hesse, Stanislaw Jarecki, and Hugo Krawczyk. Password-authenticated tls
via opaque and post-handshake authentication. Cryptology ePrint Archive, Report
2023/220, 2023. https://ia.cr/2023/220.

16. J. Hodges, J. C. Jones, M. B. Jones, A. Kumar, and E. Lundberg. Web Authen-
tication: An API for accessing Public Key Credentials Level 2, https://www.w3.
org/TR/webauthn-2/, August 2021.

17. Jonathan Hoyland. An analysis of TLS 1.3 and its use in composite protocols. PhD
thesis, RHUL, Egham, UK, 2018.

18. Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: an asymmetric PAKE
protocol secure against pre-computation attacks. In EUROCRYPT, pages 456�486.
Springer, 2018.

19. H. Krawczyk. The OPAQUE Asymmetric PAKE Protocol,
draft-krawczyk-cfrg-opaque-06, https://www.ietf.org/archive/id/

draft-krawczyk-cfrg-opaque-06.txt, June 2020.
20. Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme.

In CRYPTO, pages 631�648, 2010.
21. Hugo Krawczyk. Unilateral-to-mutual authentication compiler for key exchange

(with applications to client authentication in tls 1.3). In ACM CCS 2016, 2016.
22. Marsh Ray and S Dispensa. Authentication gap in tls renegotiation, 2009.
23. E. Rescorla. The transport layer security (TLS) protocol version 1.3, rfc 8446,

August 2018. http://www.rfc-editor.org/rfc/rfc8446.txt.
24. Martin Rex. Mitm attack on delayed tls-client auth through renegotiation, Novem-

ber 2009.
25. Joseph Salowey and Eric Rescorla. Tls renegotiation vulnerability, 2009.
26. N. Sullivan. Exported Authenticators in TLS, RFC 9261, https://datatracker.

ietf.org/doc/html/rfc9261, July 2022.
27. N. Sullivan, H. Krawczyk, O. Friel, and R. Barnes. OPAQUE with TLS

1.3, draft-sullivan-tls-opaque-01, https://datatracker.ietf.org/doc/html/

draft-sullivan-tls-opaque, February 2021.

31

https://ia.cr/2023/220
https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://www.ietf.org/archive/id/draft-krawczyk-cfrg-opaque-06.txt
https://www.ietf.org/archive/id/draft-krawczyk-cfrg-opaque-06.txt
http://www.rfc-editor.org/rfc/rfc8446.txt
https://datatracker.ietf.org/doc/html/rfc9261
https://datatracker.ietf.org/doc/html/rfc9261
https://datatracker.ietf.org/doc/html/draft-sullivan-tls-opaque
https://datatracker.ietf.org/doc/html/draft-sullivan-tls-opaque

	Password-Authenticated TLS via OPAQUE and Post-Handshake Authentication

