Efficient FHEW Bootstrapping with Small
Evaluation Keys, and Applications to Threshold
Homomorphic Encryption

YOIlgWOO Leel[0000_0001_9424_6498], Daniele Miccianc102[0000_0003_3323‘9985],
Andrey Kiml[0000700027097476787], Rakyong ChOil[0000700027616678173], Maxim

Deryabin1[0000*0002*6761*3667], Jieun EOHII[0000700027101072698], DOIlghOOH
YOOl[0000—0001—6997—2658]

! Samsung Advanced Institute of Technology, Suwon, Republic of Korea
{yw0803.1lee, andrey.kim, rakyong.choi, max.deriabin,
jieun.eom}@samsung.com, donghoon.yoo@desilo.ai
2 University of California, San Diego, USA
daniele@cs.ucsd.edu

Abstract. There are two competing approaches to bootstrap the FHEW
fully homomorphic encryption scheme (Ducas and Micciancio, Euro-
crypt 2015) and its variants: the original AP/FHEW method, which sup-
ports arbitrary secret key distributions, and the improved GINX/TFHE
method, which uses much smaller evaluation keys, but is directly appli-
cable only to binary secret keys, restricting the scheme’s applicability.

In this paper, we present a new bootstrapping procedure for FHEW-
like encryption schemes that achieves the best features of both methods:
support for arbitrary secret key distributions at no additional runtime
costs, while using small evaluation keys. (Support for arbitrary secret
keys is critical in a number of important applications, like threshold and
some multi-key homomorphic encryption schemes.) As an added benefit,
our new bootstrapping procedure results in smaller noise growth than
both AP and GINX, regardless of the key distribution.

Our improvements are both theoretically significant (offering asymptotic
savings, up to a O(logn) multiplicative factor, either on the running time
or public evaluation key size), and practically relevant. For example, for
a concrete 128-bit target security level, we show how to decrease the eval-
uation key size of the best previously known scheme by more than 30%,
while also slightly reducing the running time. We demonstrate the prac-
ticality of the proposed methods by building a prototype implementation
within the PALISADE/OpenFHE open-source homomorphic encryption
library. We provide optimized parameter sets and implementation results
showing that the proposed algorithm has the best performance among
all known FHEW bootstrapping methods in terms of runtime and key
size. We illustrate the benefits of our method by sketching a simple con-
struction of threshold homomorphic encryption based on FHEW.

Keywords: Automorphism, Blind Rotation, Bootstrapping, Fully Ho-
momorphic Encryption (FHE), Threshold Homomorphic Encryption.

2 Y. Lee et al.

1 Introduction

The FHEW fully homomorphic encryption scheme [24] and its TFHE variant [21]
are the best-known methods to perform bit-level homomorphic computations on
encrypted data. There are two competing approaches to bootstrap FHEW-like
Fully Homomorphic Encryption (FHE) schemes 21, 24, 38]: the AP bootstrap-
ping method (originally proposed by Alperin-Sheriff and Peikert [2] and effi-
ciently instantiated in the ring setting by the FHEW cryptosystem [24]), and
the GINX method (originally proposed by Gama et al. [26] and adapted to the
ring setting by the TFHE scheme [21].) A detailed comparison between the two
methods is presented in [38], which concludes that the AP/FHEW method |2, 24]
is faster when LWE (Learning With Errors) secret keys follow the Gaussian (or
uniform) distribution, while the (ring) GINX/TFHE method [21, 26] has the lead
for the special case of binary LWE secret keys. For the crossover point of ternary
keys, [38] still recommends GINX bootstrapping due to its much lower memory
(bootstrapping key) requirements. Very recently, [8, 30] further improved GINX
bootstrapping for ternary secrets by reducing the computation by half. (In our
comparison, we refer to this optimized scheme as GINX*.) Besides the smaller
running times, a big attraction of using GINX bootstrapping (with binary or
ternary keys, as implemented by [21, 38]) is its lower memory footprint, which
is substantially smaller than the AP method.

Efficiency aside, the use of secret keys with large entries is still interesting
for both theoretical and practical reasons. On the theoretical side, the foun-
dation of lattice cryptography only offers solid support for Gaussian keys with
relatively large entries, of the order of O(y/n) [35, 43], where n is the secret
vector dimension serving as a security parameter. The use of smaller keys (e.g.,
with binary coefficients) has also received a substantial amount of theoretical
attention [11, 13, 27, 32, 36, 37]. However, the current state of the art, provided
by [36]%, only shows that LWE with binary secrets can be proved as hard as
standard LWE (with uniform or gaussian secrets) at the cost of increasing the
secret dimension by a factor O(log ¢) and the error rate by a factor O(y/n). So,
motivated by practical considerations (limiting error growth during homomor-
phic computation, and the efficient implementation of GINX bootstrapping),
these theoretical results supporting binary secrets are typically ignored, and pa-
rameters are set based on the best currently known attacks.* For fairness, this is
also the approach followed in this paper when comparing our work to previous
schemes that benefit from the use of binary secrets.

A more compelling motivation to use larger secret keys in practice is offered
by threshold (lattice-based, homomorphic) encryption [4, 6]. Threshold cryptog-

3 The more recent work [11] provides more general results for arbitrary “entropic”
distributions, but does not improve the reduction for binary secrets.

4 This has become quite common for uniformly random binary secrets, and their use
is now included in practical tools, like the lattice estimator of [1]. However, for
extreme parameter settings (e.g., sparse keys or a very large number of samples),
using binary keys is still a source of concern, as they weaken the security of the LWE
problem [3, 18], and their use is generally discouraged.

Efficient FHEW Bootstrapping and Applications to Threshold HE 3

raphy offers a method to distribute a secret key s among a set of participants,
say Pi,..., Py, each holding a share s; of the secret key, in such a way that they
can collaboratively decrypt messages. Still, if a subset of parties is corrupted
and their secret shares s; are made available to an adversary, ciphertexts retain
their security. So, threshold cryptography eliminates the single point of failure
associated with the secret key and ensures that encrypted data remains secure
unless collaboratively decrypted by all parties.

The use of threshold cryptography is particularly attractive in the setting of
homomorphic computation, as it requires modifications only to the key genera-
tion and decryption procedures. A threshold encryption scheme still has a single
public key p (under which all messages can be encrypted by different parties) and
evaluation key (used to perform homomorphic computations on ciphertexts.) In
other words, applications of threshold Homomorphic Encryption (HE) support
the same, simple workflow of standard (single party) HE: all data owners en-
crypt their data under a single public key p, and send their encrypted data to
a single server that securely performs the encrypted computation, leading to a
final encrypted result. Only at this point, the protocol requires interaction with
multiple decryption servers (each holding a secret share s;) to recover the fi-
nal result. So, by only increasing the cost of decryption (and only by a modest
amount, see below), threshold cryptography guarantees the security of all data
(encrypted under a common public key p), even against the servers holding the
decryption key (as long as they are not all corrupted.®)

Lattices (and the LWE problem) provide a very convenient setting to imple-
ment threshold cryptography, as the public key (p ~ a - s) is defined as a (noisy)
linear function of the secret key s, for a random, publicly known value a. (See
next section for a more formal definition of the LWE function.) So, distributed
(shared) key generation can be easily implemented by having each party choose
a local public-secret key pair (p; = a - $;,8;) individually (without any interac-
tion), and then setting the public key to the sum p = p; + - - + pi of the local
public keys. It is immediate to see that this is a valid public key corresponding
to the secret key s = s1 + -+ - + s implicitly shared by all parties. In fact, this
is how keys are generated in [6] (using uniformly random s;) and [4] (using an
arbitrary LWE key generation algorithm for each s;.) Decryption can also easily
be implemented® by decrypting a ciphertext ¢ using the individual secret key
shares and then adding up the partial decryptions. So, key generation and de-
cryption are minimally interactive.” We remark that the threshold schemes [4, 6]
predate FHEW-like HE ([6] does not explicitly provide any homomorphic com-
putation capability, and [4] is a BGV-type encryption scheme.) However, the

5 As standard in HE, we consider security against passive adversaries, in which case
the security threshold can be set to k — 1.

5 This requires some care, adding noise to the partial decryptions to avoid information
leakage, as already done in [4, 6]. In this paper, we focus on the distributed key
generation and homomorphic computation stages, which are the most relevant to
FHE bootstrapping.

" HE also requires the generation of public evaluation keys, which introduces some
additional complications, and is discussed below.

4 Y. Lee et al.

same principles apply to virtually any LWE-based encryption scheme, including
those considered in this paper. Now comes a critical observation: even if the
local key shares s; have binary coefficients, their sum s (used by homomorphic
computations and bootstrapping) is no longer binary and has coefficients poten-
tially as large as k, the number of parties participating in the shared decryption
protocol. Depending on the application, this number can be quite high, requir-
ing similarly large secret keys. (E.g., see [17] for an application of lattice-based
threshold (additively) HE with as many as 1000 parties.)

The FHEW-like cryptosystems with either AP or GINX bootstrapping are
the most attractive methods for bit-level homomorphic computations.® But when
ported to the threshold cryptography setting (with its correspondingly larger
secrets), FHEW-like encryption presents the user with a difficult choice between

— the AP bootstrapping method of [2, 24], with its fast performance (essentially
independent of the secret key size) but very large evaluation keys, and

— the GINX bootstrapping method and its variants [21, 26, 29, 38|, with much
smaller evaluation keys, but substantially larger running time due to the use
of large secret keys.

A related class of applications to “multi-key HE” is discussed later on. So, one
may ask the question: is it possible to design a bootstrapping procedure that
offers the advantages of both methods, i.e., fast bootstrapping with arbitrarily
distributed secret keys and small public evaluation keys?

1.1 Our results

We answer the above question in the affirmative, designing a new bootstrapping
procedure that supports the use of arbitrary secret key distributions without
any performance penalty (similar to AP/FHEW bootstrapping) while keeping
the attractive small size of GINX/TFHE bootstrapping keys. In fact, we even
improve upon the performance of the best previously known scheme (with binary
secrets), both in terms of key size and running time. For example, for the simple
case of a (single user) gate bootstrapping operation at a 128-bit target security
level, we improve upon previous schemes by reducing the evaluation key size
by 30% (from 20MB to 14MB) while also slightly reducing the running time.
(See Section 5 for details.) The impact of our bootstrapping method becomes
significant with larger keys or a moderately large number of threshold decryption
servers. Our method offers the additional advantage of reducing the amount of
noise introduced during bootstrapping, even for the case of binary keys that are
the most favorable to GINX so far. The improvements over previous methods
are both theoretical (reducing either the running time or memory requirement of
previous bootstrapping procedure by factors as high as O(logn), depending on
the size of the secret keys/threshold group size), and practical. We verified our

8 Other methods oriented towards arithmetics on integer or approximations to
real/complex numbers like [12, 19] offer advantages for a complementary set of ap-
plications, but are not within the scope of our paper.

Efficient FHEW Bootstrapping and Applications to Threshold HE 5

theoretical results and the practicality of the proposed method with experiments,
performed using a prototype implementation within the PALISADE /OpenFHE
open-source homomorphic encryption library [5, 41].

1.2 Techniques

The main operation underlying both AP and GINX bootstrapping is the evalu-
ation of a so-called “blind rotation”. This operation takes some polynomial f; as
an input and “rotates” it by some value encrypted within a given LWE ciphertext
(@=(agy...,an—1),) using secret key § = (sg,...,Sn—1). (See Section 2 for
more details.)

Starting with the encryption RLWE(fy) of a polynomial fy, previous blind
rotation algorithms work as follows: at step 4, given an encryption RLWE(f;_1) of
a polynomial f;_1(X) = fo . X 25<i-1 %% homomorphically compute RLWE(f;)
of an updated polynomial f; = fj_1 - X' = f - X2=i<i %% using a publicly
known constant «; (part of the input LWE ciphertext) and an encryption® E(s;)
of a secret key coordinate s;. After repeating this step n times, we obtain the
encryption of RLWE(fy - X (%), which is a negacyclic rotation of fy by (d,5)
positions. The difference between the two bootstrapping procedures is that

— AP works by including in the evaluation key encryptions E(« - s;) for all
possible values of o and then using «; as a selector to pick one of them. This
allows using arbitrary keys s; with no impact on the running time, but also
requires large evaluation keys due to the need to store multiple encryptions
E(a - s;) for every secret key element s;.1°

— GINX on the other hand works by assuming s; € {0,1} is a single bit, and
using F(s;) as a selector between the original ciphertext RLWE(f;—1) and
a modified one RLWE(f;_; - X*i), using a homomorphic “MUX” gate. This
only requires a single encryption E(s;) for each key element, but it is directly
applicable only to binary secrets. Larger secrets can be handled in a number
of ways, but not without a cost either in terms of key size or computation
time. For example, [38] shows how to handle k-bit secrets by increasing both
the evaluation key size and the bootstrapping running time, each by a factor
k. A different tradeoff is given in [29], which incurs a smaller increase in
running time (for small values of k) but at the cost of increasing the key
size by an exponential factor 2¥ — 1. Both methods also result in higher
bootstrapping noise.

In this paper, we present new techniques and optimizations to perform blind
rotations using ring automorphisms and key switching. In its most basic form,
the idea is the following: given RLWE(f;—1(X)), one can first apply a ring au-

9 Under a typically different scheme E(-), used when generating the evaluation key.
10 The method also offers storage memory trade-offs, decomposing a into a sequence
of smaller “digits”, but the same remarks apply.

6 Y. Lee et al.

tormorphsim!! V1/a,(-) where ¥,(h) := h(X?). This gives an encryption of
fi—1(a™1). Next, we homomorphically multiply the ciphertext by X*i, to get an
encryption of fi_1(a™!) - X*. Finally, we apply the ring automorphism ¢, (*)
to get an encryption of f;_1(X)- X% After repeating this process n times, we
obtain the encryption of RLWE(fy - X (%),

The idea of using automorphisms is not new. For example, it was already
used in a different context by Halevi and Shoup [28] to implement linear transfor-
mations and permutation networks in the (BGV-based) HElib library. Directly
related to our use is the work of Bonnoron et al. (following a suggestion of Mic-
ciancio [7, Footnote 6]), which first used automorphisms to reduce the key size
of a variant of the FHEW cryptosystem, in a way that is essentially the same
as in the basic algorithm presented in our paper, but with some crucial techni-
cal differences. Specifically, in [7] the method is applied to the product of two
cyclic polynomial rings of prime order, while we apply it to a single power-of-two
cyclotomic ring, which is more practical but also more challenging. In fact, in
prime-order cyclic rings, automorphisms), exist for any (nontrivial) value of «,
making their application in [7] rather strightforward. However, in the power-of-
two cyclotomic setting (as used by FHEW and our paper), automorphisms
exist only for odd values of a, and we need to develop new techniques to deal
(efficiently) with even values of a. It should also be noted that [7] investigates a
nontrivial extension of FHEW (to large gates with multi-bit inputs and outputs),
resulting in much higher running times. By comparison, our work focuses on the
simpler setting of homomorphic computations with small (binary) gates, and
uses several algorithmic ideas which make the application of the automorphisms
based method more practical and efficient than [7].

The basic algorithm based on automorphisms can be improved in a number
of ways. For example, as already mentioned in [7], automorphisms from different
steps can be composed together and replaced by a single automorphism. Other
optimizations, specific to our paper, revolve around the technical difficulty that
in a power-of-two cyclotomic automorphisms v, exist only for odd coefficients
while bootstrapping requires multiplication by both even and odd values of «.
Moreover, the resulting methods require a substantial number of “automorphism
keys”, to perform the required key switching after each application of ,. We
further improve the performance of the algorithm by introducing a new blind
rotation strategy that reorders the secret key elements si,...,s,. Instead of
iterating over the s; (homomorphically multiplying by s;), and the applying
automorphism v, /o, , at each step, we iteratively apply a fixed automorphism
¥y (Where g generates a large subgroup Z7). This alone produces rotations f -
X9 for all possible values of ¢* € Zy. Then, we intersperse the homomorphic
multiplications by the secret key elements s; when ¢’ is the correct value of

a;. The final result is RLWE(fo - X<a’§7) as desired, but using only a single
automorphism key corresponding to the generator g. Notice how our proposed

1 The automorphism v, alone maps an encryption under z(X) to an encryption under
modified key z(X*?). Then, key-switching is used to turn this into an encryption
under the original key z(X).

Efficient FHEW Bootstrapping and Applications to Threshold HE 7

method is applicable to arbitrary keys, and its performance is independent of
the range of the secret coordinates s;.

The possibility of reducing the key size by reordering the operations is one
of the ideas already suggested in |7, Appendix F]|, but without filling in many
important technical implementation details, and offering only a heuristic esti-
mate of the potential memory savings. Fully developing the idea into a concrete
algorithm, and providing a rigorous performance analysis as well as an imple-
mentation and experimental evaluation, is one of the main contributions of our
work. In fact, in the intuitive explanation of the technique given above we omit-
ted several important technicalities:

— The coefficients «; are arbitrary integers in Z,, while automorphisms exist
only for invertible o € Zj.

— The multiplicative group Zj is not cyclic, but factors as the product of two
groups of size ¢/4 and 2.

— In order to run over all of Z, the automorphism g needs to be applied
O(q) times, but we would like the computation to take only O(n) steps,
independently of q.

The algorithms presented in our paper address all these difficulties and introduce
further optimizations, which we analyze both in terms of worst-case and average-
case complexity. As a result, our final algorithm achieves the best performance
among all the known blind rotation techniques for FHEW-like cryptosystems
both in terms of running time and key size.

Remark 1. In practice, one can use Torus LWE or other similar structures over
Ring LWE as demonstrated in [21]. To compare all bootstrapping methods ob-
served in the same environment, we will use only Ring LWE in this paper fol-
lowing [38]. We note that it is straightforward to apply Torus LWE to each of
the observed methods as it has shown in [21] for GINX.

1.3 Applications to Threshold and Multi-key FHE

As described earlier, the linear properties of LWE allow to easily build threshold
public-key encryption schemes: each party locally generates a key pair p; = a-s;,
and the public key p = p; + -+ + px can be set to the sum of the individual
public keys. Things are more complex for threshold FHE. This is because, beside
a public encryption key p, one needs to generate an evaluation key, which is es-
sentially an encryption E,(s) of the secret key s = 51 +-- - + s, under the public
key p. Naturally, this can be done using generic techniques from secure multi-
party computation, with each party holding s; as a local input, and common
input p. However, this would not be quite practical. In fact, [4] gives special-
ized protocols to compute the evaluation key, but the method is specific to the
BGYV encryption scheme underlying their protocol. So, an interesting question
is if a similar specialized evaluation key generation protocol can be designed
for the threshold version of FHEW-like HE schemes. We observe that this is
indeed possible, again using the linear homomorphic properties of lattice-based

8 Y. Lee et al.

encryption. Specifically, after generating the global public key p, parties can
encrypt their own secret shares E,(s;) under it. Since all the shares are en-
crypted under a common public key, they can be added up, resulting in a HE
> Ep(si) = Ep(X; si) = Ep(s) of the global secret key.!?

Our blind rotation techniques also require the generation of switching keys
to be used in conjunction with the ring automorphisms ,. Again, a specialized
distributed key generation algorithm can be built using the linearity of LWE en-
cryption and the automorphisms. More in detail, in order to apply the automor-
phism 1, to a ciphertext, one needs to generate an encryption of the permuted
secret key E,(1),(s)). Using the linearity of 1, this can be achieved by hav-
ing each party computing the encryption E,(1,(s;)) of a permuted key share,
and then combining these ciphertexts into), Ey(va(si)) = Ep(D,; %a(si)) =
E,(4a(>2;5i)) = Ep(¥a(s)). The difference with standard (non-threshold) key
generation, is that when the evaluation key is computed by a single party, the
switching key E,(1,(s)) can be computed using a more efficient (and less noisy)
private key version of LWE encryption E(t,(s)). Here, in order to distribute the
computation among parties that only have shares s; of the secret key, encryption
is performed using the common public key p.

Another potential application of our techniques is Multi-Key HE. This is
a generalization of HE where messages can be encrypted under independently
generated public keys p1,...,px, and still allow to perform joint computations
on them. Naturally, decrypting the final result requires knowledge of all relevant
secret keys si,..., k. So, this is similar to threshold encryption, but with the
difference that pq,...,pr are not combined in advance into a single public key
p, and the set of keys can be chosen dynamically. GSW-based (e.g., FHEW-like)
multi-key HE schemes were proposed in a sequence of works [14, 16, 23, 40, 42].
These schemes typically work by combining ciphertexts encrypted under different
keys into a “multi-ciphertext”, corresponding to the concatenation of the keys.
Since the secret (decryption) key is also a concatenation, if the individual keys s;
are binary (as is the case for example in [16]), their concatenation is also binary,
and one can make direct use of the efficient GINX bootstrapping for binary keys.
However, these concatenated “multi-ciphertexts” are much longer than simple
RLWE encryption, and the cost of bootstrapping (compared to the single key
setting) is even higher than GINX with large keys. (Specifically, it grows linearly
with the number of parties, rather than logarithmically.) Recently, [45] have
proposed a multi-key HE scheme with compact ciphertexts. Interestingly, this
compact scheme combines the individual secret keys by taking their sum. So,
it requires an efficient bootstrapping method with non-binary keys. Similar to
the threshold encryption setting, our techniques can be applied to speed up
bootstrapping while keeping a small evaluation key.

12 Calculation of >, Ep(si) proposed in this paper is done by the products of RGSW
ciphertexts encrypting secret shares (see Section 6.)

Efficient FHEW Bootstrapping and Applications to Threshold HE 9

1.4 Other Important Related Works

Besides bootstrapping of FHEW /TFHE, blind rotation is a useful tool to evalu-
ate arbitrary functions in HE. For example, the Cheon-Kim-Kim-Song (CKKS)
scheme [19] is efficient in the evaluation of complex numbers, but it only supports
addition and multiplication. Thus, the ReLLU and comparison functions, which
are important components of neural networks, are evaluated using blind rota-
tion in [9, 22, 33, 34] as they are not represented as polynomials in real numbers.
Also, a generalized bootstrapping for all the RLWE-based HE schemes includ-
ing CKKS, Brakerski-Gentry-Vaikuntanathan(BGV) [12], and Brakerski/Fan-
Vercauteren (BFV) [10, 25], was proposed using blind rotation in [30].

1.5 Organization

The rest of the paper is organized as follows. The basic lattice-based HE and the
previous blind rotation techniques are presented in Section 2. In Section 3, a new
blind rotation algorithm and its variants are proposed. The theoretical analysis
and comparison to prior works are given in Section 4 and the implementation
results are given in Section 5. In Section 6, a threshold HE scheme based on
our proposed blind rotation is described as a possible application. Finally, we
conclude with remarks in Section 7.

2 Preliminaries

Let N be a power of two. We denote the 2N-th cyclotomic ring by R :=
Z[X]/(XN + 1) and its quotient ring by R = R/QR. Ring elements in R
are indicated in bold, e.g. @ = a(X). For two vectors @ and l_;, we denote their
inner product by (d@, 5) We denote a vector of ones of length n by 1,,. All log-
arithms are base 2 unless otherwise indicated. We write the floor, ceiling and
round functions as |-|, [-] and |-], respectively. For ¢ € Z and g > 1, we identify
the ring Z, with [—¢/2,q/2) as the representative interval, and for € Z we
denote the centered remainder of modulo ¢ by [z] g € Zq- We extend these
notations to elements of R by applying them coefficient-wise. We use a <+ S
to denote uniform sampling from the set S. We denote sampling according to a
distribution x by a <+ x.

2.1 Basic Lattice-based Encryption

For positive integers ¢ and n, basic LWE encryption of m € Z, under the secret
key 5 <= Xxey is defined as

LWE, s(m) = (@, 8) = (&, —(@,5) + e+ m) € ZJ*,

where @ < Zg and error e < Xerr- We occasionally drop subscripts ¢ and §
when they are obvious from the context.

10 Y. Lee et al.

For a positive integer) and a power of two N, basic RLWE encryption of
m € R under the secret key z < Xxey is defined as

RLWEg . (m) := (a,—a -z + e+ m) € R},

where a < Rq, and e; < Xerr for each coefficient e; of e where ¢ € [0, N —1].
As with LWE, we will occasionally drop subscripts @ and z.

We say that (to,---,tq,—1) is a gadget decomposition of t € Rq if t =
Z?igl gi - ti where § = (go, ..., 94,~1) is a gadget vector, and ||t;|| ., < B,. We
adapt the definitions of RLWE" and RGSW from [38]. For a gadget vector g, we
define RLWE, (m) and RGSW,,(m) as follows

RLWEL (m) := (RLWE.(go - m), RLWE (g1 - m), -+ ,RLWE(ga,—1 - m)) € RY
RGSW,(m) := (RLWE’Z(Z -m), RLWE’Z(m)) c Réwd_

The scalar multiplication between an element in Rg and RLWE’ ciphertext
®: Rg x RLWE" — RLWE

is defined as

12O, RLWE/z(m) = <(t07 e 7tdg—1)7 (RLWEZ(QO : m)7 T RLWEZ(gdg—l ' m))>

dg—1 dg—1
=) t;-RIWE.(g;-m)=RIWE. [Y g;-t;-m
i=0 =0

= RLWE, (t - m) € R},

For each error e; in RLWE.(g; - m), the error after multiplication is equal to
Z?igl t, - e; which is small if ¢; and e; are small.
The multiplication between RLWE and RGSW ciphertexts

® : RLWE x RGSW — RLWE

is defined as

RLWE (m;) ® RGSW,(m2) = (a,b) ® (RLWE,(z - my), RLWE, (my))
= a ® RLWE, (z - m3y) + b ® RLWE,, (m2)
= RLWE,(a - z- m3) + RLWE (b - my)
= RLWE,(m; - mgy + €1 - mo) € Ré

This result represents an RLWE encryption of the product m; - mo with an
additional error term e; - mo. In order to have RLWE,(m) ® RGSW,(my) ~
RLWE, (m - my), it is necessary to make the error term e; - mso small. This can
be achieved by using monomials my = +XV as messages. The multiplication
between RLWE ® RGSW is naturally extended to RGSW,(m;) ® RGSW,(my) ~
RGSWz (m1 . mg).

Efficient FHEW Bootstrapping and Applications to Threshold HE 11

Remark 2. We note that for gadget vector § = (1, By, .. .,ngil), we can ig-
nore ty without a disadvantage and reduce runtime and key size. The error

2 is error variance of a fresh ciphertext.

The error variance of Z?i;l t; - RLWE.(g; - m) = RLWE, (Zfi;l gi-t; - m) is

. . B2
introduced by © is dgNl—é"a2, where o

2
(dg — 1)N%a2 + Var(to - m), where Var(7) is the variance of random variable .
Thus, it has less or equal error as long as Var(m) < o2, but saves one RLWE in
RLWE’ and one NTT in ®. This is similar to approzimate gadget decomposition
proposed in [21].

Public-key Lattice-based Encryption If an encryption of zero kaLWE =

RLWE,(0) = (a, —a-z+e) is given as a public key, then the public-key encryption
can be done as

EncfWE(m; pkRWE) .= v . pkR™WE 4 (e, m + €;) = RLWE,(m),

where v < Xxey, and eg, €1 < Xerr-
We also can find encryption of z - m without the knowledge of z by slightly
modifying the public key encryption (with the same amount of noise) as follows:

Enc’" V' (mn; pkRWE) .= v - pkRWE 4 (m + e, e1) = RLWE, (zm).
RLWE one can generate RLWE’ ciphertexts, and also can generate RGSW

Using Enc
RLWE
! under the secret z.

ciphertexts together with Enc

Key Switching in RLWE The key switching operation converts a ciphertext
RLWE,, (m) encrypted under a secret key z; to a ciphertext RLWE,,(m) en-
crypted by a new secret key z5. There are different variants of the key switching
technique and readers can refer to the literature (e.g., see [31]) for details. We
focus on the BV key switching method [15]:

— KSGen(z1, 22): Outputs swk = RLWE], (z1).
— KS,, 52, (RLWE,, (m), swk): Given RLWE,, (m) = (a, b), it outputs

RLWE.,(m) = a ©® RLWE,_(21) + (0,b) (mod Q).

RLWE’Z2(z1) generated by KSGen is a public switching key. The key switching
error is equal to the error of R ® RLWE' multiplication.

Automorphisms in RLWE In order to perform some operations in HE, we
use the automorphisms of R. There are N automorphisms ¥; : R — R given
by a(X) — a(X?) for t € Z},. We naturally extend v; to R? to apply the
automorphism on a RLWE ciphertext. Automorphisms are applied using the
following procedures which make use of a special set of switching keys ak; =
RLWEZ(X)(Z(Xt)):

12 Y. Lee et al.

— EvalAuto; (RLWE,(m), ak;): Given RLWE,(m(X)) = (a(X),b(X)) and
switching key ak;, apply ¢ to a(X) and b(X) to obtain (a(X"),b(X?")),
which is an RLWE encryption of m(X?) under the secret key z(X?). Then
apply the key switching function KS,(x+)_»(x) on the RIWE, x+)(m(X?))
ciphertext, to produce the final output ciphertext RLWE, x)(m(X")).

We note that 1 is a permutation on the coefficients of the elements of R, which
is easily calculated. ¢; does not introduce additional error as an automorphism
1y is a norm-preserving map.

2.2 FHEW-like Bootstrapping

We briefly explain FHEW-like bootstrapping for NAND gates [24, 38]. FHEW-
like NAND gate bootstrapping starts with two LWE, s ciphertexts with a small
modulus ¢ and adds them (HomNAND). After blind rotation and extraction pro-
cedures, we obtain an LWEg > encryption of the result with a higher ciphertext
modulus Q. Using a sequence of modulus and key switchings we get back to an
LWE, s ciphertext. The bootstrapping procedure is shown in Figure 1. We focus
on the blind rotation part and refer to [38] for more details on other parts of
FHEW-like bootstrapping.

‘ (B,d) = LWE4 5 (q/4 - mo) + LWEy 5 (¢/4 - ma1) ‘ blind rotatg,

RLWEq. . (f : Y“@S’) ‘ —HEet sy [IWEQ = (Q/4+ (mo Ama))| U

mod switch

[» \ LWEg,, = (Qus/4 - (mo Amy)) \ Koy swveh \ LWEq,, 5 (Que/4 - (mo Ay)) | modssitesy \ LWE, + (q/4 - (mo Acmy)) \

Fig. 1. NAND gate bootstrapping procedure of FHEW scheme [24, 38|

Blind Rotation Blind rotation is an operation that multiplies a given ring
element f € Rg by a monomial Y, where the exponent u = 8+ (&, 5) € Z, is
given by an LWE ciphertext (&, 8) € ZZI‘“ encrypted under a secret key § € Zj.
The output of the blind rotation is an RLWE encryption of f - Y™, where ¢ is
small in practice (¢ ~ 2'° in |21, 24] and ¢ ~ 2'% in [30]). The operation is
called “blind rotation” because it rotates the coefficients of f negacyclically, by
an amount v which is provided in encrypted form. A formal definition is given
below.

Definition 1 (Blind Rotation). For q|2N, let Y = X*0 . A blind rotation is
an algorithm which takes as input a ring element f € Rq, an LWE, 5 ciphertext
(@,pB) € Z;’“, and blind rotation keys brk, g corresponding to secrets z and 5,
and outputs an RLWE ciphertext

RLWEq» (- Y709 e RY,

Efficient FHEW Bootstrapping and Applications to Threshold HE 13

Two different blind rotation algorithms were proposed in [21, 24]. Following [38],
we refer to the two algorithms as “AP blind rotation” and “GINX blind rotation”
respectively, as they are optimized ring versions of two bootstrapping procedures
(for general LWE) originally proposed in [2] (AP) and [26] (GINX). Both methods
rely on the properties of RGSW ciphertexts described above.

AP Blind Rotation In AP blind rotation [2, 24|, the blind rotation keys are
generated for each element s; € Z, of the secret 5 as

brkAP = {brki,jw = RGSWZ(YUBg‘Si)}i’j,U
for i € [0,n—1], j € [0,logg (q) — 1], and v € Zp,. In the algorithm, acc is

initialized to the trivial encryption acc = RLWEq »(f - Y?) = (0, f - Y7). Then,

. : : 1 1 ,
for each ¢ € [0,n — 1], a; is decomposed in base B, as a; = ijgr(Q) o, ;B

and acc is updated sequentially for all a; ; as
acc < acc ® RGSWZ(Y'I"’»?'Bis"').

The full procedure of AP blind rotation is described in Algorithm 1.

Algorithm 1 Blind Rotation: AP [2, 24]

1: procedure BLINDROTATEAP(f, (&,), {brk; j,» = RGSW (Y Ersi)}, o)
2: acc « (0, f-Y*)
for (i =0;i <n;i=14+1) do
for (j =0;j <logg (¢);i=37+1) do
@ij = |ai/B}] (mod By)
acc - acc ® brk; ja, ;
return acc = RLIWE,(f - Y™)

AP blind rotation supports all types of secret key distributions and provides a
useful tradeoff between space and computational complexity based on the choice
of the base B, > 2. Greater B, allows performing computations faster at the
cost of storing more rotation keys, while smaller B, reduces storage overhead
but increases computational time.

GINX Blind Rotation GINX blind rotation [21, 26] is more efficient than AP
when the secret key § is set to a binary or ternary vector, but its performance
degrades when using larger secret keys [38]. In the general case, each secret key
element s; € Zg, © € [0, N —1], is expressed as subset-sum s; = lelgo_luj .
s;; where s; ; € {0,1} and U C Z, is an appropriately chosen subset of Z,.
To express arbitrary elements of Z, one can use U = {1,2,4,.. .,2]“_1}. But

one can also use U = {1} and U = {1,—1} for binary and ternary secrets,

14 Y. Lee et al.

respectively [38]. Using this notation for any fixed set U, the blind rotation key
is generated as
brk ¥ NX = {brk,; ; = RGSW,(s;)}

where i = 0,...,n—1 and j = 0,...,|U|—1. In the algorithm, acc is initiated
to acc = RIWEq . (f - Y?) = (0, f - Y?) and updated as

acc < acc + (Y4 —1) - (acc ® RGSW,(s; ;)).

If s;; = 0, the second addendum is ignored since it gives an encryption of
0 and the value stored by the accumulator stays the same. If s; ; = 1, then
acc ® RGSW,(1) is equal to acc and the accumulator is updated to Y*% - acc.
Repeating this procedure for all j € [0, |U|—1] results in Y** . acc. The full
procedure for GINX blind rotation is described in Algorithm 2.

Algorithm 2 Blind Rotation: GINX [21, 26, 38]

1: procedure BLINDROTATEGINX(f, (&, 8), {brk:; = RGSW_.(s; ;) | si =D si,ju;})
2: acc « (0, f-Y*)

3 for (1 =0;i <n;i=1i+1) do

4 for (j =0;j <|Ul;j =j+1) do

5: acc « acc + (V¥ — 1) - (acc ® brk; ;)

6: return acc = RLIWE.(f - Y¥)

It is easy to see that for the small U this procedure may be efficient in both
key size and running time. However, the running time and storage overhead grow
significantly with larger secret key distributions. GINX blind rotation is more
efficient than AP for secret keys § chosen from small distributions such as binary
or ternary secret keys; but less efficient for general key size.

There is another optimization of GINX to remove the second loop in Algo-
rithm 2 in such a way that it has about half of the computations and the same
key size and error for ternary keys. However, it is only optimized for ternary
keys [8, 30] and cannot be efficiently extended to larger keys. A variant of GINX
was proposed in [29], which is a generalization of methods in [38] and [30], how-
ever, using binary and ternary secrets is suggested as they are the most efficient.

3 New Blind Rotation Techniques

In this section, we present new blind rotation algorithms which improve on
previous methods [2, 20, 21, 24, 26, 29, 38] in terms of running time, public key
size, or both. Our algorithms update an accumulator ciphertext acc initialized
to acc = (0, f') = RLWE(f’), holding the encryption of a ring element f’
related to f, to be specified. The accumulator is updated through a sequence
of RLWE ® RGSW products, where RLWE holds the value of the accumulator
acc, and RGSW is an auxiliary ciphertext brk; holding a secret key element s;.

Efficient FHEW Bootstrapping and Applications to Threshold HE 15

Unlike previous techniques, our algorithms do not substitute multiplication in
the exponent by series of additions (i.e. RLWE ® RGSW products) but make use
of ring automorphisms 1, and their associated switching keys ak; instead.

For brevity, we first describe a core blind rotation algorithm for the case
where ¢ = 2N and all «; are odd since vy is only defined for odd ¢, and then
provide its variants and optimizations for other cases.

3.1 The Core Blind Rotation Algorithm

We recall that the goal of the algorithm is to rotate the accumulator by Y (%% =
Y2i@isi where > ; @;s; is computed modulo ¢ = 2N. For N > 8 the group
Zj is isomorphic to Zy s ® Zy with generators {g, —1} (e.g., g = 5) and every
t € Z3, can be written as +-g* where k € Zy /2. Let o; = £¢* (mod 2N) for i =
0,....n—1L.Let I ={i:o; =g’} and I, = {i:a; =—g'}, for £ € [0, N/2—1].
Using the fact that ¢/2 = 1 (mod 2N) we have the following decomposition

Do qisi = (2&1; Sj+-+g (Zjeﬁ S5j—9 (ng[(; sjtetg <ng];,/271 97)))) (mod 2N).

N/2-1

Denote brk; := RGSW, (X?%). Given an initial ciphertext acc =
RLWE? (f/(X)), we first multiply it by brk; for all j € I} then apply
automorphism EvalAuto, to acc and obtain

/2—1°

gy - 55
acc = RLWEZ (f/(Xg) . Xq GEIN 5 4 J) '

Then we multiply the accumulator by brk; for j € I /22 and again apply

automorphism EvalAuto, to acc. This process is repeated for both I,” and I j
for all { = N/2—1,...,0. However, at the (N/2)th step (i.e., after multiplication
by I;) we apply the automorphism EvalAuto_, instead of EvalAuto,, and (as
an optimization) we skip the multiplication by the set Igr . The final result is

acc — RLWE, (f/ (X*Q(N”)‘l) .XZiaiSi) .

If we set f/(X) = f(X~9)- X9, this equals acc = RLWE, (f(X) - XA (@),
During the computation, we use n keys brk; for i € [0,n — 1] and two automor-
phism keys ak, and ak_ . The algorithm performs two types of homomorphic
operations: RLWE®RGSW multiplications and key switching for automorphisms.
The number of RLWE ® RGSW multiplications is n, and the number of automor-
phisms is NV — 1. We can reduce the number of automorphisms when some of the
I gt are empty because the automorphisms between them can be composed and
replaced by a single automorphism application. However, this requires storing a
large number of automorphism keys aky . for all possible values of u. Instead,
for efficiency purposes, we store only a small number of keys {akgu}ue[l,w] for
some parameter w which we call the window size. The full algorithm is provided
in Algorithm 3. We will see in Section 4 that with a quite small window size
we can achieve essentially the same improvement as when storing keys for all V
possible automorphisms.

16 Y. Lee et al.

Algorithm 3 Core Blind Rotation Sub Algorithm for odd «;

1: procedure BLINDROTATECORE (aLcc7 &, {brki}icio 1y {2%e" buei) 7aLLLg)
2: v+ 0

3: for ¢ =N/2—-1;4>0;4=¢—1) do
4: for j €1, do

5: acc < acc ® brk;

6: vov+1

T if (I,_,#0orv=worl=1) then
8: acc < EvalAutog (acc, akgv)

9: v+ 0

10: for j € Iy do

11: acc < acc ® brk;

12: acc < EvalAuto_g4(acc,ak_g)

13: for ¢ =N/2-1;4>0;4=¢—-1) do
14: for j € Ij do

15: acc < acc ® brk;

16: vov+1

17: if (I, #0orv=worl=1)then
18: acc < EvalAutoge (acc,akgy)

19: v+ 0

20: for j € I do

21: acc < acc ® brk;

22: return acc

3.2 Dealing With Even «;

We provide several solutions to overcome the issue with even «;.

Memory Efficient Algorithm One solution is to set w; = a; — 1 if o is even
and w; = a; if o; is odd. Now we can apply the core blind rotation algorithm for
the vector & and obtain RLWE (f . XﬂHQ’g}). Then we repeatedly multiply brk;
for each even ;. This algorithm requires n/2 additional RGSW multiplications
on average. If we store one additional key brkysu, := RGSW(X ~ > si), and in
case of the number of even «; is greater than n/2, we initially multiply acc by
brkysum := RGSW(X~ 2 i), and update «; < o+ 1. This will make the number
of odd «; to be greater than half, mitigating the worst case. The full algorithm
is provided in Algorithm 4.

Computation Efficient Algorithm We can get rid of additional multiplica-
tions for even «; in the previous solution by using auxiliary blind rotation keys
brk} := RGSW(X®itsi+1) for i € [0,n — 2]. The idea is to find odd « such that
Yo sy =y ags;, where s; is either equal to s; or to s; +s;41. First, we assume
that ag is odd and set oy = ay, otherwise, we initially multiply the accumulator
by brkpsus and update a; «— «; 4+ 1. Then at each step 7, assuming (by induction)

that o} is odd, we consider two cases, depending on the parity of a;i1. If o y1

Efficient FHEW Bootstrapping and Applications to Threshold HE 17

Algorithm 4 Memory Efficient Blind Rotation Algorithm, ¢ = 2N

1: procedure BLINDRUTATEME(f, a, B, {brki}t;c(o 1] » Prnoun, {akgu } e (1) ,ak,g)
20 acc+ (0,f(X79) X9

3: if number of even «; is > n/2 then
4: acc < acc ® brkysun

5: &+ a@+1, (mod 2N)

6: for (1 =0;i <n;i=1i+1) do

7: if o; is even then

8: w; + a; —1 (mod 2N)

9: else

10: Wi <= oy

11: acc < BlindRotateCore(acc,d, {brk;}, {aksu},ak_g)
12: for (i =0;i <n;i=14+1) do

13: if «; is even then

14: acc < acc ® brk;

15: return acc = RLWE, (f(X) -X5+<&»57)

is odd, we set sj = s; and aj,; = a;;1. Otherwise, we set s; = s; + 5,41 and
balance this by setting a;_H = a4+1 — o In either case, the value of O‘;+1 is odd,
preserving the inductive hypothesis, and we may move to the next iteration. For
the last iteration we always set s,,_; = s,,—1. Note that during the process we do
not need to know the values s;, we only have the information of whether s, = s;
or s; = $; + si+1. The full algorithm is provided in Algorithm 5.

Algorithm 5 Computation Efficient Blind Rotation Algorithm, ¢ = 2N

1: procedure BLINDROTATECE(f, (a, B), {brki};c(o 1) > {bTRS }ic(0,n—2) » PTKnoum, {aKgu } e (1) 7ak_g)

2: acc + (0, f (X79) - X99)

3: if ag is even then

4: acc < acc ® brknsum

5: & <+ a@+1, (mod 2N)

6: Find odd o : >, aisi = >, as;
7: for (i =0;i <n;i=1i+1) do
8: if s; = s; then

9: brk} < brk;

10: else

11: brk} < brk}

12: acc < BlindRotateCore(acc,d’, {brk;}, {aksu},ak_g)

13: return acc = RLWE, (f(X) .Xﬁﬂaﬂ)

Case ¢ = N In FHEW-like cryptosystems [21, 24, 38|, commonly the blind
rotation input LWE ciphertext (&,) has a modulus ¢ < 2N. The use of ¢ <

18 Y. Lee et al.

Algorithm 6 Blind Rotation Algorithm, ¢ = N

1: procedure BLINDROTATEUPTIM(]’, a, B, {brki}ie[0 1] » PTKnsun, {akgyu }ue[l‘w] 7aLLg)
2: acc+ (0,f(X79) X %F)

3: acc <~ acc ® brknsun
4: d' + 2ad+1, (mod 2N)
5: acc < BlindRotateCore(acc, @', {brk;}, {aksu},ak_g4)

6: return acc = RLWE,(f(X) .XQ(ﬁ+<o77§”>))

2N helps decrease the key size of AP-style bootstrapping. The size of g affects
the decryption failure of LWE ciphertexts. However in practice, in the most
interesting case, we can achieve ¢ = N with a negligible probability of decryption
failure.

For our case we raise the modulus from N to 2N, by multiplying the cipher-
text (&, 8) by factor 2, resulting (2&, 2/3) with all even 2¢;. We initially multiply
acc by brkpguy, to make all 2a; + 1 to be odd. The full algorithm is provided in
Algorithm 6.

3.3 Improved FHEW Scheme and Removal of brk,gu,

As was mentioned in [24] we can reduce the noise and number of key switching
operations in FHEW-like bootstrapping, by swapping some operations in the
procedure in Figure 1. We start with a ciphertext with a higher modulus @
rather than ¢ and do modulus switching to ¢ right before the blind rotation.
(See Figure 2.)

‘ LWEq > (Q/4 - mo) + LWEg > (Q/4 - m1)

mod suitely 1) WEg,, = (Qxs/4 - m) __key swiveh | LWEq,_ ¢ (Qxs/4 - m) j

mod switch

[_> ‘ (B,a) = LWE, 5 (¢/4 - m) ‘ blind rotate ‘ RLWEo (f . YE+(&,§>) LUE ext.,

LWEq,= (Q/4 - (mo Amy)) ‘

Fig. 2. NAND gate bootstrapping procedure of FHEW scheme. We start from LWE, »
and switch to LWE, s before blind rotation. We refer [38] for other gates.

Here we propose a trick which we call round-to-odd to get all-odd LWE ci-
phertext during modulus reduction so that brkyg,, in Algorithm 6 becomes
unnecessary. Thus, the round-to-odd gives advantages in runtime, key size,
and noise growth regarding multiplication of brkpsy,. For ciphertext (@', 3) =
LWEg, _ (Qxs/4 - m), the modulus reduction is defined as

(L o] #]) -

We modify the rounding operation to round-to-odd, |z],,,, which returns the
nearest odd integer for the given input x. In addition, if x is closer to zero than

Efficient FHEW Bootstrapping and Applications to Threshold HE 19

Algorithm 7 Blind Rotation Algorithm with Round-to-odd Input, ¢ = 2N

1: procedure BLinDRoTATEROUNDTOODD (f,o?, B, {brki}ie[o,nfl] , {akgu }ue[1,w] 7ak,g)
> a, 3 are all odd
acc + (0, f (X79) - X 9P
3: acc < BlindRotateCore(acc, &, {brk;}, {akgu},ak_g)
4: return acc = RLWE, (f(X) - X#+(@:3)

»

any other odd number (i.e., 1), it returns zero. Then the new modulus reduction
is defined as

(a: VN -07’-‘ B = VN -5’]) — IWEsy(q/4- m),
odd odd

ka ka

which gives an LWE ciphertext of modulus 2N with all-odd coefficients. We
note that the modulus reduction error by round-to-odd is equivalent to modulus
switching to N. The blind rotation algorithm for the round-to-odd trick case is
provided in Algorithm 7

4 Analysis

In this section, we analyze our new blind rotation technique and compare it to the
prior art. We analyze blind rotation separately from the full FHEW scheme since
blind rotation is a useful tool in a number of other applications, e.g., the homo-
morphic evaluation of non-polynomial functions [33, 34] and CKKS/BGV/BFV
bootstrapping [30].

4.1 Analysis of the Number of Automorphisms

We focus on the number of automorphisms for Algorithm 3. First notice that
the number of non-empty I, lft is always at most min(NV,n) just because there are
a total of NV sets, and their union has size n, i.e., the total number of terms «;s;.
Moreover, it can be less than n if some of the s; have the same coefficient «;. We
evaluate the average number of non-empty I, @i under the standard assumption
that the LWE coefficients «; are random and independent.'® Assume without loss
of generality that all «; are odd, as enforced by our algorithms. Each fixed set I, lft
is empty if all «; do not belong to it. Since the a; are uniform and independent,
this happens with probability (1 — 1/N)" ~ e~"/N. Therefore Ilft is non-empty
with probability 1 — (1 — 1/N)" ~ 1 — e~/ and, by linearity of expectation,
the expected number of nonempty sets is N(1 — (1 — 1/N)") =~ N(1 — e~ "/N).

13 This is certainly true for freshly encrypted messages, as the o are chosen uniformly
at random by the encryption algorithm. But it is reasonable to expect this to be
true even when the ciphertext is the result of a homomorphic computation.

20 Y. Lee et al.

Counting the number of non-empty sets [Zi is useful to estimate the number
of automorphism applications performed by our algorithm because the automor-
phisms between non-empty sets are composed and replaced by a small number

of automorphisms with keys in {akgu}, el w] for a given window size w. Let k

be the number of non-empty sets Ieft, be it either min(NV,n) in the worst case, or
k=N(1- e*”/N) on average. Let vy, ..., v, be the exponents of the & automor-
phisms g¥¢ that need to be applied after each non-empty set. Write each exponent
as v; = v, +w - v where v, = v; mod w € {1,...,w — 1}, and v{ = |v[/w]. (In
case v; is a multiple of w, the v} part can be omitted altogether.) In Algorithm 3,
the v; applications of the basic automorphism g (following multiplication by the
ith set IL?'E) are replaced by one application of automorphism g”g and v} ap-
plications of automorphism ¢g*. So, the number of automorphism applications
of type g is k, for some x < k.1 In order to bound the number of applica-
tions of automorphism g%, we use the fact that the sum)", v; is bounded by
N. Therefore,), v}’ is at most Nﬂj". In summary, by storing w automorphism
keys {akgu}, e[1,w]> We can reduce the number of automorphism applications to
K+ =8 = (1 - 1/w)k + (1/w)N < (1 — 1/w)k + (1/w)N. We always have
n < N, and in the worst case, we have £ < n. So the total number of auto-
morphism applications is always bounded by (1 —1/w)n + (1/w)N. On average,
using k =~ N(1 — e /N), the expected number of automorphism applications
reduces to N(1 — (1 — 1/w) - e~™/N).

4.2 Complexity, Key Size, and Error Analysis

The comparison of computational complexity, key size, and error are given in
Table 1. In order to facilitate the comparison of all blind rotation algorithms,
we measure their time complexity in terms of the number of R ® RLWE' prod-
ucts they perform, as the cost of these operations dominates the total running
time. Each RLWE ® RGSW product requires two @ multiplications, while key
switching is performed with a single ® multiplication. So, both ® products and
key switching operations are easily expressed in terms of ® products. We note
that the operation ® can be considered as an abstraction of a basic operation
for FHEW and its torus variant TFHE [21]. Another common measure of com-
plexity used in previous works on FHEW-like HE is the number of NTT/FFT
performed by the algorithms. We note that one can easily convert the number
of ® products to the number of NTT as each ® requires precisely (d, +1) NTT
operations, where d, is the number of elements of a gadget vector. We note that
© requires dy; NTT operations if approximate gadget decomposition is used.
Similarly, we compare the memory requirement of all blind rotation algo-
rithms using the total number of RLWE’ ciphertexts required by the blind rota-
tion key. The blind rotation keys for all methods consist of several RGSW and
RLWE’ ciphertexts. In turn, each RGSW is composed of two RLWE’ ciphertexts.
For the sake of brevity, “blind rotation key size” refers to the size of both brk
and ak in this section. This can be translated into a traditional “bit size” simply

14 i will be less than k if some of the v} are 0.

Efficient FHEW Bootstrapping and Applications to Threshold HE 21

noting that each RLWE' ciphertext requires roughly 2dy N log Q-bit of space (or
2(dy — 1)N log Q-bit with approximate gadget decomposition.)

We also note that in our analysis and implementation we use approximate
gadget decomposition described in Remark 2. Approximate gadget decomposi-
tion does not introduce additional error but reduces runtime and key size for
all analyzed blind rotation techniques. One can find the counterparts for exact
gadget decomposition by simply substituting d, — 1 with d, in the equations.

We use an approach from [24, 38| to estimate the variance o2, from the
blind rotation procedure. The total error for algorithms using blind rotation such
as FHEW/TFHE bootstrapping [21, 24, 38] and amortized FHEW bootstrap-
ping [39], can be easily estimated using this value. The error variance introduced

2
by a single ® operation is equal to dyN %02, where B, and d, are parameters
for gadget decompogition used in ® multiplication. For the sake of brevity we

denote o2 = dgN%"aQ.

In AP and our algorithms, each ® is performed by RGSW encrypting the
monomial, and thus introduces an additive error with variance 2 - O’%. The au-
tomorphism operation due to key switching introduces an additive error with
variance 3. Thus the variance o2 . can be estimated as o2 multiplied by the
number of ® operations. In the GINX and GINX* variants, due to the pre-
processing of RGSW ciphertexts before ® multiplications, each ® introduces an
additive error with variance 4 - O’% and 8 - 0’%, respectively.

We note that the parameters for the FHEW scheme in Section 5 are selected
following this theoretical analysis. However, the fact that one technique has a
smaller complexity expression than another in this theoretical analysis does not
necessarily mean that it will show a better runtime in practice, because of the
use of different parameter sets required to achieve a target security level. For
example, binary GINX has the smallest expression representing the abstract
key size and runtime in this analysis. But in practice, our new blind rotation
algorithm outperforms binary GINX because of the following two reasons. First,
our blind rotation has less noise growth compared to binary GINX, allowing a
smaller parameter set to be used. Second, we can achieve the same security level
with a smaller n by using Gaussian secrets at no cost in performance.

5 Implementation

In this section, we present the implementation results of our new blind rotation
algorithm as applied to FHEW bootstrapping. For our implementation, we use
Algorithm 6 optimized by reducing the number of automorphisms, which gives
the best performance. We compare it to the AP and GINX blind rotation tech-
niques. According to the theoretical analysis presented in the previous section,
similar results will be achieved for TFHE [21] by using floating-point operations
and DFTs instead of operations over finite rings and N'T'Ts, respectively for each
discussed blind rotation technique.

22 Y. Lee et al.

Table 1. Complexity, key size, and error variance of each blind rotation technique.
Key size (# keys) is the number of RLWE’ ciphertexts, and computational complexity
(# mult) is the number of R ® RLWE’. The parameter w is a small integer, typically
a small constant independent of n. The parameter |U| depends on the secret key size
and can be as large as logn for gaussian secrets following the error distribution.

Method # keys # mult oo]0g
AP [2,24] ||2do(B, —)n| 24, (1 - B%) n | 2d, (1 - B%) n
GINX [21, 26, 38]|| 2|UJn 21U|n 4|U|n

GINX* [8, 30] 4n 2n 8n
Ours (Alg. 4) 2n+w+3 | 3n+2Ik4+ T 3n+ Lk 4+ I
Ours (Alg. 5) dn+tw+1 2n+ 2tk X poiop el Xogo
Ours (Alg. 6) 2n+w+3 2n+“’7*1/<¢+§+22n+w7*1n+§+2
Ours (Alg. 7) 2n+w+1| 2n+ 214 ¥ 2n+ 2t + X

5.1 Parameter Sets

The full procedure for FHEW bootstrapping is presented in Figure 2. Using
the unique characteristics of each blind rotation technique and the choice of se-
cret key distribution, in Table 2 we provide optimized parameter sets for FHEW
schemes with AP, GINX, and our new technique. Following to [24], we choose the
best parameters to have the smallest key size and runtime while keeping the gate
bootstrapping (NAND) failure probability below 2732, According to these crite-
ria, we propose new 128-bit secure parameter sets 128 Ours/AP, 128 tGINX,
and 128 bGINX for Ours/AP with Gaussian secrets, GINX* with ternary se-
crets, and GINX with binary secrets, respectively. For comparison purposes, Ta-
ble 2 also provides optimized parameters for AP and GINX from previous works
which have smaller security considering the latest cryptoanalysis. The security
is estimated using the lattice estimator (commit 09¢235) [1] .

Table 2. Optimized parameter sets for FHEW schemes. Error variance is 3.2 and for
TFHE, we put error variance instead of ¢ and @ as it is defined over Torus.

Parameter set key n q N Q Qxs |dg dis| Amin
128 Ours/AP |0 =3.2[458 1024 1024 2% 2M[3 21282
128 tGINX |ternary|531 2048 1024 226 214 21285
128 bGINX |binary [571 2048 1024 2%° 24 2|128.1
STD128 OPT [38][ternary[502 1024 1024 227 2M[4 2[121.0
TFHE [44] binary |630 0 = 27 1024 o0 = 2% 3 2 |115.11

Let 02, o, and o2, denote the error variances introduced by modulus
switching from @ to Qys, key switching from Z’ to §, and modulus switching from
Qxs to g, respectively. LWE, #(¢/4 - m) has the greatest noise, whose variance is

q
=25 200+
QT Qu?

(O—lfs =+ 0;351) + 01352'

Efficient FHEW Bootstrapping and Applications to Threshold HE 23

Similar to [24] we estimate

12
s T+ 5
12 7Uks*

We assume [|Z]| < y/N/2 and ||5]] < /n/2 for binary or ternary secrets [24],
and ||Z]] = vV No? and ||5]] = Vno? for Gaussian secrets. The decryption fails
when the noise of LWE, 5(q/4 - m) exceeds ¢/8, and thus the decryption failure

ﬁ)
V2¢/"

2
sI°+1
msl — 0—2Ndksvar352 = H ||12 .

probability per NAND is given by 1 — erf(

Table 3. Bootstrapping failure probability of each blind rotation method. The failure
probability of Alg. 7 is estimated for the worst case, i.e., the number of automorphism
is (1—1/w)n+ (1/w)N.

Parameter set

Alg. 7

AP GINX* GINX-binary

2—8568 2—7774

128 Ours/AP X X
128 tGINX 2—113.02 2—105456 2—93484 X
128 bGINX 2790453 2779.82 X 2779482

STD12870PT [38] 2—111.35 2—108487 2—104.38 X
TFHE [44] 2777449 2758.63 X 2758463

Table 3 provides the estimated bootstrapping failure probability 1—erf (%).

It shows that among all the existing methods, the proposed blind rotation has
the least error. As our blind rotation and AP take advantage of smaller ¢, we
replaced ¢ = 1024 in this table. In this estimate, we set w = 10.

5.2 Runtime Results

In order to provide a fair comparison of bootstrapping algorithms, we have im-
plemented all of them using identical libraries and computing environments. The
evaluation environment is PALISADE v.1.11.5 on Intel(R) Xeon(R) Gold 6240
CPU @ 2.60GHz, running Ubuntu 20.04.3 LTS. We compiled with clang 12
and the following CMake flags: NATIVE SIZE=32, WITH OPENMP=OFF,
WITH NATIVEOPT=ON.

Table 4. Timing results (average of 400, w = 10 for our method), blind rotation key
size, and failure probability for FHEW bootstrapping (NAND gate)

Parameter set |Method |Runtime [ms]|Key size [MB]||Fail. prob.
128 Ours/AP| Alg. 7 80.1 12.67 278568
128 Ours/AP| AP 127.8 776.45 27T
128 tGINX |GINX*| 89.7 40.45 9-93.84
128 bGINX | GINX 84.1 20.91 277982

24 Y. Lee et al.

I I I I
—e— Ours (Alg. 7)
"""""""" --- AP
- GINX*

GINX

120

Time, ms
—_
(e}
=

80 |- ‘\.\'_H\O—H—M

\ \ \ \ \ \ \ \
0 2 4 6 8 10 12 14 16

window size w

Fig. 3. Bootstrapping performance results of Alg. 7 method for different window sizes

Table 4 shows runtime results and blind rotation key size for NAND gate
evaluation of FHEW. We provide experimental results for different parameter
sets for binary, ternary, and Gaussian secret key distributions. This table demon-
strates that the proposed algorithm with the parameter set 128 Ours/AP has
the best performance. The impact of different window sizes is demonstrated in
Figure 5.2 where runtime results for NAND gate evaluation of FHEW are pre-
sented depending on the window size w. With w > 10, the running time of the
proposed blind rotation technique is approximately the same. This is consistent
with our complexity analysis in Section 3.

6 Applications to Threshold Homomorphic Encryption

In this section, we outline a threshold HE scheme which takes advantage of the
proposed blind rotation technique. The simple structure of our blind rotation
keys gives us an instinctive design of FHEW-like threshold HE with the approach
proposed in [4].

Following the basic concept described in Section 1.3, to enable threshold HE
using the FHEW scheme, we define the algorithms for distributed evaluation key
generation. Each participant j has the secret keys 5; for LWE encryption and z;
for RLWE encryption, where j € J and J denotes the set of participants. The
common secret keys are defined as 5, =37, ; §j and z. =} . ; 25

6.1 Distributed Generation of Evaluation Keys

The distributed generation of evaluation key for threshold version of Algorithm 3
explained in this section is naturally extended to other proposed variants by
simple modifications. We omit a description of the LWE switching key which is
not the main interest of this paper and is straightforward.

Efficient FHEW Bootstrapping and Applications to Threshold HE 25

Public Key Generation The public key for implicit secret keys z, =Y jes %
is generated by the following procedures [4].

— Each participant j € J independently generates their own secrets §; and z;.

— Given common random string a..s, each participant calculates b; = —a.cys -
zj + e; and shares them to other participants, where e; < Xerr.

— The public key is generated as pkEL‘WE = (acrs, Z]EJ b;).

Generation of Automorphism Keys The generation of automorphism keys
consists of the following two stages.

— Using the shared public key pkR"VE, cach participant generates encryptions
akj " = RLWE, (z;(X")) as

aij’f” = (EncRLWE(Bg - Z; (X9),... ,EncR"V\/E(Bg’g_1 . zj(Xi)))

for each i, where B, = (BY, By, ... 7B;l“’_l) is a gadget vector. The error for
encryption is sampled from Xgpenc, Which is a special distribution for a large
error to “smudge out” small differences in distributions [4], we denote its
variance by ¢2,... in the later analysis. Next, each participant sends aijj”'

to the computing party.
— The computing party generates automorphism keys akiThT as follows

ak/ " = "ak] " =Y RIWE, (z;(X")) = RIWE,_ (z.(X").
jeJ jeJ

Generation of Blind Rotation Keys The difference from the generation
of the automorphism keys is that the sum of components s;; is done in the
exponent. Hence, the merging is done by RGSW ® RGSW multiplications, instead
of additions.

— Each participant generates the partial encryption brk}jg”” = RGSW,_(X*®i)
for i € [0,n — 1], where s, is the i-th component of §;. We can generate the
RGSW key using the following equation:

brk}jg“” = (RLWEIZ* (z* . XSj,i), RLWE/Z* (XG]’)> -

Then, each party sends brijj”' to the computing party.
— The computing party calculates brk?”"" = RGSW,, (X*¢) for i € [0,n — 1]

using the following equation (note that the error is additive.):
brk; " := [] ork] " = [RGSW.. (X*) = RGSW., (X*).
jeJ jeJ

Any party can use these keys to perform secure computations without re-
vealing the secrets of any participants, including the binary gate evaluation [24]
using the proposed blind rotation technique.

26 Y. Lee et al.

6.2 Performance Analysis

Computational Complexity and Key Size Following the above evaluation
key generation, the computing party finds the evaluation keys:

brk! " = RGSW,, (X*=i), i€ [0,n—1]
ak”h" = RLWE,,_ (z*(Xg“)> , ue L .
ak”"" = RLWE,,_ (z.(X %))

The computation of blind rotation and the structure of the keys are the same as
in Algorithm 3, so the computational complexity and key size are the same as in
Table 1 in terms of the number of ® multiplications (computational complexity)
and RLWE’ ciphertexts (key size). In other words, the number of participants does
not affect asymptotic computational complexity and key size. This implies that
the proposed blind rotation is preferable for threshold HE as it takes advantage of
fast evaluation and the small key size regardless of the number of participants.
In practice, a larger parameter is required due to larger error introduced by
distributed key generation.

Error Analysis This analysis is similar to Section 4, except for the fact that
ak and brk now have higher error variance. The variance of pkEL‘WE eITor €pyk
is equal to ko? as it is the sum of errors e; of all parties. The error of each
RGSW, (X ®9%) is equal to v - epx + € - 2, + e;. Hence, the error variance is given
a8 02een < 2| J|:0%+ ([Z4]lo+1) - 02ene- The blind rotation key RGSW,, (X) is
obtained by consecutive multiplication of RGSW® RESW and introduces additive
error, whose variance is equal to 02, = 2|J|d,N % - 02 een- For automorphism
keys, again each RLWE, (z;(X?)) has the error of variance 02,,,. Thus the error
of RLWE,, (2(X?)) is equal to 02, = |J|-0% cen-

The worst-case total variance after blind rotation in Algorithm 7 can be
estimated as

B? N —
o2 = dgNl—; : (Qn N (K + wK> . aazk) }

The blind rotation algorithm for AP can be also extended in a similar way,
whose blind rotation keys are RGSW, (YVBrsi) for i € [0,n — 1], ¢ € [0,d, — 1],
and v € Zp, . Then, the error after AP blind rotation is

B? 1
02 = dgNl—Z : <2dr <1 - Br) n- ag‘rk> :

Since opyk is much greater than o,y (it is same as o in non-threshold setting),
the error difference between our technique and AP variant becomes bigger in
threshold setting. The parameters for FHEW-like HE are error-sensitive and our
algorithm produces the least blind rotation error (which enables to use smaller
parameters). Thus, it is more favorable in threshold HE.

Efficient FHEW Bootstrapping and Applications to Threshold HE 27

7 Conclusion

A new blind rotation technique for homomorphic encryption is proposed with
several variants which provide tradeoffs between key size and complexity. The
proposed method offers the best of both previous AP and GINX bootstrap-
ping simultaneously and further improves on them. We demonstrated that our
method is better than both approaches in terms of running time and evaluation
key size. It offers the additional advantage of reducing the amount of noise in-
troduced during blind rotation, even for the case of the binary key that is the
most favorable to GINX.

We also showed a simple threshold HE scheme based on FHEW. This scheme
takes advantage of the proposed blind rotation technique since it requires com-
putations under secret keys with distributions wider than binary or ternary. Our
analysis showed that the performance and key size could be kept relatively low
with increasing the number of participants, unlike GINX. This is an important
property for the distributed computation settings. This demonstrates the high
potential of FHEW-like schemes in different applications where the secret key
distribution is wider than binary or ternary. In addition, it would be of great
interest to apply our technique to schemes of other structures such as NTRU
and Torus variants of bootstrappings as further work.

Acknowledgments This work was supported by the Samsung Electronics co.
Itd., Samsung Advanced Institute of Technology.

References

[1] Albrecht, M., Player, R., Scott, S.: On the concrete hardness of learning
with errors. Journal of Mathematical Cryptology 9(3), 169-203 (2015).
https://doi.org/10.1515/jmc-2015-0016

[2] Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with poly-
nomial error. In: CRYPTO 2014. pp. 297-314. Springer (2014).
https://doi.org/10.1007/978-3-662-44371-2 17

[3] Arora, S., Ge, R.: New algorithms for learning in presence of errors. In:
International Colloquium on Automata, Languages, and Programming. pp.
403-415. Springer (2011). https://doi.org/10.1007,/978-3-642-22006-7 34

[4] Asharov, G., Jain, A., Lopez-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty computation with low communication, computation
and interaction via threshold FHE. In: EUROCRYPT 2012. pp. 483-501
(2012). https://doi.org//10.1007/978-3-642-29011-4 29

[6] Badawi, A.A., Bates, J., Bergamaschi, F., Cousins, D.B., Erabelli, S.,
Genise, N., Halevi, S., Hunt, H., Kim, A., Lee, Y., Liu, Z., Micciancio,
D., Quah, I., Polyakov, Y., R.V., S., Rohloff, K., Saylor, J., Suponitsky, D.,
Triplett, M., Vaikuntanathan, V., Zucca, V.: Openfhe: Open-source fully ho-
momorphic encryption library. Cryptology ePrint Archive, Paper 2022/915
(2022), https://eprint.iacr.org/2022/915, https://www.openfhe.org

28

(6]

7]

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Y. Lee et al.

Bendlin, R., Damgard, I.: Threshold decryption and zero-knowledge proofs
for lattice-based cryptosystems. In: TCC 2010. pp. 201-218. Springer
(2010). https://doi.org/10.1007/978-3-642-11799-2 13

Bonnoron, G., Ducas, L., Fillinger, M.: Large FHE gates from tensored
homomorphic accumulator. In: Progress in Cryptology — AFRICACRYPT
2018. pp. 217-251. Springer (2018). https://doi.org/10.1007/978-3-319-
89339-6 13

Bonte, C., Iliashenko, I., Park, J., Pereira, H.V.L., Smart, N.P.: FINAL:
Faster FHE instantiated with NTRU and LWE. In: Advances in Cryptology
- ASTACRYPT 2022. pp. 188-215 (2022). https://doi.org/10.1007/978-3-
031-22966-4 7

Boura, C., Gama, N., Georgieva, M., Jetchev, D.: Chimera: Combining
Ring-LWE-based fully homomorphic encryption schemes. Journal of Math-
ematical Cryptology 14(1), 316-338 (2020). https://doi.org/10.1515/jmc-
2019-0026

Brakerski, Z.: Fully homomorphic encryption without modulus switching
from classical GapSVP. In: Advances in Cryptology — CRYPTO 2012. pp.
868-886. Springer (2012). https://doi.org/0.1007/978-3-642-32009-5 50
Brakerski, Z., Dottling, N.: Hardness of LWE on general entropic dis-
tributions. In: Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques. pp. 551-575. Springer (2020).
https://doi.org/10.1007/978-3-030-45724-2 19

Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully homomor-
phic encryption without bootstrapping. ACM Transactions on Computation
Theory (TOCT) 6(3), 1-36 (2014). https://doi.org/10.1145,/2633600

Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classi-
cal hardness of learning with errors. In: Proceedings of the forty-fifth
annual ACM symposium on Theory of computing. pp. 575-584 (2013).
https://doi.org/10.1145/2488608.2488680

Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with
short ciphertexts. In: Advances in Cryptology — CRYPTO 2016. pp. 190-
213. Springer (2016). https://doi.org/0.1007,/978-3-662-53018-4 8
Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption
from Ring-LWE and security for key dependent messages. In: Ad-
vances in Cryptology — CRYPTO 2011. pp. 505-524. Springer (2011).
https://doi.org/10.1007/978-3-642-22792-9 29

Chen, H., Chillotti, I., Song, Y.: Multi-key homomorphic encryption from
TFHE. In: Advances in Cryptology — ASIACRYPT 2019. pp. 446-472.
Springer (2019). https://doi.org/10.1007/978-3-030-34621-8 16

Chen, M., Hazay, C., Ishai, Y., Kashnikov, Y., Micciancio, D., Riviere, T.,
Shelat, A., Venkitasubramaniam, M., Wang, R.: Diogenes: Lightweight scal-
able RSA modulus generation with a dishonest majority. In: 2021 TEEE
Symposium on Security and Privacy (S&P). pp. 590-607. IEEE (2021).
https://doi.org,/10.1109/sp40001.2021.00025

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

Efficient FHEW Bootstrapping and Applications to Threshold HE 29

Cheon, J.H., Hhan, M., Hong, S., Son, Y.: A hybrid of dual and meet-in-
the-middle attack on sparse and ternary secret LWE. IEEE Access (2019).
https://doi.org/10.1109/access.2019.2925425

Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for
arithmetic of approximate numbers. In: Advances in Cryptology — ASI-
ACRYPT 2017. pp. 409-437. Springer (2017). https://doi.org/10.1007,/978-
3-319-70694-8 15

Chillotti, I., Gama, N., Georgieva, M., Izabachene, M.: Faster packed homo-
morphic operations and efficient circuit bootstrapping for TFHE. In: Ad-
vances in Cryptology — ASTACRYPT 2017. pp. 377-408. Springer (2017).
https://doi.org/10.1007/978-3-319-70694-8 14

Chillotti, I., Gama, N., Georgieva, M., Izabachéne, M.: TFHE: Fast fully
homomorphic encryption over the torus. Journal of Cryptology 33(1), 34-91
(2020). https://doi.org/10.1007/s00145-019-09319-x

Chillotti, I., Joye, M., Paillier, P.: Programmable bootstrapping enables
efficient homomorphic inference of deep neural networks. In: International
Symposium on Cyber Security Cryptography and Machine Learning. pp.
1-19. Springer (2021). https://doi.org/10.1007/978-3-030-78086-9 1
Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from
learning with errors. In: Advances in Cryptology — CRYPTO 2015. pp. 630—
656. Springer (2015). https://doi.org/10.1007/978-3-662-48000-7 31
Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption
in less than a second. In: EUROCRYPT 2015. pp. 617-640. Springer (2015).
https://doi.org/10.1007/978-3-662-46800-5 24

Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption.
IACR Cryptol. ePrint Arch. 2012/144 (2012), https://eprint.iacr.
org/2012/144

Gama, N.,; Izabachene, M., Nguyen, P.Q., Xie, X.: Structural lattice re-
duction: Generalized worst-case to average-case reductions and homomor-
phic cryptosystems. In: EUROCRYPT 2016. pp. 528-558. Springer (2016).
https://doi.org/10.1007/978-3-662-49896-5 19

Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness
of the learning with errors assumption. In: Innovations in Computer Sci-
ence - ICS 2010. pp. 230-240. Tsinghua University Press (2010), http://
conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/19.html
Halevi, S., Shoup, V.: Faster homomorphic linear transformations in HElib.
In: Advances in Cryptology — CRYPTO 2018. pp. 93—-120. Springer (2018).
https://doi.org/10.1007/978-3-319-96884-1 4

Joye, M., Paillier, P.: Blind rotation in fully homomorphic encryp-
tion with extended keys. In: International Symposium on Cyber Se-
curity, Cryptology, and Machine Learning. pp. 1-18. Springer (2022).
https://doi.org/10.1007/978-3-031-07689-3 1

Kim, A., Deryabin, M., Eom, J., Choi, R., Lee, Y., Ghang, W., Yoo, D.:
General bootstrapping approach for RLWE-based homomorphic encryp-
tion. Cryptol. ePrint Arch. 2021/691 (2021), https://eprint.iacr.org/
2021/691

30 Y. Lee et al.

[31] Kim, A., Polyakov, Y., Zucca, V.: Revisiting homomorphic encryption
schemes for finite fields. In: Advances in Cryptology — ASTACRYPT 2021.
pp. 608-639. Springer (2021). https://doi.org/10.1007/978-3-030-92078-
4 21

[32] Kirchner, P., Fouque, P.A.: An improved BKW algorithm for LWE with
applications to cryptography and lattices. In: CRYPTO 2015. pp. 43-62.
Springer (2015). https://doi.org/10.1007/978-3-662-47989-6 3

[33] Liu, Z., Micciancio, D., Polyakov, Y.: Large-precision homomorphic sign
evaluation using FHEW /TFHE bootstrapping. In: Advances in Cryptology
- ASTACRYPT 2022. pp. 130-160 (2022). https://doi.org/10.1007/978-3-
031-22966-4 5

[34] Lu, W.j., Huang, Z., Hong, C., Ma, Y., Qu, H.: PEGASUS: Bridging polyno-
mial and non-polynomial evaluations in homomorphic encryption. In: 2021
IEEE symposium on Security and Privacy (S&P). pp. 1057-1073. IEEE
(2021). https://doi.org/10.1109/sp40001.2021.00043

[35] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. Journal of the ACM (JACM) 60(6), 1-35 (2013).
https://doi.org/10.1145/2535925

[36] Micciancio, D.: On the hardness of learning with errors with
binary secrets. Theory of Computing 14(1), 1-17 (2018).
https://doi.org/10.4086 /toc.2018.v014a013

[37] Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small param-
eters. In: Advances in Cryptology — CRYPTO 2013. pp. 21-39. Springer
(2013). https://doi.org/10.1007/978-3-642-40041-4 2

[38] Micciancio, D., Polyakov, Y.. Bootstrapping in FHEW-
like cryptosystems. In: WAHC’21. pp. 17-28. ACM (2021).
https://doi.org/10.1145/3474366.3486924

[39] Miccianco, D., Sorrell, J.: Ring packing and amortized FHEW bootstrap-
ping. In: 45th International Colloquium on Automata, Languages, and
Programming. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018).
https://doi.org/10.4230/LIPIcs.ICALP.2018.100

[40] Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-
key FHE. In: Advances in Cryptology — EUROCRYPT 2016. pp. 735-763.
Springer (2016). https://doi.org/10.1007/978-3-662-49896-5 26

[41] PALISADE: Lattice Cryptography Library (release 1.11.7). https://
palisade-crypto.org/ (Sep 2021)

[42] Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In:
Theory of Cryptography Conference. pp. 217-238. Springer (2016).
https://doi.org/10.1007/978-3-662-53644-5 9

[43] Regev, O.: On lattices, learning with errors, random linear codes,
and cryptography. Journal of the ACM (JACM) 56(6), 1-40 (2009).
https://doi.org/10.1145/1060590.1060603

[44] TFHE: Fast fully homomorphic encryption library over the torus. https:
//tfhe.github.io/tfhe/

[45] Zhou, T., Zhang, Z., Chen, L., Che, X., Liu, W., Yang, X.: Multi-key fully
homomorphic encryption scheme with compact ciphertext. IACR Cryptol.
ePrint Arch. 2021/1131 (2021), https://eprint.iacr.org/2021/1131

