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Abstract. Vector commitment schemes allow a user to commit to a
vector of values x ∈ {0, 1}ℓ and later, open up the commitment to a
specific set of positions. Both the size of the commitment and the size of
the opening should be succinct (i.e., polylogarithmic in the length ℓ of
the vector). Vector commitments and their generalizations to polynomial
commitments and functional commitments are key building blocks for
many cryptographic protocols.

We introduce a new framework for constructing non-interactive lattice-
based vector commitments and their generalizations. A simple instantia-
tion of our framework yields a new vector commitment scheme from the
standard short integer solution (SIS) assumption that supports private
openings and large messages. We then show how to use our framework
to obtain the first succinct functional commitment scheme that supports
openings with respect to arbitrary bounded-depth Boolean circuits. In
this scheme, a user commits to a vector x ∈ {0, 1}ℓ, and later on, open the
commitment to any function f(x). Both the commitment and the opening
are non-interactive and succinct: namely, they have size poly(λ, d, log ℓ),
where λ is the security parameter and d is the depth of the Boolean
circuit computing f . Previous constructions of functional commitments
could only support constant-degree polynomials, or require a trusted
online authority, or rely on non-falsifiable assumptions. The security of
our functional commitment scheme is based on a new falsifiable family of
“basis-augmented” SIS assumptions (BASIS) we introduce in this work.

We also show how to use our vector commitment framework to obtain
(1) a polynomial commitment scheme where the user can commit to
a polynomial f ∈ Zq[x] and subsequently open the commitment to an
evaluation f(x) ∈ Zq; and (2) an aggregatable vector (resp., functional)
commitment where a user can take a set of openings to multiple indices
(resp., function evaluations) and aggregate them into a single short open-
ing. Both of these extensions rely on the same BASIS assumption we use
to obtain our succinct functional commitment scheme.

1 Introduction

Vector commitment schemes [Mer87, CFM08, LY10, CF13] allow a user to
commit to a vector of values x ∈ {0, 1}ℓ and subsequently, open up the com-
mitment to a specific set of positions. Both the commitment and the openings
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should be succinct (i.e., have size that scales polylogarithmically with the vector
length ℓ) and non-interactive.4 There has recently been tremendous interest
and progress in the design and application of vector commitments, and even
a “Vector Commitment Research Day” [Res22]. Starting from the classic vec-
tor commitment scheme of Merkle [Mer87] based on collision-resistant hash
functions, we now have a broad range of algebraic constructions from pairing-
based assumptions [LY10, KZG10, CF13, LRY16, LM19, TAB+20, GRWZ20]
as well as assumptions over groups of unknown order (e.g., RSA groups or
class groups) [CF13, LM19, CFG+20, AR20, TXN20]. We refer to [Nit21] for
a survey of recent schemes. As a primitive, vector commitment schemes have
found numerous applications to verifiable outsourced databases [BGV11, CF13],
cryptographic accumulators [CF13], pseudonymous credentials [KZG10], and to
blockchain protocols [RMCI17, CPSZ18, BBF19]. Moreover, the generalization
of vector commitments to polynomial commitments [KZG10] has emerged as a
key building block in many recent (random-oracle) constructions of succinct non-
interactive arguments of knowledge (SNARKs) [MBKM19, CHM+20, GWC19,
BDFG21, BFS20, COS20] having various appealing properties (e.g., universal or
transparent setup, recursive composability, and more).

In this work, we focus on two themes in the study of vector commitments
where progress has been more limited: (1) post-quantum constructions based
on lattices [PSTY13, LLNW16, PPS21, ACL+22, FSZ22]; and (2) functional
commitments, a generalization of vector commitments that supports openings
to various functions on the committed values [LRY16, LP20, PPS21, BNO21,
ACL+22]. There are good technical reasons for the limited progress on these two
fronts. First, many of the techniques developed for vector commitments crucially
exploit algebraic structure in pairing and RSA/class groups that do not naturally
extend to the lattice setting. Second, pairing and RSA/class groups only support
limited homomorphic capabilities.

1.1 Our Results

In this work, we introduce a general framework for constructing lattice-based
vector commitments that simultaneously encapsulates recent lattice-based vector
commitment schemes [PPS21, ACL+22] and enables us to achieve stronger
functionality and security properties. As we describe below, our framework readily
generalizes to also yield polynomial commitments, functional commitments, and
aggregatable commitments from (falsifiable) lattice-based assumptions.

A new family of SIS assumptions. The security of our schemes relies on a new
“basis-augmented” family of short integer solution (SIS) assumptions we introduce
in this work. We refer to our basis-augmented SIS assumption as the BASIS
assumption (Assumption 3.2). The basic version of our assumption (denoted
BASISrand) suffices for constructing standard vector commitments and is implied

4We discuss interactive commitments (as well as constructions in the random oracle
model) in Section 1.3.
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by the standard SIS assumption. The structured version of the assumption
(denoted BASISstruct) we need for our extensions has a similar flavor as the k-SIS-
like assumptions introduced in [ACL+22] for constructing lattice-based succinct
arguments (c.f., Section 6). While the BASISstruct assumption is not a standard
lattice-based assumption, it is a falsifiable assumption [Nao03]. We view our
assumption as a “q-type” lattice assumption and at a conceptual level, it shares
a similar flavor as the q-type assumptions used in the pairing-based world for
constructing vector commitments [CF13] and polynomial commitments [KZG10].

Vector commitments with private opening. An immediate consequence of our
framework is a vector commitment scheme that supports private openings. In
this setting, a user can commit to a vector x ∈ {0, 1}ℓ with a short commitment
σ and then open σ to an index-value pair (i, xi) with a short opening πi. We say
the vector commitment scheme supports private openings if the commitment σ
and any collection of openings {(i, xi, πi)}i∈S reveal no additional information
about xj for any j /∈ S. Notably and in contrast to previous lattice-based vector
commitment schemes [PPS21, ACL+22], our scheme also does not impose any
restrictions on the magnitude of the entries of x (the vectors can be arbitrary
elements of Zℓ

q and the commitment as well as the opening are vectors over Zq).
Previous lattice-based schemes [PPS21, ACL+22] require that the components of
x be small and this property was essential for both correctness and security.

Our vector commitment scheme has the same efficiency properties as the
earlier scheme of Peikert et al. [PPS21] which did not support private openings and
was limited to a small message space. Our scheme provides the same functionality
(e.g., support for “stateless updates”) and like the scheme of [PPS21], security
can be based on the standard SIS assumption. Thus, relative to [PPS21], our
framework achieves private openings and supports a large message space with
essentially no overhead.

We could alternatively obtain a lattice-based vector commitment by instanti-
ating Merkle’s classic construction [Mer87] with a lattice-based collision-resistant
hash function (e.g., Ajtai’s hash function from SIS [Ajt96, GGH96]). Our vector
commitment scheme improves upon this generic approach in two main ways:
(1) we support (bounded) stateless updates like [PPS21] (where a user can up-
date a commitment to a vector x into a commitment to a vector x′ given only
knowledge of the difference x′ − x and not the entirety of x or x′); and (2) we
can support private openings directly. It is possible to extend Merkle hashing
to support private openings via zero-knowledge proofs, but this would either
need non-black-box use of cryptography or require interaction, random oracles,
or correlation-intractable hash functions [CCH+19, PS19]. More broadly, as we
illustrate below, our algebraic scheme serves as a stepping stone for realizing
polynomial and functional commitment schemes (for which we crucially exploit
algebraic structure).

Functional commitments. A functional commitment [GVW15, LRY16] is a gen-
eralization of a vector commitment with the property that given a commitment
to an input x ∈ {0, 1}ℓ, one can then construct an opening πf to y = f(x),
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for some function f . The basic binding property of the commitment scheme
says that the adversary cannot come up with openings πf and π′

f that open σ
to different values y ̸= y′ with respect to the same function f . The efficiency
requirements are that the size of the commitment and the opening should be
sublinear in both the size of the function f and the length of the input x. Previ-
ously, Peikert et al. [PPS21] showed how to construct functional commitments
for bounded-depth Boolean circuits in an online model where a central trusted
authority issues opening keys for functions f , with security based on the stan-
dard SIS assumption. Albrecht et al. [ACL+22] subsequently showed how to
construct functional commitments for constant-degree polynomials from new
variants of the SIS assumption in the standard setting without an online au-
thority. Earlier pairing-based functional commitments could only support linear
functions [LRY16] or sparse polynomials [LP20]. Functional commitments can
also be obtained generically by combining a vanilla vector commitment (e.g., a
Merkle tree [Mer87]) with a succinct non-interactive argument of knowledge (for
NP). However, existing constructions of SNARKs (for NP) either rely on making
non-falsifiable assumptions [GW11] or working in idealized models.

Our vector commitment framework directly yields a succinct functional com-
mitment scheme for all bounded-depth Boolean circuits in the standard offline
model without an authority and from falsifiable assumptions. The size of the
commitment and the openings are poly(λ, d, log ℓ), where λ is a security parame-
ter, d is the depth of the Boolean circuit computing f : {0, 1}ℓ → {0, 1}, and ℓ is
the length of the input. Security relies on the new non-standard, but falsifiable,
BASISstruct assumption we introduce in this work (with a sub-exponential noise
bound). Notably, this is the first succinct functional commitment scheme for gen-
eral circuits from a falsifiable assumption, and answers an open question posed by
Peikert et al. [PPS21]. Our construction can be viewed as a succinct analog of the
homomorphic commitments and signatures introduced by [GSW13, GVW15].5

Polynomial commitments. In a polynomial commitment [KZG10], a user can
commit to a polynomial f ∈ Zq[x] over Zq and later open to an evaluation f(x) at
any point x ∈ Zq. A polynomial commitment can be viewed as a succinct commit-
ment to the vector of evaluations of f on all inputs x ∈ Zq. While a polynomial
commitment can be built from a succinct functional commitment for Boolean
circuits, this incurs a poly(log q) overhead to encode the polynomial evaluation
over Zq as a Boolean circuit and also relies on the BASISstruct assumption with a
sub-exponential noise bound. In this work, we show that a simple adaptation of
our succinct functional commitments to the setting of linear functions directly
gives a polynomial commitment over Zq. Notably, this construction can be based
on our BASISstruct assumption with only a polynomial noise bound. This is the first
polynomial commitment scheme from lattices based on falsifiable assumptions.

An important feature of our framework that enables the direct construction
of polynomial commitments is that it natively supports values over Zq. Previous

5The homomorphic commitments from [GSW13, GVW15] are non-succinct; in particular,
the size of the commitment scales linearly with the input length ℓ.
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lattice-based vector commitments [PPS21, ACL+22] required that the committed
value x and the opened value f(x) be “small,” and moreover, that the modulus q
scale with the norm of the output (i.e., f(x)) when computed over the integers.
This is not suitable when constructing polynomial commitments directly, as the
size of f(x) computed over the integers scales with the degree of f . Correspond-
ingly, if the modulus q scales linearly with the degree of f , then the resulting
scheme is no longer succinct. The ability to directly work over the entirety of Zq

is an appealing property of our new framework.

Aggregatable commitments. A simple modification to our basic vector commitment
scheme yields a scheme that supports aggregation. We say a vector commitment
scheme is aggregatable [BBF19, CFG+20] if given a commitment σ along with a
set of openings π1, . . . , πt to indices i1, . . . , it ∈ [ℓ] and values xi1 , . . . , xit , there
is an efficient aggregation algorithm that outputs a short aggregate opening π
that validates the full set of values {(ij , xij )}j∈[t]. The requirement is that the
size of π scale sublinearly, or better yet, polylogarithmically with t. Aggregatable
commitments immediately imply subvector commitments [LM19] (i.e., a vector
commitment scheme that supports batch openings to a set of indices S ⊆ [ℓ]). Our
framework yields an aggregatable commitment scheme for short messages from
the same falsifiable BASISstruct assumption used to construct succinct functional
commitments. This is the first aggregatable commitment scheme from lattice
assumptions without relying on general-purpose succinct arguments [ACL+22] or
batch arguments [CJJ21, DGKV22], and answers another open question posed
by Peikert et al. [PPS21].

A limitation of our aggregatable commitment is that it only satisfies same-set
binding, which guarantees that for every subset of indices S ⊆ [ℓ], the adversary
can only open to a single set of values. However, there is still the possibility
that an adversary could open the commitment to different sets S and T that
are inconsistent (i.e., xi = 0 with respect to S while xi = 1 with respect to
T ).6 Constructing aggregatable commitments that satisfy the stronger notion
of different-set binding directly from falsifiable lattice-based assumptions is an
interesting open problem.

The same techniques we use to construct aggregatable vector commitments
also applies to our succinct functional commitment scheme, and we obtain an
aggregatable functional commitment scheme from the same underlying hardness
assumption. In this setting, a user can take openings π1, . . . , πt for function-value
pairs (f1, y1), . . . , (ft, yt) and aggregate the openings into a single short opening
π that validates all t function-value pairs and where the size of the aggregated
opening scales polylogarithmically with t.

Summary. Similar to previous lattice-based vector commitments [PPS21, ACL+22],
we rely on a structured reference string in all of our constructions. We refer to
the structured reference string as a common reference string (CRS). To summa-

6Note though that if the commitment is honestly-generated, then same-set binding
implies different-set binding; see the full version of this paper [WW22].
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rize, our new lattice-based vector commitment framework yields the following
constructions:

– A vector commitment scheme with private openings based on the standard
SIS assumption with polynomial noise bound (Corollary 3.6). For vectors of
dimension ℓ, the size of the commitment is O(λ(log λ+ log ℓ)) and the size of
an opening is O(λ(log2 λ+ log2 ℓ)).7 The size of the CRS is ℓ2 · poly(λ, log ℓ).

– A succinct functional commitment scheme supporting all bounded-depth
Boolean circuits from the BASISstruct assumption with a sub-exponential
noise bound (Corollary 4.3). A variant of this construction supports private
openings under a weaker notion of target binding. For both constructions,
to support functions on ℓ-bit inputs and computable by Boolean circuits of
depth d, the sizes of the commitment and openings are poly(λ, d, log ℓ). The
size of the CRS is ℓ2 · poly(λ, d, log ℓ).

– A polynomial commitment (for polynomials of a priori bounded degree)
under the BASISstruct assumption with a polynomial noise bound. To support
polynomials of degree up to d over Zq (where q = poly(λ)), the sizes of
the commitment and openings are poly(λ, log d). The size of the CRS is
d2 · poly(λ, log d).

– An aggregatable vector commitment scheme (over a small message space)
based on the BASISstruct assumption with polynomial noise bound. The sizes
of the commitment, openings, and CRS match those above for our vanilla
vector commitment.

– An aggregatable functional commitment scheme for all bounded-depth Boolean
circuits from the BASISstruct assumption used to obtain succinct functional
commitments. To support aggregating T openings for functions on ℓ-bit
inputs and computable by Boolean circuits of depth d, the sizes of the
commitment and opening are poly(λ, d, log ℓ, log T ). The size of the CRS is
(ℓ2+T ) ·poly(λ, d, log ℓ, log T ). In the random oracle model, we can reduce the
CRS size to ℓ2 · poly(λ, d, log ℓ) and support an arbitrary polynomial number
of aggregations.

1.2 Technical Overview

In this section, we provide a general overview of our new framework for construct-
ing vector commitments from lattices as well as the family of basis-augmented SIS
assumptions (BASIS) we use to prove hardness. In the following description, for a
matrix A ∈ Zn×m

q and a target vector t ∈ Zn
q , we write A−1(t) to denote a random

variable x ∈ Zm
q whose entries are distributed according to a discrete Gaussian

conditioned on Ax = t. Sampling x ← A−1(t) can be done efficiently given a
trapdoor for A [Ajt96, GPV08, AP09, ABB10a, ABB10b, CHKP10, MP12]. Here,
we will use the Micciancio-Peikert gadget trapdoors [MP12]; namely, a matrix R

7We note that these bounds match the base construction of Peikert et al. [PPS21].
While [PPS21, Figure 1] reports that their scheme has O(log ℓ)-size openings (ignoring
the security parameter λ), the construction itself [PPS21, Construction 1] has O(log2 ℓ)-
size openings.
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is a gadget trapdoor for A if R is short and AR = G, where G = In ⊗ gT is the
gadget matrix and gT = [1, 2, . . . , 2⌊log q⌋].

A general framework for constructing vector commitments. We begin by describing
a general framework for constructing lattice-based vector commitments that
encapsulates the recent schemes from [PPS21, ACL+22]:

– The common reference string (CRS) specifies a collection of ℓ matrices
A1, . . . ,Aℓ ∈ Zn×m

q and ℓ vectors t1, . . . , tℓ ∈ Zn
q along with some auxiliary

input auxℓ := {A−1
i (tj)}i̸=j .

– The commitment to a vector x = (x1, . . . , xℓ) ∈ {0, 1}ℓ is a vector c ←∑
i∈[ℓ] xiti ∈ Zn

q .
– An opening to index i ∈ [ℓ] and value xi ∈ {0, 1} is a short vector vi ∈ Zm

q

such that
c = Aivi + xiti. (1.1)

The honest opening is computed as vi ←
∑

j ̸=i xjA
−1
i (tj).

Correctness follows by inspection:

Aivi + xiti =
∑
j ̸=i

xjAi ·A−1
i (tj) + xiti =

∑
i∈[ℓ]

xiti = c.

For binding, we require that it is hard to find a short vector z ∈ Zm
q such that

Aiz = ti for any i ∈ [ℓ] given the components in the CRS. Next, we explain how
the schemes PPS1 from [PPS21]8 and MatrixACLMT from [ACL+22]9 fall into
this framework.

– In PPS1, the matrices Ai
r← Zn×m

q and vectors ti
r← Zn

q are independent and
uniformly random for all i ∈ [ℓ]. Binding in turn is based on the standard
SIS assumption.

– In MatrixACLMT, they sample uniformly random vectors ui
r← Zn

q , a matrix
A r← Zn×m

q , and invertible matrices Wi
r← Zn×n

q for each i ∈ [ℓ]. Then,
they set Ai ←WiA, ti ←Wiui. In this case, A−1

i (tj) = A−1(W−1
i Wjuj).

Binding is based on a new assumption which stipulates that it is hard to find a
short vector z ∈ Zm

q where Az = ui for any i ∈ [ℓ] given the CRS. The authors
of [ACL+22] then show how to leverage the extra structure arising from the
correlated Ai’s to obtain a functional commitment scheme for constant-degree
polynomials as well as a preprocessing succinct non-interactive argument
(SNARG) for NP.

Before describing our approach, we describe two limitations of these instantiations:
8By PPS1, we refer to the the base scheme from [PPS21, Construction 1]; they also
present a second tree-based scheme that uses PPS1 as a building block.

9The authors of [ACL+22] describe their scheme in the ring setting. We write
MatrixACLMT to denote one possible translation from the ring setting to the in-
teger setting. Note that there are other ways to translate their scheme to the integer
setting such as sampling Wi

r← Zm×m
q and then setting Ai ← AWi.
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– Small message space: In both the PPS1 and the MatrixACLMT instan-
tiations of this framework, both correctness and security require that the
entries of the vector x = [x1, . . . , xℓ] be small. This is because the verification
relation is checking that the opening vi =

∑
j ̸=i xjA

−1
i (tj) is small. Thus,

correctness requires that each xj be small. Moreover, in the proof of binding,
the reduction algorithm takes a commitment c along with two openings
(xi,vi), (x′

i,v
′
i) to derive a solution to SIS or a related problem. The existing

reductions require that the difference (xi − x′
i) be small (in order to derive a

short solution).
– Uniform target vectors. In both the PPS1 and MatrixACLMT construc-

tions, the target vectors ti are essentially random vectors. This is important
for ensuring that A−1

i (tj) does not leak a trapdoor for Ai, which would
immediately break binding. Using structured target vectors could enable
additional functionality. For instance, in Remark 6.1, we show that instantiat-
ing MatrixACLMT with structured targets can be used to support functional
openings. Unfortunately, this instantiation also leaks a trapdoor for Ai, and
is insecure.

The approach we take in this work avoids these limitations and allows us to
construct vector commitments with a large message space as well as support new
capabilities like polynomial and functional openings.

Our approach. We consider the same verification relation c = Aivi + xiti
from Eq. (1.1), but take a completely different approach for computing the
commitment c and the openings vi: we sample a random tuple (v1, . . . ,vℓ, c)
that simultaneously satisfies the verification relation for all i ∈ [ℓ]. As in the
previous verification relation, we require that the openings v1, . . . ,vℓ are short.
The commitment c can have large entries. In our particular setting, we write c
as c = Gĉ where ĉ ∈ Zm

q is a short vector. Using the gadget matrix G will be
important in the security analysis. Then, Eq. (1.1) corresponds to the relation
Gĉ = Aivi + xiti, or equivalently, Aivi −Gĉ = −xiti for all i ∈ [ℓ]. We can
express these ℓ relations as a linear system:A1 −G

. . .
...

Aℓ −G


︸ ︷︷ ︸

Bℓ

·


v1

...
vℓ

ĉ

 =

−x1t1
...

−xℓtℓ

 . (1.2)

Our goal now is to sample a random short tuple (v1, . . . ,vℓ, ĉ) that satisfies
Eq. (1.2). This can be done by giving out a random trapdoor for the matrix Bℓ:

Bℓ :−

A1 −G
. . .

...
Aℓ −G

 . (1.3)

Using Bℓ, we can sample a random short preimage (v1, . . . ,vℓ, ĉ) satisfying
Eq. (1.2). This yields the commitment c = Gĉ and the openings v1, . . . ,vℓ. In our
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construction, we set the target vector ti to the first basis vector e1 = [1, 0, . . . , 0]T

for all i ∈ [ℓ]. We now make the following observations:

– Binding: To argue that the scheme is binding, we require that it is hard to find
a short vector z where Aiz = 0 for any i ∈ [ℓ] even given the (related) matrix
Bℓ and a trapdoor for Bℓ. Here, Ai denotes Ai with the first row removed.
We refer to assumptions of this type as “basis-augmented SIS” (BASIS)
assumptions (Assumption 3.2). As we sketch below (and show formally in
Theorem 3.4), when A1, . . . ,Aℓ

r← Zn×m
q are random, this instantiation of

the BASIS assumption holds under the standard SIS assumption. We refer to
this instance of the BASIS assumption with random matrices as BASISrand.
Now, to argue binding, we observe that an adversary that breaks binding is
able to come up with an index i ∈ [ℓ], short vectors v,v′ ∈ Zm

q and values
x, x′ ∈ Zq such that c = Aiv + xe1 = Aiv

′ + x′e1. This means that

Ai(v − v′) = (x′ − x)e1.

As long as x′ − x ̸= 0, v − v′ ̸= 0, and so v − v′ is a SIS solution to Ai.
Observe that this analysis does not impose any restriction on the magnitude
of x′ − x. This means our construction naturally supports committing to
arbitrary vectors over Zq as opposed to vectors with small entries.10 We give
the formal reduction to the BASISrand assumption in the full version of this
paper [WW22].

– Private openings. A vector commitment scheme supports private openings if
the commitment c and any collections of openings {(i, xi,vi)}i∈S completely
hide the values xj for j /∈ S. Since we sample the commitment c and
the openings vi jointly in our approach, it is straightforward to argue (by
appealing to properties of discrete Gaussians) that the commitment c is
statistically close to uniform over Zn

q and each opening vi is statistically
close to the distribution A−1

i (c−xiti). Thus our scheme provides statistically
private openings out of the box.

Taken together, this yields a vector commitment from standard SIS that supports
statistically private openings and commitments to arbitrary vectors over Zℓ

q. We
give the full description and analysis in Section 3.

Reducing BASISrand to standard SIS. As described above, the binding property of
our vector commitment relies on the BASIS assumption, which says that SIS with
respect to Ai (i.e., Ai with the first row removed) is hard even given the related
matrix Bℓ from Eq. (1.3) and a trapdoor for Bℓ. As we show in Theorem 3.4, when
the matrices A1, . . . ,Aℓ

r← Zn×m
q are uniform and independent, this assumption

(BASISrand) reduces to the standard SIS assumption in a straightforward way.
Here, we provide a sketch of the reduction. For ease of exposition, we show that
SIS with respect to Ai (as opposed to Ai) is hard given a trapdoor for Bℓ. We

10As discussed earlier, previous vector commitments [PPS21, ACL+22] based on SIS or
its generalizations needed to assume small inputs for both correctness and security.
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also describe the approach for the case i = 1, and refer to Theorem 3.4 for the
full analysis.

The idea is simple: we set A1 to be the SIS challenge and sample matrices
A2, . . . ,Aℓ together with trapdoors R2, . . . ,Rℓ (i.e., AiRi = G). Let B̃ℓ be Bℓ

with the first column block removed (i.e., the column block containing A1). Then,
using R2, . . . ,Rℓ we can construct a trapdoor R̃ℓ for B̃ℓ (i.e., B̃ℓR̃ℓ = Gnℓ =
Inℓ ⊗ gT):

B̃ℓ =


0 · · · 0 −G
A2 −G

. . .
...

Aℓ −G

 and R̃ℓ =


−R2 R2

...
. . .

−Rℓ Rℓ

−I 0 · · · 0


Using standard trapdoor extension techniques [ABB10a, ABB10b, CHKP10,
MP12], we can extend R̃ℓ to obtain a trapdoor Rℓ for Bℓ. This yields a BASISrand
instance (i.e., comprised of the matrix A1, the matrix Bℓ, and the trapdoor Rℓ).
Thus, an adversary that breaks the BASISrand assumption implies an adversary
that breaks SIS (with comparable parameters). We give the formal analysis in
Theorem 3.4.

Functional commitments using structured Ai. Instantiating our framework with
uniform Ai

r← Zn×m
q (as in PPS1), we obtain a vector commitment scheme

with private openings and supporting large messages from the standard SIS
assumption. If we instead use a structured set of matrices Ai as in MatrixACLMT,
we obtain functional commitments, polynomial commitments, and aggregatable
commitments.

We start by describing our functional commitment scheme. Our starting point
is to consider the main verification relation from Eq. (1.1) and generalize it in two
ways: (1) we replace the matrices A1, . . . ,Aℓ ∈ Zn×m

q with structured matrices;
and (2) we consider a matrix extension of the verification relation. In particular,
we first sample A r← Zn×m

q . Then, for each i ∈ [ℓ], we sample an invertible
matrix Wi

r← Zn×n
q and set Ai ←WiA. We now consider a matrix analog of the

verification relation from Eq. (1.1) where each target vector ti is replaced with
the matrix WiG (this choice will be helpful for supporting functional openings).
Our matrix verification relation is now

C = AiVi + xiWiG. (1.4)

Our goal now is to sample a tuple (V1, . . . ,Vℓ,C) that satisfy Eq. (1.4) for all
i ∈ [ℓ] and where V1, . . . ,Vℓ ∈ Zm×m

q are short. As before, the commitment
C can be large and we specifically define it to be C = GĈ, where Ĉ ∈ Zm×m

q

is short. This way, we can sample Ĉ using an analogous trapdoor sampling
procedure as before. Specifically, the trapdoor for the same matrix Bℓ from
Eq. (1.3) allows us to jointly sample short openings V1, . . . ,Vℓ along with a
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matrix Ĉ that satisfy Eq. (1.4):

Bℓ


V1

...
Vℓ

Ĉ

 =

A1 −G
. . .

...
Aℓ −G

 ·

V1

...
Vℓ

Ĉ

 =

−x1W1G
...

−xℓWℓG

 . (1.5)

By construction, for all i ∈ [ℓ], we have that AiVi − GĈ = −xiWiG, or
equivalently, C = GĈ = AiVi + xiWiG and Eq. (1.4) holds. We now show that
this directly extends to yield a succinct functional commitment. Since Ai = WiA
and Wi is invertible, we can rewrite Eq. (1.4) as

W−1
i C = AVi + xiG,

where Vi is short. Readers familiar with the homomorphic encryption scheme of
Gentry et al. [GSW13] or the homomorphic signature scheme of Gorbunov et al. [GVW15]
may recognize that W−1

i C is an encryption of xi under randomness Vi or that
Vi is a signature on xi under the verification key W−1

i C. Thus, we can use the
same lattice-based homomorphic evaluation machinery [GSW13, BGG+14] to
homomorphically compute an opening to f(x) for an arbitrary Boolean circuit
f : {0, 1}ℓ → {0, 1}.

In slightly more detail, let C̃ = [W−1
1 C | · · · |W−1

ℓ C] and Ṽ = [V1 | · · · |Vℓ].
Then,

AṼ = A[V1 | · · · | Vℓ] = [W−1
1 C− x1G | · · · |W−1

ℓ C− xℓG] = C̃− xT ⊗G.

Using the homomorphic evaluation techniques from [GSW13, BGG+14], there
exists a short matrix HC̃,f,x that depends on C̃, f , and x such that

(C̃− xT ⊗G) ·HC̃,f,x = C̃f − f(x) ·G, (1.6)

where C̃f is a matrix that can be efficiently computed from C̃ and f . To open
C to a function f , the user computes Ṽf ← Ṽ ·HC̃,f,x. To verify a candidate
value y ∈ {0, 1} with respect to a function f and commitment C, the verifier
first computes C̃f from (C,W1, . . . ,Wℓ, f) and then checks that Ṽf is short
and moreover,

AṼf = C̃f − y ·G.

For correctness, observe that

AṼf = AṼHC̃,f,x = (C̃− xT ⊗G) ·HC̃,f,x = C̃f − f(x) ·G.

For binding, we require that SIS is hard with respect to A even given the matrix
Bℓ and a trapdoor for Bℓ. We refer to this instance of the BASIS assumption
with structured Ai’s as BASISstruct. Since the matrices Ai that comprise Bℓ

are now correlated, we do not know how to reduce BASISstruct to the standard
SIS assumption. Nonetheless, BASISstruct is a falsifiable assumption under which
we obtain a succinct functional commitment for all bounded-depth Boolean
circuits. This is the first succinct functional commitment for general circuits
from a falsifiable assumption. We provide the full description in Section 4 and a
comparison to previous succinct functional commitments in Table 1.
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Functional commitments with private openings. Using the approach from [GVW15]
for constructing context-hiding homomorphic signatures [GVW15], we can easily
extend our functional commitment scheme above to support private openings
(i.e., where the commitment C and the opening Ṽf reveals nothing more about
the input x other than the value f(x)). We sketch the approach here. Let C be a
commitment to x and let Ṽf = Ṽ ·HC̃,f,x be the opening computed as described
above. Then, define the matrix Df to be

Df = [A | C̃f + (f(x)− 1) ·G] = [A | AṼf + (2f(x)− 1) ·G].

Since Ṽf is short and 2f(x)− 1 ∈ {−1, 1}, the matrix
[

Ṽf

−In

]
is a trapdoor for

Df . We now include a random target u ∈ Zn
q as part of the CRS, and define the

opening to be a random short vector vf where Dfvf = u. The honest prover
samples vf using the trapdoor for Df (derived from Ṽf ). To check an opening
vf is a valid opening to a value y ∈ {0, 1} with respect to a function f and
commitment C, the verifier computes C̃f from (C,W1, . . . ,Wℓ, f) as before,
defines the matrix Df = [A | C̃f +(y−1) ·G], and finally, checks that Dfvf = u.
To argue that vf hides all information about x other than what is revealed by
f(x), observe that the matrix Df depends only on f(x) and not x. Thus, given a
trapdoor for A (which can be extended into a trapdoor for Df for all f), and the
value f(x), we can sample a short vf such that Dfvf = u whose distribution
is statistically close to the real opening. This latter procedure only depends on
f(x) and not x, so hiding follows. While this construction is hiding, we do not
know how to show that it is binding; however, it does satisfy the weaker notion
of target binding where binding holds for all honestly-generated commitments.
We provide the full details and analysis in the full version of this paper [WW22].

Polynomial commitments. We can obtain a polynomial commitment over Zq

via a simple adaptation of our functional commitment. The starting point is to
construct a functional commitment scheme for linear functions on Zℓ

q (as opposed
to a function on the binary domain {0, 1}ℓ). We first consider linear functions
with small coefficients. Let z ∈ {0, 1}ℓ be a vector and define the linear function
fz(x) := zTx. We use the same commitment and opening structure as in our
functional commitment. Namely, a commitment C and the openings V1, . . . ,Vℓ

for an input x satisfy AVi = W−1
i C− xiG, where xi ∈ Zq now. Observe that∑

i∈[ℓ]

ziAVi︸ ︷︷ ︸
AVz

=
∑
i∈[ℓ]

ziW
−1
i C−

∑
i∈[ℓ]

zixiG =
∑
i∈[ℓ]

ziW
−1
i C

︸ ︷︷ ︸
C̃z

− (zTx) ·G

︸ ︷︷ ︸
fz(x)·G

.

Thus, Vz =
∑

i∈[ℓ] ziVi is an opening to the function fz. Here, we need z ∈ {0, 1}ℓ

to be short so Vz is short. To extend to arbitrary linear functions over Zℓ
q (rather

than short ones), we rely on standard binary decomposition and blow up the
vector dimension by a factor of O(log q). Namely, to commit to a vector x, the
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Scheme CRS Size Function Class Assumption Fast
Verification

Folklore poly(λ, log ℓ) Boolean circuits CRHF + SNARK∗ ✓

[LRY16] O(ℓ) linear functions bilinear maps ✓

[PPS21]† s · poly(λ, d) depth d Boolean circuits‡SIS ✗

[ACL+22] ℓ2d · poly(λ) degree d polynomials§ k-R-ISIS ✓

This work ℓ2 · poly(λ, d, log ℓ) depth d Boolean circuits BASISstruct ✗

This work ℓ2 · poly(λ, log ℓ) linear functions BASISstruct ✓

∗ Collision-resistant hash functions (CRHFs) together with a succinct non-
interactive argument of knowledge (SNARK).
†This scheme is in a significantly weaker model that requires an online trusted
authority to issue opening keys.
‡The Boolean circuit has size at most s.
§Only supports commitments and openings to small values.

Table 1: Summary of succinct functional commitments. For each scheme, we
report the size of the CRS as a function of the security parameter λ and the
input length ℓ. We say that a scheme supports “fast verification” if after an input-
independent preprocessing step, the verification running time is sublinear in ℓ. In
all schemes, the size of the commitment and the openings are polylogarithmic in
the input length ℓ.

user now commits to x⊗ gT, and to open to a linear function fz where z ∈ Zn
q ,

the user constructs an opening with respect to fg−1(z). This yields a functional
commitment scheme for linear functions over Zℓ

q.

As observed by Libert et al. [LRY16], a functional commitment scheme for
linear functions over Zℓ

q directly implies a polynomial commitment over Zq for
polynomials of degree up to d = ℓ− 1. Namely, a commitment to a polynomial
f ∈ Zq[x] of degree d is a vector commitment to the coefficients of f . To open
the commitment to a point x ∈ Zq, the user constructs a linear opening with
respect to the evaluation vector [1, x, x2, . . . , xd]. For this to work, it is critical
that our functional commitment for linear functions over Zℓ

q supports committing
to and opening to arbitrary Zq values (and not just small values). Thus, we
obtain a polynomial commitment scheme where the commitment size and the
opening size is poly(λ, log d). We provide the full details in the full version of this
paper [WW22].

Aggregatable commitments. Another application of using structured matrices Ai

is it immediately gives an aggregatable commitment. As before, we instantiate
our framework with Ai = WiA. We also sample target vectors u1, . . . ,uℓ

r← Zn
q

and include them as part of the CRS. To commit to an input x ∈ Zℓ
q, we sample
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(v1, . . . ,vℓ, c) where

Bℓ


v1

...
vℓ

ĉ

 =

A1 −G
. . .

...
Aℓ −G

 ·

v1

...
vℓ

ĉ

 =

−x1W1u1

...
−xℓWℓuℓ

 .

Let c = Gĉ. Then, for all i ∈ [ℓ], Aivi − c = −xiWiui, or equivalently,
W−1

i c = Avi + xiui. Observe now that this scheme immediately supports
aggregation: for any set S ⊆ [ℓ],∑

i∈S

W−1
i c = A

∑
i∈S

vi −
∑
i∈S

xiui.

Thus,
∑

i∈S vi is an opening to all of the indices in S. We show in the full version
of this paper [WW22] that under the same BASISstruct assumption (i.e., SIS is
hard with respect to A given Bℓ and a trapdoor for Bℓ), this scheme satisfies
“same-set binding.” This means no efficient adversary can open a commitment c to
different sets of values {(i, xi)}i∈S and {(i, x′

i)}i∈S for the same set S. Unlike our
vector commitment construction, the security of our aggregatable construction
only holds when the input vector x is short (i.e., our reduction to the BASISstruct
assumption in the full version of this paper [WW22] constructs an SIS solution
whose norm scales with the magnitude of the opened values).

Our aggregatable vector commitment scheme does not satisfy the stronger
notion of “different-set binding.” This means an efficient adversary may be able to
construct a commitment c along with valid openings {(i, xi)}i∈S and {(i, x′

i)}i∈T

to (distinct) sets S and T , respectively, such that xi = 0 and x′
i = 1. Indeed in

the full version of this paper [WW22], we describe an explicit attack where an
adversary can use the trapdoor for Bℓ to (heuristically) obtain a trapdoor for
the matrix [W−1

S A |W−1
T A] whenever S ̸= T and where WS =

∑
i∈S W−1

i and
WT =

∑
i∈T W−1

i . Knowledge of this trapdoor allows an adversary to construct
a valid opening to {(i, xi)}i∈S and {(i, x′

i)}i∈T for any choice of xi, x
′
i.

Conceptually, our approach for constructing an aggregatable vector com-
mitment scheme is to replace the fixed target value xie1 from our basic vector
commitment with random linear combinations of {xi}i∈S (where the coefficients
of the random linear combination are the vectors {ui}i∈S). A similar approach
was used for aggregating pairing-based signatures in [BDN18] and for aggregating
openings (to constant-degree polynomials) in [ACL+22].

Aggregating functional commitments. The same aggregation technique applies to
our succinct functional commitment scheme. Recall the functional commitment
verification relation from Eq. (1.6): AṼf = C̃f − y ·G. Here Ṽf is the opening,
C̃f is a function of the commitment C and the function f , and y is the value. To
support aggregating up to t openings, we include random vectors u1, . . . ,ut

r← Zn
q

in the CRS. Then, given a collection of openings (f1, y1, Ṽ1), . . . , (ft, yt, Ṽt) where
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the functions f1, . . . , ft are sorted in lexicographic order, we define the aggregate
opening to be v =

∑
i∈[t] Ṽi ·G−1(ui). The new verification relation is then∑
i∈[t]

C̃fi ·G−1(ui) = Av −
∑
i∈[t]

yiui.

Similar to the case with aggregatable vector commitments, we can argue “same-
function binding,” where no efficient adversary can open a commitment C to
two different sets of values (y1, . . . , yt) ̸= (y′1, . . . , y

′
t) with respect to the same

set of functions (f1, . . . , ft). We provide the full analysis in the full version of
this paper [WW22].

Understanding the BASIS assumption. The BASIS assumptions we introduce in
this work enable a number of new constructions of vector commitments and
their generalizations. While the basic version BASISrand that suffices for vector
commitments can be reduced to the standard SIS assumption (Theorem 3.4), the
more general version BASISstruct with structured matrices does not. Nonetheless,
the BASISstruct assumption is still falsifiable and thus, yields the first succinct
functional commitments and polynomial commitments from falsifiable lattice
assumptions. We invite cryptanalysis of our new family of SIS assumptions and
are also optimistic that the assumption as well as our general methodology will
be helpful for realizing new lattice-based cryptographic primitives.

In Section 6, we compare the BASISstruct assumption to similar assumptions
made in [ACL+22]. We show a close connection between the two families of
assumptions. We can also view the BASIS assumptions as a new type of “q-type”
assumption in the lattice-based setting (where the size of the assumption grows
with the input dimension).

1.3 Related Work and Concurrent Work

Functional commitments have also been extensively studied in the interactive
model. In these settings, there is typically an interactive opening procedure
between the committer and the verifier. Ishai et al. [IKO07] introduced interactive
functional commitments for linear function, and subsequently, Bitansky and
Chiesa [BC12] extended it to interactive functional commitments. In both cases,
these were used to construct (interactive) succinct arguments without relying
on probabilistically-checkable proofs (PCPs). Alternatively, using PCPs or their
generalization to interactive oracle proofs [BCS16], we can also construct a
functional commitment from any collision-resistant hash function via Kilian’s
interactive succinct argument [Kil92], which can then be made non-interactive in
the random oracle model [Mic00]. Our focus in this work is on non-interactive
vector and functional commitments in the plain model (i.e., without random
oracles).

Concurrent works. Recently, two concurrent works [dCP23, BCFL22] intro-
duced new constructions of functional commitments. We provide a more detailed
comparison with these works in the full version of this paper [WW22].
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2 Preliminaries

We write λ to denote the security parameter. For a positive integer n ∈ N, we write
[n] to denote the set {1, . . . , n}. For integers a, b ∈ N, we write [a, b] to denote the
set {a, a+1, . . . , b}. For a positive integer q ∈ N, we write Zq to denote the integers
modulo q. We use bold uppercase letters to denote matrices (e.g., A,B) and
bold lowercase letters to denote vectors (e.g., u, v). We use non-boldface letters
to refer to their components: v = (v1, . . . , vn). For matrices A1, . . . ,Aℓ ∈ Zn×m

q ,
we write diag(A1, . . . ,Aℓ) ∈ Znℓ×mℓ

q to denote the block diagonal matrix with
blocks A1, . . . ,Aℓ along the main diagonal (and 0 elsewhere).

We write poly(λ) to denote a fixed function that is O(λc) for some c ∈ N
and negl(λ) to denote a function that is o(λ−c) for all c ∈ N. For functions
f = f(λ), g = g(λ), we write g ≥ O(f) to denote that there exists a fixed function
f ′(λ) = O(f) such that g(λ) > f ′(λ) for all λ ∈ N. We say an event occurs with
overwhelming probability if its complement occurs with negligible probability. An
algorithm is efficient if it runs in probabilistic polynomial time in its input length.
We say that two families of distributions D1 = {D1,λ}λ∈N and D2 = {D2,λ}λ∈N are
computationally indistinguishable if no efficient algorithm can distinguish them
with non-negligible probability, and we say they are statistically indistinguishable
if the statistical distance ∆(D1,D2) is bounded by a negligible function negl(λ).

We review additional preliminaries, especially on lattice-based cryptography
in the full version of this paper [WW22].

3 Vector Commitments with Private Opening from SIS

In this section, we show how to construct a vector commitment with private
openings from the standard SIS assumption. We start by recalling the definition
of a vector commitment:

Definition 3.1 (Vector Commitment). A vector commitment scheme with
succinct local openings over a message space M consists of a tuple of efficient
algorithms ΠVC = (Setup,Commit,Open,Verify) with the following properties:

– Setup(1λ, 1ℓ)→ crs: On input the security parameter λ and the vector length
ℓ, the setup algorithm outputs a common reference string crs.

– Commit(crs,x) → (σ, st): On input the common reference string crs and a
vector x ∈Mℓ, the commit algorithm outputs a commitment σ and a state
st.

– Open(st, i) → π: On input a commitment state st and an index i ∈ [ℓ], the
open algorithm outputs an opening π.

– Verify(crs, σ, i, xi, π) → {0, 1}: On input the common reference string crs,
a commitment σ, an index i, a message xi ∈ M, and an opening π, the
verification algorithm outputs a bit b ∈ {0, 1}.

We now define several standard properties on vector commitment schemes:
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– Correctness: For all security parameters λ, vector dimensions ℓ, and inputs
x = (x1, . . . , xℓ) ∈Mℓ,

Pr

Verify(crs, σ, i,mi, π) = 1 :
crs← Setup(1λ, 1ℓ);

(σ, st)← Commit(crs,x);
π ← Open(st, i)

 = 1− negl(λ).

– Succinctness: The vector commitment scheme is succinct if there exists a
universal polynomial poly(·) such that for all λ ∈ N, |σ| = poly(λ, log ℓ) and
|π| = poly(λ, log ℓ) in the correctness definition.

– Binding: We say the commitment scheme is statistically binding (resp.,
computationally binding) if for all polynomials ℓ = ℓ(λ) and all adversaries
A (resp., efficient adversaries A),

Pr

 Verify(crs, σ, i, xi, π) = 1
and xi ̸= x′

i and
Verify(crs, σ, i, x′

i, π
′) = 1

:
crs← Setup(1λ, 1ℓ);(

σ, i, (xi, π), (x
′
i, π

′)
)
← A(1λ, 1ℓ, crs)

 = negl(λ).

– Private openings: For a vector dimension ℓ, an adversary A, and a simula-
tor S = (S0,S1), we define two distributions RealA(1λ, 1ℓ) and IdealA,S(1

λ, 1ℓ)
as follows:
RealA(1λ):

1. Give crs← Setup(1λ, 1ℓ) to A.
2. Algorithm A outputs an input x ∈
Mℓ.

3. Compute (σ, st) ← Commit(crs,x)
and give σ to A.

4. Algorithm A outputs an index i ∈ [ℓ].
5. Give πi ← Open(st, i) to A.
6. Algorithm A outputs a bit b ∈ {0, 1}

which is the output of the experiment.

IdealA,S(1
λ):

1. Sample (crs, σ, st) ← S0(1λ, 1ℓ) and
give crs to A.

2. Algorithm A outputs an input x ∈
Mℓ.

3. Give σ to A.
4. Algorithm A outputs an index i ∈ [ℓ].
5. Compute πi ← S1(st, i, xi) and give

πi to A.
6. Algorithm A outputs a bit b ∈ {0, 1}

which is the output of the experiment.

We say that the vector commitment scheme has statistically (resp., computa-
tionally) private openings if for all polynomials ℓ = ℓ(λ) and adversaries A
(resp., efficient adversaries A), there exists an efficient simulator S = (S0,S1)
such that RealA(1λ, 1ℓ) and IdealA,S(1

λ, 1ℓ) are statistically (resp., computa-
tionally) indistinguishable.

3.1 The Basis-Augmented SIS (BASIS) Assumption

In this section, we introduce the family of SIS assumptions that we use to
build our vector commitment schemes. At a high level, our assumptions assert
that the SIS problem is hard with respect to a random matrix A even given a
trapdoor for a matrix B that is correlated with A. We refer to our family of
assumptions as the “basis-augmented SIS” (BASIS) assumption. As we discuss
below (Theorem 3.4), some versions of the BASIS assumption can be reduced
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to the standard SIS assumption. For instance, our first construction of a vector
commitments with private openings (Construction 3.5) relies on a version that
reduces to the standard SIS assumption.

Assumption 3.2 (BASIS Assumption). Let λ be a security parameter and
n = n(λ), m = m(λ), q = q(λ), and β = β(λ) be lattice parameters. Let s = s(λ)
be a Gaussian width parameter. Let Samp be an efficient sampling algorithm
that takes as input a security parameter λ and a matrix A ∈ Zn×m

q and outputs
a matrix B ∈ Zn′×m′

q along with auxiliary input aux. We say that the basis-
augmented SIS (BASIS) assumption holds with respect to Samp if for all efficient
adversaries A,

Pr

Ax = 0 and 0 < ∥x∥ ≤ β :
A r← Zn×m

q ;
(B, aux)← Samp(1λ,A),T← B−1

s (Gn′);
x← A(1λ,A,B,T, aux)

 = negl(λ).

In other words, we require that SIS is hard with respect to A even given a
trapdoor T for the related matrix B.

Assumption 3.3 (BASIS Assumption Instantiations). Let λ be a security
parameter and n = n(λ), m = m(λ), q = q(λ), and β = β(λ) be lattice parameters.
Let s = s(λ) be a Gaussian width parameter and ℓ = ℓ(λ) be a dimension. We
consider two concrete instantiations of the BASIS assumption:

– BASISrand : The sampling algorithm Samp(1λ,A) samples i∗ r← [ℓ], Ai
r←

Z(n+1)×m
q for all i ̸= i∗, a r← Zm

q , sets Ai∗ ←
[
aT

A

]
, and outputs

Bℓ =

A1 −Gn+1

. . .
...

Aℓ −Gn+1

 and aux = i∗.

We refer to this assumption as “the BASIS assumption with random matrices.”
– BASISstruct: The sampling algorithm Samp(1λ,A) samples Wi

r← Zn×n
q for

all i ∈ [ℓ] and outputs

Bℓ =

W1A −Gn

. . .
...

WℓA −Gn

 and aux = (W1, . . . ,Wℓ).

This is essentially BASISrand with structured matrices A1, . . . ,Aℓ. We refer
to this assumption as “the BASIS assumption with structured matrices.”

Each of the above assumptions is parameterized by the tuple of parameters
(n,m, q, β, s, ℓ). Strictly speaking, in both cases above, the auxiliary information
aux can be efficiently computed directly from A and Bℓ, and thus, can be safely
omitted. We include them here for notational convenience.
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Hardness of BASISrand. The BASISrand assumption can be reduced to SIS. We state
the theorem below and give the proof in the full version of this paper [WW22].

Theorem 3.4 (Hardness of BASISrand). Let λ be a security parameter and
n = n(λ), m = m(λ), q = q(λ), β = β(λ) be lattice parameters. Take any
polynomial ℓ = ℓ(λ) and suppose n ≥ λ, m ≥ O(n log q), and s ≥ O(ℓm log(nℓ)).
Then, under the SISn,m,q,β assumption, the BASISrand assumption with parameters
(n,m, q, β, s, ℓ) holds.

3.2 Vector Commitments with Private Opening from SIS

We now show how to construct a vector commitment scheme with statistically
private openings from the BASISrand assumption. By Theorem 3.4, we can in turn
base hardness on the standard SIS assumption (with polynomial modulus).

Construction 3.5 (Vector Commitments from SIS). Let λ be a security
parameter and n = n(λ), m = m(λ), and q = q(λ) be lattice parameters. Let
m′ = n(⌈log q⌉ + 1) and B = B(λ) be a bound. Let s0 = s0(λ), s1 = s1(λ) be
Gaussian width parameters. Let ℓ be the vector dimension. We construct a vector
commitment scheme ΠVC = (Setup,Commit,Open,Verify) for Zℓ

q as follows:

– Setup(1λ, 1ℓ): On input the security parameter λ and the vector dimension
ℓ, the setup algorithm samples (Ai,Ri)← TrapGen(1n, q,m) for each i ∈ [ℓ].
Then, it constructs matrices Bℓ and R where

Bℓ =

A1 −G
. . .

...
Aℓ −G

 and R =

[
diag(R1, . . . ,Rℓ)

0m′×ℓm′

]
. (3.1)

Finally, the setup algorithm samples T ← SamplePre(Bℓ,R,Gnℓ, s0) and
outputs the common reference string crs = (A1, . . . ,Aℓ,T).

– Commit(crs,x): On input the common reference string crs = (A1, . . . ,Aℓ,T)
and a vector x ∈ Zℓ

q, the commit algorithm constructs Bℓ from A1, . . . ,Aℓ

according to Eq. (3.1) and then uses T to sample
v1

...
vℓ

ĉ

← SamplePre(Bℓ,T,−x⊗ e1, s1), (3.2)

where e1 = [1, 0, . . . , 0]T ∈ Zm
q is the first standard basis vector. It computes

c ← Gĉ ∈ Zn
q and outputs the commitment σ = c and the state st =

(v1, . . . ,vℓ).
– Open(st, i): On input the state st = (v1, . . . ,vℓ) and the index i ∈ [ℓ], the

opening algorithm outputs vi.
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– Verify(crs, σ, i, xi, π): On input the common reference string crs = (A1, . . . ,Aℓ,T),
a commitment σ = c ∈ Zn

q , an index i ∈ [ℓ], a message xi ∈ Zq, and an
opening π = vi, the verification algorithm outputs 1 if

∥vi∥ ≤ B and c = Aivi + xie1.

Due to space limitations, we defer the formal analysis of Construction 3.5 to the
full version of this paper [WW22] and simply state the main result below:

Corollary 3.6 (Vector Commitments with Private Openings from SIS).
Let λ be a security parameter. Then, for all polynomials ℓ = ℓ(λ), under the

SIS assumption with a polynomial norm bound β = poly(λ, ℓ) and a polynomial
modulus q = poly(λ, ℓ), there exists a vector commitment scheme over Zℓ

q that
is computationally binding and has statistically private openings. The size of a
commitment to a vector x ∈ Zℓ

q has size O(λ(log λ+log ℓ)) and the openings have
size O(λ(log2 λ+ log2 ℓ)). The size of the CRS is ℓ2 · poly(λ, log ℓ).

Extensions: linear homomorphism and updatability. Similar to the non-private
scheme of Peikert et al. [PPS21], our vector commitment scheme is linearly
homomorphic and supports stateless updates. We provide more details in the
full version of this paper [WW22].

4 Succinct Functional Commitments for Circuits

In this section, we show how to obtain a succinct functional commitment for
general circuits from the BASISstruct assumption. We consider schemes where the
parameters scale with the depth of the Boolean circuit. We start with the formal
definition:

Definition 4.1 (Succinct Functional Commitment). Let λ be a security
parameter. Let F = {Fλ}λ∈N be a family of functions f : {0, 1}ℓ → {0, 1} on
inputs of length ℓ = ℓ(λ) and which can be computed by Boolean circuits of depth
at most d = d(λ). A succinct functional commitment for F is a tuple of efficient
algorithms ΠFC = (Setup,Commit,Eval,Verify) with the following properties:

– Setup(1λ, 1ℓ, 1d)→ crs: On input the security parameter λ, the input length ℓ,
and the bound on the circuit depth d, the setup algorithm outputs a common
reference string crs.

– Commit(crs,x)→ (σ, st): On input the common reference string crs and an
input x ∈ {0, 1}ℓ, the commitment algorithm outputs a commitment σ and a
state st.

– Eval(st, f)→ πf : On input a commitment state st and a function f ∈ F , the
evaluation algorithm outputs an opening πf .

– Verify(crs, σ, f, y, π) → {0, 1}: On input the common reference string crs, a
commitment σ, a function f ∈ F , a value y ∈ {0, 1}, and an opening π, the
verification algorithm outputs a bit b ∈ {0, 1}.
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We now define several correctness and security properties on the functional
commitment scheme:

– Correctness: For all security parameters λ, all functions f ∈ F , and all
inputs x ∈ {0, 1}ℓ,

Pr

Verify(crs, σ, f, f(x), πf

)
= 1 :

crs← Setup(1λ, 1ℓ, 1d);
(σ, st)← Commit(crs,x);

πf ← Eval(st, f)

 = 1− negl(λ).

– Succinctness: The functional commitment scheme is succinct if there exists
a universal polynomial poly(·, ·, ·) such that for all λ ∈ N, |σ| = poly(λ, d, log ℓ)
and |πf | = poly(λ, d, log ℓ) in the correctness definition.11

– Binding: We say ΠFC satisfies statistical (resp., computational) binding if
for all adversaries A (resp., efficient adversaries A),

Pr [Verify(crs, σ, f, 0, π0) = 1 = Verify(crs, σ, f, 1, π1)] = negl(λ),

where crs← Setup(1λ, 1ℓ, 1d) and (σ, f, π0, π1)← A(1λ, 1ℓ, 1d, crs).
– Private openings: For an adversary A and a simulator S = (S0,S1), we

start by defining two distributions RealA(1
λ, 1ℓ, 1d) and IdealA,S(1

λ, 1ℓ, 1d):
RealA(1λ, 1ℓ, 1d):

1. Give crs← Setup(1λ, 1ℓ, 1d) to A.
2. Algorithm A outputs an input x ∈
{0, 1}ℓ.

3. Compute (σ, st) ← Commit(crs,x)
and give σ to A.

4. Algorithm A outputs a function f ∈
Fλ.

5. Give πf ← Eval(st, f) to A.
6. Algorithm A outputs a bit b ∈ {0, 1}

which is the output of the experiment.

IdealA,S(1
λ, 1ℓ, 1d):

1. Sample (crs, σ, st) ← S0(1λ, 1ℓ, 1d)
and give crs to A.

2. Algorithm A outputs an input x ∈
{0, 1}ℓ.

3. Give σ to A.
4. Algorithm A outputs a function f ∈
Fλ.

5. Compute πf ← S1(st, f, f(x)) and
give πf to A.

6. Algorithm A outputs a bit b ∈ {0, 1}
which is the output of the experiment.

We say that ΠFC has statistical (resp., computational) private openings if for
all adversaries A (resp., efficient adversaries A), there exists an efficient
simulator S = (S0,S1) such that RealA(1λ, 1ℓ, 1d) and IdealA,S(1

λ, 1ℓ, 1d) are
statistically (resp., computationally) indistinguishable.

Construction 4.2 (Succinct Functional Commitment). Let λ be a security
parameter and n = n(λ), m = m(λ), and q = q(λ) be lattice parameters
where q is prime. Let m′ = n(⌈log q⌉ + 1) and B = B(λ) be a bound. Let

11We could consider an even stronger notion of succinctness where the size of the
commitment and the opening depends polylogarithmically on the size of the Boolean
circuits computing F . However, like existing (non-succinct) lattice-based homomorphic
commitments and signatures [GVW15], the size of the commitment and openings in
our construction scale with the depth of the computation.
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s0 = s0(λ), s1 = s1(λ) be Gaussian width parameters. Let F = {Fλ}λ∈N be
a family of Boolean valued functions f : {0, 1}ℓ → {0, 1} where each function
f : {0, 1}ℓ → {0, 1} is a function on inputs of length ℓ = ℓ(λ) and which can
be computed by a Boolean circuit of depth at most d = d(λ). We construct a
functional commitment ΠVC = (Setup,Commit,Open,Verify) for F as follows:
– Setup(1λ, 1ℓ, 1d): On input the security parameter λ, the input length ℓ, and

the bound d on the circuit depth, the setup algorithm samples (A,R) ←
TrapGen(1n, q,m) and for each i ∈ [ℓ], samples an invertible matrix Wi

r←
Zn×n
q . Next, it computes R̃i ← RG−1(W−1

i G) ∈ Zm×m′

q for each i ∈ [ℓ] and
constructs matrices Bℓ and R as follows:

Bℓ =

W1A −G
. . .

...
WℓA −G

 and R̃ =

[
diag(R̃1, . . . , R̃ℓ)

0m′×ℓm′

]
. (4.1)

Finally, the setup algorithm samples T ← SamplePre(Bℓ, R̃,Gnℓ, s0) and
outputs the common reference string crs = (A,W1, . . . ,Wℓ,T).

– Commit(crs,x): On input the common reference string crs = (A,W1, . . . ,Wℓ,T)
and a vector x ∈ {0, 1}ℓ, the commit algorithm constructs Bℓ from A,W1, . . . ,Wℓ

according to Eq. (4.1). It then constructs a target matrix

Ux =

−x1W1G
...

−xℓWℓG

 ∈ Znℓ×m′

q . (4.2)

It then uses T to sample a preimage
V1

...
Vℓ

Ĉ

← SamplePre(Bℓ,T,Ux, s1). (4.3)

It outputs the commitment σ = C = GĈ ∈ Zn×m′

q and the state st =
(x,C,V1, . . . ,Vℓ).

– Eval(crs, st, f): On input the common reference string crs = (A,W1, . . . ,Wℓ,T),
a commitment state st = (x,C,V1, . . . ,Vℓ), and a function f : {0, 1}ℓ →
{0, 1}, the evaluation algorithm sets C̃← [W−1

1 C | · · · |W−1
ℓ C], computes

HC̃,f,x ← EvalFX(C̃, f,x), and outputs the opening πf = Vf ← [V1 | · · · |
Vℓ] ·HC̃,f,x.

– Verify(crs, σ, f, y, π): On input the common reference string crs = (A,W1, . . . ,Wℓ,T),
a commitment σ = C ∈ Zn×m′

q , a function f : {0, 1}ℓ → {0, 1}, a value
y ∈ {0, 1}, and an opening π = Vf ∈ Zm×m′

q , the verification algorithm sets
C̃← [W−1

1 C | · · · |W−1
ℓ C], computes C̃f ← EvalF(C̃, f) and outputs 1 if

∥Vf∥ ≤ B and AVf = C̃f − yG. (4.4)

Due to space limitations, we defer the analysis of Construction 4.2 to the full
version of this paper [WW22]. We summarize the parameter instantiation below:
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Parameter instantiation. Let λ be a security parameter and F = {Fλ}λ∈N be a
family of functions f : {0, 1}ℓ → {0, 1} on inputs of length ℓ = ℓ(λ) and which
can be computed by Boolean circuits of depth at most d = d(λ).

– Let ε > 0 be a constant. We set the lattice dimension n = d1/ε · poly(λ) and
m = O(n log q).

– We set s0 = O(ℓm2 log(nℓ)) and

s1 = O(ℓ3/2m3/2 log(nℓ)·s0) = O(ℓ5/2m7/2 log2(nℓ)) = O(ℓ5/2n7/2 log2(nℓ) log7/2 q).

– We set the bound B = s1 ·
√
ℓm+m′ · (n log q)O(d) = ℓ3 log2 ℓ · (n log q)O(d).

– We set the modulus q so that the BASISstruct assumption holds with parameters
(n,m, q, β, s0, ℓ), where

β = 2Bm
√
m′ log n = ℓ3 log2 ℓ · (n log q)O(d) = 2Õ(d) = 2Õ(nε),

where we write Õ(·) to suppress polylogarithmic factors in λ, d, ℓ. Note that
this also requires that SISn,m,q,β hold. For instance, we set q = β · poly(n).
Then, log q = poly(d, log λ, log ℓ). Note that the underlying SIS assumption
now relies on a sub-exponential noise bound.

With this setting of parameters, we obtain a functional commitment scheme for
F with the following parameter sizes:

– Commitment size: A commitment σ to an input x ∈ {0, 1}ℓ consists of a
matrix σ = C ∈ Zn×m′

q so

|σ| = nm′ log q = O(n2 log2 q) = poly(λ, d, log ℓ).

– Opening size: An opening π to a function f consists of a matrix π = Vf ∈
Zm×m′

q . Then,
|π| = mm′ log q = poly(λ, d, log ℓ).

In Remark 4.4, we describe a simple approach to compress the opening to a
vector instead of a matrix.

– CRS size: The CRS consists of (A,W1, . . . ,Wℓ,T), where A ∈ Zn×m
q ,

Wi ∈ Zn×n
q , and T ∈ Z(ℓm+m′)×ℓm′

q . Thus, the total size of the CRS is

|crs| = nm log q + ℓn2 log q + (ℓm+m′)(ℓm′) log q = ℓ2 · poly(λ, d, log ℓ).

Thus, Construction 4.2 is a succinct functional commitment scheme for bounded-
depth circuits. We summarize the instantiation in the following corollary:

Corollary 4.3 (Succinct Vector Commitment from BASISstruct). Let λ be
a security parameter, and let F = {Fλ}λ∈N be a family of functions f : {0, 1}ℓ →
{0, 1} on inputs of length ℓ = ℓ(λ) and which can be computed by Boolean circuits
of depth at most d = d(λ). Under the BASISstruct assumption with a norm bound
β = 2Õ(d) and modulus q = 2Õ(d), there exists a computationally-binding succinct
functional commitment scheme for F . Both the size of the commitment and the
opening are poly(λ, d, log ℓ), and the CRS has size ℓ2 · poly(λ, d, log ℓ). Here, Õ(·)
suppresses polylogarithmic factors in λ, d, and ℓ.
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Remark 4.4 (Reducing the Opening Size). An opening πf to a function f in
Construction 4.2 consists of a matrix πf = Vf ∈ Zm×m′

q where m,m′ = O(n log q).
It is easy to adapt Construction 4.2 to obtain slightly shorter openings (i.e.,
πf = vf ∈ Zm

q ). The idea is simple: we publish a random target vector u r← Zn
q

in the CRS and define the new opening to be vf ← VfG
−1(u), where Vf is

the original opening from Construction 4.2. The updated verification relation
then checks that ∥vf∥ is small and that Avf = C̃G−1(u)− y · u. We also use
this approach to aggregate openings in the full version of this paper [WW22].
However, giving out the “matrix” opening is convenient when specializing our
construction to obtain polynomial commitments.

Remark 4.5 (Comparison with [ACL+22]). The authors of [ACL+22] showed
how to construct a functional commitment for constant-degree polynomials where
the size of the CRS scales exponentially with the degree of the polynomial. Our
functional commitment scheme (Construction 4.2) supports arbitrary Boolean
circuits of bounded depth, and the size of our CRS scales polynomially with the
depth of the circuit family. Moreover, security of our construction can be reduced
to a function-independent assumption (the BASISstruct assumption) whereas the
scheme in [ACL+22] relied on a function-dependent assumption. We compare
the two types of assumptions in more detail in Section 6.

An advantage of the [ACL+22] construction is that if supports fast verification
with preprocessing. Namely, in their scheme, the verifier can precompute a
verification key for a function f , and subsequently, verify openings with respect
to f in time that is polylogarithmic in the running time of f . In contrast, with our
scheme, the verifier has to first homomorphically compute f on the commitment
in order to verify. In the full version of this paper [WW22], we show that for the
special case of linear functions, we can adapt Construction 4.2 to support fast
verification in the preprocessing model.

Remark 4.6 (A Candidate SNARG with Expensive Verification). The authors
of [ACL+22] show how to boost their functional commitment for quadratic
polynomials to a preprocessing SNARG for NP as follows:

1. First, [ACL+22] applying “sparsification” to their functional commitment
scheme. Over the integers, one analog of sparsification is to require the
adversary to output a short Ṽ such that ÃṼ = DC, where D ∈ Z2m×n

q ,
where Ã r← Z2m×2m log q

q is a sparsification matrix. The CRS includes short
preimages of Ã to enable sampling of Ṽ.

2. Next, [ACL+22] introduce a knowledge assumption that says that the only
way an adversary can produce C and Ṽ is by computing a short linear
combination of the preimages in the CRS (where the coefficients correspond
to the committed vector x).

3. To support openings to multiple quadratic polynomials with a succinct
opening (i.e., sublinear in the number of openings), [ACL+22] introduces a
novel SIS-based technique.

Taken together, [ACL+22] show how to obtain an “extractable” commitment
scheme, a notion that is equivalent to a succinct argument of knowledge for
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satisfiability of quadratic systems. This yields a publicly-verifiable preprocessing
SNARG for NP since satisfiability of degree-2 polynomials is NP-complete. Specif-
ically, a proof for a statement x consists of a commitment σ to a satisfying witness
w and an opening π of σ to a satisfying assignment to the quadratic constraint
system representing the NP relation. By relying on preprocessing (Remark 4.5),
the [ACL+22] SNARG has short proofs and fast verification.

We can apply an analogous approach to our functional commitment scheme
(Construction 4.2) to obtain a candidate SNARG for NP; our SNARG would have
short proofs but an expensive verification step (since our functional commitment
does not support fast verification in the preprocessing model). We also note that
even without sparsification, our construction is still a candidate SNARG: we do
not know how to prove soundness of our construction, but at the same time, are
not aware of any attacks either. An attack on our candidate SNARG (without
sparsification) would be interesting, and we invite cryptanalysis of our candidate.

4.1 Opening to Linear Functions and Applications to Polynomial
Commitments

In the full version of this paper [WW22], we describe a variant of Construction 4.2
for the setting of linear functions that supports fast verification in the prepro-
cessing model (see Remark 6.1). Moreover, the full version of this paper [WW22]
naturally supports linear functions over Zℓ

q (as opposed to {0, 1}ℓ) and generalizes
to yield a polynomial commitment [KZG10]. Unlike [ACL+22], we do not require
the values in the committed vector or the output of the linear function to be
short. Supporting large values is necessary for obtaining a succinct polynomial
commitment.

4.2 Supporting Private Openings

In the full version of this paper [WW22], we show how to extend Construction 4.2
to additionally support private openings. Recall from Definition 4.1 that a
functional commitment supports private openings if the commitment σ to an input
x together with an opening πf with respect to a function f leaks no additional
information about x other than the value f(x). In the context of homomorphic
signatures [GVW15], this property is called context hiding. We show that the
same approach used to achieve context hiding in the setting of homomorphic
signatures applies to our setting and yields a succinct functional commitment
that supports private openings. However, the transformation does not preserve
the binding property on the functional commitments scheme. Nonetheless, we
can still show that the scheme satisfies a weaker notion of binding called target
binding, which says that any honestly-generated commitment on x can only be
opened to f(x) for any function f . We defer the details to the full version of this
paper [WW22].
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5 Aggregatable Vector Commitments

In the full version of this paper [WW22], we show how to use the BASISstruct
assumption to obtain a variant of our SIS-based vector commitment (Construc-
tion 3.5) that supports aggregation. Recall that in an aggregatable commitment,
one can take a collection of openings {(i, πi)}i∈S for a set of S ⊆ [ℓ] of indices
and aggregate them into a single opening π (for the set S) whose size scales
sublinearly with the size of S. Aggregatable commitments imply subvector com-
mitments [LM19] which are vector commitments that allow for succinct openings
to a set of indices (but do not necessarily support aggregating openings).

6 New SIS Assumptions: Relations and Discussion

In this section, we compare our approach of publishing a full trapdoor in the com-
mon reference string with the approach of Albrecht et al. [ACL+22] of publishing
short preimages in the CRS. While Albrecht et al. formulate their assumption
over polynomial rings, their ideas apply equally well in the integer setting. We
describe everything over the integers to enable a more direct comparison. We
start by recalling the general paradigm for constructing vector commitments
from Section 1.2 common to our approach and their approach:

– The CRS consists of ℓ matrices Ai ∈ Zn×m
q and a set of target vectors ti ∈ Zn

q

for i ∈ [ℓ]. The CRS also contains some auxiliary information auxℓ that is
used to construct commitments and openings.

– An opening vi to value xi at index i with respect to a commitment c ∈ Zn
q is

a short vector vi that satisfies c = Aivi − xiti.

We now compare the two types of auxiliary information auxℓ in our approach
(based on the BASIS assumption) and the Albrecht et al. approach (based on
variants of the k-ISIS assumption):

(I) Our approach: In our approach based on the BASIS assumption, auxℓ = T is
a trapdoor T← B−1

ℓ (Gnℓ) for the matrix Bℓ = [diag(A1, . . . ,Aℓ) | −1ℓ⊗G].
As shown in Sections 3 and 4, the trapdoor T suffices to jointly sample
commitments c and openings v1, . . . ,vℓ that satisfy the verification relation.

(II) The Albrecht et al. approach: In the Albrecht et al. [ACL+22] approach,
the auxiliary information auxℓ = {zj,i}i̸=j consists of a collection of short
vectors zj,i ← A−1

i (tj). The commitment to a vector x ∈ {0, 1}ℓ is the vector
c =

∑
i∈[ℓ]−xiti and the openings are vi =

∑
j ̸=i−xjzj,i.

We now compare the relative power of these two types of auxiliary information.
We refer to the above auxiliary data as “Type I” auxiliary data and “Type II”
auxiliary data, respectively.

– When the target vectors t1, . . . , tℓ are uniform, we can simulate a CRS with
Type II auxiliary data from a CRS with Type I auxiliary data. Namely, given
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matrices A1, . . . ,Aℓ and the trapdoor auxℓ = T for B, we can sample
zj,1
...

zj,ℓ
ĉj

← B−1
ℓ (0),

for each j ∈ [ℓ]. By construction of Bℓ, for all j ∈ [ℓ], zj,i ∈ Zm
q is a short

vector satisfying Aizj,i = Gĉj . The marginal distribution of each ĉj is a
discrete Gaussian, and Gĉj is uniform over Zn

q . Thus, we obtain a Type II
CRS with matrices A1, . . . ,Aℓ, target vectors t1 = Gĉ1, . . . , tℓ = Gĉℓ, and
auxiliary data auxℓ = {zj,i}i ̸=j .

– Next, we show that we can also use Type II auxiliary data to obtain a
trapdoor for sub-matrices of B. We illustrate this with a concrete example.
Suppose we want to obtain a trapdoor for the matrix Bk (where k < ℓ/m):

Bk =

A1 −G
. . .

...
Ak −G

 ∈ Zkn×(km+m′)
q ,

where m′ = n(⌊log q⌋ + 1). For j ̸= i, let zj,i ∈ Zm
q be short vectors where

Aizj,i = tj be the vectors in the Type II auxiliary data. For any j > k,
consider the vector

vj =


zj,1
...

zj,k
G−1(tj)

 ∈ Zkm+m′

q ,

Observe that vj is short, and moreover Bkvj = 0. If ℓ− k > km+m′, then
we can collect km +m′ such vectors vj . Heuristically, if these vectors are
linearly independent (over the integers), then this yields a Ajtai-basis for
Bk. Thus Type II auxiliary data implies Type I auxiliary data for a slightly
smaller dimension k ≈ ℓ/m.

While asking for security given a full trapdoor for the related matrix Bℓ might
seem like a stronger assumption than giving our many short preimages under
A1, . . . ,Aℓ, the above analysis shows that these these two types of auxiliary
data have comparable power. Hardness of SIS/ISIS with respect to one type of
auxiliary data is comparable to hardness with respect to the other (up to an
O(n log q) loss in the vector dimension ℓ). In fact, the above analysis shows that
Type II auxiliary data (with essentially arbitrary target vectors ui) is already
sufficient to construct a trapdoor that yields a Type I auxiliary data for a smaller
input dimension. However, the converse is not true, as the trapdoor for Bℓ seem
to only allow sampling preimages of A1, . . . ,Aℓ with respect to random target
vectors t1, . . . , tℓ. This distinction is important, and as we discuss in Remark 6.1,
Type I auxiliary data seem essential to realizing the functional commitment
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scheme from Section 4 (as well as its aggregatable analog in the full version of
this paper [WW22]). Other advantages to using a Type I auxiliary data include
supporting private openings (Construction 3.5) and commitments to large inputs.

Remark 6.1 (Structured Targets and Functional Commitments). The main ver-
ification relation of our functional commitment scheme (Construction 4.2) is
C = AiVi + xiG where Ai = WiA. If we consider a Type II auxiliary data for
this verification relation, the auxiliary data would contain A−1

i (G), or equiva-
lently, A−1(W−1

i G). However, A−1(W−1
i G) is a trapdoor for A (with tag W−1

i ),
which trivially breaks security. In contrast, using Type I auxiliary data does
not appear to yield a trapdoor for A, and plausibly yields a succinct functional
commitment scheme.

6.1 Another View of the BASISstruct Assumption

To facilitate cryptanalysis of our new assumption, we provide an equivalent formu-
lation of the BASISstruct assumption (Assumption 3.3) underlying our functional,
polynomial, and aggregatable commitments. Consider a variant of the BASISstruct
assumption where T is an Ajtai trapdoor for B (i.e., T← B−1

s (0m×2m)). Note
that we can efficiently convert between gadget trapdoors and Ajtai trapdoors, up
to small polynomial losses in the quality of the trapdoor. It is easy to see that
we can re-express B−1(0m×2m) as A−1(W−1

i R) for all i ∈ [ℓ], and R r← Zn×2m
q .

Therefore, the BASISstruct assumption is equivalent to:

SIS is hard with respect to A r← Zn×m
q given A−1(W−1

i R)
for all i ∈ [ℓ], where Wi

r← Zn×n
q and R r← Zn×2m

q .

Remark 6.2 (Parameter Choices for the BASISstruct assumption). While hardness
of the BASISrand assumption can be based on the hardness of the standard
SIS assumption, we do not know of an analogous reduction for the BASISstruct
assumption. When setting parameters for the BASISstruct assumption, we use
Theorem 3.4 as a guide and consider instantiations where n ≥ λ, m ≥ O(n log q)
and s ≥ O(ℓm log n) = poly(λ, ℓ). Note that this means the quality of the basis
decreases with the dimension. For this parameter setting, we are not aware
of any concrete attacks on the BASISstruct assumption and conjecture that its
security is comparable with the hardness of SISn,m,q,β , with a noise bound bound
β = poly(λ, ℓ) that scales with the dimension of the vector (as in Theorem 3.4).
In particular, the hardness of the SIS instance decreases with the dimension ℓ
(similar to the case with q-type assumptions over groups [Che06]).
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