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Abstract. Actively secure two-party computation (2PC) is one of the
canonical building blocks in modern cryptography. One main goal for
designing actively secure 2PC protocols is to reduce the communication
overhead, compared to semi-honest 2PC protocols. In this paper, we
propose a new actively secure constant-round 2PC protocol with one-
way communication of 2κ+5 bits per AND gate (for κ-bit computational
security and any statistical security), essentially matching the one-way
communication of semi-honest half-gates protocol. This is achieved by
two new techniques:
1. The recent compression technique by Dittmer et al. (Crypto 2022)

shows that a relaxed preprocessing is sufficient for authenticated gar-
bling that does not reveal masked wire values to the garbler. We
introduce a new form of authenticated bits and propose a new tech-
nique of generating authenticated AND triples to reduce the one-way
communication of preprocessing from 5ρ + 1 bits to 2 bits per AND
gate for ρ-bit statistical security.

2. Unfortunately, the above compressing technique is only compatible
with a less compact authenticated garbled circuit of size 2κ+ 3ρ bits
per AND gate. We designed a new authenticated garbling that does
not use information theoretic MACs but rather dual execution with-
out leakage to authenticate wire values in the circuit. This allows us
to use a more compact half-gates based authenticated garbled circuit
of size 2κ+1 bits per AND gate, and meanwhile keep compatible with
the compression technique. Our new technique can achieve one-way
communication of 2κ+ 5 bits per AND gate.

Our technique of yielding authenticated AND triples can also be used to
optimize the two-way communication (i.e., the total communication) by
combining it with the authenticated garbled circuits by Dittmer et al.,
which results in an actively secure 2PC protocol with two-way commu-
nication of 2κ+ 3ρ+ 4 bits per AND gate.

Keywords: Actively secure 2PC · Garbled circuit · Correlated oblivious
transfer.



1 Introduction

Based on garbled circuits (GCs) [44], constant-round secure two-party com-
putation (2PC) has obtained huge practical improvements in recent years in
both communication [5,30,45,35] and computation [6,23,22]. However, compared
to passively secure (a.k.a., semi-honest) 2PC protocols, their actively secure
counterparts require significant overhead. Building upon the authenticated gar-
bling framework [36,37,29,42] and, more generally, working in the BMR fam-
ily [5,31,32,26,24], the most recent work by Dittmer, Ishai, Lu and Ostrovsky [16]
(denoted as DILO hereafter) is able to bring down the communication cost to
2κ + 8ρ + O(1) bits per AND gate, where κ and ρ are the computational and
statistical security parameters, respectively.

Although huge progress, there is still a gap between actively secure and pas-
sively secure 2PC protocols based on garbled circuits. In particular, the size of
a garbled circuit has been recently reduced from 2κ bits (half-gates [45]) to 1.5κ
bits (three-halves [35]) per AND gate, while even the latest authenticated gar-
bling cannot reach the communication efficiency of half-gates. It is possible to
close this gap between active and passive security using the GMW compiler [21],
and its concrete efficiency was studied in [1]. However, it requires non-black-box
use of the underlying garbling scheme and thus requires prohibitive overhead.

Bringing down the cost of authenticated garbling at this stage requires over-
coming several challenges. First of all, we need the authenticated GC itself to be
as small as the underlying GC construction. This could be achieved for half-gates
as Katz et al. [29] (denoted as KRRW hereafter) proposed an authenticated half-
gates construction in the two-party setting. However, when it comes to three-
halves, there is no known construction. These authenticated GCs are usually
generated in some preprocessing model, and thus the second challenge is to in-
stantiate the preprocessing with only constant additive overhead. Together with
recent works on pseudorandom correlation generators (PCGs) [11,10,43,13,9],
Katz et al. [29] can achieve O(κ) bits per AND gate, while Dittmer et al. [16] can
achieve O(ρ) bits per AND gate. However, the latest advancement by Dittmer et
al. [16] is not compatible with the optimal authenticated half-gates construction
and requires an authenticated GC of size 2κ+ 3ρ bits per AND gate.

1.1 Our Contribution

We make significant progress in closing the communication gap between passive
and active GC-based 2PC protocols by proposing a new actively secure 2PC
protocol with constant rounds and one-way communication essentially the same
as the half-gates 2PC protocol in the semi-honest setting.

1. We manage to securely instantiate the preprocessing phase with O(1) bits
per AND gate. Our starting point is the compression technique by Dittmer
et al. [16], who showed that in authenticated garbling, the random masks of
the evaluator need not be of full entropy and can be compressed with entropy
sublinear to the circuit size. This observation leads to an efficient construction
from vector oblivious linear evaluation (VOLE) to the desired preprocessing
functionality. This reduces the communication overhead of preprocessing to



2PC
Rounds Communication per AND gate

Prep. Online one-way (bits) two-way (bits)

Half-gates 1 2 2κ 2κ

HSS-PCG [25] 8 2 8κ+ 11 (4.04×) 16κ+ 22 (8.09×)
KRRW-PCG [29] 4 4 5κ+ 7 (2.53×) 8κ+ 14 (4.05×)

DILO [16] 7 2 2κ+ 8ρ+ 1 (2.25×) 2κ+ 8ρ+ 5 (2.27×)
This work 8 3 2κ+ 5 (≈ 1×) 4κ+ 10 (2.04×)

This work+DILO 8 2 2κ+ 3ρ+ 2 (1.48×) 2κ+ 3ρ+ 4 (≈ 1.48×)

Table 1: Comparing our protocol with prior works in terms of round and communica-
tion complexity. Here κ, ρ denote the computational and statistical security parameters
instantiated by 128 and 40 respectively. Round complexity is counted in the random
COT/VOLE-hybrid model. One-way communication is the greater of the two par-
ties’ communication; two-way communication is the sum of all communication. For the
KRRW and HSS protocol we take the bucket size as B = 3.

5ρ + 1 bits per AND gate. To further reduce their communication, we in-
troduce a new tool called “dual-key authentication”. Intuitively this form
of authentication allows two parties to commit to a value that can later be
checked against subsequent messages by both parties. Together with a new
technique of generating authenticated AND triples from correlated oblivious
transfer (COT), we avoid the ρ-time blow-up of the DILO protocol, and the
one-way communication cost is reduced to 2 bits per AND gate.

2. As mentioned earlier, the above compression technique is not compatible with
KRRW authenticated half-gates; this is because the compression technique
requires that the garbler does not learn the masked values since the entropy
of wire masks provided by the evaluator is low. We observe that the dual-
execution protocol [28,27] can essentially be used for this purpose, and it is
highly compatible with the authenticated garbling technique. In particular,
the masked value of each wire is implicitly authenticated by the garbled label.
Therefore we can perform two independent executions and check the actual
value of each wire against each other. Since every wire is checked, we are
able to eliminate the 1-bit leakage in ordinary dual-execution protocols. The
overall one-way communication is 2κ+ 5 bits per AND gate.

We note that this is only a partial solution because dual execution requires both
parties to send GCs. Under full-duplex networks (e.g., most wired communica-
tion) where communication in both directions can happen simultaneously, this
effectively imposes no slow down; however, for half-duplex networks (e.g., most
wireless communication), it would not be a preferable option. Nevertheless, our
preprocessing protocol can be combined with the construction of authenticated
garbled circuits by Dittmer et al. [16] to achieve the best two-way communica-
tion of 2κ + 3ρ + 4 bits per AND gate, leading to a 1.53× improvement. We
provide a detailed comparison in Table 1.

We do not compare our actively secure 2PC protocol with the protocol (de-
noted by DILOv2) by Dittmer et al. [16] building on doubly authenticated mul-



tiplication triples. Compared to DILO, the DILOv2 protocol is less efficient,
as DILOv2 requires quasi-linear computational complexity. Moreover, DILOv2
can only generate authenticated triples over F2ρ , while authenticated garbling
requires triples over F2. This incurs a ρ-time overhead when utilizing such triples.

2 Preliminaries

2.1 Notation

We use κ and ρ to denote the computational and statistical security parameters,
respectively. We use log to denote logarithms in base 2. We write x ← S to
denote sampling x uniformly at random from a finite set S. We define [a, b) =
{a, . . . , b− 1} and write [a, b] = {a, . . . , b}. We use bold lower-case letters like a
for column vectors, and bold upper-case letters like A for matrices. We let ai
denote the i-th component of a (with a1 the first entry). We use {xi}i∈S to
denote the set that consists of all elements with indices in set S. When the
context is clear, we abuse the notation and use {xi} to denote such a set. For a
string x, we use lsb(x) to denote the least significant bit (LSB) and msb(x) to
denote the most significant bit (MSB).

For an extension field F2κ of a binary field F2, we fix some monic, irreducible
polynomial f(X) of degree κ and then write F2κ

∼= F2[X]/f(X). Thus, every
element x ∈ F2κ can be denoted uniquely as x =

∑
i∈[0,κ) xi ·Xi with xi ∈ F2 for

all i ∈ [0, κ). We could view elements over F2κ equivalently as vectors in Fκ
2 or

strings in {0, 1}κ, and consider a bit x ∈ F2 as an element in F2κ . Depending on
the context, we use {0, 1}κ, Fκ

2 and F2κ interchangeably, and thus addition in Fκ
2

and F2κ corresponds to XOR in {0, 1}κ. We also define two macros to convert
between F2κ and Fκ

2 .

– x← B2F(x): Given x = (x0, ..., xκ−1) ∈ Fκ
2 , output x :=

∑
i∈[0,κ) xi·Xi ∈ F2κ .

– x← F2B(x): Given x =
∑

i∈[0,κ) xi ·Xi ∈ F2κ , output x = (x0, ..., xκ−1) ∈ Fκ
2 .

A Boolean circuit C consists of a list of gates in the form of (i, j, k, T ), where
i, j are the indices of input wires, k is the index of output wire and T ∈ {⊕,∧}
is the type of the gate. In the 2PC setting, we use IA (resp., IB) to denote the
set of circuit-input wire indices corresponding to the input of PA (resp., PB). We
also use W to denote the set of output-wire indices of all AND gates, and O to
denote the set of circuit-output wire indices in the circuit C. We denote by Cand
the set of all AND gates in the form of (i, j, k, T ).

Our protocol in the two-party setting is proven secure against static and
malicious adversaries in the standard simulation-based security model [12,20].
We recall the security model, a relaxed equality-check functionality FEQ and the
coin-tossing functionality FRand as well as the summary of the notations and
macros used in our protocols in the full version [14].

2.2 Information-Theoretic Message Authentication Codes

We use information-theoretic message authentication codes (IT-MACs) [7,34] to
authenticate bits or field elements in F2κ . Specifically, let ∆ ∈ F2κ be a global
key. We adopt [x] = (K[x],M[x], x) to denote that an element x ∈ F (where



F ∈ {F2,F2κ}) known by one party can be authenticated by the other party
who holds ∆ ∈ F2κ and a local key K[x] ∈ F2κ , where an MAC tag M[x] =
K[x]+x ·∆ ∈ F2κ is given to the party holding x. For a vector x ∈ Fℓ, we denote
by [x] = ([x1], ..., [xℓ]) a vector of authenticated values. We refer to ([x], [y], [z])
with z = x · y as an authenticated multiplication triple. If x, y, z ∈ {0, 1}, this
tuple is also called authenticated AND triple. For a constant value c ∈ F2κ , it is
easy to define [c] = (c ·∆, 0κ, c). It is well-known that IT-MACs are additively
homomorphic. That is, given public coefficients c0, c1, . . . , cℓ ∈ F2κ , two parties
can locally compute [y] := c0 +

∑ℓ
i=1 ci · [xi].

When applying IT-MACs into 2PC, secret values are authenticated by either
PA or PB. We use subscripts A and B in authenticated values to distinguish which
party (PA or PB) holds the secret values. For example, [x]A = (KB[x],MA[x], x)
denotes that PA holds (x,MA[x]) and PB holds (∆B,KB[x]). In the case that
other global keys are used, we explicitly add a subscript to keys and MAC
tags. For example, when G ∈ F2κ is used and held by PB, we write [x]A,G =
(KB[x]G,MA[x]G, x) and MA[x]G = KB[x]G+x ·G. When the context is clear, we
will omit the subscripts A and B for the sake of simplicity.

Batch opening of authenticated values. In the following, we describe the
known procedure [34,15] to open authenticated values in a batch. Here we always
assume that PA holds the values and MAC tags, and PB holds the global and
local keys. In this case, we write [x] instead of [x]A. For the case that PB holds
the values authenticated by PA, these procedures can be defined similarly. We
first define the following procedure (denoted by CheckZero) to check that all
values are zero in constant small communication.

– CheckZero([x1], . . . , [xℓ]): On input authenticated values [x1], . . . , [xℓ], PA con-
vinces PB that xi = 0 for all i ∈ [1, ℓ] as follows:
1. PA sends h := H(MA[x1], . . . ,MA[xℓ]) to PB, where H : {0, 1}∗ → {0, 1}κ is

a random oracle.
2. PB computes h′ := H(KB[x1], . . . ,KB[xℓ]) and checks that h = h′. If the

check fails, PB aborts.

Following previous works [15,38], we have the following lemma.

Lemma 1. If ∆ ∈ F2κ is sampled uniformly at random, then the probability
that there exists some i ∈ [1, ℓ] such that xi ̸= 0 and PB accepts in the CheckZero
procedure is bounded by 2

2κ .

The above lemma can be relaxed by allowing that ∆ is sampled uniformly from
a set R ⊂ F2κ . In this case, the success probability for a cheating party PA is
at most 1

|R| +
1
2κ . Based on the CheckZero procedure, we define the following

batch-opening procedure (denoted by Open):

– Open([x1], . . . , [xℓ]): On input authenticated values [x1], . . . , [xℓ] defined over
field F2κ , PA opens these values as follows:
1. PA sends (x1, . . . , xℓ) to PB, and then both parties set [yi] := [xi] + xi for

each i ∈ [1, ℓ].
2. PA runs CheckZero([y1], . . . , [yℓ]) with PB. If PB does not abort, it outputs

(x1, . . . , xℓ).



Functionality FL
bCOT

This functionality is parameterized by an integer L ≥ 1. Running with a sender
PA, a receiver PB and an ideal adversary, it operates as follows.

Initialize. Upon receiving (init, sid,∆1, ..., ∆L) from PA and (init, sid) from PB

where ∆i ∈ F2κ for all i ∈ [1, L], store (sid,∆1, ..., ∆L) and then ignore all subse-
quent (init, sid) commands.

Extend. Upon receiving (extend, sid, ℓ) from PA and PB, do the following:

– For i ∈ [1, L], if PA is honest, sample KA[u]∆i ← Fℓ
2κ ; otherwise, receive

KA[u]∆i ∈ Fℓ
2κ from the adversary.

– If PB is honest, sample u← Fℓ
2 and compute MB[u]∆i := KA[u]∆i +u ·∆i ∈ Fℓ

2κ

for i ∈ [1, L]. Otherwise, receive u ∈ Fℓ
2 and MB[u]∆i ∈ Fℓ

2κ for i ∈ [1, L] from
the adversary, and recomputes KA[u]∆i := MB[u]∆i +u ·∆i ∈ Fℓ

2κ for i ∈ [1, L].
– For i ∈ [1, L], output (sid,KA[u]∆i) to PA and (sid,u,MB[u]∆i) to PB.

Fig. 1: Functionality for block correlated oblivious transfer.

2.3 Correlated Oblivious Transfer

Our 2PC protocol will adopt the standard functionality [10,43] of correlated
oblivious transfer (COT) to generate random authenticated bits. This function-
ality (denoted by FCOT) is shown in Figure 1 by setting a parameter L = 1,
where the extension phase can be executed multiple times for the same session
identifier sid. Based on Learning Parity with Noise (LPN) [8], the recent pro-
tocols [10,43,13,9] with sublinear communication and linear computation can
securely realize the COT functionality in the presence of malicious adversaries.
In particular, these protocols can generate a COT correlation with amortized
communication cost of about 0.1 ∼ 0.4 bits.

We also generalize the COT functionality into block COT (bCOT) [16], which
allows to generate authenticated bits with the same choice bits and different
global keys. Functionality FL

bCOT shown in Figure 1 is the same as the stan-
dard COT functionality, except that L vectors (rather than a single vector) of
authenticated bits [u]B,∆1

, . . . , [u]B,∆L
are generated. Here the vector of choice

bits u is required to be identical in different vectors of authenticated bits. It
is easy to see that FCOT is a special case of FL

bCOT with L = 1. The proto-
col that securely realizes functionality FL

bCOT is easy to be constructed by ex-
tending the LPN-based COT protocol as described above. Specifically, we set
∆ = (∆1, . . . ,∆L) ∈ FL

2κ
∼= F2κL as the global key in the LPN-based COT pro-

tocol, and the resulting choice-bits are authenticated over extension field F2κL .
Note that the protocol to generate block COTs still has sublinear communica-
tion, if L is sublinear to the number of the resulting COT correlations.

While the COT functionality outputs random authenticated bits, we can
convert them into chosen authenticated bits via the following procedure (denoted
by Fix), which is also used in the recent DVZK protocol [4].

– ([x]B,∆1
, . . . , [x]B,∆L

)← Fix(sid,x): On input a session identifier sid of FbCOT,
and a vector x ∈ Fℓ

2 from PB, two parties PA and PB execute the following:



Functionality FDVZK

This functionality runs with a prover P and a verifier V, and operates as follows:

– Upon receiving (dvzk, sid, ℓ, {[xi], [yi], [zi]}i∈[1,ℓ]) from P and V where xi, yi, zi ∈
F2κ for all i ∈ [1, ℓ], if there exists some i ∈ [1, ℓ] such that one of [xi], [yi], [zi]
is not valid, output (sid, false) to V and abort.

– Check that zi = xi · yi ∈ F2κ for all i ∈ [1, ℓ]. If the check passes, then output
(sid, true) to V, else output (sid, false) to V.

Fig. 2: Functionality for DVZK proofs of authenticated multiplication triples.

1. Both parties call FL
bCOT on input (extend, sid, ℓ) to obtain ([r]B,∆1 , . . . , [r]B,∆L

)
with a random vector r ∈ Fℓ

2 held by PB, where FL
bCOT has been initialized

by sid and (∆1, . . . ,∆L).

2. PB sends d := x⊕ r to PA.

3. For each i ∈ [1, L], both parties set [x]B,∆i
:= [r]B,∆i

⊕ d.

For a field element x ∈ F2κ , PA and PB can run x← F2B(x), ([x]B,∆1
, . . . , [x]B,∆L

)
← Fix(sid,x) and ([x]B,∆1 , . . . , [x]B,∆L

) ← B2F([x]B,∆1 , . . . , [x]B,∆L
) to obtain

the corresponding authenticated values. Note that B2F only involves the oper-
ations multiplied by public elements X, . . . ,Xκ−1 ∈ F2κ , and thus ([x]B,∆1

, . . . ,
[x]B,∆L

) can be computed locally by running B2F. For simplicity, we abuse the
Fix notation, and use ([x]B,∆1

, . . . , [x]B,∆L
) ← Fix(sid, x) to denote the conver-

sion procedure. The Fix procedure is easy to be generalized to support that the
values are defined over any field F such as F = F2ρ . The Fix procedure is totally
similar for generating authenticated bits [x]A,∆1

, . . . , [x]A,∆L
from random au-

thenticated bits, where here PB holds (∆1, . . . ,∆L). When the context is clear,
we just write ([x]∆1

, . . . , [x]∆L
) ← Fix(sid,x) for simplicity. We further extend

Fix to additionally allow to input vectors of random authenticated bits instead
of calling FL

bCOT, which is denoted by [x]← Fix(x, [r]) for the case of L = 1.

2.4 Designated-Verifier Zero-Knowledge Proofs

Based on IT-MACs, a family of streamable designated-verifier zero-knowledge
(DVZK) proofs with fast prover time and a small memory footprint has been
proposed [38,18,4,41,39,2,17,40,3]. While these DVZK proofs can prove arbitrary
circuits, we only need them to prove a simple multiplication relation. Specifically,
given a set of authenticated triples {([xi], [yi], [zi])}i∈[1,ℓ] over F2κ , these DVZK
protocols can enable a prover P to convince a verifier V that zi = xi · yi for all
i ∈ [1, ℓ]. This is modeled by an ideal functionality shown in Figure 2. In this
functionality, an authenticated value [x] is input by two parties P and V, meaning
that P inputs (x,M) and V inputs (K, ∆). We say that [x] is valid, if M = K +
x ·∆. Using the recent DVZK proofs, this functionality can be non-interactively
realized in the random-oracle model using constant small communication (e.g.,
2κ bits in total [41]).



3 Technical Overview

In this section, we give an overview of our techniques. The detailed protocols
and their formal proofs are described in later sections. Firstly, we recall the basic
approach in the state-of-the-art solution [16].

3.1 Overview of the State-of-the-Art Solution

Recently, Dittmer, Ishai, Lu and Ostrovsky [16] constructed the state-of-the-art
2PC protocol with malicious security (denoted by DILO) from simple VOLE
correlations. 5 For one-way communication, this protocol takes 5ρ + 1 bits to
generate a single authenticated AND triple and 2κ + 3ρ bits per AND gate to
produce one distributed garbled circuit. Their approach is outlined as follows.

In the framework of authenticated garbling [36], for each AND gate (i, j, k,∧),
the garbler PA and evaluator PB need to generate one authenticated triple
([ai], [bi], [aj ], [bj ], [âk], [b̂k]) such that âk ⊕ b̂k = (ai ⊕ bi) ∧ (aj ⊕ bj). Let b ∈ Fn

2

(resp., bI ∈ Fm
2 ) be the vector of random masks {bi} held by PB on the output

wires of all AND gates (resp., on all circuit-input wires associated with the PB’s
input), where n is the number of all AND gates and m is the number of all
circuit-input gates. The key observation by Dittmer et al. [16] is that only eval-
uator PB can compute masked wire values (i.e., the XOR of actual wire values
and random masks), and thus b is unnecessary to be uniformly random if the
masked wire values are not revealed to PA. In particular, when these masked
wire values are not revealed by PB, a malicious garbler PA can only guess some
masked wire values by performing a selective-failure attack. This means that for
each masked wire value, PA can guess correctly with probability 1/2, and the
protocol execution will abort for an incorrect guess. In this case, PA can guess
at most ρ − 1 masked wire values, and otherwise the protocol will abort with
probability at least 1− 1/2ρ. The core idea of DILO is to compress vector b by
defining b = M ·b∗, where M ∈ Fn×L

2 is a public matrix such that any ρ rows of
M are linearly independent, b∗ ∈ FL

2 is a uniform vector and L = O(ρ log(n/ρ)).
Since IT-MACs are additively homomorphic, two parties only need to generate
[b∗] (instead of [b]) for a much shorter vector b∗, and then compute [b] := M·[b∗].

Dittmer et al. [16] assume that bI is uniform and authenticated AND triples
related to bI are generated using the previous approach such as [29]. Therefore,
we only show how to generate compressed authenticated AND triples, where
random masks held by PB are compressed. Two parties can first generate com-
pressed authenticated AND triple ([ai], [bi], [aj ], [bj ], [âk], [b̂k]) for each AND gate
with ∆A ← F2ρ , and then convert them into that with ∆′

A ← F2κ using extra
2 bits of communication per AND gate, where a ρ-bit global key can guarantee
that communication only depends on ρ rather than κ and ∆′

A ∈ F2κ is required
for garbled circuits. In the following, we give an overview of Dittmer et al.’s
approach on how to generate circuit-dependent compressed authenticated AND
triples {([ai], [bi], [aj ], [bj ], [âk], [b̂k])} with ∆A, ∆B ∈ F2ρ .

5 VOLE is an arithmetic generalization of COT, and enables PA to obtain (∆,K[u]) ∈
F× Fℓ and PB to get (u,M[u]) ∈ Fℓ × Fℓ such that M[u] = K[u] + u ·∆, where F is
a large field such as F = F2ρ .



1. PA and PB generates a vector of authenticated bits [b∗] with a uniform b∗ ∈ FL
2

by calling FCOT. Then, both parties define [b] := M · [b∗].
2. Both parties compute authenticated bit [bi,j ] for each AND gate (i, j, k,∧)

via running the Fix procedure with input {bi,j} where bi,j := bi · bj .
3. PB samples ∆B, γ ← F2ρ . Then, both parties initializes two functionalities
FL+2

bCOT and FL+2
bVOLE with the same global keys (b∗1 · ∆B + γ, . . . , b∗L · ∆B +

γ,∆B+γ, γ), where FL+2
bVOLE is the same as FL+2

bCOT except that the outputs are
VOLE correlations over F2ρ instead of COT correlations. Here γ is necessary
to mask b∗i · ∆B. In particular, a consistency check in DILO lets PB send a
hashing of values related to b∗i · ∆B to the malicious party PA, which may
leak the bit b∗i to PA. This attack would be prevented by using a uniform γ
to mask b∗i ·∆B. Given [a]b∗i ∆B+γ and [a]γ for any bit a held by PA, it is easy
to locally compute [ab∗i ]∆B

from the additive homomorphism of IT-MACs.
Similarly, given [a]∆B+γ and [a]γ , two parties can locally compute [a]∆B

.
4. PA and PB calls FL+2

bCOT to generate the vectors of authenticated bits [a], [â]
as well as [aib

∗]∆B
for each i ∈ [1, n], where a ∈ Fn

2 (resp., â ∈ Fn
2 ) is used

as the vector of random masks {ai} (resp., {âk}) held by PA on the output
wires of all AND gates. Then, they can locally compute [aibj ]∆B

and [ajbi]∆B

for each AND gate (i, j, k,∧) by calculating M · [aib∗]∆B
. Both parties run

the Fix procedure with input {ai,j} to obtain {[ai,j ]}, where ai,j = ai ∧ aj for
each AND gate (i, j, k,∧).

5. PA and PB call FL+2
bVOLE to get a vector of authenticated values [ã] with a

uniform vector ã ∈ Fn
2ρ . Both parties run the Fix procedure with input (∆A ·

a, ∆A · â, {∆A · ai,j}, ∆A) to obtain authenticated values [∆A · a], [∆A · â],
{[∆A ·ai,j ]} and [∆A]∆B

. The Fix procedure corresponds to calling FL+2
bVOLE, and

also outputs [∆Aaib
∗]∆B

for each i ∈ [1, n] and [∆A]b∗i ∆B
for each i ∈ [1, L]

to both parties. Note that [∆A]∆B
and [∆A]b∗i ∆B

can be written as [∆B] and
[b∗i∆B] respectively, where we also use [B∗

i ] to denote [b∗i∆B]. Furthermore, PA

and PB can locally compute [∆Aaibj ]∆B
and [∆Aajbi]∆B

for each AND gate
(i, j, k,∧) by computing M · [∆Aaib

∗]∆B
for each i ∈ [1, n].

6. Parties PA and PB call FDVZK to prove the following relations:
– For each AND gate (i, j, k,∧), given ([bi], [bj ], [bi,j ]), prove bi,j = bi ∧ bj .
– For each AND gate (i, j, k,∧), given ([ai], [aj ], [ai,j ]), prove ai,j = ai ∧ aj .
– For each i ∈ [1, L], given ([b∗i ], [∆B], [B

∗
i ]), prove B∗

i = b∗i ·∆B.
7. PB also executes an efficient verification protocol to convince PA that the

same global keys are input to different functionalities FL+2
bCOT and FL+2

bVOLE. It is
unnecessary to check the consistency of ∆A ·a, ∆A · â, {∆A ·ai,j}, ∆A input to
Fix w.r.t. FL+2

bVOLE. The resulting VOLE correlations on these inputs are used
to compute the MAC tags of PB on its shares. If these inputs are incorrect,
this only leads to these MAC tags, which will be authenticated by PA, being
incorrect. This is harmless for security.

8. For each AND gate (i, j, k,∧), PA and PB locally compute [b̃k]∆B
:= [ai,j ] +

[aibj ]+[ajbi]+[âk] and [B̃k]∆B
:= [∆Aai,j ]+[∆Aaibj ]+[∆Aajbi]+[∆Aâk]+[ãk],

where all values are authenticated under ∆B. Then, PA sends a pair of MAC
tags (MA[b̃k],MA[B̃k]) to PB, who computes the following over F2κ

b̃k := (KB[b̃k] +MA[b̃k]) ·∆−1
B and B̃k := (KB[B̃k] +MA[B̃k]) ·∆−1

B .



It is easy to see that b̃k = ai,j ⊕ aibj ⊕ ajbi ⊕ âk ∈ {0, 1} and B̃k = (ai,j +
aibj + ajbi + âk) ·∆A + ãk ∈ F2ρ , where the randomness ãk ∈ F2ρ is crucial

to prevent that B̃k directly reveals ∆A in the case of b̃k = 1. We observe that
both parties now obtain an authenticated bit [b̃k]∆A

by defining its local key
KA[b̃k] = ãk and MAC tag MB[b̃k] = B̃k.

9. For each AND gate (i, j, k,∧), PA and PB locally compute an authenticated

bit [b̂k]∆A
:= [b̃k]∆A

⊕ [bi,j ]∆A
. Now, both parties obtain an authenticated

triple ([ai], [bi], [aj ], [bj ], [âk], [b̂k]) for each AND gate (i, j, k,∧).

3.2 Our Solution for Generating Authenticated AND Triples

In the DILO protocol [16], the one-way communication cost of generating the

authenticated triple ([ai], [bi], [aj ], [bj ], [âk], [b̂k]) for each AND gate (i, j, k,∧) is
brought about by producing an authenticated bit [b̃k] under ∆A that is in turn

used to locally compute [b̂k] with b̂k = b̃k ⊕ bibj . DILO generates the authenti-

cated bit [b̃k] = (KA[b̃k],MB[b̃k], b̃k) under∆A by computing authenticated values
on b̃k and MB[b̃k] under ∆B. Specifically, we have the following two parts:

– PB computes the bit b̃k from the authenticated bit on b̃k under ∆B and cor-
responding MAC tag sent by PA in communication of ρ+ 1 bits.

– PB computes the MAC tag MB[b̃k] by generating the authenticated value on
MB[b̃k] under ∆B and corresponding MAC tag sent by PA in communication
of 4ρ bits.

We observe that the communication cost of the first part can be further reduced
to only 2 bits by setting lsb(∆B) = 1. In particular, PA can send the LSB xk of
the MAC tag w.r.t. [b̃k]∆B

to PB who can compute b̃k by XORing xk with the
LSB of the local key w.r.t. [b̃k]∆B

. The authentication of {b̃k} can be done in a
batch by hashing the MAC tags on these bits. However, the communication cost
of the second part is inherent due to the DILO approach of generating the MAC
tag MB[b̃k]. This leaves us a challenge problem: how to generate authenticated
bit [b̃k]∆A

without the ρ-time blow-up in communication.
The crucial point for solving the above problem is to generate the MAC tag

MB[b̃k] with constant communication per triple. In a straightforward way, PA and
PB can run the Fix procedure to generate [b̃k]∆A

by taking one-bit communication
after PB has obtained b̃k. However, PA has no way to check the correctness of
b̃k implied in [b̃k]∆A

, where [b̃k]∆B
generated by both parties only allow PB to

check the correctness of b̃k. We introduce the notion of dual-key authentication to
allow both parties to check the correctness of b̃k, where the bit b̃k is authenticated
under global key ∆A ·∆B and thus no party can change the bit b̃k without being
detected. We present an efficient approach to generate the dual-key authenticated
bit ⟨b̃k⟩ with communication of only one bit. By checking the consistency of all
values input to the block-COT functionality, we can guarantee the correctness
of ⟨b̃k⟩, i.e., b̃k is a valid bit authenticated by both parties. When setting lsb(∆A ·
∆B) = 1, PB can obtain the bit b̃k by letting PA send one-bit message to PB (see
below for details). By using Fix, PA and PB can generate [b̃k] under ∆A. Now,
PB can check the correctness of b̃k obtained, and PA can verify the correctness



of b̃k implied in [b̃k], by using the correctness of ⟨b̃k⟩. Particularly, we propose a
batch-check technique that enables both parties to check the correctness of {b̃k}
in all triples with essentially no communication. In addition, we present two new
checking protocols to verify the correctness of global keys and the consistency of
values across different functionalities (see below for an overview). Overall, our
techniques allow to achieve one-way communication of only 2 bits per triple, and
are described below.

Dual-key authentication. We propose the notion of dual-key authentication,
meaning that a bit is authenticated by two global keys ∆A, ∆B ∈ F2κ held
by PA and PB respectively. In particular, a dual-key authenticated bit ⟨x⟩ =
(DA[x],DB[x], x) lets PA hold DA[x] and PB hold DB[x] such that DA[x]+DB[x] =
x ·∆A ·∆B ∈ F2κ , where x ∈ {0, 1} can be known by either PA or PB, or unknown
for both parties. From the definition, we have that dual-key authenticated bits
are also additively homomorphic, which enables us to use the random-linear-
combination approach to perform consistency checks associated with such bits.
We are also able to generalize dual-key authenticated bits to dual-key authen-
ticated values in which x is defined over any field F and DA[x],DB[x], ∆A, ∆B

are defined over an extension field K with F ⊆ K. This generalization may be
useful for the design of subsequent protocols. A useful property is that ⟨x⟩ can
be locally converted into [x∆A]∆B

or [x∆B]∆A
and vice versa.

We consider that the bit x is shared as (a, b) with x = a∧ b, where PA holds
a ∈ {0, 1} and PB holds b ∈ {0, 1}. Without loss of generality, we focus on
the case that a is a secret bit. The bit b can be either a secret bit or a public
bit 1, where the former means that no party knows x and the latter means
that only PA knows x. The DILO protocol [16] implicitly generates a dual-key
authenticated bit by running Fix(a∆A) w.r.t. global keys b∆B + γ, γ to obtain
[a∆A]b∆B

= ⟨ab⟩ = ⟨x⟩, which incurs ρ-time blow-up in communication (even
if a allows to be a random bit). Our approach can reduce the communication
cost to at most one bit. In particular, we first let PA and PB generate a dual-key
authenticated bit ⟨b⟩ = (α, β) with α + β = b ·∆A ·∆B ∈ F2κ , where PA gets α
and PB obtains β. Then, both parties initialize functionality FbCOT with a global
key β. If a ∈ {0, 1} allows to be random, both parties call FbCOT to generate [a]β
without communication. Otherwise, both parties run Fix with input a to generate
[a]β in communication of one bit. Given [a]β = (KB[a]β ,MA[a]β , a), PA and PB

can locally compute a dual-key authenticated bit ⟨a⟩ by letting PA compute
DA[x] := MA[a]β + a · α ∈ F2κ and PB set DB[x] := KB[a]β ∈ F2κ . We have that
DA[x] + DB[x] = (MA[a]β + KB[a]β) + a · α = a · (α+ β) = a · b ·∆A ·∆B ∈ F2κ .
To guarantee correctness of ⟨x⟩, we need to check the consistency of β input to
FbCOT and a input to Fix, which will be shown below.

Sampling global keys with correctness checking. As described above, we need
to generate two global keys ∆A and ∆B such that lsb(∆A · ∆B) = 1, which
allows one party to get the bit x = lsb(DA[x]) ⊕ lsb(DB[x]) from a dual-key
authenticated bit ⟨x⟩. To do this, we let PA sample ∆A ← {0, 1}κ such that
lsb(∆A) = 1. Then, we let PB sample ∆B ← {0, 1}κ, and make PA and PB run
the Fix procedure w.r.t. ∆A with input ∆B to generate [∆B]∆A

(i.e., ⟨1⟩), where



α0⊕β0 = ∆A∆B. PA and PB can exchange lsb(α0) and lsb(β0) to decide whether
lsb(α0)⊕ lsb(β0) = 0. If yes, then lsb(∆A∆B) = lsb(α0)⊕ lsb(β0) = 0. In this case,
we let PB update ∆B as ∆B⊕1, which makes ∆A∆B be updated as ∆A∆B⊕∆A,
where lsb(∆A∆B ⊕ ∆A) = lsb(∆A∆B) ⊕ lsb(∆A) = 1. Since ∆B is changed as
∆B⊕ 1, α0 needs to be updated as α0⊕∆A in order to keep correct correlation.

While we adopt the KRRW authenticated garbling [29] in dual executions,
some bit of global keys ∆A, ∆B ∈ {0, 1}κ is required to be fixed as 1. We often
choose to define lsb(∆A) = 1 and lsb(∆B) = 1. While lsb(∆A) = 1 has been
satisfied, lsb(∆B) = 1 does not always hold, as PB may flip ∆B depending on if
lsb(α0)⊕ lsb(β0) = 0. Thus, we let PB set msb(∆B) = 1 for ease of remembering.
More importantly, msb(∆B) = 1 has no impact on setting lsb(∆A∆B) = 1.

To achieve active security, we need to guarantee that ∆A ·∆B ̸= 0 in the case
that either PA or PB is corrupted. This can be assured by checking ∆A ̸= 0 and
∆B ̸= 0. We choose to check lsb(∆A) = 1 andmsb(∆B) = 1 to realize the checking
of ∆A ̸= 0 and ∆B ̸= 0. To enable PB to check lsb(∆A) = 1, both parties can
generate random authenticated bits [r1]B, . . . , [rρ]B, and then PA sends lsb(KA[ri])
for i ∈ [1, ρ] to PB who checks that lsb(KA[ri]) ⊕ lsb(MB[ri]) = ri for all i ∈
[1, ρ]. A malicious PA can cheat successfully if and only if it guesses correctly
all random bits r1, . . . , rρ, which happens with probability 1/2ρ. The correctness
check of msb(∆B) = 1 can be done in a totally similar way. Furthermore, we need
also to check lsb(∆A∆B) = 1, and otherwise a selective failure attack may be
performed on secret bit b̃k. We first let PB check lsb(∆A∆B) = 1 by interacting
with PA. We make PA and PB generate random dual-key authenticated bits
⟨s1⟩, . . . , ⟨sρ⟩. Then, the check of lsb(∆A∆B) = 1 can be done similarly, by letting
PA send lsb(DA[si]) to PB who checks that lsb(DA[si]) ⊕ lsb(DB[si]) = si for all
i ∈ [1, ρ]. To produce ⟨s1⟩, . . . , ⟨sρ⟩, PA and PB can call FCOT to generate random
authenticated bits [s1]∆A

, . . . , [sρ]∆A
, and then run the Fix procedure w.r.t.∆A on

input (s1∆B, . . . , sρ∆B) to generate [s1∆B]∆A
, . . . , [sρ∆B]∆A

that are equivalent
to ⟨s1⟩, . . . , ⟨sρ⟩. Then, the correctness of the input (s1∆B, . . . , sρ∆B) needs to be
verified by PA via letting PB prove that ([si]∆A

, [∆B]∆A
, [si∆B]∆A

) for all i ∈ [1, ρ]
satisfy the multiplication relationship using FDVZK. Due to the dual execution,
PA needs also to symmetrically check lsb(∆A∆B) = 1 by interacting with PB.

Generating compressed authenticated AND triples. As described above, for gen-
erating a compressed authenticated AND triple ([ai], [bi], [aj ], [bj ], [âk], [b̂k]), the

crucial step is to generate a dual-key authenticated bit ⟨b̃k⟩ with b̃k = b̂k ⊕ bibj .

From the definition of b̃k, we know that ⟨b̃k⟩ = ⟨ai,j⟩⊕ ⟨aibj⟩⊕ ⟨ajbi⟩⊕ ⟨âk⟩. We
use the above approach to generate the dual-key authenticated bits ⟨ai,j⟩, ⟨âk⟩
and ⟨aib∗⟩ for i ∈ [1, n] that can be locally converted to ⟨aibj⟩, ⟨ajbi⟩ by multi-
plying a public matrix M. Then, we combine all the dual-key authenticated bits
to obtain ⟨b̃k⟩. From lsb(∆A∆B) = 1, we can let PA send lsb(DA[b̃k]) to PB who is
able to recover b̃k = lsb(DA[b̃k])⊕ lsb(DB[b̃k]). By running the Fix procedure with
input b̃k, both parties can generate [b̃k], which can be in turn locally converted

into [b̂k]. More details are shown as follows.



1. As in the DILO protocol [16], we let PA and PB obtain [b∗] and {[bi,j ]} by call-
ing FCOT and running Fix with input bi,j = bibj . Then, both parties compute
[b] := M · [b∗] to obtain [bi], [bj ] for each AND gate (i, j, k,∧).

2. PA and PB have produced ⟨1⟩ = (α0, β0) such that α0 + β0 = ∆A ·∆B ∈ F2κ .
For each i ∈ [1, L], both parties can further generate a dual-key authenticated
bit ⟨b∗i ⟩ = (αi, βi) with αi + βi = b∗i ·∆A ·∆B ∈ F2κ by running Fix w.r.t. ∆A

with input B∗
i = b∗i∆B. The communication to generate ⟨b∗1⟩, . . . , ⟨b∗L⟩ is Lκ

bits and logarithmic to the number n of AND gates due to L = O(ρ log(n/ρ)).
3. PB and PA initialize FL+1

bCOT with global keys β1, . . . , βL, ∆B, and then call

FL+1
bCOT to generate [a]β1 , . . . , [a]βL

and [a]∆B
. For each tuple ([ai]β1 , . . . , [ai]βL

),
we can convert it to ⟨aib∗⟩. By multiplying the public matrix M, both parties
can obtain ⟨aibj⟩ and ⟨ajbi⟩ for each AND gate (i, j, k,∧). From [a]∆B

, both
parties directly obtain [ai], [aj ] for each AND gate (i, j, k,∧).

4. PB and PA initialize F2
bCOT with global keys β0, ∆B, and then call F2

bCOT to
generate [â]β0

and [â]∆B
. Both parties further run the Fix procedure with

input ai,j = ai ∧ aj to generate [ai,j ]β0
and [ai,j ]∆B

, where [ai,j ]∆B
will be

used to prove validity of ai,j . The parties can convert [â]β0
and {[ai,j ]β0

} into
⟨âk⟩ and ⟨ai,j⟩ for each AND gate (i, j, k,∧).

5. Both parties can locally compute ⟨b̃k⟩ := ⟨ai,j⟩ ⊕ ⟨aibj⟩ ⊕ ⟨ajbi⟩ ⊕ ⟨âk⟩. Then,
PA can send lsb(DA[b̃k]) to PB, who computes b̃k := lsb(DA[b̃k])⊕ lsb(DB[b̃k])
due to lsb(∆A∆B) = 1. Both parties run Fix on input b̃k to generate [b̃k].

6. PA and PB can locally compute [b̂k] := [b̃k] ⊕ [bi,j ]. Now, the parties hold

([ai], [bi], [aj ], [bj ], [âk], [b̂k]) for each AND gate (i, j, k,∧).

Consistency check. We have shown how to generate compressed authenticated
AND triples. Below, we show how to verify their correctness. We only need to
guarantee the consistency of all Fix inputs, all global keys input to the bCOT
functionality and all bits sent by PA to PB. When all messages and inputs are
consistent, no malicious party can break the correctness of all triples. Specifically,
we present the following checks to guarantee the consistency.

1. Check the correctness of the following authenticated AND triples:
– ([bi], [bj ], [bi,j ]) s.t. bi,j = bi ∧ bj for each AND gate (i, j, k,∧).
– ([ai], [aj ], [ai,j ]) s.t. ai,j = ai ∧ aj for each AND gate (i, j, k,∧).
– ([b∗i ], [∆B], [B

∗
i ]) s.t. B

∗
i = b∗i ·∆B for each i ∈ [1, L].

2. The keys β0, β1, . . . , βL input to functionality FbCOT are consistent to the
values defined in ⟨1⟩, ⟨b∗1⟩, . . . , ⟨b∗L⟩.

3. PA needs to check that two global keys ∆
(1)
B and ∆

(2)
B respectively input to

functionalities FL+1
bCOT and F2

bCOT are consistent with ∆B defined in ⟨1⟩.
4. PA checks that the bit b̃k defined in [b̃k] is consistent to that defined in ⟨b̃k⟩,

and PB checks that b̃k computed by itself is consistent to that defined in ⟨b̃k⟩.

The first two checks guarantee the correctness of ⟨b̃k⟩ and [bi,j ], the third check
verifies the consistency of the global keys in [ai], [aj ], [âk], and the final check

assure the consistency of bits authenticated between ⟨b̃k⟩ and [b̃k]. Check 1 can
be directly realized by calling functionality FDVZK.



For Check 2, for each i ∈ [0, L], we let PA and PB run the Fix procedure w.r.t.
βi on input ∆′

A to generate [∆′
A]βi

, which can be locally converted into [βi]∆′
A
,

where ∆′
A ∈ F2κ is sampled uniformly at random by PA.

6 For i ∈ [0, L], we
present a new protocol to verify the consistency of βi in the following equations:

αi + βi = b∗i ·∆A ·∆B,

K′
A[βi] +M′

A[βi] = βi ·∆′
A,

where b∗0 is defined as 1. We first multiply two sides of the first equation by ∆−1
A ,

and obtain αi · ∆−1
A + βi · ∆−1

A = b∗i · ∆B. We rewrite the resulting equation
as KA[βi] + MB[βi] = βi · ∆−1

A where KA[βi] = αi · ∆−1
A and MB[βi] = b∗i · ∆B.

Below, we can adapt the known techniques [18,16] to check the consistency of
βi authenticated under different global keys (i.e., [βi]∆−1

A
and [βi]∆′

A
) in a batch

(see Section 4.3 for details).

For Check 3, we make PA and PB run the Fix procedure w.r.t. ∆
(1)
B (resp.,

∆
(2)
B ) on input ∆′

A to obtain [∆
(1)
B ]∆′

A
(resp., [∆

(2)
B ]∆′

A
). Authenticated values

[∆
(1)
B ]∆′

A
and [∆

(2)
B ]∆′

A
are equivalent to ⟨1(1)B ⟩ and ⟨1(2)B ⟩ where ∆

(1)
B ∆′

A and

∆
(2)
B ∆′

A are used as the global keys in dual-key authentication. Both parties
can invoke a relaxed equality-check functionality FEQ (shown in the full ver-

sion [14] ) to check 1
(1)
B − 1

(2)
B = 0. Using the checking technique by Dittmer et

al. [16], we can also check the consistency of the values authenticated between

[∆
(1)
B ]∆′

A
and [∆B]∆A

generated during the sampling phase.
For Check 4, we use a random-linear-combination approach to perform the

check in a batch. Specifically, we can let PA and PB call FCOT to generate [r]B and
then obtain [r]B ← B2F([r]B), where r ∈ F2κ is uniform. Then, both parties run
Fix w.r.t. ∆A on input r∆B to generate [r∆B]∆A

(i.e., ⟨r⟩). We can let the parties
call a standard coin-tossing functionality FRand to sample a random element
χ ∈ F2κ . Then, both parties can locally compute ⟨y⟩ :=

∑
χk · ⟨b̃k⟩ + ⟨r⟩ and

[y]B :=
∑

χk · [b̃k]B + [r]B. Then, PB can open [y]B that allows PA to get y
in an authenticated way. Finally, both parties can use FEQ to verify that the
opening of ⟨y⟩ − y · ⟨1⟩ is 0. Since χ is sampled uniformly at random after all
authenticated values are determined, the consistency check will detect malicious
behaviors except with probability at most n/2κ.

3.3 Our Solution for Dual Execution without Leakage

While the evaluator’s random masks are compressed, the state-of-the-art con-
struction of authenticated garbling based on half-gates by Katz et al. [29] is no
longer applied. The circuit authentication approach in [29] requires the evalu-
ator to reveal all masked wire values, which is prohibitive for the compression
technique. Therefore, based on the technique [36], Dittmer et al. [16] designed a
new construction of authenticated garbling without revealing masked wire val-
ues. However, this construction incurs extra communication overhead of 3ρ− 1
bits per AND gate, compared to the half-gates-based construction [29].

6 An independent global key ∆′
A is necessary to perform the consistency check, and

otherwise a malicious PB will always pass the check if ∆A is reused.



In duplex networks, communication cost is often measured by one-way com-
munication. This allows us to adopt the idea of dual execution [33] to perform
the authentication of circuit evaluation. In the original dual execution [33], the
semi-honest Yao-2PC protocol [44] is executed two times with the same inputs
in parallel by swapping the roles of parties for the second execution, and then
the correctness of the output is verified by checking that the two executions have
the same output bits. However, an inherent problem of the above method is that
selective failure attacks are allowed to leak one-bit information of the input by
the honest party, even though there exists a protocol to check the consistency
of inputs in two executions. For example, suppose that PA is honest and PB

is malicious. When PA is a garbler and PB is an evaluator, both parties com-
pute an output f(x, y) where x is the PA’s input and y is the PB’s input. After
swapping the roles, they compute another output g(x, y) with g ̸= f , as garbler
PB is malicious. If the output-equality check passes, then g(x, y) = f(x, y), else
g(x, y) ̸= f(x, y). In both cases, this leaks one-bit information on the input x.

In the authenticated garbling framework, we propose a new technique to
circumvent the problem and eliminate the one-bit leakage. Together with our
technique to generate compressed authenticated AND triples, we can achieve
the cost of one-way communication that is almost the same as the semi-honest
half-gates protocol [45]. Specifically, we let PA and PB execute the protocol, which
combines the sub-protocol of generating authenticated AND triples as described
above with the construction of distributed garbling [29], for two times with same
inputs in the dual-execution way. For each wire w in the circuit, we need to check
that the actual values zw and z′w in two executions are identical. We perform
the checking by verifying zw · (∆A ⊕ ∆B) = z′w · (∆A ⊕ ∆B). Since ∆A ⊕ ∆B is
unknown for the adversary, the probability that zw ̸= z′w but the check passes is
negligible. Our approach allows two parties to check the correctness of all wire
values in the circuit, and thus prevents selective failure attacks.

In more detail, for each wire w, let Λw and (aw, bw) be the masked value and
wire masks in the first execution and (Λ′

w, a
′
w, b

′
w) be the values in the second

execution. Thus, PA and PB need to check that Λw⊕aw⊕ bw = Λ′
w⊕a′w⊕ b′w for

each wire w, where the output wires of XOR gates are unnecessary to be checked
as they are locally computed. Below, our task is to check that (Λw ⊕ aw ⊕ bw) ·
(∆A⊕∆B) = (Λ′

w⊕a′w⊕ b′w) · (∆A⊕∆B) holds for each wire w. By two protocol
executions, both parties hold ([aw], [bw], [a

′
w], [b

′
w]) for each wire w. When PA is

a garbler and PB is an evaluator, PA holds a garbled label Lw,0 and PB holds
(Λw, Lw,Λw

). Since Lw,Λw
= Lw,0⊕Λw∆A has the form of IT-MACs, we can view

(Lw,0, Lw,Λw , Λw) as an authenticated bit [Λw]B, where Lw,0 is considered as the
local key and Lw,Λw plays the role of MAC tag. Similarly, when PA is an evaluator
and PB is a garbler, two parties hold an authenticated bit [Λ′

w]A. Following the
known observation (e.g., [29]), for any authenticated bit [y]B, PA and PB have an
additive sharing of y ·∆A = KA[y] ⊕MB[y]. Therefore, for all cross terms, both
parties can obtain their additive shares, and then can compute two values that
are checked to be identical. In particular, both parties can compute the additive
shares of all cross terms: ZA

w,1⊕ZB
w,1 = Λw∆A, Z

A
w,2⊕ZB

w,2 = Λ′
w∆B, Z

A
w,3⊕ZB

w,3 =



aw∆B, Z
A
w,4 ⊕ ZB

w,4 = a′w∆B, Z
A
w,5 ⊕ ZB

w,5 = bw∆A, Z
A
w,6 ⊕ ZB

w,6 = b′w∆A. Then,
for each wire w, PA and PB can respectively compute

V A
w = (⊕i∈[1,6]Z

A
w,i)⊕ aw∆A ⊕ Λ′

w∆A ⊕ a′w∆A

V B
w = (⊕i∈[1,6]Z

B
w,i)⊕ bw∆B ⊕ Λw∆B ⊕ b′w∆B,

such that V A
w = V B

w . Without loss of generality, we assume that only PB obtains
the output, and thus only PB needs to check the correctness of all masked values.
In this case, we make PA send the hash value of all V A

w to PB, who can check its
correctness with V B

w for each wire w.

Optimizations for processing inputs. Dittmer et al. [16] consider that the wire
masks (i.e., bI) on all wires in IB held by evaluator PB is uniformly random and
authenticated AND triples associated with bI are generated using the previous
approach (e.g., [29]). This will require an independent preprocessing protocol,
and also brings more preprocessing communication cost. We solve the problem
by specially processing the input of evaluator PB. In particular, instead of making
PB send masked value Λw := yw⊕bw for each w ∈ IB to PA where yw is the input
bit, we use an OT protocol to transmit Lw,Λw to PB. This allows to keep masked
wire values Λw := yw⊕bw for all w ∈ IB secret. In this case, we can compress the
wire masks using the technique as described in Section 3.2 and adopt the same
preprocessing protocol to handle bI . Since L is logarithm to the length n of vector
b (now n = |W| + |IB|), this optimization essentially incurs no more overhead
for the preprocessing phase. Furthermore, our preprocessing protocol to generate
authenticated AND triples has already invoked functionality FCOT. Therefore,
we can let two parties call FCOT to generate random COT correlations in the
preprocessing phase, and then transform them to OT correlations in the standard
way. This essentially brings no more communication for the preprocessing phase,
due to the sublinear communication of the recent protocols instantiating FCOT.
Our optimization does not increase the rounds of online phase. As a trade-off,
this optimization increases the online communication cost by |IB| · κ bits.

In the second protocol execution (i.e., PA as an evaluator and PB as a garbler),
we make a further optimization to directly guarantee that the masked values on
all circuit-input wires are XOR of actual values and wire masks. In this case, it is
unnecessary to check the correctness of masked values on all circuit-input wires
between two protocol executions. The key idea is to utilize the authenticated
bits and messages on circuit-input wires generated/sent during the first protocol
execution along with the authenticated bits produced in the second protocol
execution to generate the masked values on the wires in IA ∪ IB. Due to the
security of IT-MACs, we can guarantee the correctness of these masked values in
the second execution. We postpone the details of this optimization to Section 5.

4 Preprocessing with Compressed Wire Masks

In this section we introduce the compressed preprocessing functionality Fcpre

(shown in Figure 3) for two party computation as well as an efficient protocol
Πcpre (shown in Figure 5 and Figure 6) to realize it. In a modular fashion we



Functionality Fcpre

This functionality is parameterized by a Boolean circuit C consisting of a list of
gates in the form of (i, j, k, T ). Let n := |W|+ |IB| (resp., m := |W|+ |IA|) be the
number of all AND gates as well as circuit-input gates corresponding to the input
of PB (resp., PA), and L = ⌈ρ log 2en

ρ
+ log ρ

2
⌉ be a compression parameter. It runs

with parties PA, PB and the ideal-world adversary S, and operates as follows:

Initialize. Sample two global keys ∆A,∆B ∈ F2κ as follows:

– If PA is honest, sample ∆A ← F2κ such that lsb(∆A) = 1. Otherwise, receive
∆A ∈ F2κ with lsb(∆A) = 1 from S.

– If PB is honest, sample ∆B ← F2κ such that lsb(∆A∆B) = 1 and msb(∆B) = 1.
Otherwise, receive ∆B ∈ F2κ with msb(∆B) = 1 from S, and then re-sample
∆A ← F2κ such that lsb(∆A∆B) = 1 and lsb(∆A) = 1.

– Store (∆A,∆B), and output ∆A and ∆B to PA and PB, respectively.

Macro. AuthA(x, ℓ) (this is an internal subroutine only)

– If PB is honest, sample KB[x]← Fℓ
2κ ; otherwise, receive KB[x] ∈ Fℓ

2κ from S.
– If PA is honest, compute MA[x] := KB[x] + x · ∆B ∈ Fℓ

2κ . Otherwise, receive
MA[x] ∈ Fℓ

2κ from S, and recompute KB[x] := MA[x] + x ·∆B ∈ Fℓ
2κ .

– Send (x,MA[x]) to PA and KB[x] to PB.

AuthB(x, ℓ) can be defined similarly by swapping the roles of PA and PB.

Preprocess the circuit with compressed wire masks. Sample M ← Fn×L
2 ,

and then execute as follows:

– For w ∈ IA, set bw = 0 and define [bw]; for w ∈ IB, set aw = 0 and define [aw].
– If PA is honest, sample a ← Fm

2 ; otherwise, receive a ∈ Fm
2 from S. Then,

execute AuthA(a,m) to generate [a]. For each wire w ∈ IA ∪ W, define aw as
the wire mask held by PA.

– If PB is honest, sample b∗ ← FL
2 ; otherwise, receive b∗ ∈ FL

2 from S. Run
AuthB(b

∗, L) to generate [b∗], and then compute [b] := M · [b∗] with b ∈ Fn
2 .

For each wire w ∈ IB ∪W, define bw as the wire mask held by PB.
– In a topological order, for each gate (i, j, k, T ), do the following:
• If T = ⊕, compute [ak] := [ai]⊕ [aj ] and [bk] := [bi]⊕ [bj ].
• If T = ∧, execute as follows:

1. If PA is honest, then sample âk ← {0, 1}, else receive âk ∈ {0, 1} from S.
2. If PB is honest, then compute b̂k := (ai ⊕ bi) ∧ (aj ⊕ bj)⊕ âk. Otherwise,

receive b̂k ∈ {0, 1} from S, and re-compute âk := (ai⊕ bi)∧ (aj ⊕ bj)⊕ b̂k.
Let â and b̂ be the vectors consisting of bits âk and b̂k for k ∈ W. Run AuthA(â)
and AuthB(b̂) to generate [â] and [b̂], respectively.

– Output M and ([a], [â], [b∗], [b̂]) to PA and PB.

Fig. 3: Compressed preprocessing functionality for authenticated triples.

first introduce the sub-components which are called in the main preprocessing
protocol. The security of the protocol is also argued similarly: we first prove in
separate lemmas the respective security properties of sub-components and then
utilize these lemmas to prove the main theorem.



4.1 Dual-Key Authentication

In this subsection we define the format of dual-key authentication and list some
of its properties that we utilize in the upper level preprocessing protocol.

Definition 1. We use the notation ⟨x⟩ := (DA[x],DB[x], x) to denote the dual-
key authenticated value x, where PA,PB holds DA[x],DB[x] subject to DA[x] +
DB[x] = x∆A∆B and ∆A, ∆B are the IT-MAC keys of PA,PB respectively.

We remark that for any x ∈ F2κ the IT-MAC authentication [x∆A]∆B
can be

locally transformed to ⟨x⟩, which we summarize in the following macro (the case
for [∆B]∆A

can be defined analogously). In particular, by computing [∆B]∆A
we

implicitly have ⟨1⟩, i.e., authentication of the constant 1 ∈ F2κ .

– ⟨x⟩ ← Convert1[·]→⟨·⟩([x∆B]∆A
): Set DA[x] := MA[x∆B] and DB[x] := KB[x∆B].

For the ease of presentation, we also define the following macro that gen-
erates dual key authentication of cross terms ⟨xy⟩ assuming the existence of
⟨y⟩ := (α, β) and [x]A,β = (KB[x]β ,MA[x]β , x). The correctness can be verified
straightforwardly.

– ⟨xy⟩ ← Convert2[·]→⟨·⟩([x]A,β , ⟨y⟩): Given IT-MAC [x]A,β and dual-key authen-
tication ⟨y⟩, PA and PB locally compute the following steps:

• PA outputs DA[xy] := α · x+MA[x]β ∈ F2κ .
• PB outputs DB[xy] := KB[x]β .

In our protocol we utilize the following properties of dual key authentication.
Since they are straightforward we only provide brief explanation and refrain from
providing detailed description.

Claim. The dual-key authentication is additively homomorphic. In particular,
given ⟨x1⟩ := (DA[x1],DB[x1]) and ⟨x2⟩ := (DA[x2],DB[x2]), PA,PB can locally
compute ⟨x1 + x2⟩ := (DA[x1] + DA[x2],DB[x1] + DB[x2]).

The additive homomorphism of dual-key authentication implies that given
public coefficients c0, c1, . . . , cℓ ∈ F2κ , two parties can locally compute ⟨y⟩ :=
c0 +

∑ℓ
i=1 ci · ⟨xi⟩.

We define the zero-checking macro CheckZero2 which ensures soundness for
both parties. We note that this is simply the equality checking operations.

– CheckZero2(⟨x1⟩, ...⟨xℓ⟩): On input dual-key authenticated values ⟨x1⟩, ...⟨xℓ⟩
both parties check xi = 0 for i ∈ [1, ℓ] as follows:

1. PA computes hA := H(DA[x1], ...,DA[xℓ]), and PB sets hB := H(DB[x1], ...,
DB[xℓ]), where H : {0, 1}∗ → {0, 1}κ is a random oracle.

2. Both parties call functionality FEQ to check hA = hB. If FEQ outputs false,
the parties abort.



Notice that the additive homomorphic and zero-checking properties allow us to
check that a dual-key authenticated value ⟨x⟩matches a public value x′ assuming
the existence of ⟨1⟩ = (DA[1],DB[1]) by calling CheckZero2(⟨x⟩ − x′⟨1⟩). Similar
to CheckZero we have the following soundness lemma of CheckZero2.

Lemma 2. If ∆A, ∆B ∈ F2κ is sampled uniformly at random and are non-zero,
then the probability that there exists some i ∈ [1, ℓ] such that xi ̸= 0 and PA or
PB accepts in the CheckZero2 procedure is bounded by 2

2κ .

4.2 Global-Key Sampling

We require ∆A ̸= 0, ∆B ̸= 0, and lsb(∆A∆B) = 1 in the preprocessing phase
to facilitate dual-key authentication. Considering the requirement of half-gates
garbling, we have the constraints lsb(∆A) = 1, msb(∆B) = 1, and lsb(∆A∆B) = 1
in Fcpre. We design the protocol Πsamp in Figure 4 and argue in Lemma 3 that
the key constraints are satisfied.

Lemma 3. The protocol Πsamp satisfies the following properties:

– The outputs satisfy that lsb(∆A) = 1, msb(∆B) = 1, and lsb(∆A∆B) = 1 in
the honest case.

– If lsb(∆A) ̸= 1 then PB aborts except with probability 2−ρ. Conditioned on
∆A ̸= 0, if lsb(∆A∆B) ̸= 1 then PB aborts except with probability 2−ρ.

– If msb(∆B) ̸= 1 then PA aborts except with probability 2−ρ. Conditioned on
∆B ̸= 0, if lsb(∆A∆B) ̸= 1 then PB aborts except with probability 2 ·2−κ+2−ρ.

Proof. For the honest case since PA and PB follow the protocol instruction when
sampling keys, the constraints on ∆A and ∆B are satisfied automatically. More-
over, notice that lsb(∆A∆̃B) = lsb(KA[∆̃B]) ⊕ lsb(MB[∆̃B]) and lsb(∆A) = 1. If
the parties discover in step 6b that lsb(∆A∆̃B) = 0, PB sets ∆B := ∆̃′

B ⊕ 1 and

lsb(∆A∆B) = lsb(∆A∆̃B +∆A) = 1.
For the case of a corrupted PA, notice that lsb(KA[r])⊕lsb(MB[r]) = r·lsb(∆A)

and lsb(DA[r]) ⊕ lsb(DB[r]) = r · lsb(∆A∆B) for r ∈ F2. If lsb(∆A) = 0 then PA

passing the test is equivalent to m0
A ⊕ (lsb(KA[u1]), ..., lsb(KA[uρ])) = u which

happens with 2−ρ probability since u is sampled independently from the left-
hand side of the equation. Conditioned on ∆A ̸= 0, the second test passes when
lsb(∆A∆B) = 0 except with 2−ρ probability from similar argument.

For the case of a corrupted PB, the checks in step 5 and step 6e are equivalent
to the corrupted PA case. Thus the soundness of the first check is 2−ρ. Also
Lemma 2 guarantees that inconsistent ∆B will be detected except with 2 · 2−κ

probability. By union bound the soundness of the second check is 2 · 2−κ + 2−ρ.

4.3 Consistency Check Between Values and MAC Tags

In our protocol to generate dual-key authentication, we need a party (e.g., PB)
to use the MAC tags (denoted as {βi }) of some existing IT-MAC authenticated
values as the global keys of another FbCOT instance (denoted as {β′

i }). We
enforce this constraint by checking equality between values authenticated by
different keys. Our first observation is that the MAC tags are already implicitly
authenticated by ∆−1

A .



Protocol Πsamp

PA samples ∆A ← F2κ such that lsb(∆A) = 1. PB samples ∆̃B ← F2κ such that
msb(∆̃B) = 1. Then, PA and PB execute the following steps.

1. PA and PB call functionality FCOT on respective input (init, sid0,∆A) and
(init, sid0), and then call FCOT on the same input (extend, sid0, ρ) to generate
random authenticated bits [u]B.

2. Then PA convinces PB that lsb(∆A) = 1 by sending a ρ-bit vector m0
A :=

(lsb(KA[u1]), . . . , lsb(KA[uρ])) to PB, who checks that m0
A = (lsb(MB[u1]) ⊕

u1, . . . , lsb(MB[uρ])⊕ uρ) holds.
3. PB runs Fix(sid0, ∆̃B) to generate [∆̃B]∆A . Then, PA sends m1

A = lsb(KA[∆̃B])
to PB, and PB sends m1

B = lsb(MB[∆̃B]) to PA in parallel. If m1
A ⊕ m1

B = 0,
both parties compute [∆B]∆A := [∆̃B]∆A ⊕1 where ∆B = ∆̃B⊕1; otherwise, the
parties set [∆B]∆A := [∆̃B]∆A .

4. PA and PB calls FCOT on respective input (init, sid′0) and (init, sid′0,∆B), and
then call FCOT on the same input (extend, sid′0, ρ) to generate random authen-
ticated bits [v]A.

5. Then PB convinces PA that msb(∆B) = 1 by sending a ρ-bit vector m0
B :=

(msb(KB[v1]), . . . ,msb(KB[vρ])) to PA, who checks that m0
B = (msb(MA[v1]) ⊕

v1, . . . ,msb(MA[vρ])⊕ vρ) holds.
6. PA and PB execute the following steps to mutually check that lsb(∆A ·∆B) = 1.

(a) Both parties call FCOT on the same input (extend, sid0, ρ) to generate
random authenticated bits [x]B, as well as run Fix(sid0,∆B · x) to gen-
erate [∆B · x]B. PB proves to PA that a set of authenticated triples
{([xi]B, [∆B]B, [xi∆B]B)}i∈[1,ρ] is valid by calling FDVZK, and PA aborts if it
receives false from FDVZK.

(b) Both parties set ⟨x⟩ := Convert1[·]→⟨·⟩([∆B · x]B). Then, PA sends m2
A :=

(lsb(DA[x1]), . . . , lsb(DA[xρ])) to PB, who checks that m2
A = (lsb(DB[x1])⊕

x1, . . . , lsb(DB[xρ])⊕ xρ).
(c) The parties run Fix(sid′0,∆A) to generate [∆A]A.
(d) Both parties call FCOT on the same input (extend, sid′0, ρ) to generate

random authenticated bits [y]A, as well as run Fix(sid′0,∆A · y) to gen-
erate [∆A · y]A. PB proves to PA that a set of authenticated triples
{([yi]A, [∆A]A, [yi∆A]A)}i∈[1,ρ] is valid by calling FDVZK, and PB aborts if
it receives false from FDVZK.

(e) Both parties set ⟨y⟩ := Convert1[·]→⟨·⟩([∆A · y]A). Then, PB sends m2
B :=

(lsb(DB[y1]), . . . , lsb(DB[yρ])) to PA, who checks that m2
B = (lsb(DA[y1]) ⊕

y1, . . . , lsb(DA[yρ])⊕ yρ).
(f) Both parties locally compute two dual-key authenticated bits ⟨1B⟩ :=

Convert1[·]→⟨·⟩([∆B]B) and ⟨1A⟩ := Convert1[·]→⟨·⟩([∆A]A).
(g) The parties run CheckZero2(⟨1B⟩ − ⟨1A⟩), and abort if the check fails.

7. PA outputs (∆A, α0) and PB outputs (∆B, β0), such that lsb(∆A) = 1,
msb(∆B) = 1, lsb(∆A ·∆B) = 1 and α0 + β0 = ∆A ·∆B ∈ F2κ .

Fig. 4: Sub-protocol for sampling global keys.

Authentication under inverse key. We define the Invert macro to locally convert
[x]B = (KA[x],MB[x], x) to [y]B,∆−1

A
:= (KA[y]∆−1

A
,MB[y]∆−1

A
, y). We note that

this technique appeared previously in the certified VOLE protocols [18].



– [y]B,∆−1
A
← Invert([x]B): On input [x]B for x ∈ F2κ , PA and PB execute the

following:
• PB outputs y := MB[x] and MB[y]∆−1

A
:= x.

• PA outputs KA[y]∆−1
A

:= KA[x] ·∆−1
A ∈ F2κ .

We demonstrate the correctness of the Invert macro as follows.

Lemma 4. Let [x]B = (α, β, x) where x ∈ F2κ then the MAC tag of PB, β, is
implicitly authenticated by ∆−1

A , i.e., the inverse of PA’s global key over F2κ .

This claim can be verified by multiplying both side of the equation by ∆−1
A .

β︸︷︷︸
MB[x]

= α︸︷︷︸
KA[x]

+x ·∆A =⇒ x︸︷︷︸
MB[β]∆−1

A

= α ·∆−1
A︸ ︷︷ ︸

KA[β]∆−1
A

+β ·∆−1
A .

Random inverse key authentication. Notice that in the Invertmacro, if we require
the input [x] to be uniformly random, i.e., x ← F2κ , then the output value
y := MA[x] = x∆A − KB[x] is also uniformly random in the view of PA. Using
this method we can generate random F2κ elements authenticated by ∆−1

A .

Equality check across different keys. We recall a known technique to verify equal-
ity between two values authenticated by respective independent keys [16], which
we summarize in the EQCheck macro. We recall its soundness in Lemma 5 and
prove it in the full version [14]. In the following, we assume that FCOT has been
initialized with (sid, ∆A) and (sid′, ∆′

A).

– EQCheck({[yi]∆A
}i∈[1,ℓ], {[y′i]∆′

A
}i∈[1,ℓ]): On input two sets of authenticated

values under different keys ∆A, ∆
′
A, PA and PB check that yi = y′i for all

i ∈ [1, ℓ] as follows:
1. Let [yi]∆A

= (ki,mi, yi) and [y′i]∆′
A
= (k′i,m

′
i, y

′
i). Two parties PA and PB

run Fix(sid, {m′
i}i∈[1,ℓ]) to obtain a set of authenticated values {[m′

i]∆A
}i∈[1,ℓ],

and also run Fix(sid′, {mi}i∈[1,ℓ]) to get another set of authenticated values
{[mi]∆′

A
}i∈[1,ℓ].

2. For each i ∈ [1, ℓ], PA computes Vi := ki · ∆′
A + k′i · ∆A + KA[mi]∆′

A
+

KA[m
′
i]∆A

∈ F2κ , and PB computes Wi := MB[mi]∆′
A
+MB[m

′
i]∆A

∈ F2κ .

3. PB sends h := H(W1, . . . ,Wℓ) to PA, who verifies that h = H(V1, . . . , Vℓ).
If the check fails, PA aborts.

Lemma 5. If ∆A and ∆′
A are independently sampled from F2κ , then the prob-

ability that there exists some i ∈ [1, ℓ] such that yi ̸= y′i and PA accepts in the
EQCheck procedure is bounded by 3

2κ .

The consistency check. The observation in Lemma 4 suggests that the MAC tags
{βi } are already implicitly authenticated by ∆−1

A . Moreover, by calling Fix(∆′
A),

PA and PB can acquire { [∆′
A]β′

i
} and locally convert them to { [β′

i]∆′
A
}. Since

∆A and ∆′
A are independent, we can apply EQCheck to complete our goal.

We list the differences that inverse key authentication induces to EQCheck.
Recall that FCOT has been initialized with (sid, ∆A) and (sid′, ∆′

A).



– EQCheck({[βi]∆−1
A
}i∈[1,ℓ], {[β′

i]∆′
A
}i∈[1,ℓ]): On input two sets of authenticated

values under different keys ∆−1
A , ∆′

A, PA and PB check that βi = β′
i for all

i ∈ [1, ℓ] as follows:

1. PA and PB call FCOT on the same input (extend, sid, ℓκ) to get authenti-
cated bits [r1]∆A

, . . . , [rℓ]∆A
with ri ∈ Fκ

2 . Then, for i ∈ [1, ℓ], both parties
define [ri]∆A

:= B2F([ri]∆A
) with ri ∈ F2κ , and set [si]∆−1

A
:= Invert([ri]∆A

).

2. PA and PB run EQCheck({[βi]∆−1
A
}i∈[1,ℓ], {[β′

i]∆′
A
}i∈[1,ℓ]) as described above,

except that they use random authenticated values [si]∆−1
A

for i ∈ [1, ℓ] to

generate chosen authenticated values under ∆−1
A in the Fix procedure.

It is straightforward to verify the soundness is not affected by changing to the
inverse key. Thus we omit the proof of the following lemma.

Lemma 6. If ∆A and ∆′
A are independently sampled from F2κ , then the prob-

ability that there exists some i ∈ [1, ℓ] such that βi ̸= β′
i and PA accepts in the

EQCheck procedure is bounded by 3
2κ .

4.4 Circuit Dependent Compressed Preprocessing

We now describe the protocol to realize the functionality Fcpre. Following the
conventions of previous works, we defer all consistency checks to the end of the
protocol. Notice that step 1 to step 5 corresponds to the circuit-independent
phase (where we only require the scale rather than the topology information of
the circuit) while the rest is the circuit-dependent phase (where the entire circuit
is known). The protocol is shown in Figure 5 and Figure 6. We then analyze its
security in Theorem 1. The proof is presented in the full version [14].

Theorem 1. Protocol Πcpre shown in Figures 5 and 6 securely realizes function-
ality Fcpre (Figure 3) against malicious adversaries in the (FCOT,FbCOT,FDVZK,
FEQ,FRand)-hybrid model.

Consistency checks. We explain the rationale of the consistency checks in Πcpre.

– The FDVZK in step 11 checks that the Fix inputs of PA in step 6 and those of
PB in step 6 and step 3 are well-formed.

– The CheckZero2 and EQCheck in step 12 ensure to PA that the multiple in-
stances of ∆B in Πsamp (Figure 4) and Πcpre (step 4 and step 5 in Figure 5)
are identical. Also, PB can make sure that ∆′

A in step 4 and step 5 of Πcpre

(Figure 5) are identical.
– PB checks that the message in step 9 of Πcpre from PA are correct. To do this,

PB checks its locally computed value against the dual-key authenticated value,
which is unalterable. Moreover, we reduce the communication using random
linear combination. This is done in step 14 and step 15 of Πcpre (Figure 6).

– PA checks that the Fix inputs of PB in step 10 of Πcpre (Figure 6) are correct.
This is done by checking the IT-MAC authenticated values against the dual-
key authenticated ones in step 16 of Πcpre (Figure 6).



Protocol Πcpre

Inputs: A Boolean circuit C that consists of a list of gates of the form (i, j, k, T ).
Let n = |W|+ |IB|, m = |W|+ |IA|, L = ⌈ρ log 2en

ρ
+ log ρ

2
⌉ and t = |W|.

Initialize: PA and PB execute sub-protocol Πsamp (Figure 4) to obtain (∆A, α0)
and (∆B, β0) respectively, such that lsb(∆A) = 1, msb(∆B) = 1, lsb(∆A ·∆B) = 1
and α0 +β0 = ∆A ·∆B ∈ F2κ . Thus, both parties hold ⟨1⟩ (i.e., [∆B]∆A). After the
sub-protocol execution, FCOT was initialized by session identifier sid0 and ∆A.

Generate authenticated AND triples: PA and PB execute as follows:

1. PB samples a matrix M← Fn×L
2 and sends it to PA.

2. Both parties call FCOT on input (extend, sid0, L) to generate random authenti-
cated bits [b∗] where b∗ ∈ FL

2 and compute [b] := M · [b∗] with b ∈ Fn
2 .

3. Both parties run Fix(sid0, {b∗i∆B}i∈[1,L]) to generate authenticated values
[b∗i∆B]B. The parties locally run ⟨b∗i ⟩ ← Convert1[·]→⟨·⟩([b

∗
i∆B]∆A). Let αi, βi ∈

F2κ such that αi + βi = b∗i ·∆A ·∆B for each i ∈ [1, L].
4. PB and PA call FL+1

bCOT on respective inputs (init, sid1, β1, ..., βL,∆B) and
(init, sid1). Then, both parties send (extend, sid1,m) to FL+1

bCOT, which returns
([a]β1 , . . . , [a]βL , [a]∆A) where a ∈ Fm

2 . Then, PA samples ∆′
A ← F2κ , and then

two parties run Fix(sid1,∆
′
A) to obtain ([∆′

A]β1 , . . . , [∆
′
A]βL , [∆

′
A]∆B). PA and PB

set ⟨1(1)B ⟩ := Convert1[·]→⟨·⟩([∆B]∆′
A
) where [∆B]∆′

A
is equivalent to [∆′

A]∆B , and

define [βi]∆′
A
= [∆′

A]βi for i ∈ [1, L].

5. PB and PA call F2
bCOT on respective input (init, sid2, β0,∆B) and (init, sid2).

Then, both parties send (extend, sid2, t) to F2
bCOT, which returns ([â]β0 , [â]∆B)

to the parties. PA and PB run Fix(sid2,∆
′
A) to get [∆′

A]β0 and [∆′
A]∆B , and

then locally convert to [β0]∆′
A
and [∆B]∆′

A
. Then, both parties set ⟨1(2)B ⟩ :=

Convert1[·]→⟨·⟩([∆B]∆′
A
).

6. For w ∈ IA, PA and PB set [bw] = [0]; for w ∈ IB, both parties set [aw] = [0].
For each wire w ∈ IA ∪W, two parties define [aw] in [a] as the authenticated
bit on wire w; for each wire w ∈ IB ∪W, define [bw] in [b] as the authenticated
bit on wire w. In a topological order, for each gate (i, j, k, T ), PA and PB do
the following:
– If T = ⊕, compute [ak] := [ai]⊕ [aj ] and [bk] := [bi]⊕ [bj ].
– If T = ∧, PA computes ai,j := ai ∧ aj , and PB computes bi,j := bi ∧ bj .

7. Both parties run Fix(sid0, {bi,j}(i,j,∗,∧)∈Cand
) to generate a set of authenticated

bits {[bi,j ]}, and also execute Fix(sid2, {ai,j}(i,j,∗,∧)∈Cand
) to generate a set of

authenticated bits {[ai,j ]}.
8. For i ∈ [1, n], j ∈ [1, L], PA and PB set ⟨aib

∗
j ⟩ := Convert2[·]→⟨·⟩([ai]βj , ⟨b

∗
j ⟩).

Then, both parties collect these dual-key authenticated bits to obtain ⟨aib
∗⟩,

and compute ⟨aibj⟩ and ⟨ajbi⟩ for each AND gate (i, j, k,∧) from M · ⟨aib
∗⟩

for i ∈ [1, n]. Further, both parties set ⟨âk⟩ := Convert2[·]→⟨·⟩([âk]β0 , ⟨1⟩) and
⟨ai,j⟩ ← Convert2[·]→⟨·⟩([ai,j ]β0 , ⟨1⟩).

Fig. 5: The compressed preprocessing protocol for a Boolean circuit C.

Optimization based on Fiat-Shamir. In the protocol Πcpre, both parties choose
random public challenges by calling functionality FRand. Based on the Fiat-
Shamir heuristic [19], both parties can generate the challenges by hashing the
protocol transcript up until this point, which is secure in the random oracle



Protocol Πcpre, continued

9. For each AND gate (i, j, k,∧), PA and PB locally compute ⟨b̃k⟩ := ⟨ai,j⟩ ⊕
⟨aibj⟩ ⊕ ⟨ajbi⟩ ⊕ ⟨âk⟩. Then, for each k ∈ W, PA sends lsb(DA[b̃k]) to PB, who
computes b̃k := lsb(DA[b̃k]) ⊕ lsb(DB[b̃k]). For each AND gate (i, j, k,∧), PB

computes b̂k := b̃k ⊕ bi,j .
10. Both parties run Fix(sid0, {b̂k}k∈W) to obtain [b̂k] for each k ∈ W.

Consistency check: PA and PB perform the following consistency-check steps:

11. Let [B∗
i ] = [b∗i∆B]∆A produced in the previous phase. Both parties call FDVZK

to prove the following statements hold:
– For each AND gate (i, j, k,∧), for ([bi], [bj ], [bi,j ]), bi,j = bi ∧ bj .
– For each AND gate (i, j, k,∧), for ([ai], [aj ], [ai,j ]), ai,j = ai ∧ aj .
– For each i ∈ [1, L], for ([b∗i ], [∆B], [B

∗
i ]), B

∗
i = b∗i ·∆B.

12. PA and PB call FCOT on respective input (init, sid3, ∆
′
A) and (init, sid3). Then

they run [∆B]∆′
A
:= Fix(sid3,∆B) and ⟨1(3)B ⟩ := Convert1[·]→⟨·⟩([∆B]∆′

A
). PA and

PB run CheckZero2(⟨1(1)B ⟩−⟨1
(2)
B ⟩, ⟨1

(2)
B ⟩−⟨1

(3)
B ⟩) and EQCheck([∆B]∆A , [∆B]∆′

A
)

to check that ∆′
A,∆B are consistent when it is used in different functionalities.

Both parties run [βi]∆−1
A
← Invert([b∗i∆B]∆A) for each i ∈ [0, L], and then

execute EQCheck({[βi]∆−1
A
}i∈[0,L], {[βi]∆′

A
}i∈[0,L]).

13. PA and PB call FCOT on input (extend, sid0, κ) to generate a vector of random
authenticated bits [r]B with r ∈ Fκ

2 , and run [r]B ← B2F([r]B) where r =∑
i∈[0,κ) ri ·X

i ∈ F2κ . Then both parties run Fix(sid0, r·∆B) to obtain [r·∆B]∆A .

The parties execute ⟨r⟩ ← Convert1[·]→⟨·⟩([r ·∆B]∆A).
14. PA and PB call FRand to sample a random element χ ∈ F2κ .
15. PA convinces PB that b̃k is correct (and thus b̂k is correct) for k ∈ W as follows.

(a) Both parties compute ⟨y⟩ :=
∑

k∈W χk · ⟨b̃k⟩+ ⟨r⟩. Then PB sends y to PA.
(b) The parties execute CheckZero2(⟨y⟩ − y · ⟨1⟩).

16. PB convinces PA that [b̂k] is correct for k ∈ W as follows:
(a) For each AND gate (i, j, k,∧), PA and PB compute [b̃k]B := [b̂k]B ⊕ [bi,j ]B.
(b) Both parties compute [y]B :=

∑
k∈W χk · [b̃k]B + [r]B.

(c) PA and PB run CheckZero([y]B − y).

Output: PA and PB output a matrix M along with ([a], [â], [b∗], [b̂]).

Fig. 6: The compressed preprocessing protocol for a Boolean circuit C, continued.

model. This optimization can save one communication round, and has also been
used in previous work such as [10,43].

Communication complexity. As recent PCG-like COT protocols have commu-
nication complexity sublinear to the number of resulting correlations, we can
ignore the communication cost of generating random COT correlations when
counting the communication amortized to every triple. Our checking protocols
only introduce a negligibly small communication overhead. Therefore, the Fix
procedure brings the main communication cost where Fix is used to transform
random COT to chosen COT. Also, since parameter L is logarithmic to the
number n of triples, we only need to consider the Fix procedures related to n.



This includes IT-MAC generation of ai,j (from PA to PB in step 6 of Figure 5),

bi,j (from PB to PA in the same step), b̂k (from PB to PA in step 10 of Figure 6). In

addition, for each triple, PA needs to send lsb(D[b̃k]) to PB in step 9 of Figure 6.
Overall, the one-way communication cost is 2 bits per triple.

5 Authenticated Garbling from COT

Now we describe the online phase of our two-party computation protocol. We first
introduce a generalized distributed garbling syntax which can be instantiated
by different schemes and then introduce the complete Boolean circuit evaluation
protocol Π2PC.

5.1 Distributed Garbling

We define the format of distributed garbling using two macros Garble and Eval,
assuming that the preprocessing information is ready. Notice that these two
macros can be instantiated by different garbling schemes. In our main protocol
that optimizes towards one-way communication we instantiate it using the dis-
tributed half-gates garbling [29] whereas we use the optimized WRK garbling of
Dittmer et al. [16] for the version that optimizes towards two-way communica-
tion. We recall the respective schemes in the full version [14].

– Garble(C): PA and PB perform local operations as follows:
• PA computes and outputs (GCA, {Lw,0, Lw,1}w∈IA∪IB∪W∪O).
• PB computes and outputs GCB.

– Eval(GCA,GCB, {(Λw, Lw,Λw
)}w∈IA∪IB

): PB evaluates the garbled circuit and
obtain {Λw, Lw,Λw

}w∈W∪O.

The addition of evaluator’s random masks is to decouple the abort probability
with the real input values (recall that the Eval function only requires masked
values). The following definition captures this security property.

Definition 2. For a distributed garbling scheme with preprocessing defined by
Garble and Eval, consider the event Bad where the evaluator aborts or outputs
masked wire value Λw that is incorrect (wrt. the input values of Eval and the
masks of preprocessing). We call a distributed garbling scheme to be ϵ-selective
failure resilience, if conditioned on the garbled circuit GCA,GCB, the evaluator’s
candidate input wire labels {(Lw,0, Lw,1)}w∈IB

and the garbler’s input wire masked
values and labels {(Λw, Lw)}w∈IA

, for any two pairs of PB’s inputs y,y
′, we have

|Pr[Bad|y]− Pr[Bad|y′]| ≤ ϵ ,

where Pr[Bad|y] denotes the probability that the event Bad happens when the
evaluator’s input value is y and with aforementioned conditions.

With uncompressed preprocessing the DILO-WRK and KRRW distributed
garbling (recalled in the full version [14].) has 0-selective failure resilience [36,29]
since the inputs Λw to Eval are completely masked and independent of the real
input. In Lemma 9 we show that for the DILO-WRK and KRRW schemes,



replacing the evaluator’s mask to ρ-wise independent randomness induces 2−ρ-
selective failure resilience.

The next lemma states that after evaluating the garbled circuit the garbler
and evaluator implicitly holds the authentication of the masked public wire val-
ues (color/permutation bits). To the best of our knowledge we are the first to
apply this observation in the consistency check of authenticated garbling.

Lemma 7. After running Eval, the evaluator holds the ‘color bits’ Λw for every
wire w ∈ W. The garbler PA and evaluator PB also hold KA[Λw],MB[Λw] subject
to MB[Λw] = KA[Λw] + Λw∆A.

Proof. We can define the following values using only wire labels:

Λw := (Lw,0 ⊕ Lw,Λw
) ·∆−1

A , MB[Λw] := Lw,Λw
, KA[Λw] := Lw,0 .

It is easy to verify MB[Λw] = KA[Λw] + Λw · ∆A, which implies that [Λw]B :=
(Lw,0, Lw,Λw , Λw) is a valid IT-MAC.

5.2 A Dual Execution Protocol Without Leakage

We describe a malicious secure 2PC protocol with almost the same one-way
communication as half-gates garbling. We achieve this by adapting the dual exe-
cution technique to the distributed garbling setting. Intuitively, our observation
in Lemma 7 allows us to check the consistency of every wire of the circuit. To-
gether with some IT-MAC techniques to ensure input consistency, our protocol
circumvents the one-bit leakage of previous dual execution protocols [28,27].

In the following descriptions, we denote the actual value induced by the input
on each wire w of the circuit C by zw. The masked value on that wire is denoted
as Λw := zw⊕aw⊕ bw which is revealed to the evaluator during evaluation. The
protocol is described in Figure 7 and Figure 8.

Intuitions of Consistency Checking. The security of the semi-honest garbled
circuit guarantees that when the garbled circuit is correctly computed, then
except with negligible probability the evaluator can only acquire one of the two
labels (corresponding to the execution path) for each wire in the circuit. Thus, we
can check the color bits of the honest party against the labels that the corrupted
party acquires (in the separate execution) to verify consistency.

Using the notations from Lemma 7, let Λ̄w := (Lw,Λw
⊕ Lw,0) · ∆−1

A , Λ̄′
w :=

(L′w,Λ′
w
⊕L′w,0)·∆−1

B for w ∈ W. Our goal is to check the following equations where

the left-hand (resp. right-hand) side is the evaluation result of PA (resp. PB).

Λ̄′
w ⊕ a′w ⊕ b′w = Λw ⊕ aw ⊕ bw for the corrupted PA case, (1)

Λ′
w ⊕ a′w ⊕ b′w = Λ̄w ⊕ aw ⊕ bw for the corrupted PB case. (2)

Multiplying the first equation by ∆B, the second by ∆A and do summation7

gives the Ṽ A
w , Ṽ B

w values in the consistency checking.

(aw + a′w + Λ′
w)∆A +MA[aw + a′w]

+MA[Λ̄
′
w] + KA[bw + b′w + Λ̄w]

=
(bw + b′w + Λw)∆B +MB[bw + b′w]
+MB[Λ̄w] + KB[aw + a′w + Λ̄′

w]

7 We define aw, a
′
w, bw, b

′
w by the MAC tag and keys to implicitly authenticate them.



Protocol Π2PC

Inputs: In the preprocessing phase, PA and PB agree on a Boolean circuit C with
circuit-input wires IA ∪ IB, output wires of all AND gates W and circuit-output
wires O. In the online phase, PA holds an input x ∈ {0, 1}|IA| and PB holds an input

y ∈ {0, 1}|IB|; PB will receive the output z = C(x, y). Let H : {0, 1}2κ → {0, 1}κ
and H′ : {0, 1}∗ → {0, 1}κ be two random oracles.

Preprocessing: PA plays the role of a garbler and PB acts as an evaluator, and
two parties execute as follows:

1. Both parties call Fcpre to obtain a matrix M and vectors of authenticated bits
([a], [â], [b∗], [b̂]). The parties locally compute [b] := M · [b∗].

2. Following a predetermined topological order, PA and PB use ([a], [â], [b], [b̂]) to
obtain authenticated masks [aw], [bw] for each wire w and other authenticated
bits that will be used in the construction of authenticated garbling.

3. Using the authenticated bits from the previous step and the KRRW gar-
bling scheme, PA and PB run Garble to generate a distributed garbled circuit
(GCA,GCB), and PA sends GCA to PB. For each wire w, two garbled labels
Lw,0, Lw,1 ∈ {0, 1}κ are generated and satisfy Lw,1 = Lw,0 ⊕ ∆A. PA knows
the label Lw,0 for each wire w as well as ∆A.

Online: In the following steps, PA securely transmits one label on each circuit-
input wire to PB, and PB evaluates the circuit.

4. For each w ∈ IA, PA computes a masked value Λw := xw ⊕ aw ∈ {0, 1}, and
then sends (Λw, Lw,Λw ) to PB.

5. PA and PB call FCOT on respective input (init, sid,∆A) and (init, sid), and then
send (extend, sid, |IB|) to FCOT, which returns random authenticated bits [r]B
to the parties.

6. For each w ∈ IB, PB computes Λw := yw⊕ bw and then sends dw := Λw⊕ rw to
PA. Both parties set [Λw]B := [rw]B ⊕ dw. For each w ∈ IB, PA sends mw,0 :=
H(KA[Λw], w∥1) ⊕ Lw,0 and mw,1 := H(KA[Λw] ⊕ ∆A, w∥1) ⊕ Lw,1 to PB, who
computes Lw,Λw := mw,Λw ⊕ H(MB[Λw], w∥1).

7. PB runs Eval(GCA,GCB, {(Λw, Lw,Λw )}w∈IA∪IB) to obtain (Λw, Lw,Λw ) for each
wire w ∈ W∪O. For each w ∈ W, both parties define [Λw]B = (Lw,0, Lw,Λw , Λw).

Fig. 7: Actively secure 2PC protocol in the Fcpre-hybrid model.

Communication complexity. In our dual execution protocol, PA and PB sends
(2κ + 1)t + (κ + 1)|IA| + 2κ|IB| + κ + |O| and (2κ + 1)t + (κ + 2)|IB| + 2κ|IA|
bits respectively. Therefore the amortized one-way communication is 2κ+1 bits
per AND gate. Since we need to call Fcpre twice in Π2PC, we conclude that the
amortized one-way (resp. two-way) communication in the (FCOT, FbCOT, FDVZK,
FEQ, FRand)-hybrid model is 2κ+ 5 (resp. 4κ+ 10) bits.

For the second version that combines Πcpre and the optimized WRK online
protocol, the amortized one-way (resp. two-way) communication is 2κ+ 3ρ+ 2
(resp. 2κ+ 3ρ+ 4) bits in the same hybrid model.



Protocol Π2PC, continued

Dual execution and consistency check:

8. Re-using the initialization procedure of functionality Fcpre (i.e., the same global
keys ∆A and ∆B are adopted), PA and PB execute the preprocessing phase as
described above again by swapping the roles (i.e., PA is an evaluator and PB is
a garbler). Thus, for each w ∈ W, PA and PB hold [a′

w] and [b′w]. For each wire
w, PB has also the label L′

w,0.
9. Swapping the roles (i.e., PA is the evaluator and PB is the garbler), PA and

PB execute the online phase as described above again, except for the following
differences of processing inputs:
(a) For each w ∈ IB, PA and PB run Open([bw]⊕ [b′w]⊕ [rw]B⊕dw) that enables

PA to obtain the masked value Λ′
w = yw ⊕ b′w, and PB sends L′

w,Λ′
w

to PA.

(b) For each w ∈ IA, both parties set [Λ′
w]A := [aw] ⊕ [a′

w] ⊕ Λw, and then
garbler PB sends m′

w,0 := H(KB[Λ
′
w], w∥2)⊕L′

w,0 and m′
w,1 := H(KB[Λ

′
w]⊕

∆B, w∥2)⊕L′
w,1 to PA, who computes L′

w,Λ′
w
:= m′

w,Λ′
w
⊕H(MA[Λ

′
w], w∥2).

After the 2th execution of online phase, PA and PB obtain [Λ′
w]A for all w ∈ W.

10. PA and PB check that (Λw⊕aw⊕ bw) · (∆A⊕∆B) = (Λ′
w⊕a′

w⊕ b′w) · (∆A⊕∆B)
holds by performing the following steps.
(a) For each w ∈ W, PA and PB respectively compute

V A
w = (aw ⊕ a′

w ⊕ Λ′
w)∆A ⊕MA[aw]⊕MA[a

′
w]⊕MA[Λ

′
w]⊕

KA[bw]⊕ KA[b
′
w]⊕ KA[Λw],

V B
w = (bw ⊕ b′w ⊕ Λw)∆B ⊕MB[bw]⊕MB[b

′
w]⊕MB[Λw]⊕

KB[aw]⊕ KB[a
′
w]⊕ KB[Λ

′
w].

(b) PA computes h := H′(V A
1 , . . . , V A

t ), and then sends it to PB who checks
that h = H′(V B

1 , . . . , V B
t ). If the check fails, PB aborts.

Output processing: For each w ∈ O, PA and PB run Open([aw]) such that PB

receives aw, and then PB computes zw := Λw ⊕ (aw ⊕ bw).

Fig. 8: Actively secure 2PC protocol in the Fcpre-hybrid model, continued.

5.3 Security Analysis

We first give two useful lemmas about the equality checking (following the proofs
of [36,29,17]) refer to the full version [14] for their proofs.We state the security
of our 2PC protocol in Theorem 2 and prove it in the full version [14].

Lemma 8. After the equality check, except with probability 2+poly(κ)
2κ , PB either

aborts or evaluates the garbled circuit exactly according to C(x,y), where we
canonically define the circuit input x,y using the messages in step 4, step 6,
and the randomness from the preprocessing phase.

Lemma 9. For the DILO-WRK and KRRW distributed garbling schemes (see
details in the full version [14].) by sampling the wire masks a,a′, b, b′ using
the compressed preprocessing functionality Fcpre (recall that b := M · b∗,a′ :=
M · (a∗)′ are compressed randomness), the resulting schemes have 2−ρ-selective
failure resilience.



Theorem 2. Protocol Π2PC shown in Figure 7 and Figure 8 securely realizes
functionality F2PC in the presence of malicious adversary in the Fcpre-hybrid
model and the random oracle model.
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