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Abstract. We revisit the problem of reusable non-interactive secure
computation (NISC). A standard NISC protocol for a sender-receiver
functionality f enables the receiver to encrypt its input « such that any
sender, on input y, can send back a message revealing only f(z,y). Se-
curity should hold even when either party can be malicious. A reusable
NISC protocol has the additional feature that the receiver’s message can
be safely reused for computing multiple outputs f(x,y;). Here security
should hold even when a malicious sender can learn partial information
about the honest receiver’s outputs in each session.

We present the first reusable NISC protocol for general functions f that
only makes a black-box use of any two-message oblivious transfer proto-
col, along with a random oracle. All previous reusable NISC protocols
either made a non-black-box use of cryptographic primitives (Cachin et
al., ICALP 2002) or alternatively required a stronger arithmetic variant
of oblivious transfer and were restricted to f in NC' or similar classes
(Chase et al., Crypto 2019). Our result is obtained via a general compiler
from standard NISC to reusable NISC that makes use of special type of
honest-majority protocols for secure multiparty computation.

Finally, we extend the above main result to reusable two-sided NISC,
in which two parties can encrypt their inputs in the first round and
then reveal different functions of their inputs in multiple sessions. This
extension either requires an additional (black-box) use of additively ho-
momorphic commitment or alternatively requires the parties to maintain
a state between sessions.

1 Introduction

Consider the following minimal setting for secure computation. There are two
parties, a sender and a receiver, and two rounds of interaction. In the first round,
the receiver encrypts its input x and sends the resulting message 71 to the sender.
In the second round, the sender uses the message 7 and its input y to compute a
message mo. Based on 7y and its secret randomness, the receiver should compute
the output f(z,y), for some predetermined f, but should not learn additional
information about the sender’s input y.

When the parties are semi-honest, the problem is relatively easy to solve
by using garbled circuits [Yao86], under the (minimal) assumption that a two-
message oblivious transfer (OT) protocol exists. When security needs to hold



against malicious parties, the problem becomes more challenging, and is referred
to as non-interactive secure computation (NISC) [IKOT11].

NISC is a powerful general-purpose tool for computing on encrypted data. For
instance, NISC enables users (acting as receivers) to safely post their encrypted
sensitive data on the internet, such that any other user (acting as a sender) can
perform a secure computation with them, say to determine whether their profiles
match, by sending a single message. However, despite a significant amount of
research, all of the existing solutions to NISC are unsatisfactory in either of the
following ways:

— Non-black-box use of cryptography. The most natural approach for protect-
ing NISC protocols against malicious parties is by using non-interactive zero-
knowledge (NIZK) proofs for enforcing honest behavior |[CCKMO00, HK07,
ASH™20|. However, this NIZK-based approach is typically quite impractical,
resulting in orders of magnitude of slowdown compared to the semi-honest
baseline. A good explanation for this is the fact that such NISC protocols
make a non-black-box use of the underlying cryptographic primitives, requir-
ing their explicit representation rather than just making an oracle use of
their input-output relation.

— Limited reusability. Motivated by the inefficiency of non-black-box protocols,
several works obtained practical NISC protocols that make a black-box use
of cryptographic primitives, typically only a two-message OT protocol and
a pseudorandom generatorﬂ [IKO™11, |AMPR14, MR17, IDILO22|. In fact,
when cast in the “OT-hybrid” model, where the parties can make paral-
lel calls to an ideal OT oracle, these protocols are secure against a com-
putationally unbounded malicious sender. Furthermore, they can efficiently
achieve full information-theoretic security for functions f in NC' and sim-
ilar classes. A subtle but important vulnerability of these protocols is that
they are not fully reusable: If the same receiver message is used in multiple
sessions to generate malformed sender messages, supposedly for computing
flx, 1), f(x,y2),. .., then even a partial leakage of the receiver’s outputs can
lead to a total break of security. For example, in the case of zero-knowledge
proofs, if the sender can learn whether the receiver accepts several malformed
proofs of true statements, it can make the receiver accept a false statement.
This limitation was shown in [CDIT19] to be inherent for NISC in the OT-
hybrid model with a computationally unbounded sender: There are explicit
functions f for which no such NISC protocol can be reusable.

— Restricted functionality. To circumvent the above impossibility, Chase et
al. [CDIT19] (with subsequent efficiency improvement in [DIO21]) suggested
the use of an arithmetic variant of OT, called oblivious linear evaluation
(OLE), instead of standard OT. Their main positive result is an information-
theoretic reusable NISC protocol for arithmetic branching programs in the
OLE-hybrid model, efficiently capturing f in NC* and similar classes. Beyond
the limitation on f, the reusable flavor of OLE required by the protocol of

5 Since a pseudorandom generator can be constructed from an OT protocol in a black-
box way, OT alone suffices.



Chase et al. [CDIT19| is only known from the DCR assumption [Pai99] (or
alternatively requires preprocessing) and is considerably more expensive to
realize than OT. While it was shown in [CDIT19] how to bootstrap from
branching program to circuits, this step requires a non-black-box use of a
pseudorandom generator.

The above state of affairs suggests the following open question:

Is there a general-purpose reusable NISC protocol that only makes a
black-box use of a two-message OT protocol?

Shouldn’t this be impossible? Recall that the impossibility result from [CDIT19]
rules out protocols that make parallel calls to an ideal OT oracle and achieve
reusable security against a computationally unbounded sender. Then how can
we hope to achieve the goals above? Our key idea for bypassing this impossibility
result is to make black-box use of the nezt-message functions and receiver output
function of a two-message OT protocol. Note that this is different than making
black-box use of an ideal OT functionality because it allows for “explaining” the
message produced by one of the next-message functions of the OT protocol by
revealing the inputs and randomness used to produce that message. Nevertheless,
except for the fact that we have to settle for computational security against a
malicious sender, this still allows our protocol to make use of any off-the-shelf
two-message OT protocol when instantiating our approach.

1.1 Owur Contribution

Our main result is an affirmative answer to the above question in the random
oracle model. This gives the first reusable NISC protocol for general functions f
that only makes a black-box use of cryptography. In fact, we show the following
more general result.

Theorem 1 (Reusable NISC from NISC, Informal). There is a reusable
NISC protocol for f in the random oracle model that makes a black-box use of
any (non-reusable) NISC protocol for a related f'.

The theorem is proved via a compiler from standard NISC to reusable NISC
that makes use of special type of honest-majority MPC protocols. Note that stan-
dard NISC can be constructed from any two-message malicious OT in a black-
box way [IKO™11]. Since two-message malicious OT can obtained in a black-box
way from two-message semi-honest OT in the random oracle model [IKSS22a],
we can base our protocol on semi-honest OT. While in this work we focus on fea-
sibility and do not attempt to optimize concrete efficiency, an optimized variant
of our construction is likely to yield reusable NISC protocols with good concrete
efficiency.

Finally, we extend the above main result to a reusable two-sided variant
of NISC, in which two parties can encrypt their inputs (z,y) and then reveal
different functions f; of their inputs in multiple sessionsﬁ This extension makes

5 In fact, our result applies to a more general notion of two-sided NISC that strictly
generalizes both the above notion and standard (one-sided) NISC.



a black-box use of a “reusable commit-and-prove” primitive which requires the
commitments to the secret input to be reusable across different sessions with
the verifier. We show how to construct such a primitive by making a black-
box use of an additively homomorphic commitment scheme. Alternatively, we
can construct this primitive unconditionally in the random oracle model if the
parties can maintain an updatable state between sessions.

Theorem 2 (Reusable two-sided NISC from NISC, Informal). Assume
black-box access to a (non-reusable) one-sided NISC protocol and a non-interactive
reusable commit-and-prove protocol. Then, there exists a reusable (two-sided)
NISC protocol in the random oracle model.

2 Technical Overview

In this section, we give a high-level overview of the key ideas behind our construc-
tion of a black-box reusable NISC protocol in the random oracle model. Later,
we explain the additional challenges in extending these ideas to the two-sided
setting and discuss our approaches to overcome them.

Reusable NISC Protocol. Recall that a non-interactive secure computation (NISC)
protocol for a two-party functionality f is a two-message protocol between a re-
ceiver and a sender that delivers the output of f to the receiver. A NISC protocol
is said to be reusable if the message from the honest receiver is fixed once and
for all and the adversarial sender can execute multiple sessions with the honest
receiver. In each such session, the adversarial sender generates a new second
round message in the protocol and can learn the output computed by the hon-
est receiver['| It can then adaptively decide to continue with the next session or
stop the execution. We require the view of the adversarial sender, together with
the output of the honest receiver, to be simulatable in an ideal world where the
parties only have access to a trusted functionality that implements f.

Impossibility in the OT-hybrid Model. Before we explain our solution, let us first
recall the intuition, already discussed in [IKOT11|, for why reusable security
is challenging for “natural” NISC protocols. Let’s consider an honest receiver
who has generated the first round message by making several calls to the OT
oracle by acting as the OT receiver. We concentrate on one such call where
the receiver’s choice bit is b. A malicious sender who tries to break the security
of the protocol can make a guess b’ for this bit and give two sender messages
(mg, m1) such that my is correctly generated as per the protocol specification

" In the actual definition, we consider a more general situation where the adversary
can learn some partial information about the output, such as whether the receiver
aborts. This makes reusable security nontrivial even for functionalities such as OLE,
where the receiver’s output reveals its input. However, for the sake of this overview,
we make the simplifying assumption that the entire receiver output is given to the
adversary.



but mj_p is malformed. It provides these two messages as the sender input to
the OT oracle. Now, if the guess b’ was correct, the honest receiver does not
notice this and continues to compute the output. On the other hand, if the
guess was incorrect, then the receiver obtains the malformed sender’s message.
For natural NISC protocols, this makes the receiver abort. Thus, depending on
whether the receiver aborts or not, the sender learns the value of the receiver’s
choice bit b in this OT execution. This is not a major problem in the single-use
NISC setting, as there are standard ways to secret-share the receiver’s input so
that the receiver’s abort event is uncorrelated with its actual input. However,
this has a devastating effect in the case of reusable security. Specifically, for each
one of the OT executions with the receiver, the sender can learn its choice bit
one-at-a-time by mounting the above attack across different sessions. Once the
sender does this, there is no hope of protecting the privacy of the receiver’s input.
Chase et al. [CDIT19] extended this argument to arbitrary protocols, showing
that information-theoretic reusable NISC in the OT-hybrid model is impossible.
This applies even to simple functionalities, such as the OLEE functionality, for
which efficient information-theoretic protocols in the OT-hybrid model exist in
the non-reusable NISC setting.

Main Goals. Somewhat surprisingly, Chase et al. showed that this impossibility
result can be circumvented if we replace OT-hybrid with the OLE-hybrid model.
Specifically, they proved that even after many sessions with an honest receiver,
a malicious sender cannot obtain any advantage over an ideal execution. Intu-
itively, unlike the case of OT, each receiver’s input to the OLE oracle can only be
guessed with negligible probability. This allows the receiver to detect every cheat-
ing attempt of the sender with overwhelming probability, thereby preventing the
sender from gaining significant information about the OLE inputs. Chase et al.
built on this idea and gave a construction of a reusable NISC in the OLE-hybrid
model. This positive result showed that if we implement the OLE functional-
ity using a two-message OLE protocol with reusable receiver securityﬂ in either
the CRS/RO model, then we have a reusable NISC protocol with same kind of
setup. Unfortunately, such a two-message OLE protocol |[CDIT 19| is only known
from the DCR assumption [Pai99] and makes heavy use of expensive public-key
cryptography. Furthermore, Chase et al.’s construction for computing circuits
(in contrast to the information-theoretic construction for branching programs)
made non-black-box use of a PRG. Given the above state of the art, the two
main goals of our work are:

8 OLE is the arithmetic analogue of OT which takes in a field element x from the
receiver, and two field elements (a,b) from the sender and outputs ax + b to the
receiver.

9 In reusable receiver security game, we fix the first round message from the honest
receiver and the corrupted sender could generate multiple second round messages.
We require the joint distribution of the view of the sender and the receiver’s output
in each of the sender executions to be indistinguishable to an ideal world where the
parties have access to the ideal OLE functionality.



1. Explore new approaches to bypass the impossibility in the OT-hybrid model
without resorting to the more expensive OLE primitive.
2. Obtain reusable NISC for circuits while only making a black-box use of

cryptography.

Our Approach: Making Black-Box use of Two-Message OT. The key approach
we take to bypass this impossibility result is to settle for computational security
against a malicious sender, while only making a black-box use of a two-message
OT protocol. Before we explain the technical ideas in our construction, let us first
explain how black-box use of a two-message OT is different from treating the
OT functionality as an oracle (as it is done in the OT-hybrid model). In the OT-
hybrid model, the receiver and the sender have access to an OT functionality. The
OT functionality takes a choice bit b from the receiver and two messages (mq, m1)
from the sender and provides my; to the receiver. The only interface that this
model provides is to receive the private inputs from the parties and give outputs.
In particular, there is no way to “connect” the inputs that the parties provide
to this oracle with the other components in the protocol. On the other hand, in
the black-box two-message OT se‘ctingiE|7 we model the oblivious transfer using
the cryptographic algorithms that implement this functionality. Specifically, we
model a two-message OT protocol as a tuple of algorithms (OTy, 0Ts, outor)).
OT; is run by the receiver and takes the receiver’s choice bit b and outputs
the first round message otm;. OT5 is run by the sender and takes the receiver’s
message otmy, the sender’s private input (mqg, m1) and outputs the second round
message otms. outor is run by the receiver and takes otmsy and the receiver’s
private random tape and outputs m;. Note that the interface that is provided
by these oracles is to take inputs and randomness from the parties and provide
the protocol messages that they need to send to the other parties. We model
these messages as handles and importantly, these handles can be “opened” to
the other party. Specifically, the parties can send the input and randomness used
in generating these handles to the other party which can then check if this handle
was generated correctly by querying the oracles. In other words, one can treat
these handles as commitments to the sender and the receiver inputs to the OT
functionality. As a result, we can use these commitments as a “link” between
the inputs provided by the parties to the OT oracle and the rest of the protocol.
In particular, this opens up new avenues to prove that the messages given to
these handles are well-formed and hence, do not give rise to an input-dependent
abort. Such a mechanism was impossible to achieve in the OT-hybrid model.

Challenges. Can we use this observation to upgrade any NISC protocol in the
black-box OT model to have security in the reusable setting? Unfortunately,
this does not seem to be the case and let us explain why. Almost all known
black-box constructions of NISC use a two-message OT protocol to implement a
mechanism called as the watchlists [[PS08]. Roughly, the watchlist mechanism is

10 We restrict ourselves to the case of a two-message OT protocol as this gives a two-
message NISC protocol.



a sophisticated cut-and-choose technique that delivers the input and randomness
used by one of the parties in a subset of the executions privately to the other
party. Each party then checks if the other party behaved honestly in the set
of watched executions and if any deviation is detected, the party aborts. If the
set of watched executions are chosen randomly and privately, then this check
ensures that a majority of the unwatched executions are emulated honestly. Once
this is ensured, all these works have developed clever approaches to robustly
combine the outputs from the rest of the executions to compute the output of
the functionality. For this to succeed, it is important that watched executions are
hidden from the corrupted party before it generates its protocol message. This is
typically done by implementing some version of a k-out-of-m OT functionality
where one party choose a random subset of size k as part of its watchlist and the
functionality delivers the input and randomness of the other party corresponding
to each execution in this set. This k-out-of-m OT functionality is implemented
via a black-box access to a 1-out-of-2 OT. Specifically, the receiver chooses a
random subset of size k and computes an encoding of this set. Each bit of the
encoding is used as the choice bit in an execution of an 1-out-of-2 OT protocol.
Regrettably, this technique makes these constructions to again suffer from the
same problem as the one described earlier. In particular, we observe that the
sender can mount a similar selective failure attack (as in the OT-hybrid model)
to learn encoding of the random subset sampled by the receiver one bit at a
time. Once the sender learns this encoding, it can easily break the privacy of the
receiver’s input and cheat in all other executions that are not watched.

At a high-level what this attack shows is that we cannot hope to achieve
reusable security by relying on any mechanism that hides a part of the receiver’s
randomness via an 1-out-of-2 OT. All such mechanisms are bound to be broken
in the reusable setting as a malicious sender can learn this secret randomness
bit-by-bit. In other words, we need a technique where the randomness used in
generating the set of watched executions to come solely from the sender’s side.
This is a bit counter-intuitive as it seems to give the sender the power to fix this
secret randomness to any value. Once the sender knows this value it can trivially
cheat in the other unopened executions and break the security of the protocol.

Random Oracles to the Rescue. We overcome this conundrum by using random
oracles to sample the set of watched executions. Specifically, we pass the sender’s
message through a random oracle and this gives a subset of the executions to
be opened. The correlation-intractability of the random oracle guarantees that
the sender does not have the power to fix this set of opened executions to any
value of its choice. Importantly, we can ensure that this property holds even
in the reusable setting as we can treat the output to every (new) query made
to the random oracle as an independently chosen random subset. This idea of
using random oracles to sample the set of watched executions is due to Ishai
et al. [IKSS22a]. However, their motivation was to remove the use of malicious-
secure OTs from the watchlist mechanism whereas our motivation is to obtain a
construction in the reusable setting. Coincidentally, the random oracle paradigm
used in their work lends itself nicely to solve the above mentioned issue in the



reusable setting. This leads to a natural question of whether this idea alone is
sufficient to achieve reusability. Unfortunately, this does not seem to be the case
and specifically, the protocol from [IKSS22a| is not reusable.

Overview of [IKSS522d)]. Before we see why the protocol from [IKSS22a] is not
reusable, let us first give a high-level overview of this protocol. The protocol is
based on the IPS compiler [TPS08] which makes use of three main ingredients.
The first, called the outer protocol, is a 2-round, 2-client (namely, the receiver
and the sender), m-server MPC protocol for computing the function f. The outer
protocol should be secure against malicious adversaries that corrupt either one
of the clients and t = £2(m) servers, and has the following interaction pattern. In
the first round, the clients send a message to each one of the servers using their
private inputs. The servers perform some local computation on these messages
and send the result of this computation to the receiver in the second round.
The receiver then decodes these messages to learn the output of f. The second
ingredient, called the inner protocol, is a semi-honest secure 2-party protocol for
computing the next message function of the servers in the outer protocol. The
third ingredient is the watchlist mechanism that is implemented using a random
oracle. Let now explain how the compiled protocol works.

The sender and the receiver in the compiled protocol generate the first round
messages to be sent to each of the servers in the outer protocol. They then
start running m executions of the inner protocol where the i-th execution is
computing the next message function of the i-th server. The private inputs that
the clients use in the i-th inner protocol execution corresponds to the messages
that they send to the i-th server in the outer protocol. The output of the inner
protocol corresponds to the second round messages sent by the servers in the
outer protocol and the receiver decodes these messages to learn the output of
the functionality. To ensure that a majority of the inner protocol executions are
performed correctly, the watchlist mechanism is used. Specifically, the parties
after generating their respective messages to each of the m executions pass these
messages to a random oracle that outputs a set K. The parties send their private
inputs and randomness for each inner protocol execution in the set K. This is
verified by the other party. This ensures that a malicious adversary cannot cheat
in a large fraction of the inner protocol executions as otherwise the set K that is
output by the random oracle will have a non-empty intersection with the cheating
executions. Hence, we can now rely on the security of the outer protocol against
a small fraction of the server corruptions to show that the compiled protocol is
secure against malicious adversaries.

Key Challenge. To make the above construction reusable secure, we need each
of the components used in the compiler to be secure in the reusable setting. As
discussed earlier, the watchlist mechanism implemented by the random oracle
paradigm is serendipitously suitable for the reusable setting. The inner protocol
which is only required to be semi-honest secure is also trivially secure in the
reusable setting. The key challenge we face is to make the outer protocol secure
in the reusable setting.



2.1 Constructing a Reusable Outer Protocol

Let us first specify the security properties that a reusable outer protocol needs
to satisfy.

Security Property. Consider an adversary that corrupts the sender client and a
subset of the servers. The honest receiver generates the first round messages to
the servers (using its private input) and this message is fixed. The adversary is
now allowed to interact with the honest receiver and the servers in many sessions.
In each session, the adversary generates a fresh first round sender message to the
servers. The honest servers use the fixed receiver’s message and the fresh sender
message to compute the second round message in the protocol. The adversary
sends an arbitrary second round message from the corrupted servers. It obtains
the output computed by the honest receiver in this session and adaptively decides
whether to continue with one more session or abort. We require the view of the
adversary to be simulatable in the ideal world where the parties have access to
the ideal functionality.

The Case of Constant-Degree Polynomials and Branching Programs. Before ex-
plaining our construction of a reusable outer protocol for computing general
circuits, let us first start with a simple case of computing constant degree poly-
nomials. Later, we explain how to extend this construction to securely evaluate
branching programs.

Let (p1,-..,pe) be a set of constant-degree polynomials. For the sake of this
overview, let us assume that all these polynomials have degree 3. The work
of Ishai et al. [IKSS22a] noted that it is not necessary for the outer protocol
to satisfy security against stronger malicious adversaries but it is sufficient to
start with an outer protocol that is secure against weaker pairwise verifiable
adversaries. Pairwise verifiable adversaries are constrained to generate the first
round message on behalf of the corrupted clients such that the messages sent
to the honest servers pass a pairwise consistency check. Our first observation is
that this also extends to the case of reusable security. Specifically, it is sufficient
to construct an outer protocol that is reusable secure against pairwise verifiable
senders.

Let us first explain the construction of the outer protocol for computing
degree-3 polynomials given in [IKSS22a]. In the first round, the clients generate a
secret sharing of their private inputs using a 3-multiplicative, pairwise verifiable
secret sharing schem@ and send the shares to the servers. The servers then
locally compute the degree-3 polynomials on these shares to compute the shares
of the outputs. This step relies on the fact that the shares are 3-multiplicative.
The servers then send the output shares to the receiver[?] We note that this is
protocol is already secure in the reusable setting. This is because the first round

11 The standard Shamir secret sharing using bivariate polynomials satisfies this prop-
erty.

12 We note that the servers have to additionally re-randomize these shares but we
ignore this step to keep the exposition simple.



message from the receiver to the servers consists of a secret sharing of its private
input and this secret sharing can be reused across multiple sessions.

To construct a reusable protocol for securely evaluating branching programs,
we make use of randomized encodings [IKO00, |ATKO04]. It is known from these
works that branching programs admit a statistically secure degree-3 randomized
encoding. Thus, the task of constructing a reusable outer protocol for the case of
branching programs reduces to constructing a reusable outer protocol for com-
puting degree-3 polynomials. However, to generate the randomized encoding we
need to additionally secret share the randomness used in computing it. A stan-
dard way to do this is for the clients to sample randomness r; and 75 respectively
and send the shares in the first round. The servers locally compute the shares
of r1 + ro and use them to generate the randomized encoding. However, since
the first round message from the receiver is fixed once and for all, it means that
we need to reuse the receiver’s share of the randomness across multiple sessions.
Will this affect security? Fortunately, this does not affect the security as the
shares of the output are revealed to the receiver and not to the sender. This
means that we can fix r; to be the all zeroes string and the sender can be tasked
with generating a fresh sharing of the randomness in each session to generate
the randomized encoding.

Extending to Circuits. All known constructions of randomized encodings for cir-
cuits require a PRG [Yao86), TK00, /ATK04]. Naively incorporating the PRG com-
putation inside the functionality would require non-black-box use of the PRG.
Hence, previous NISC protocols for circuits needed to introduce clever mecha-
nisms to ensure that the overall protocol is making black-box use of a PRG. An
additional property we need from the outer protocol is that the servers cannot
perform any cryptographic operations. This is because the server computations
in the IPS compiler are emulated using the inner protocol and if the server com-
putes any cryptographic operations, then functionality that is computed by the
inner protocol requires the code of this operation. Therefore, constructions of
the outer protocols given in [IPS08, TKSS21, IKSS22a, TKSS22b] required the
PRG computations to be done by the clients and the result of these computa-
tions to be secret-shared between the servers. Once this is done, the servers can
perform a constant degree computation on these shares along with the shares of
the input and the randomness to compute a secret sharing of the randomized
encoding. Of course, the clients could cheat and send shares of incorrect PRG
computations. While there are mechanisms to mitigate this in the single-use
setting, unfortunately, this creates serious issues in the reusable setting.
Specifically, consider a malicious adversary that corrupts the sender client
and a subset of the servers. The malicious sender client cannot be forced to
evaluate the PRGs correctly and hence, could send incorrect sharing of the PRG
computations. At a high-level, this means that some entries in the garbled gate
table are incorrectly computed. This could force an abort if these particular
entries are decrypted in the garbled circuit evaluation. Hence, we need to make
sure that the abort event is uncorrelated with the receiver’s input. In the single-
use setting this was mitigated using a specific garbled circuit construction due

10



to Beaver et al. [BMRI0]. In this construction, the value that is carried by each
wire is masked with a random bit and thus, we only decrypt the garbled gate
entries corresponding to these masked values. This random masking makes it is
possible to argue that the abort event is uncorrelated with the receiver’s private
input. Unfortunately, in the reusable setting, these masks need to be reused as
the receiver’s first round message is fixed across sessions and hence, this offers no
security. Thus, we need a brand new approach to prevent such input-dependent
aborts in the reusable setting.

Our Approach: Weakening the Outer Protocol. This problem seems incredibly
hard to solve as there are no black-box mechanisms which can force a malicious
client to secret share the correct PRG evaluations. In hindsight, this was also
the main reason for why the work of Chase et al. [CDIT19| could not provide
a black-box construction for the case of circuits. Instead of dealing with this
problem at the outer protocol level, we design new mechanisms to deal with
this problem in the protocol compiler. (These mechanisms will only apply to
our random oracle based compiler, and do not apply to the “plain” OLE-hybrid
model considered in [CDIT19)|.) Specifically, we consider an outer protocol that is
only secure against adversaries that compute the PRGs correctly. We call such
adversaries as verifiable adversaries. Next, we give the details about our new
protocol compiler that uses this weaker outer protocol to construct a reusable
NISC.

2.2 A New Protocol Compiler

Our goal is to design a protocol compiler that starts with an outer protocol
satisfying reusable security against verifiable adversaries and transforms it into
a two-message reusable NISC protocol. In this technical overview, we will only
concentrate on proving the reusable security against a malicious sender. Security
against malicious receivers follows via standard techniques.

Let us assume that only the sender client needs to compute the PRG evalua-
tions and secret-share them in the outer protocol (in fact, our construction will
satisfy this property). Of course, we cannot force the sender client to open all
the shares of the PRG computations as this would completely ruin the security
of the randomized encoding. Our goal is to design a black-box mechanism that
forces the sender to generate correct sharing of the PRG computations without
compromising on the randomized encoding security.

We overcome this by adding one more layer of cut-and-choose. Specifically,
instead of emulating one execution of the outer protocol (which consists of m
servers), we emulate n (for n = O(\)) such executions (each containing m
servers). In total, we perform n - m executions of the inner protocol. Recall that
each message sent by the client to a server in the outer protocol consists of two
parts: the share of the client’s private input and, if the client was the sender,
it additionally consists of the share of the PRG evaluation. In each of the n
executions of the outer protocol, we fix the client’s shares of the private input
to be the same. The sender generates independent PRG evaluations for every

11



execution and generates the shares of these evaluations. If all the emulations are
done correctly, then each execution of the outer protocol would be computing
a randomized encoding of the function on the same private inputs but using
independently chosen random strings. We need to make sure the following two
conditions hold: (i) the shares of the private input that the parties use in each
execution of the outer protocol are the same, and (ii) the PRG computations and
their sharing are performed correctly. Instead of requiring these two conditions
to hold exactly, we relax the requirement and ensure that they hold for a large
fraction. Specifically, we will make sure that for a large fraction of the servers,
the first round messages sent by the malicious sender are the same across all ex-
ecutions and for a large fraction of the executions, the PRG computations and
their shares are generated correctly by the sender. We now explain why these
two relaxations are sufficient to argue the security of the compiled protocol. The
first relaxation does not create any problems we can rely on the security of the
outer protocol to additionally corrupt these inconsistent servers (which comprise
of a small fraction) and ensure that these inconsistencies do not affect the output
obtained by the honest receiver. The second relaxation is a bit more subtle. Note
that if the PRG computations are correct, then the receiver’s output consists
of the evaluation of a properly generated garbled circuit using the same private
inputs but using an arbitrary randomness. It follows from the perfect correctness
of the garbled circuit evaluation that all these evaluations provide the output of
f applied on the private inputs of the clients. Thus, a majority of these values
are going to be the same (corresponding to the correct output) and hence, we
can correct the errors caused due to incorrect PRG evaluations by computing
the majority function locally on all the n outputs.

These two relaxations are ensured via two applications of the random oracle
based cut-and-choose paradigm. Specifically, we ask the sender to pass its second
round message (corresponding to each one of the m - n executions of the inner
protocol) to two random oracles. The first random oracle outputs a subset L
of the servers [m| and the second random oracle outputs a subset Lo of the
executions [n]. For each server in the set L;, the sender client opens up the
private input and randomness used in generating the inner protocol messages
for this server in each of the n executions. The honest receiver checks if these
messages are correctly generated and if the share of the private input used in each
one of the n executions are identical. For each execution in the set Lo, the sender
client opens up the shares of the PRG computations sent to all the servers. The
receiver checks if the shares correspond to a correct PRG evaluation. The first
check ensures that for a majority of the servers, the malicious sender client is
using the same share of the private input and these servers are emulated honestly.
The second check ensures that except for a small fraction of the executions, the
sender client emulates a verifiable adversary and we can rely on the security of
the outer protocol against this weaker class to argue the security of the overall
protocol. A pictorial representation of the protocol appears in Figure

Additional Requirement from the QOuter Protocol. An astute reader who is fa-
miliar with the IPS compiler might have noticed the following major challenge
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in achieving reusable security. An adversarial sender could potentially cheat in
a small number of server emulations, such that this number is small enough
to escape the watchlist mechanism with non-negligible probability. To be more
concrete, assume that the server only cheats in a single execution. Then, the
probability that this execution is a part of the watchlist (that is generated using
the random oracle) is roughly k/m = O(1). Though the number of such cheating
sessions are small and are not sufficient to break the privacy of the outer pro-
tocol, they could decide if the honest receiver outputs L or obtains the correct
output. Hence, in the simulation, it is important to compute the same output
that an honest receiver obtains in these cheating server emulations. To achieve
this, we corrupt those cheating servers and learn the share that an honest re-
ceiver sent to these cheating servers. We then use this share to compute the
output that an honest receiver would have obtained by decrypting the cheating
sender message. This is possible if the inner protocol satisfied a special prop-
erty called output equivocation [[KSS22b|. It was recently shown in [IKSS22b)
that any NISC protocol with security against malicious senders satisfies output
equivocation.

The above simulation technique does not create an issue in the single-use
setting. In particular, we can corrupt the servers corresponding to these cheat-
ing executions in the outer protocol and obtain the private share sent by the
honest receiver and continue with the simulation. However, this causes a serious
problem in the reusable setting. Specifically, in each one of the reuse sessions,
the adversarial sender client could cheat in a different set of the server execu-
tions and cumulatively learn all the private shares of the honest receiver. If this
happens, the malicious sender can learn the private input of the receiver in its
entirety.

To deal with this issue, we require the outer protocol to satisfy a stronger
property called as error correction [IKSS22a]. Informally, this property requires
that the output of the receiver’s decoding function depends only on the messages
sent from the honest servers and is independent of the messages sent by the
corrupt servers. If this property holds, then in each reuse session, we can replace
the output of the inner protocol in those cheating executions with a default value
and apply the receiver’s decoding function on these outputs. It follows from the
error correction property that the output of the honest receiver remains the same
after we perform this replacement. This helps in proving that an adversarial
sender cannot break receiver privacy by cheating in a different set of executions
in each reuse session. We use similar techniques as in [[KSS22a] to add this
extra error correction property. We note that this property was added to the
outer protocol in [IKSS22a] to construct a protocol compiler that only makes
use of a semi-honest secure inner protocol. However, in our work, we rely on the
error correction property to obtain security in the reusable setting.

2.3 Extension to the Two-Sided Setting

Let us first state the requirements from a two-sided NISC protocol.
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Two-Sided Reusable NISC. We say that a NISC protocol is two-sided if the
communication channel is bi-directional and the output of f is delivered to both
the parties at the end. In a bit more detail, we model f as (fo, f1). For each
B € {0,1}, fs takes in offline inputs ngr from Py, 25T from P;, a common pub-

lic online input zjj,, and an online private input 297 5 from P;_g and delivers

Fo (@, a5™), 250, 23" 4) to Pg. The first round message of the protocol depends

only on the offline private inputs and the second round message is generated de-
pending on the online inputs. A two-sided NISC protocol is said to be reusable
if an adversary corrupts either one of the parties and fixes the first round of
interaction once and for all. It then interacts with the other party in multiple
sessions. In every session, the honest party generates a second round message
using (adaptively chosen) online private inputs and the adversary generates an
arbitrary second round message. The adversary learns the output computed by
the honest party in this session and adaptively decides whether to continue
with one more session or stop. We require the view of the adversary in the
real world to be simulatable in an ideal world with access to a trusted func-
tionality that does the following. The parties send their offline inputs to the
functionality in the beginning and interact with the functionality in multiple
sessions. In every session, the parties send their online inputs to the functional-
ity and it computes the output of f and delivers the result. We note that this
way of modelling the two-sided functionality strictly generalizes the one-sided
NISC setting. It also generalizes the prior works on reusable two-round secure
computation [BGMM20, (BL20, AJJM20, BJKL21, |AJIM21, BGSZ22] where
the parties commit to their private inputs in the first round and can compute
a sequence of functions f; on the committed inputs by sending different second
round messages. We also note that a stricter model where the functionality takes
in private online inputs from both the parties (instead of just one as in our case)
is impossible to achieve against rushing adversaries.

Additional Challenges. In the two-sided setting, we face some additional chal-
lenges. Specifically, we cannot hope to run two instances of the one-sided protocol
in the opposite directions to get a two-sided variant. This is because an adversar-
ial client could use two different offline private inputs when acting as the sender
and the receiver and learn two different outputs. This will break the security of
the two-sided NISC protocol. Therefore, we need an additional mechanism to
ensure that the malicious parties are forced to use the same input in those two
executions.

Problem with the Standard Approach. A standard approach to do this is to give
a zero-knowledge proof that the adversary is using the same input in both the
sessions, one where it is acting as the sender and the other where it is acting as
the receiver. However, as we are interested in giving a black-box construction,
we must be careful with the exact zero-knowledge proof that is used.

A black-box way to prove that the adversary used the same offline private
input in both the executions is to commit to these two inputs and then prove that
the committed values are equal using a black-box commit-and-prove protocol.
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Such a non-interactive black-box commit-and-prove protocol can be constructed
in the random oracle model based on the “MPC-in-the-head” approach of Ishai
et al. [IKOSO07]. In this approach, the prover generates a secret sharing of the
committed values and runs an MPC protocol in its head that reconstructs these
two values from the shares and checks equality. It generates the view of each
party in the MPC protocol and commits to the view of these virtual parties.
The prover then passes these commitments through a random oracle to obtain
a set of executions to be opened. The verifier checks if the opened views are
consistent and if yes, accepts the proof if the output of the MPC protocol is 1.
However, this approach does not directly translate to the reusable setting. This
is because the commitments to the offline private input when the honest party
acts as the receiver are generated in the first round. In particular, the honest
party generates a secret sharing of this private input in the commit-and-prove
protocol once and commits to these shares in the first round. For every new
second round message in the protocol, we need to generate a fresh secret sharing
of the sender offline inputs and prove that these shares correspond to the same
value that was used in the receiver side. This means that for such reuse session,
we need to generate a fresh proof of consistency and this could imply opening
a different subset of the shares of the commitment generated in the first round.
After a certain number of reuse sessions, we could open all the shares and this
affects the privacy of the honest receiver’s input.

A Reusable Black-Box Commit-and-Prove. To deal with this issue, we need a
reusable variant of the commit-and-prove protocol. In this variant, the commit-
ments to the secret values are generated once and fixed across multiple sessions.
These fixed set of commitments allow a prover to prove in zero-knowledge that
these secret values satisfy potentially different predicates in each session. The
standard commit-and-prove protocols may not satisfy this reusability property.
In this work, we give a construction of a reusable commit-and-prove protocol
using additively homomorphic commitments. Specifically, we generate a com-
mitment to the secret values using these homomorphic commitments. For each
proof, we use the homomorphism property to generate a fresh secret sharing of
the committed values. That is, we generate commitments to randomness and use
the additive homomorphism to generate a linear secret sharing of the committed
values using the committed randomness. Using these fresh sharings, we can now
run an MPC protocol in the head to show that the reconstruction of the newly
generated shares satisfy the predicate of interest. Specifically, for each reuse ses-
sion, we generate a fresh set of secret shares and the problem mentioned above
does not arise. In the full version, we give a construction such a commit-and-
prove in the random oracle model (without any additional assumptions) in a
weaker setting where the prover and verifier maintain a state that is updated at
the end of every proof execution. This construction is based on proactive MPC
protocols which allow an adversary to corrupt a different subset of the parties
across different time epochs.
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Organization. In Section [3] we give the formal definitions of reusable NISC
and reusable two-sided NISC. In Section [4} we give the definition of reusable
verifiable client-server protocol and we give the construction in full version. In
Section |5, we give the construction of our black-box reusable NISC protocol. In
Section [6] we give the definition of a reusable commit-and-prove protocol and
give the construction of such a protocol in the full version. In Section [7} we
state the main theorem regarding construction of our reusable two-sided NISC
protocol and give the construction and the proof of security in the full version.

3 Definitions

In this section, we give the definition of reusable NISC and its two-sided version.

3.1 Reusable NISC Protocol

Let f be a two-party functionality between a receiver and a sender. Let = be
the private input of the receiver and y be the private input of the sender. A
NISC protocoﬂ (II,, I3, outsr) between the receiver and the sender is a two-
message, malicious-secure protocol that securely computes the ideal functionality
f and delivers the output to the receiver. Specifically, in this protocol, IT; is run
by the receiver using its private input x to generate the first round message.
Il is run by the sender on its private input y and the receiver’s first round
message to compute the second round message in the protocol. out;; is run by
the receiver on the sender’s message and its private random tape to compute the
output of f. The security is modelled using the standard real-ideal paradigm.
For completeness, we provide this definition in the full version .

A reusable NISC protocol is one where the first round message from the
receiver is fixed once and for all and the sender can send multiple second round
messages (potentially using different inputs). The receiver computes the output
of f on its fixed input and the fresh sender input for each execution. For security,
we require this protocol to satisfy standard security against malicious receivers
and reusable security against malicious senders. In the reusable security game,
the adversarial sender is allowed to generate an a priori unbounded polynomial
number of second round messages (in an adaptive manner). We now give the
formal definition of a reusable NISC protocol.

Definition 1 (Reusable NISC Protocol). A NISC protocol (II1, Il2,outy)
for computing a two-party function f is a reusable NISC protocol if it satisfies
standard security against malicious receivers and the following reusable sender
security. For any PPT adversary A that corrupts the sender, there exists a PPT
simulator Simpr s such that for all non-uniform PPT (stateful) environments Z,
the following two distributions are computationally indistinguishable:

13 As our main results are in the random oracle model, we can avoid an explicit setup
phase that samples the CRS uniformly and instead use the random oracle’s output
on some default input as the CRS.
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— Real Execution. The environment Z provides the private input x to the
honest receiver and auxiliary input z to A. The honest receiver generates the
first round message in the protocol using x and this message is delivered to
A. Repeat the following until A outputs a special command STOP:

1. Z provides an input y to the adversary and A generates an arbitrary
second round message in the protocol.

2. The honest receiver computes the output of the protocol using outyy on
the adversarial sender message and its private random tape.

3. This output is forwarded to Z which sends some auziliary information
to A.

4. A either outputs STOP or continues to the next iteration.

We call each iteration where the adversary generates a second round message

as a session. The output of the real execution corresponds to the output of the
honest party in each session and the output of A at the end of all sessions.

— Ideal Execution. This corresponds to the ideal world interaction where
Simyr,s and the honest receiver have access a trusted functionality that im-
plements f. The environment Z delivers the private input x to the honest
recetver and auziliary input z to Simp g. The receiver forwards x to the ideal
functionality. Simp s can interact with the ideal functionality in an a priori
unbounded polynomial number of sessions. In each session,

1. Z sends a private input y to Simp,g. Simp s sends an arbitrary input to
the ideal functionality or a special instruction to the ideal functionality
to deliver L to the honest receiver.

2. The trusted functionality returns the output to the receiver depending on
Simyz s’s instruction and this is forwarded to Z.

3. Z sends some auziliary information to Sim g.

4. Simpr g decides whether to continue with one more session or stop.

The output of the ideal execution corresponds to the output of the honest

party in each session and the output of Simp s at the end of all sessions.

3.2 Reusable Two-Sided NISC

A two-sided NISC protocol for computing a function f = (fo, f1) is two-round
protocol between Py and P; such that Py gets the output of fy and P; gets the
output of fi. For each 8 € {0,1}, fz takes in (2§, 2$T) which are the offline
inputs of the parties, a common public online input z3,, and a private online
input 27" 5 and delivers the output to Pjs.

A two-sided NISC protocol is given by a tuple of algorithms (117, IT5, outyy).

IT, takes the index 8 € {0,1} of the party, its offline private input m‘[’f and

produces the first round message sent by P which is given by ﬂﬂ ). 11, takes the
index 8 € {0, 1} of the party, the public online input T, the online private input
zg", the first round message generated by the other party w%l‘ﬂ ) and produces
the second round message ﬂgﬂ) of Pg. outyr takes in the index g € {0,1} of the

(1-8)

party, its private random tape, and the second round message 7 generated
off ,.off on

by Pi_g and produces the output of fz applied on ((z§", x5 ),xpub,xgrlﬁ). As
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in the one-sided setting, the security is modelled using the standard real-ideal
security paradigm.

We say that a two-sided NISC is reusable if the parties can fix the first round
message once and for all and send fresh second round message that depends
only on the online private input. The parties use out;; to learn the output of
the function computed on their fixed offline private inputs and the new online
inputs. We require this protocol to satisfy the following security property.

Definition 2 (Reusable Two-Sided NISC Protocol). A two-sided NISC
protocol (II1, IIs,outyr) is a reusable NISC' protocol for computing f = (fo, f1) if
for any PPT adversary A that corrupts Pi_g for some 8 € {0,1}, there exists a
PPT simulator Sim such that for all non-uniform PPT (stateful) environments
Z, the following two distributions are computationally indistinguishable:

— Real Execution. For each b € {0,1}, the environment delivers the private
offline input xsz to P, and provides auziliary input z to A. Pg uses this to
generate the first round message in the protocol. The adversary A receives
this first round message and sends the first round message on behalf of cor-
rupt Pi_g. Repeat the following until A outputs a special command STOP:

1. The environment Z provides an online input (azgﬂb,x‘g") to Py, for each
be {0,1}.

2. Pg generates the second round message using the online inputs and this
is delivered to A. Pg then receives the second round message sent by A.

3. The honest Pg computes the output of the protocol using outy on the
adversarial second round message and its private random tape.

4. The output computed by the receiver is delivered to Z who sends some
avziliary information to A.

5. A either outputs STOP or continues to the next iteration.

We call each iteration described above as a session. The output of the real

execution corresponds to the output of honest Pg in each session and the

output of A at the end of all sessions.

— Ideal Execution. This corresponds to the ideal world interaction where
Simpr (corrupting Pi_g) and the honest Pg have access a trusted functionality
that implements f. For each b € {0,1}, the environment delivers the private
offline input ngf to Py, and auxiliary input z to Simp. Pz sends this to
the ideal functionality. Simp sends an arbitrary offline input on behalf of
Pi_g. Simy interacts with the ideal functionality in an a priori unbounded
polynomial number of sessions. In each session,

1. The environment delivers an online input (xgﬂb,x‘g") to Py for each b €
{0,1}. Pg forwards this to the ideal functionality.

2. The ideal functionality computes fi_g on the fized offline inputs and the
new online input and delivers this output to Simyy.

3. Simp can send a special instruction to the ideal functionality to deliver
L to the honest receiver or sends an online input (Tpyp, 23" 5). If 250,

T, then the trusted functionality delivers L to the receiver. Else, the

trusted functionality returns either the output of fs or L to the honest

receiver depending on the instruction from Simpy.
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4

4. The output delivered to the receiver is forwarded to Z. Z sends some
auziliary information Simpy.

5. Simyr then decides to continue with one more execution or stop.

The output of the ideal execution corresponds to the output of honest Pg in

each session and the output of Simp at the end of all sessions.

Reusable Verifiable Client-Server Protocol

In this section, we define and construct a reusable verifiable client-server pro-
tocol. This protocol will be used as the main building block in the subsequent
sections to construct a black-box reusable (two-sided) NISC. We require this
protocol to satisfy the following properties.

— Reusability: This property requires that the first round message sent by

the receiver to be reusable. To be more precise, the receiver sends a single
first round message (depending on its private input) to each of the servers
and this message is fixed once and for all. The sender can generate multiple
(a priori unbounded polynomial number of) first round messages for different
choices of its private input. The servers use the fixed first round message from
the receiver and the fresh first round message from the sender to compute a
second round message in the protocol. The receiver uses this second round
message to compute the output of the functionality on its fixed private input
and the (fresh) sender input.

Error Correction: Consider an adversary that corrupts the sender and
certain number of servers. This property requires that the output of the
receiver’s decoding algorithm to remain the same for any choice of second
round message sent by the corrupted servers. In other words, the output
computed by the receiver is uniquely determined by the messages sent by
the honest servers. This property also implies that we can substitute the sec-
ond round message sent by the adversarial servers with some default values
without affecting the receiver’s output.

Security against Verifiable Adversaries. As noted in [[KSS22a), there
are barriers in obtaining the error correction property against standard ma-
licious adversaries. Hence, [[KSS22a] defined a weaker class of adversaries
called pairwise verifiable adversaries. Pairwise verifiable adversaries gener-
ate the first round message on behalf of the adversarial client to the honest
servers such that it passes some pairwise consistency check. They constructed
a protocol that had this error correction property against this weaker class.
However, we are unable to construct a protocol that satisfies both reusability
as well as error correction against pairwise verifiable adversaries. Hence, we
further weaken the pairwise verifiable adversaries to verifiable adversaries
which generate the first round message in the protocol in a much more re-
stricted way. Specifically, if the adversary corrupts a sender client then there
is a predicate P’ such that the first round messages sent to all the honest
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servers by the adversary satisfy this predicateE In other words, there is
some global predicate P’ (instead of pairwise local predicate) that the ad-
versarial sender messages must satisfy. On the other hand, if the adversary
corrupts the receiver client then the first round messages sent by the receiver
should satisfy some pairwise consistency check w.r.t. to a predicate P (this
property is identical to the pairwise verifiable case). It is clear that verifia-
bility restricts the adversarial power even more than pairwise verifiability.

4.1 Definition

We start by describing the syntax of a reusable verifiable client-server protocol.

Syntazx. A reusable verifiable client-server protocol between two clients, the re-
ceiver R and a sender S and a set of m servers is given by a tuple of algorithms
(Shareg, Sharelnpg, ShareRandg, Eval, Dec) with the following syntax

— Shareg takes the private input x of the receiver and outputs the first round
message {MSgx i, i Jic[m] tO be sent to each of the m servers. Recall that this
algorithm is only run once and the messages sent to the servers are reused
across different iterations with the sender.

— Sharelnpg takes the private input y of the sender and generates {msgg n, ; }ic[m]-
ShareRandg takes a uniform random string from the sender and generates
{mMsgg rand,i }icm]- The first round message from the sender to the i-th server
consists of {Msgg iy, i» MSEg rand i - We could have included msgg ,,q,; as part
of msgg ;. ; instead of computing it as an output of ShareRands. However,
we choose to split it into two separate algorithms as this presentation is more
suitable to be used in our reusable (two-sided) NISC constructions. Looking
ahead, we would require the first part of the sender message {msgg n, ; }ic[m]
to satisfy local consistency check and the second part {msgg ,.ng ;}ic[m] t0
satisfy global consistency check (see Footnote .

— The Eval algorithm takes in the identity ¢ of the server, the first round
messages sent by the clients to this server and outputs the second round
message msg, ; to be sent to the receiver.

— The Dec algorithm takes in {msg, ; }ic[n) and computes the output.

Verifiable Adversary. Before stating the security properties, we start with the
definition of a verifiable adversary. A verifiable adversary A corrupts either one of
the clients and a set T of the servers. If the adversary corrupts a client k € {R, S},
then {msgy ;.. ; biem)\7 satisfies a pairwise consistency predicate P. If k = S,
then we additionally require {msgy r.na.;ticim)\7 to satisfy a global consistency

14 We are little imprecise here and this global predicate acts only on a part of the
sender’s message and not on the whole message. To be more specific, the sender’s
message consists of two parts. We want the first part to satisfy local consistency and
the second part to satisfy global consistency.

15 We implicitly assume that all the algorithms take in the unary encoding of the
security parameter 1* as part of their inputs.
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predicate P’. We note that only the randomness part {msgg and.i}icim)\7 18
required to satisfy the global consistency predicate and it is sufficient for the
input part {mSgs,inp,i}z‘e[m]\T to only satisfy a pairwise consistency check. This
property will again be crucially used in the construction of a reusable (two-sided)
NISC protocol.

Definition 3 (Pairwise vs Global Predicate). Let P be a pairwise predicate
that takes a client index k € {R, S}, two server indices i,j € [m], the first round
message (MSEy ino i» MSE inp,;) S€nt by the client k to the servers i and j and
outputs 1/0. Let P’ be a global predicate that takes a set H C [m], and the
second part of the first round message {MSgg rana.iticu sent by the sender S to
the servers in H and outputs 1/0. l

Definition 4 (Verifiable Adversary). An adversary A corrupting the client
k and the set T of the servers is said to be verifiable w.r.t. the pairwise predicate
P and global predicate P if it satisfies the following:

— Ifk € {R, S}, then for any two honest servers i, j € [m]\T, P(k,1, j, MSgy inp.i»
MSE inp.j) = 1 where msgy ... and msgy ;. are generated by A in the pro-
tocol execution.

— Ifk = S, then the output of the predicate P'([m]\T,{msgg rand ;i Yicim)\1) = 1
where {MSgg ang ; ficm)\T 5 generated by A in the protocol execution.

Security Definition. We are now ready to state the security properties that a
reusable verifiable client-server protocol needs to satisfy.

Definition 5 (Reusable Verifiable Client-Server Protocol). Let f be a
two-party functionality. A protocol ® = (Shareg, Sharelnpg, ShareRandg, Eval, Dec)
is a reusable verifiable client-server protocol for computing f against t server

corruptions if there exists a pairwise predicate P and a global predicate P’ such
that:

1. Error Correction: Informally, this requires that the output of Dec to be
uniquely determined by the messages sent by the honest servers. Formally,
for any verifiable adversary A (see Deﬁm’tz’on w.r.t. P and P’ corrupting
the sender client S and a subset T' (where |T'| < t) of the servers and for any
two sets of second round messages {msgy ;}jer and {MSg, ;}jer, we have:

Dec({msgy ;}jgT, {msgs ;}jer) = Dec({msg, ; }j¢7, {Ms8, ; }jeT)

where {msgy ;}jgr consists of the second round messages generated by the
honest servers (i.e., [m]\ T) in the interaction with A. In other words, the
output of Dec remains the same for any choice of second round messages
sent by the corrupted servers.

Furthermore, consider a setting where the verifiable adversary A generates
multiple first round sender messages that all have the same {msgg ., :}jgr
but potentially different {msgg rana.;}jgT- Consider the second round mes-
sages generated by the servers for each of these sender messages. For each
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set of these second round server messages (corresponding to each new sender
message), we require the output of Dec to be the same. In other words, if
a verifiable adversary generates multiple sender messages using the same
{Msgg inp.i igr, then the output of Dec remains the same.

. Security against Verifiable Receivers: For any (PPT) verifiable adver-
sary A (see Deﬁm’tion w.r.t. P and P’ corrupting the receiver client and
(adaptively) corrupting a set T of upto t servers, there exists an (PPT) ideal
world simulator Simg g such that for any choice of private input y of the
honest sender client, the following two distributions are computationally in-
distinguishable:

— Real Ezecution. The verifiable adversary A interacts with the honest
parties (the honest sender client and set of uncorrupted servers) in the
protocol. The output of the real execution consists of the output of the
verifiable adversary A.

— Ideal Execution. This corresponds to the ideal world interaction where
Simg g and the honest sender client have access to the trusted party
implementing f. The honest sender client sends its input y to f and
Simg. r sends an arbitrary input. The trusted functionality returns the
output of f to Simg r. The output of the ideal execution corresponds to
the output of Simg R.

. Reusable Security against Verifiable Senders: For any (PPT) verifi-
able adversary A (see Definition |4) w.r.t. P and P’ corrupting the sender
client and a set of servers defined as below, there exists an ideal world (PPT)
simulator Simg g such that for all non-uniform PPT (stateful) environments
Z, the following two distributions are computationally indistinguishable:

— Real Ezxecution. Z delivers the private input x to the honest receiver
and auziliary input z to A. The receiver uses this private input to gener-
ate the first round message in the protocol. The adversary A corrupts a
set T of the servers and gets the first round messages sent by the honest
receiver to Ty. Repeat the following until adversary A outputs a special
command STOP:

(a) Z delivers the private input y to A. A adaptively corrupts a set
T of the servers and sends the first round message to the servers
[m] \ (T UTy). Note that adversary does not receive the first round
messages sent by the honest receiver to the servers indexed by T.
Further, this set T could be different across each execution but we
require that [T UTy| < t. We additionally require the adversary to be
verifiable w.r.t. to the predicates P and P’ where the set of corrupted
servers is given by T UT1.

(b) For each server in [m]\ (T UTy), we run Eval on the first round
message sent by the honest receiver and the first round message sent
by the adversary in the previous step. The adversary sends arbitrary
second round messages from the corrupted servers given by T UTy.

(c¢) We run Dec on the second round messages sent by the servers (both
honest and the corrupt) and send this output to Z.

(d) Z sends some auziliary information to A.
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(e) A outputs the special symbol STOP or decides to continue to the next
iteration.

We call each iteration described above as a session. The output of the

real execution corresponds to the output of the receiver in each session

and the output of A at the end of all the executions.

— Ideal Execution. This corresponds to the ideal world interaction where
Simg s and the honest receiver client have access to the trusted party that
implements f. The environment delivers an input x to the receiver and
auziliary input z to Simp. The receiver sends this to f. Simg g interacts
with the ideal functionality in an a priori unbounded polynomial number
of sessions. In each session,

(a) Z sends the private input y to Simg,s. Simg g sends an arbitrary
input to the ideal functionality.

(b) The trusted functionality returns the output delivered to the receiver
to Z.

(c) Z sends some auziliary information to Simg g.

(d) Simg s decides whether to continue with one more execution or stop.

The output of the ideal execution corresponds to the output of the receiver

in each session and the output of Simg g at the end of all executions.

We give the construction of reusable outer protocol in the full version.

5 Black-Box Reusable NISC

In this section, we give a construction of a black-box resusable NISC protocol.
Specifically, we give a black-box transformation from a (non-reusable) NISC
protocol to a reusable NISC protocol in the random oracle model. The main
theorem we will prove in this section is:

Theorem 3. Assume black-box access to a (non-reusable) NISC protocol. Then,
there exists a reusable NISC protocol in the random oracle model.

5.1 Construction

We first define a weaker variant of reusable security. In this variant, the resuable
security needs to hold only against a weaker class of adversarial senders called
as explainable senders [HIK™11]. Intuitively, an explainable sender is required
to give an explanation on how it generates the second round message in the
protocol. This explanation consists of its private input and the random tape. If
this explanation is invalid, we replace the output of the honest receiver with L.
We give the formal definition of this variant below.

Definition 6 (Reusable Security against Explainable Senders). This re-
quirement is the same as the one given in Definition |9 except that in the real
execution, the malictous adversary that corrupts the sender has to output an ex-
planation of how it generated the second round message in each iteration. This
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explanation comprises of its input y and a random tape r that it used to gener-
ate the second round message. If this explanation is valid, we run the receiver’s
output decoding algorithm on the adversarial sender message and provide the
output to the adversary. If the explanation is invalid, we replace the output of
the receiwver in that particular iteration with L.

We observe that any (non-reusable) NISC protocol satisfies reusable security
against explainable senders. This follows directly from the perfect correctness
of evaluation algorithm and indistinguishability-based security of the receiver’s
message against semi-malicious senders (which is implied by security against
malicious senders).

Proposition 1. Any NISC protocol satisfies standard security against malicious
recetvers and reusable security against explainable senders.

We are now ready to describe our construction.

Building Blocks. The construction uses the following building blocks:

1. A reusable verifiable client-server protocol (Shareg, Sharelnpg, ShareRandg,
Eval, Dec) w.r.t. pairwise predicate P and global predicate P’ for computing
f against ¢ = 4\ server corruptions (see Definition . Let m = 20\ 4+ 1
be the number of servers in this protocol (which follows the bounds on the
pairwise verifiable 3-multiplicative, t-error-correctable secret sharing). Our
construction given in the full version ensures that Eval algorithm does not
compute any cryptographic operations.

2. A NISC protocol (II; 1, II; 2, outyy,) for computing Eval(i, -,-) (i.e., the com-
putation done by the i-th server) for each i € [m]. As we are working in the
random oracle model, the CRS can be sampled as the output of the random
oracle on some default value. From observation [T} we infer that this protocol
satisfies reusable security against explainable senders and standard security
against malicious receivers.

3. A straight-line extractable non-interactive commitment (Com, Open) in the
random oracle model (see [Pas03]). We require this commitment to be com-
putationally hiding and statistically binding.

4. Let n = 4X\. Two hash functions H; : {0,1}* — ({0,1}F=)™ and Hy :
{0,1}* — ({0, 1}*»)" that are modelled as random oracles. Here, k,, and k,,
are the number of random bits to needed to toss a biased coin that outputs
1 with probability p,, = ﬁ and p, = ﬁ respectively. We model the output
of hash functions Hy and Hy as subsets of [m] and [n] respectively where
each element of the set is included independently with probability p,, and
P respectively.

Description of Protocol. The formal description of the protocol is given in Fig-
ure [I} A pictorial representation of our construction is given in Figure

Proof of Security. We defer the proof of security to the full version.
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— Round-1: The receiver on private input x does the following;:
1. Tt computes (MSEx 1o 15+ -+ > MSER inp.m) < Sharer(z).
2. For each i € [m] and j € [n],
(a) It samples a uniform random tape r; ; to be used in the protocol II;.
(b) Tt computes ;5,1 = i, 1(MSEp jnp i3 Ti,5), @i < Com(msgp ;- ;) and
bi,j < Com(ri,j).
3. It computes K1 = Hi(tagg, {7 j1,0i,bi;}ic[m],je[n)) Where tagp <
{0,1}* and interprets K1 as a subset of [m].
4. Tt sends ({7 5,1, Gi, bi 5 }icim],jen), tag8r, {Open(a:), Open(bi ;) }ick, iein])
as the first round message.
— Round-2: The sender on private input y does the following:
1. Check Phase:
(a) It recomputes K1 as in step-3 of round-1 and checks if the openings
are valid.
(b) For each ¢ € K; and for each j € |[n], it checks if m;;1 =
11,1 (MSE R ing, 45 7,5
(¢) For each i,7" € K, it checks if msgg ., ; and msgp . pass the
pairwise consistency check P.
2. If any of the above checks fail, it aborts.

3. Else, it computes (Msgg iy 15+ -+ > MSEginp.m) < Sharelnpg ().
4. For each j € |[n], it independently runs ShareRands to obtain
(mSgS,rand,l,j7 R mSgS,rand,m,j)'

5. For each i € [m] and j € [n],

(a) It samples a uniform random tape s; ; to be used in the protocol II;.

(b) It computes mij2 = Ilia(mij1, (MSEs inpi» MSEs rand,i;); Si.j) and
com; ; < Com(m; j2).

(c) Tt computes c¢; <+ Com(msgg ., ), di,; < Com(s;;), and e;; <+
Com(mSgS,rand,i,j)'

6. It computes L1 = Hl(tags,{comi,j,ci,di,j,ei,j}ie[m],je[n]) and Lo =
Hj(tagg{com; j,ci, dij, €ij}icim),jem)) Where tagg < {0,1}* and inter-
prets L1 as a subset of [m] and L2 as a subset of [n].

7. It sends
(a) {comm', Ci, di,j, 6i,j}i€[m],j€[n]a tags.

(b) {Open(com; ;),Open(c;), Open(d;,;), Open(ei ;) }icry,jemn-
(c) {Open(ei;)}icmi,jer, and {Open(comi ;)}icim jgrL,-
— Output Computation: The receiver does the following:
1. Check Phase:
(a) It recomputes L1 and L2 as in Step-6 of round-2 and checks if all the
openings are valid.
(b) Using the openings to the commitments com; j, ¢;, di; and e, ; given
by the sender,
i. It checks if for each ¢ € L; and j € [n] that m 2 =
23,51, (MSE inp, 4> MSE rand,i ;)5 v )-
ii. For each 4,7" € L1, it checks if msgg;,, ; and msgg . ;» pass the
pairwise consistency check P.
iii. For each j € Lo, it checks if {msgg 04 ;}ic[m] Pass the global
predicate check P’.
2. If any of the above checks fail, it aborts.
3. Else, for each j € [n]\ L2,
(a) It computes msg, ; ;  out, (5,2, 74,5) for each i € [m].
(b) It computes o; = Dec({msgy ; ; }ic[m])-
4. o/p Majority({a;}jefnnzs)- 25

Fig.1: Construction of Reusable Black-Box NISC Protocol




Server S; in Set 1is emulated
by protocol IT; using receiver
randomness 7;; and sender

randomness s; |
] ) MSER inpi MSER inp.i
SEt 2 - -
\

|(mSgS,inp.i’ mSgS,rand.i.l)l\ |(mSgS.ian’ mSgS.rand.i,2)| |(mSgS.inp,i’ mSgS,rand.i.n)

Set 1

Sender )
D Set of Receiver

|:| Private inputs of
Sender & Receiver check servers K

Set of Sender
Check sets L, check servers L,

Fig.2: Pictorial Representation of the Protocol. For each i € K, the re-
ceiver opens (mMsgg .., {7i,j}jem]). Similarly, for each ¢ € L1, the sender
opens (MSgg o ;> {MSEs rand.i ;> Sij Jie])- For each j € Lo, the sender opens

(mSgS,rand,l,j’ 9y MSEg rand,m,j )

6 Non-Interactive Reusable Commit-and-Prove

In this section, we define and construct a non-interactive reusable commit-and-
prove protocol. This protocol will be used as a key building block in the next
section to construct a two-sided reusable NISC protocol.

6.1 Definition

Syntazx. A non-interactive reusable commit-and-prove protocol is given by a tuple
of algorithms (Com, Open, Extract, Prove, Verify) with the following syntaxm

— Com : It takes a message = as input and outputs a commitment com to this
message. We require this commitment to be computationally hiding and
statistically binding.

— Open : It comprises of the openings to the commitments.

— Extract : It takes as input a commitment com and outputs the message inside
this commitment.

— Prove : It takes as input a sequence of commitments (comy,...,com,), a
function f and their openings (Open(com;),...,Open(com,)) as input and
outputs a proof .

16 We implicitly assume that all these algorithms have access to a random oracle and
hence, do not include an explicit setup phase. We also assume that all the algorithms
take 1* as an additional input.
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— Verify : It takes a sequence of commitments (comy,...,com,), a function
f and a proof 7 as input and outputs 1/0 indicating whether the proof is
accepting or rejecting.

We now state the properties that such a commit-and-prove protocol must satisfy.

Definition 7 (Non-Interactive Reusable Commit-and-Prove). A tuple of
algorithms (Com, Open,

Extract, Prove, Verify) is said to be a non-interactive reusable commit-and-prove
protocol if it satisfies the following properties:

— (Com, Open) is a computationally hiding and statistical binding commitment
scheme. Extract is a straight-line extractor for the commitment scheme.
— Completeness. We require that:

Pr[Verify(X, Prove(X, Open(com;),...,Open(com,))) =1] =1

where (comy, ..., com,,) be a sequence of commitments to the messages (x1,...,xy,),
f be a function such that f(x1,...,z,) =1 and X = (comq,...,com,, f).

— Soundness. Let P* be a non-uniform PPT prover. We require the proba-
bility that P* wins the following soundness game to be negligible.

e (comy,...,com,, f,m) < P*(1%).
o Let (x1,...,2,) be the output of Extract on inputs comy, ..., com, re-
spectively.

o If f(x1,...,2,) = 0 and Verify(comy, ..., com,, f,7) = 1, then the prover
wins this game.
— Resuable Zero-Knowledge. There exists a PPT simulator Sim such that
for every non-uniform PPT verifier V*, we have:

Real(V*) =, ldeal(Sim, V*)
where Real and |deal ezperiments are described in Figure[3

We defer the construction and proof of security to the full version.

7 Black-Box Reusable Two-Sided NISC

In this section, we give a construction of a black-box reusable two-sided NISC.
The main theorem we show here is:

Theorem 4. Assume black-box access to:

1. A (non-reusable) one-sided NISC' protocol.
2. A non-interactive reusable commit-and-prove protocol satisfying Definition[7}

Then, there exists a reusable (two-sided) NISC protocol in the random oracle
model.

We give the proof of this theorem in the full version.
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Real(V*) Ideal(Sim, V™)
1. (x1,...,2e,m) < V*(1Y). c (@1, e, m) = V(LY.
2. com; < Com(x;) for all i € [¢]. . com; < Com(x;) for all ¢ € [¢].
3. Set com; = L foralli € [{+1,n] and 3. Set com; = L for alli € [{+1,n] and
=1 =1
4. Run until V* outputs a special sym- 4. Run until V* outputs a special sym-
bol sTop : bol sTop :
(a) (n',xet1y. o Tnrs f) — (a) (n',xes1,- Tnrs f) —
V*(comy,..., V*(comy,...,
comy, ). comy, ).

(b) Update the value of n with n’.
(¢) Compute com; <« Com(z;) for
alli € [0 +1,n)].

(b) Update the value of n with n’.
(¢) Compute com; <+ Com(z;) for
alli € [0 +1,n)].

(d) Set X = (comq,...,comy, f) (d) Set X = (comq,...,comy, f)
and w = and w =
(Open(comy), ..., Open(comy,)). (Open(comy), ..., Open(com,,)).

(e) If f(xz1,...,2n) = 1, compute (e) If f(xz1,...,2n) = 1, compute

7 Prove(X, w).

7+ Sim(1*, X).

5. Output the final view of V™. 5. Output the final view of V™.

Fig. 3: Descriptions of Real and Ideal experiments.
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