
Proof-Carrying Data From Arithmetized Random
Oracles

Abstract. Proof-carrying data (PCD) is a powerful cryptographic primitive that
allows mutually distrustful parties to perform distributed computation in an effi-
ciently verifiable manner. Known constructions of PCD are obtained by recursively-
composing SNARKs or related primitives. SNARKs with desirable properties such
as transparent setup are constructed in the random oracle model. However, using
such SNARKs to construct PCD requires heuristically instantiating the oracle and
using it in a non-black-box way. [CCS22] constructed SNARKs in the low-degree
random oracle model, circumventing this issue, but instantiating their model in
the real world appears difficult.
In this paper, we introduce a new model: the arithmetized random oracle model
(AROM). We provide a plausible standard-model (software-only) instantiation
of the AROM, and we construct PCD in the AROM, given only a standard-
model collision-resistant hash function. Furthermore, our PCD construction is
for arbitrary-depth compliance predicates. We obtain our PCD construction by
showing how to construct SNARKs in the AROM for computations that query the
oracle, given an accumulation scheme for oracle queries in the AROM. We then
construct such an accumulation scheme for the AROM.
We give an efficient “lazy sampling” algorithm (an emulator) for the ARO up
to some error. Our emulator enables us to prove the security of cryptographic
constructs in the AROM and that zkSNARKs in the ROM also satisfy zero-
knowledge in the AROM. The algorithm is non-trivial, and relies on results in
algebraic query complexity and the combinatorial nullstellensatz.
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1 Introduction

Proof-carrying data (PCD) [CT10] is a powerful cryptographic primitive that allows
mutually distrustful parties to perform distributed computation in an efficiently verifiable
manner. The notion of PCD generalizes incrementally-verifiable computation (IVC)
[Val08] and has recently found exciting applications in enforcing language semantics
[CTV13], verifiable MapReduce computations [CTV15], image authentication [NT16],
verifiable registries [TFZ+22], blockchains [Mina; KB20; BMRS20; CCDW20], and
more.

All known PCD constructions (and practical IVC constructions) are obtained via
recursive proof composition, a general framework for building PCD from simpler primi-
tives such as SNARKs [BCCT13; BCTV14; COS20] or accumulation schemes [BGH19;
BCMS20; BDFG21; BCL+21; KST22]. While the specific constructions differ, the
high-level idea remains the same: to prove the correctness of t steps of computation
given proof of correctness for t− 1 steps, one proves that “the t-th step is correct and
there exists a valid proof for the first t− 1 steps”.



The statement that “there exists a valid proof” refers to the verifier of the underlying
SNARK or accumulation scheme. As such, the resulting PCD scheme makes non-black-
box use of the verifier for the underlying scheme. This leads to a significant theoretical
problem when trying to prove security for constructions based on recursive composition:
almost all known constructions of SNARKs, and all known constructions of accumulation
schemes, are proven secure in the random oracle model (ROM). The random oracle is
an inherently black-box object; in particular, it is believed that there is no “nontrivial”
proof system for statements about the random oracle.

Most prior work in the area [COS20; BCMS20; BCL+21] avoids this problem
using a heuristic step: they assume that there exists some concrete hash function such
that replacing the random oracle with the hash function yields a secure SNARK or
accumulation scheme in the standard model (without oracles), and then apply recursive
composition to this heuristic scheme.

Two prior works [CT10; CCS22] propose a different approach: endow the random
oracle with some additional structure. The PCD construction in [CT10] is in a model
where the random oracle additionally signs its responses using a standard-model signa-
ture scheme; the verifier can then check query-answer pairs by verifying the signature
rather than querying the oracle. Trading cryptographic structure for algebraic structure,
[CCS22] construct PCD in the low-degree random oracle model (LDROM), where
parties have access to a random low-degree multivariate polynomial.

Both of these oracle models can be instantiated using hardware tokens. Unfortunately,
we do not have any standard model (i.e., software-only) instantiation of these oracles,
even heuristically. This is in contrast to the (usual) random oracle model, where empirical
evidence suggests that “natural” schemes remain secure provided the oracle is replaced
with a suitably “random-looking” hash function [BR93]. Our goal in this work is to
design a new oracle model that simultaneously achieves both desiderata: (a) there exists
a PCD scheme in this model under standard assumptions; and (b) the oracle can be
heuristically instantiated.

1.1 Our results

In this work we introduce and study a new oracle model, the arithmetized random oracle
model (AROM), which provides a random oracle and a corresponding “arithmetization”
oracle. As in the standard ROM, the random oracle is an idealized model of some
concrete hash function H . The arithmetization oracle is an idealized model of a certain
arithmetization of H , which is a low-degree polynomial PH that can be efficiently com-
puted from the circuit of H . As such, the AROM has a plausible heuristic instantiation:
replace the random oracle by H and the arithmetization oracle by PH , for a suitable
hash function H .

Our main result is a construction of PCD in the AROM, based on the [CCS22]
construction of PCD in the LDROM. By instantiating the AROM with a suitable hash
function, we obtain a candidate “real-world” construction of PCD. Formally, we prove
the following theorem.
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Theorem 1 (informal). There exists transparent1 (zero-knowledge) PCD in the AROM
(for computations in the AROM), assuming the existence of collision-resistant hash
functions in the standard model.

Our PCD construction is provably secure (in the AROM) for all efficient compliance
predicates. This stands in contrast to all other constructions of PCD (with the exception
of [CT10], but including [CCS22]), whose security proofs are limited to constant-depth
recursion. This is because, like [CT10], our PCD construction preserves the straightline
extraction property of the underlying SNARK.2

To prove our main theorem, we develop various tools for analyzing cryptographic
constructions in the AROM. Our key result here is to show that the additional power
provided by the AROM does not help the adversary win any game defined with respect
to the random oracle alone.

Theorem 2 (informal). Any construction that is secure in the ROM is secure in the
AROM.

An immediate consequence of this theorem is that any construction that is secure
in the standard model is secure in the AROM. In contrast, we do not know whether an
analogous statement holds in the LDROM. We remark that this result is meaningful
even outside the present context: it provides evidence that security in the ROM implies
security against a specific type of non-black-box attack, namely, attacks that treat the
arithmetization of the hash function as a black box.

Comparison to other oracle models. As discussed above, both the ROM and the
LDROM fall short of our goal. While the ROM has a well-established heuristic instantia-
tion, it is unlikely to support a PCD scheme. PCD exists in the LDROM, but we do not
know how to instantiate the oracle. The AROM offers, in some sense, the “best of both
worlds”: a provable construction of PCD and a plausible heuristic instantiation. More-
over, the proposed instantiation of the AROM does not rely on any cryptography beyond
“random-oracle-like” hash functions. As such, there are no barriers to implementing our
scheme.

Post-quantum security. Our scheme does not rely on any pre-quantum assumption;
it is plausibly post-quantum secure. Moreover, it is conceivable that the scheme is in
fact provably post-quantum secure in the “quantum-accessible” AROM; we leave this
intriguing question to future work.

1.2 Related work

PCD and IVC in the ROM. There is theoretical evidence that, unlike for SNARKs,
there is no construction of PCD and IVC in the ROM (even allowing for additional
“mild” cryptographic assumptions like standard-model CRHs). First, [CL20] shows that
the PCP theorem does not hold for various cryptographically relevant oracle models,

1 The only setup required is a uniform reference string.
2 Some other prior PCD constructions are also based on SNARKs with straightline extraction

(e.g., [Val08; COS20]). However, this property is lost after the heuristic step is applied.
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such as the ROM and the LDROM. This suggests that succinct proofs for computations
relative to these oracles may be out of reach. Nevertheless, [CCS22] shows that this is
not the whole story by constructing SNARKs for LDROM computations, particularly
PCD, from a cryptographic assumption. Second, [HN22] shows various impossibilities
for IVC in the ROM. For example, if a particular type of commitment scheme exists,
then zero-knowledge IVC (without a CRS) does not exist in the ROM. This result holds
even if the IVC construction were to rely on “standard” cryptographic assumptions.3

Pseudorandom oracles. [JLLW22] introduce the pseudorandom oracle model (PROM)
and apply it towards obfuscation. Similarly to the AROM, the PROM aims to capture
cryptographic schemes that make a non-black-box use of the random oracle. We outline
the PROM and explain how it differs from the AROM.

The PROM is specified relative to a (standard model) pseudorandom function family
Fk, and has two interfaces. The first accepts a key k and outputs a random handle h (and
stores (h, k)). The second accepts a handle h and an input x and outputs Fk(x), where k
is the key corresponding to h. By the security of the PRF, a party holding only h cannot
distinguish the latter interface from a random oracle. On the other hand, a party holding
the key k can use the circuit for Fk in a non-black-box way. [JLLW22] constructs ideal
obfuscation from functional encryption in the PROM.

The key difference between the AROM and the PROM is that the PROM “separates”
non-black-box and black-box access to the oracle. Specifically, non-black-box access to
the PROM is available only to parties that know k, whereas random oracle security holds
only against parties that do not know k. In the AROM, there is no such asymmetry: all
parties have the same access to the oracle. This is important in the context of recursive
composition (which we study) since completeness requires that both the prover and the
verifier have non-black-box access to the oracle. Still, soundness relies on the security
of the random oracle against the prover. It is an exciting open question to understand
whether, despite this apparent barrier, recursive composition is possible in the PROM.

Augmented random oracles. [Zha22] defines the augmented random oracle model to
analyze the resilience of cryptographic transformations in the ROM against uninstantia-
bility results. While ideas about modeling non-black-box access to the random oracle
(and the abbreviation “AROM”) are common to both the augmented ROM and the arith-
metized ROM, the models are very different both technically and in their applications.
We briefly summarize [Zha22] and then explain how our model differs.

Let ro denote the random oracle, and Π denote some protocol. A cryptographic
transformation T usually comes with a guarantee like “if Π is a secure X, then T ro(Π)
is a secure Y”. An uninstantiability result for T typically shows that there exists some
Π such that TH(Π) is insecure for every polynomial-size circuit H . Known uninstan-
tiability results use some non-black-box technique to provide a “trapdoor” that can be
used with respect to any H but is useless for ro. The augmented ROM captures this
paradigm by requiring T ro(Π) to be secure even if Π has access to an oracle M that
provides some functionality permitted by non-black-box access to H , but with respect to

3 The paper claims that this result holds for constructions that use falsifiable assumptions but
does not show this explicitly. Nonetheless, one can check that the proof does work for “benign”
cryptographic assumptions.
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ro. [Zha22] shows that key uninstantiability results for transformations (e.g., Fiat–Shamir
for arguments [GK03]) lead to insecure protocols in the augmented ROM.

The augmented ROM is a tool for proving a stronger form of security for random
oracle transformations. In particular, no “honest” scheme ever accesses the oracle M ;
indeed, the oracle M is chosen adversarially (and may be trivial). On the other hand,
in the arithmetized ROM, honest parties use the non-black-box access provided by the
arithmetization oracle, whose functionality is (mostly) fixed by the model itself.

2 Techniques

Recall that our goal in this work is to construct proof-carrying data (PCD). Our approach
follows the widely-used template of recursive proof composition. However, our setting
imposes several technical and conceptual challenges. We begin by outlining a vital issue
in proving security for this type of construction, which our work seeks to address.

Recursive proof composition refers to a set of techniques that enable the construction
of PCD (and IVC) from SNARKs or accumulation schemes. With few notable exceptions
(e.g., [Gro16]), all constructions of SNARKs and accumulation schemes rely on the
Fiat–Shamir heuristic, which converts an interactive public-coin argument system into a
non-interactive argument via a cryptographic hash function H . For all of these SNARK
constructions, it is unknown whether this heuristic can be realized from any concrete
(i.e., falsifiable) cryptographic assumption; indeed, there is evidence that this may not be
possible [GW11]. However, we can prove these schemes secure in the ROM, treating
the hash function H as a truly random function ro to which the adversary has black-box
access.

This leads to a fundamental tension in proving security for the recursive composition
of these protocols. On the one hand, to prove security for the protocol itself, we assume
that the adversary treats the hash function H as a black box. On the other hand, when
recursively composing, the honest protocol treats H in a non-black-box way: specifically,
as a concrete polynomial-size circuit. The prior work [CL20; HN22] discussed in
Section 1.2 suggests that non-black-box use of H may be necessary to achieve PCD
(and IVC).

2.1 Starting point: the low-degree random oracle model

The work of [CCS22] addresses the aforementioned tension by introducing a new oracle
model called the low-degree random oracle model (LDROM). They then show how to
construct PCD via recursive composition in the LDROM (i.e., using the oracle as a black
box).

In the LDROM, all parties have oracle access to a uniformly random low-degree
multivariate polynomial ρ̂ : Fm → F. Restricting ρ̂ to {0, 1}m ⊆ Fm recovers the usual
random oracle, and [CCS22] show that relevant security properties of the random oracle
continue to hold in the LDROM; in particular, Micali’s SNARK [Mic00] is secure in the
LDROM. Unlike the random oracle, the LDROM admits a query accumulation scheme:
a verifier, with the help of an untrusted accumulation proof, can check the correctness of
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n queries to ρ̂ using only O(1) queries to ρ̂. [CCS22] construct such an accumulation
scheme and use it to build PCD.
Instantiating the LDROM. [CCS22] observe that the LDROM can be instantiated
using a hardware token that implements the structured PRF of [BGV11]. Of course,
schemes involving hardware tokens have significant drawbacks; finding a plausible
“software-only” instantiation would be much preferable. [CCS22] suggest a natural
strategy: given a “random-oracle-like” hash function H , convert it into an arithmetic
circuit gate-by-gate. Such a circuit does define a polynomial with which we could
instantiate the LDROM. Unfortunately, as noted in [CCS22], for widely-used hash
functions, the degree of this polynomial will be large (at least 225). Since the complexity
of the verifier in the query accumulation scheme is linear in the degree of the oracle, the
resulting PCD scheme would be prohibitively expensive.

2.2 The arithmetized random oracle model

Given the above difficulty, a natural next step is to consider techniques for reducing the
degree of the resulting arithmetic circuit. Since the degree of an arithmetic circuit grows
exponentially in its depth, a natural approach is to try to reduce the depth of the circuit
for H . This can be achieved via the well-known NP reduction from circuit satisfiability
to 3-SAT (a depth-two formula). The output of the reduction is a boolean formula ΦH

with the following property: there is an efficiently computable witness function WH such
that

ΦH(x, y, z) =

{
1 if H(x) = y and WH(x) = z

0 otherwise
.

Converting ΦH into an arithmetic formula (gate-by-gate) yields a polynomial PH of
total degree O(|H|) that agrees with ΦH on boolean inputs.

PH is not a low-degree extension of H (rather of ΦH ) and so this is not a candidate
instantiation of the LDROM. As we note later, however, the low-degree structure of
PH will nonetheless allow us to build a query accumulation scheme, inspired by that of
[CCS22]. Moreover, the statement “H(x) = y” can be verified by querying PH only,
given z as a witness. It is therefore plausible that, following the template developed in
the prior work, we can obtain a secure construction of PCD that makes only black-box
use of H and PH .

Of course, given the current state of knowledge, we can only hope to prove that this
PCD scheme is secure in some idealized model. In particular, we would like to model H
as a random oracle. It is then necessary to answer the question: if H is a random oracle,
what should PH look like? A central modeling contribution of our work is to propose an
answer to this question.
A new oracle model: the AROM. We refer to our proposed oracle model as the
arithmetized random oracle model (AROM). Before presenting the model, we discuss
two key modeling challenges that arise. Both relate to the fact that the black-box behavior
of PH depends in a non-black-box way on H .

– Challenge #1: WH is circuit-dependent. For a concrete circuit H and input x,
WH(x) is a vector representing the assignment to the internal wires of H on input x.
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This of course depends on the size and structure of the circuit for H , which is no longer
meaningful when H is replaced by a random oracle. We handle this conservatively,
by allowing WH to be adversarial. That is, we require that completeness, soundness,
and zero-knowledge hold regardless of the choice of WH , which we allow to depend
on x and the random oracle, and may even itself be randomized.
There is, however, an important caveat. While we allow our WH to depend on the
random oracle, we must restrict this dependency; otherwise, the adversary could use
WH to learn information that it cannot otherwise obtain (e.g., WH could encode a
collision in H). Similarly, if WH is computationally unbounded, the adversary could
use it to break standard-model cryptography. As such, we restrict WH to have an
efficient implementation (in particular, it can only make polynomially-many queries
to H).

– Challenge #2: PH is not the unique extension. Even after we have fixed WH (and
hence ΦH ), PH has a huge number of remaining degrees of freedom. This is because
it is of individual degree larger than 1, but its behavior is specified only on boolean
inputs. This is a more challenging issue to resolve: letting PH be chosen adversarially
from the set of extensions of ΦH would make the adversary unrealistically powerful
(see Remark 1). Instead, we model PH as a uniformly random polynomial of the
appropriate degree whose restriction to the hypercube is ΦH . We propose that this
captures the inability of the adversary to leverage the structure of H (and hence PH )
in breaking security. We leave to future work the question of whether this modeling
choice can be weakened (again see Remark 1).

We now give an informal definition of the AROM; for details see Section 4. In the
AROM, all parties (honest and malicious) have access to three oracles (ro,wo, v̂o):

– a random oracle ro : {0, 1}m → {0, 1}λ drawn uniformly at random;
– a witness oracle wo : {0, 1}m → {0, 1}w that is an arbitrary PPT-computable function

(see below);
– an extended verification oracle (arithmetization oracle) v̂o : Fm+λ+w → F that is a

random extension of individual degree d ≥ 2 of the verification oracle vo : {0, 1}m+λ+w →
{0, 1} defined as follows:

vo(x, y, z) :=

{
1 if ro(x) = y and wo(x) = z

0 otherwise
.

We discuss each oracle in turn.

– The random oracle ro models the hash function H , as in the standard ROM.
– The witness oracle wo models the witness function WH . It is defined via a polynomial-

size oracle circuit B chosen arbitrarily before the oracle is sampled. On a query x, wo
outputs Bro(x, µx) where µx is sampled uniformly at random (and is not resampled
if x is queried again). The inclusion of µx allows our definition to subsume, e.g.,
modeling WH as a random oracle. The efficiency requirement is necessary to allow
for efficient simulation of wo (it prevents wo from being used to break standard-model
cryptography).
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– The verification function vo models the boolean formula ΦH . Indeed, the definition
of vo is directly obtained from the definition of ΦH by replacing H with ro and WH

with wo.
– The extended verification oracle v̂o models the polynomial PH . The requirement that
d ≥ 2 arises from a technical concern: as noted in [JKRS09], access to the unique
multilinear (d = 1) extension of a function can be surprisingly powerful. (E.g., an
adversary with access to the multilinear extension of v̂o can efficiently invert ro, see
Remark 1.) Requiring d ≥ 2 avoids this issue and is sufficient for our security proofs.
In any case, we want to match the degree of v̂o to that of PH for some concrete hash
function H , and the degree of PH will be at least 2 in each variable.4

A construction that makes black-box use of H,WH , ΦH can be analyzed in the AROM
as suggested by the above discussion: replace H with ro, WH with wo, and PH with v̂o
(with matching degree bound d).

In Section 2.3 we describe our construction of PCD in the AROM. This construction
relies on a “lazy sampling” procedure for the AROM, a key technical contribution that
we describe in Section 2.4.
AROM vs. LDROM. Superficially the AROM and LDROM seem quite similar;
indeed, they both aim to capture some arithmetization of the random oracle. However,
there are notable differences between the two models, even putting aside the differing
instantiability considerations. We highlight a few such differences.
– The LDRO is a low-degree extension over a field F of a random function {0, 1}m → F.

Hence the security of the LDRO as a random oracle depends on |F|. The ARO
decouples the choice of F from the random oracle: one may choose the codomain
{0, 1}λ of ro independently from the field F over which v̂o is defined. The security of
ro (even in the presence of v̂o) depends only on λ. That said, in both the LDROM and
the AROM, the security of their respective query accumulation schemes depends on
|F|.

– The LDRO is a linear code random oracle; i.e., it is sampled at random from a linear
space over F. The ARO is also sampled uniformly from some set, but this set does not
form a linear space. This means that tools developed in [CCS22] for analyzing linear
code random oracles do not directly apply. That said, the ARO does have some linear
structure: the oracle v̂o is sampled uniformly from the (affine) space of low-degree
extensions of vo. This fact will be useful for emulating the AROM.

– The LDRO has security properties (e.g. collision resistance, unconditional SNARKs)
even when d = 1 (i.e., it is a random multilinear polynomial). The ARO is not even
one-way when d = 1.

Remark 1 (choice of extension). We set v̂o to be a random extension of vo of individual
degree d ≥ 2. We explain why setting v̂o to be an arbitrary extension of vo would grant
the adversary too much power.

First consider the case when v̂o is the unique multilinear extension of vo (d = 1).
Given oracle access to a multilinear polynomial P over a field F of characteristic different
from 2, a single query to P suffices to efficiently evaluate the sum

∑
x∈{0,1}n P (x)

4 The degree of a variable in PH is equal to the number of clauses in ΦH in which it appears.
Every wire appears in at least two clauses in ΦH : once as an output and once as an input.
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[JKRS09]. We can use this capability and the structure of vo to invert ro: given a target
image y ∈ {0, 1}λ, perform a binary search for a preimage of y by evaluating the sum∑

x1,z
v̂o((x0, x1), y, z) for different prefixes x0.

Next consider the higher-degree case: v̂o is an adversarially-chosen extension of
vo of degree d ≥ 2. Given oracle access to a polynomial P of individual degree d, a
single query to P suffices to efficiently evaluate the sum

∑
x∈Hn P (x) where H is a

multiplicative subgroup of F with |H| > d [CFS17, Lemma A.4]. Assume that F has
such a subgroup H of size d+ 1. We can embed {0, 1} into H via an affine shift, and so
we may abuse notation to assume {0, 1} ⊆ H . Choose v̂o to be the following extension
of vo : {0, 1}n → F: v̂o(x, y, z) = vo(x, y, z) for (x, y, z) ∈ {0, 1}n, and v̂o(w) = 0
for w ∈ Hn \ {0, 1}n. Note that v̂o has individual degree |H| − 1 = d. Given this
extension we can then use binary search as in the multilinear case to invert ro.

The above gives some justification for modelling v̂o as a random low-degree exten-
sion of vo. Of course, there are many choices that lie in between adversarial and random.
For example, one could set v̂o to be drawn from an adversarially-chosen distribution with
“enough” entropy. It is not clear, however, whether such a choice would be substantially
closer to “reality” than our choice.

2.3 Building PCD secure in the AROM

Prior work [CCS22] shows that to obtain PCD in an oracle model O, it suffices to
construct: (i) a SNARK for NP relative to O; and (ii) an accumulation scheme for
O-queries relative to O. Further, the resulting PCD scheme is zero-knowledge if the
SNARK and accumulation scheme also satisfy zero-knowledge. The PCD construction in
the LDROM in [CCS22] follows by establishing these results for the LDROM. Similarly,
our construction of PCD will follow by establishing these results for the AROM.
(i) SNARKs in the AROM. [CCS22] prove that Micali’s SNARK remains (information-
theoretically) secure in the LDROM, via a rewinding argument. In the AROM, we show
a much more general theorem.

Theorem 3 (informal). Let p be a predicate that queries ro, and let A be an algorithm
querying (ro,wo, v̂o) that outputs x satisfying pro with probability ε. Then there is an
algorithm B, of similar efficiency to A, that queries ro only and outputs x satisfying pro

with probability ε− negl(λ).

Theorem 3 follows directly from our emulator for v̂o, which we discuss further in
Section 2.4. It is not known whether a similar result holds for the LDROM.

As an illustrative example, we can use Theorem 3 to prove that the ARO is collision-
resistant. By applying Theorem 3 to the predicate pro that, given (x, x′) ∈ {0, 1}m ×
{0, 1}m, checks that x ̸= x′ and ro(x) = ro(x′), we deduce that the ARO is collision-
resistant from the fact that the RO is collision-resistant.

We use Theorem 3 to prove knowledge soundness and zero knowledge of Micali’s
SNARK in the AROM.
– Knowledge soundness. We use Theorem 3 to prove that Micali’s SNARK is secure

in the AROM, via a straightline extractor. Informally, since we can cast knowledge
soundness of Micali’s SNARK as an oracle predicate p, any adversary A that breaks

9



that security property in the AROM can be transformed via Theorem 3 into an
adversary B that breaks it in the ROM. We can then apply the straightline extractor
for Micali’s SNARK to B. Since B invokes A in a straightline manner, the resulting
AROM extractor is also straightline.

– Zero-knowledge. We prove that Micali’s SNARK is zero knowledge in the AROM.
Our zero knowledge simulator that programs the oracle; this is a commonality with
the zero knowledge simulators for Micali’s SNARK in both the ROM and in the
LDROM (see [CCS22]). To program the oracle, the simulator relies on a slightly
stronger version of our emulator, which emulates oracle queries conditioned on an
input list of (real) oracle query-answer pairs. Our hybrid argument invokes Theorem 3
and the Micali SNARK’s zero knowledge property in the ROM. Informally, we move
between hybrids in the ROM vs AROM using Theorem 3, setting the predicate p to
be any distinguisher between hybrids.

(ii) An accumulation scheme for ARO queries. The accumulation scheme for LDRO
queries in [CCS22] is obtained by applying the Fiat–Shamir transformation to the (inter-
active public-coin) query reduction protocol of [KR08]. We follow the same template in
the case of the ARO. The first observation is that it suffices to accumulate queries to v̂o
only, because a query to ro or wo can be verified via a query to v̂o.5

The [KR08] query reduction protocol itself works for any low-degree polynomial:
in particular, for v̂o. As in [CCS22], the central challenge is showing soundness of
the Fiat–Shamir transformation in this setting. Note that here we cannot appeal to our
general theorem above because the verification predicate queries v̂o.

The soundness of our accumulation scheme is captured by a zero-finding game (ZFG).
First explicitly described by [BCMS20], the most basic form of a ZFG challenges the
adversary to output a commitment cm (under a standard-model commitment scheme) to
a low-degree polynomial f ̸≡ 0 such that f(ro(cm)) = 0. Intuitively this is hard because
f is fixed by cm before ro(cm) is known, and so the probability that f(ro(cm)) = 0
cannot be much larger than the probability that f(α) = 0 for a random α ∈ F, which
is negligible for large fields. [CCS22] shows that a more general version of the ZFG
holds in the LDROM, where the ZFG polynomial may depend in a restricted way on the
LDRO itself. That is, they show that it is hard to find a commitment cm to polynomials
f, g such that f − ρ̂ ◦ g ̸≡ 0 but (f − ρ̂ ◦ g)(ρ̂(cm)) = 0.

The security of our construction depends on the hardness of a similar problem in the
AROM, captured by the following lemma.

Lemma 1 (informal). It is hard for any polynomial-size adversary with access to the
ARO (ro,wo, v̂o) to find a commitment cm to a pair of low-degree polynomials f, g such
that f − v̂o ◦ g ̸≡ 0 but (f − v̂o ◦ g)(ro(cm)) = 0.

We prove Lemma 1 by adapting the proof of the ZFG in [CCS22]. The proof relies on
a forking lemma in the LDROM, which in turn relies on the ability to efficiently simulate
the oracle in order to sample a forking transcript. For the AROM, we will rely on the
emulator described in Section 2.4. The proof proceeds as follows. Looking ahead, we
note that the emulator maintains a polynomial P that it uses to answer queries to v̂o.We

5 Recall that ro(x) = y and wo(x) = z if and only if v̂o(x, y, z) = 1.
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show that the adversary cannot win the ZFG when v̂o is replaced by P . This argument
uses the forking lemma with respect to the emulator, and follows [CCS22], with one
difference: this approach doesn’t require a bespoke forking lemma as in [CCS22], and
can be carried out using a general forking lemma [BN06, Lemma 1]. This general forking
lemma is designed for random oracle adversaries, however, as we have already replaced
v̂o with the emulator we can “perfectly emulate” P using the emulator. Further, we can
perfectly emulate wo using the witness circuit B. This allows us to reduce the ZFG
adversary to a random oracle adversary and thus apply the general forking lemma. Then,
since the emulator is statistically indistinguishable from v̂o, the adversary cannot win
the original ZFG.

Before we describe our emulator, we discuss an important feature of our PCD
construction.

Extraction and PCD depth. Almost all constructions of PCD suffer from the “extractor
blowup” problem. To obtain a PCD transcript of depth d, we apply the SNARK extractor
to itself d times. If the extractor corresponding to a size-S adversary is of size Sc, then
the final extractor size is sc

d

, where s is the size of the original PCD adversary. As a
result, one obtains meaningful security guarantees when d is a constant.

There is a single construction that does not suffer from this issue: the construction
of [CT10]. This is because their SNARK (in their signed random oracle model) is
straightline (or “list”) extractable. Micali’s SNARK is also straightline extractable in the
ROM [Val08]. Of course, after heuristically instantiating the oracle there is no longer any
notion of “straightline”. On the other hand, we can easily show that Micali’s SNARK is
straightline extractable in the AROM. (We do not know how to show this in the LDROM;
[CCS22] instead gives a rewinding extractor for Micali’s SNARK.)

As a result, our PCD construction is secure for arbitrary recursion depth.

2.4 Emulation of the ARO

As discussed in Section 2.3, we aim to construct PCD in the AROM by proving that cryp-
tographic properties in the ROM, specifically knowledge soundness and zero-knowledge
of the Micali SNARK, also hold in the AROM. To this end, we design an efficient
algorithmM that answers queries in a way that is statistically indistinguishable from
answers of the ARO. We refer to such an algorithm as an emulatorM for the AROM.6

Recall that the ARO consists of a tuple of oracles (ro,wo, v̂o). Our emulator M
achieves a special (stronger) type of emulation: given oracle access to some ro and
wo, M can efficiently emulate v̂o drawn from the ARO distribution conditioned on
(ro,wo).We use this type of emulation to prove Theorem 3.

Lemma 2 (informal). There exists a probabilistic algorithm M such that for every
security parameter λ ∈ N, query bound t ∈ N, and t-query adversary,∣∣∣∣ Pr

(ro,wo,v̂o)←O(λ)

[
A(ro,wo,v̂o) = 1

]
− Pr

(ro,wo,v̂o)←O(λ)

[
AM

(ro,wo)

= 1
]∣∣∣∣ ≤ t

2λ
. (1)

6 Emulators are sometimes known as “lazy samplers” or “simulators”. In this paper we reserve
the word simulator to refer to zero knowledge simulators.
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Moreover,M is degenerate with respect to (ro,wo): it answers queries to those oracles
by forwarding them to the corresponding “real” oracle (and recording the answers).

We refer to the absolute difference in Equation 1 as the emulation error. An emulator
is perfect if it has zero emulation error.

Prior oracle emulators. Recall that a random oracle is a function ro chosen uniformly
from ({0, 1}m → {0, 1}λ). It has a well-known perfect (stateful) emulatorMro that
“lazily” samples answers: whenMro receives a new query x ∈ {0, 1}m, it uniformly
samples and returns y ∈ {0, 1}λ, and then saves the query-answer pair (x, y) into its
state; whenMro receives a repeat query, it returns the saved answer.

The low-degree random oracle [CCS22] also has a perfect emulator, based on succinct
constraint detection for the Reed–Muller code [BCF+17].

Challenges for the ARO. The low-degree structure of v̂o may suggest that succinct
constraint detection directly yields a construction ofM(ro,wo) with perfect emulation.
However, the “sparsity” of vo implies that the set of all possible v̂o is not a linear space,
as we now explain. Recall that for x ∈ {0, 1}m, y ∈ {0, 1}λ, z ∈ {0, 1}w, v̂o(x, y, z) =
vo(x, y, z) = 1 if and only if y = ro(x) and z = wo(x), and 0 otherwise. Hence, if
v̂o1, v̂o2 are extended verification oracles, v̂o′ = v̂o1 + v̂o2 many not be an extended
verification oracle because there may exist x, y1, y2, z1, z2 such that v̂o′(x, y1, z1) =
v̂o′(x, y2, z2) = 1 and y1 ̸= y2. Hence, unlike for the LDRO, we cannot directly
constructM(ro,wo) from succinct constraint detection.

Our approach. We adopt a novel approach to simulation. First, we design a query-
efficient but time-inefficient perfect emulator for a random low-degree extension f̂ of
a given arbitrary function f .7 This almost suffices for our goal because v̂o is a random
low-degree extension of the function vo defined by (ro,wo), which we can efficiently
compute at any point by querying ro and wo. Second, we additionally achieve time-
efficient emulation by leveraging the sparsity of vo, at the cost of a small statistical
emulation error.

(1) Time-inefficient emulation of a random low-degree extension. Let f : {0, 1}n →
F be a function and d ∈ N a degree bound. We seek an emulatorMLD such thatMf

LD

answers queries in a way that is identically distributed to a random extension f̂ of f with
individual degree at most d.

We fix some notation. For S ⊆ Fn and w ∈ {0, 1}n, we say that w is S-good if
there exists an n-variate polynomial Qw,S of individual degree at most d such that:
(i) Qw,S(w) = 1; (ii) Qw,S(x) = 0 for every x ∈ {0, 1}n \ {w}; and (iii) Qw,S(z) = 0
for every z ∈ S. We say that w is S-bad if it is not S-good. Intuitively, w is S-bad if
f(w) can be deduced from f̂ |S (given the structure of a low-degree extension f̂ ). Note
that S-badness is monotone with respect to S, and that if w ∈ S then w is S-bad.

The query-efficient but time-inefficient emulatorMLD works as follows.

Mf
LD:

7 In contrast, emulating the low-degree random oracle (as in [CCS22]) corresponds to emulating
f̂ for a random function f that the emulator samples itself. This considerably simplifies the
task, and in particular enables a time-efficient perfect emulation.
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1. Initially sample a random low-degree extension P of the all-zero function on
{0, 1}n.

2. For each new query x, answer it as follows.
• Let S ⊆ Fm be the set of points queried prior to x.
• Let W denote the set of w ∈ {0, 1}n that are S-good and (S ∪ {x})-bad.
• Update P := P +

∑
w∈W f(w) ·Qw,S .

• Return P (x) as the answer.

The emulator MLD maintains the invariant that P is a low-degree extension of the
function g : {0, 1}n → F given by g(w) = 0 for S-good w and g(w) = f(w) for S-bad
w. That is, g is consistent with f at every point the adversary “knows”, and is zero
elsewhere. It is also crucial thatMLD does not change P (x) for any x ∈ S, since such a
change would be detectable by the adversary; this is achieved since Qw,S(x) = 0 for all
x ∈ S. Together these facts imply thatMLD achieves perfect simulation.

The query complexity ofMLD is equal to the size of the union of all sets W across
all invocations of Step 2, which is equal to the number of S-bad points when S is the
set of all queries made to f̂ . Aaronson and Wigderson [AW09, Lemma 4.3] proved that,
provided d ≥ 2, the number of S-bad points is at most |S|, which in the context of
Lemma 2 is the query complexity of A.

(2) Time-efficient emulation from sparsity. There are three main sources of time-
inefficiency in the emulatorMLD: (i) sampling the initial polynomial P ; (ii) computing
the polynomials Qw,S ; and (iii) computing the set W . We consider each of these dif-
ficulties in turn. Throughout we will make use of the random multivariate polynomial
emulation algorithm of [BCF+17], which achieves the following guarantee.

Lemma 3. There is an efficient probabilistic algorithm LDSample such that for every
degree bound d ∈ N, set S ⊆ Fm, map h : S → F, q ∈ Fm, and α ∈ F,

Pr[LDSample(1d, S, h, q) = α] = Pr[P (q) = α | P |S = h] ,

where P is a uniformly random m-variate polynomial of individual degree at most d.8

We address the first two difficulties via suitable use of algebra.

(i) Sampling P . The polynomial P is initially a random low-degree extension of the
all-zero function. We do not know how to use LDSample to sample P directly,
since that would need S = {0, 1}m, which is an exponentially-sized set. Instead,
we use a structural result about low-degree extensions of the zero function, the
combinatorial nullstellensatz [Alo99].

Lemma 4 (informal). If a polynomial P is zero on {0, 1}m, then there exist
polynomials (Ri)

m
i=1 such that

P (X⃗) ≡
m∑
i=1

Xi(Xi − 1)Ri(X⃗) . (2)

8 If the RHS is not well-defined, LDSample outputs ⊥.
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Combining Lemma 4 with a linear-algebraic argument, we show that sampling
each Ri in Equation 2 uniformly at random yields a uniformly random low-degree
extension of the all-zero function. We can then sample each Ri via LDSample.

(ii) Computing Qw,S . [AW09] sets the polynomial Qw,S := δw · pw,S where:
– δw is the unique multilinear polynomial with δw(w) = 1 and δw(x) = 0 for all
x ∈ {0, 1}m \ {w};

– pw,S is a multilinear polynomial with pw,S(w) = 1 and pw,S(z) = 0 for all
z ∈ S.

The polynomial δw is easy to compute because it has a succinct expression. In
contrast, the polynomial pw,S may not have a succinct expression, but is specified
via its evaluations on the polynomial-sized set S ∪ {w}, so queries to pw,S can be
answered via LDSample.

We do not know of an algorithm that can efficiently compute, given a set S ⊆ Fn, the
set of all S-bad points. As a result, we do not know how to obtain an efficient emulator
for a random low-degree extension of an arbitrary function f . Nevertheless we address
the third difficulty by leveraging the structure of vo.

(iii) The set W . We observe that vo is sparse: it is nonzero only at points (x, y, z) for
ro(x) = y,wo(x) = z. If the adversary has not queried ro at x, then intuitively
(since ro(x) is random) it will not be able to find any y, z such that vo(x, y, z) = 1,
even given access to v̂o. In particular, the probability that the set W contains any
(x, y, z) ∈ {0, 1}m+λ+w such that vo(x, y, z) = 1, but ro(x) was not yet queried,
should be negligible. Indeed, we show that this probability is at most |S|/2λ.
Observe that Step 2 of the time-inefficient emulator does nothing if f(w) = 0
for all w ∈ W . It follows from the above that to achieve simulation accuracy
O(|S|/2λ), it suffices to perform Step 2 only for points (x, y, z) for which the
adversary has already queried ro at x and ro(x) = y,wo(x) = z. Since we observe
the adversary’s queries to ro, this set of points is easy to determine.
To show this formally we follow an “identical-until-bad-is-set” analysis [BR06].

3 Preliminaries

3.1 Notations

We define [n] := {1, . . . , n}. We use F≤d[X1, . . . , Xm] to denote the set of m-variate
polynomials of individual degree at most d with coefficients in F; we write deg(·) to
denote the individual degree. For d⃗ = (d1, . . . , dm), we use F≤d⃗[X1, . . . , Xm] to denote
the set of m-variate polynomials such that the variable Xi has individual degree at most
di for each i ∈ [m].

Functions. We use Dom(f) to denote the domain and Cod(f) to denote the codomain
of a function f . We use (X → Y ) to denote the set of all functions {f : X → Y }. For a
linear map Φ, we use ker(Φ) to denote the kernel of Φ and im(Φ) to denote the image of
Φ. We say that a function is total if it is defined for all elements of its domain, and say
that it is not total otherwise.
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Distributions. For finite set X , we write x← X to denote that x is drawn uniformly
at random from X . We use supp(D) to denote the support of the distribution D. We
write U(X) to denote the uniform distribution over the set X .
Oracles. A random oracle is defined as a function ro sampled uniformly at random
from ({0, 1}m → {0, 1}n) for some m,n ∈ N.
Oracle algorithms. For a function θ : X → Y , we write Aθ for an algorithm with
oracle access to θ. Further, for a tuple of functions (θ1, . . . , θν), where ν ∈ N, with
θi : Xi → Yi, we write A(θ1,...,θν) for an algorithm with oracle access to each θi for
i ∈ [ν], and AθS for an algorithm with oracle access to a subset of functions {θi| i ∈ S}
where S ⊆ [ν].
Oracle identifiers and oracle transcripts. Given an oracle distribution O such that
supp(O) contains tuples of ν ∈ N oracles, we assign to each oracle in the tuple a unique
oracle identifier: oid ∈ [ν]. Then, an O-query-answer transcript tr is a list consisting
of query-answer pairs, along with the oracle identifier corresponding to the oracle to
which each query was made. That is, tr := [(oidi, xi, yi)]

t
i=1 such that there exists

(θ1, θ2, . . . , θν) ∈ supp(O) satisfying θoidi(xi) = yi for all i ∈ [t]. (Note that oidi ∈ [ν]
indicates that the i-th query was made to θoidi .)

When considering oracle distributions O whose support contains tuples of ora-
cles, it is often useful to view this tuple (θ1, . . . , θν) as a bundle of oracles θ : [ν] ×⋃

(θ1,...,θν)∈supp(O)

⋃
i∈[ν] Dom(θi)→

⋃
(θ1,...,θν)∈supp(O)

⋃
i∈[ν] Cod(θi) which takes

an oracle identifier as input alongside the query point, i.e., θ ← O and θ(oidi, x) =
θoidi(x).
Query complexity. An algorithm with access to an oracle O is t-query if its O-query-
answer transcript has length ≤ t.
Indexed relations. An indexed relation R is a set of triples (i,x,w) where i is the
index, x is the instance, and w is the witness; the corresponding indexed language L(R)
is the set of index-instance pairs (i,x) for which there exists a witness w such that
(i,x,w) ∈ R. For example, the indexed relation of satisfiable boolean circuits consists
of triples where i is the description of a boolean circuit, x is a partial assignment to its
input wires, and w is an assignment to the remaining wires that makes the circuit output
0.
Oracle relations. For a set of oracle distributions X , we writeRX to denote the set
of indexed relations {Rθ : θ ∈

⋃
O∈X supp(O)}. When considering sets of oracle

distributions X for which each O ∈ X is such that supp(O) contains tuples of ora-
cles (θ1, . . . , θν), for ν ∈ N, with oracle identifiers (oid1, . . . oidν), we write R(X ,oid)

to denote the set of indexed relations {Rθoid : (θ1, . . . , θν) ∈
⋃
O∈X supp(O)}. We

defineR(X ,oid) ∈ NP(X ,oid) if and only if there exists a polynomial-time oracle Turing
machine M such that, for every (θ1, . . . , θν) ∈

⋃
O∈X supp(O), Rθoid = {(i,x,w) :

Mθoid(i,x,w) = 1}.
Security parameters. We assume for simplicity that all public parameters have a
length of at least λ so that efficient algorithms that receive such parameters can run in
time (at least) polynomial in λ.
Adversaries. An adversary (or extractor) is polynomial-size if it can be expressed
as a circuit of polynomial size. We also consider a relaxed definition: an adversary
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(or extractor) running in (non-uniform) expected polynomial-time is a Turing machine
provided with a polynomial-size non-uniform advice string and access to an infinite
random tape, whose expected running time for all choices of advice is polynomial.

An adversary A with expected running time t and success probability p can be
converted into a circuit of size O(t/ϵ) with success probability p − ϵ as follows: first
truncate the execution of A at running time t/ϵ; then choose as advice the randomness
that maximizes the success probability of the truncated A.

For ν ∈ N and a distributionO, whose support contains tuples of oracles (θ1, . . . , θν),
we refer to an adversary with access to (θ1, . . . , θν)← O as an O-adversary.

Stateful algorithms. An algorithm A is stateful if it has the following syntax:
– A.Initialize(pp)→ z, on input parameters pp, outputs an initial state z.
– A.Evaluate(pp, z0, x) → (z1, y), on input an old state z0 and a query x, outputs a

new state z1 and an output y.

3.2 Non-interactive arguments in oracle models

Given a set of oracle distributions X , a (preprocessing) non-interactive argument relative
for an indexed oracle relation RX is a tuple of algorithms ARG = (G, I,P,V) that
works as follows. Below we denote by θ an oracle (or tuple of oracles) in the set⋃
O∈X supp(O).

– G(1λ) → pp. On input a security parameter λ (in unary), the generator G samples
public parameters pp.

– Iθ(pp, i)→ (ipk, ivk). On input public parameters pp and an index i for the relation
R, the indexer I deterministically computes index-specific proving and verification
keys (ipk, ivk).

– Pθ(ipk,x,w)→ π. On input an index-specific proving key ipk, an instance x, and a
corresponding witness w, the prover P computes a proof π that attests to the claim
that (i,x,w) ∈ Rθ.

– Vθ(ivk,x, π)→ b. On input an index-specific verification key ivk, an instance x, and
a corresponding proof π, the verifier V computes a bit indicating whether π is a valid
proof.

We require ARG to satisfy the following completeness and soundness properties.

– Completeness. For every oracle distribution O ∈ X and adversary A,

Pr


(i,x,w) ∈ Rθ

⇓
Vθ(ivk,x, π) = 1

∣∣∣∣∣∣∣∣∣∣
θ ← O(λ)

pp← G(1λ)
(i,x,w)← Aθ(pp)

(ipk, ivk)← Iθ(pp, i)
π ← Pθ(ipk,x,w)

 = 1 .

The above formulation of completeness allows (i,x,w) to depend on the oracle θ and
public parameters pp.
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– Soundness. For every oracle distribution O ∈ X and polynomial-size adversary P̃ ,

Pr

V
θ(ivk,x, π) = 1

∧
(i,x) ̸∈ L(Rθ)

∣∣∣∣∣∣∣∣
θ ← O(λ)

pp← G(1λ)
(i,x, π)← P̃θ(pp)

(ipk, ivk)← Iθ(pp, i)

 ≤ negl(λ) .

The above formulation of soundness allows (i,x) to depend on the oracle θ and public
parameters pp.

We also consider straightline knowledge soundness properties and zero knowledge
for ARG.
Straightline knowledge soundness. ARG has straightline knowledge soundness (with
respect to auxiliary input distribution D) if there exists a deterministic polynomial-time
extractor E such that for every oracle distribution O ∈ X and (non-uniform) polynomial-
time adversary P̃ ,

Pr


Vθ(ivk,x, π) = 1

∧
(i,x,w) ̸∈ Rθ

∣∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp← G(1λ)
ai← D(pp)

(i,x, π)
tr←− P̃θ(pp, ai)

(ipk, ivk)← Iθ(pp, i)
w← E(pp, i,x, π, tr)

 ≤ negl(λ) .

Zero knowledge. ARG has statistical zero knowledge if there exists a probabilistic
polynomial-time stateful simulator S such that for every oracle distribution O ∈ X and
polynomial-size honest stateful adversary A, the following distributions are negl(λ)-
close in statistical distance:A

θ(π)

∣∣∣∣∣∣∣∣∣∣
θ ← O(λ)

pp← G(1λ)
(i,x,w)← Aθ(pp)

(ipk, ivk)← Iθ(pp, i)
π ← Pθ(ipk,x,w)

 and

AS
θ

(π)

∣∣∣∣∣∣∣∣
θ ← O(λ)

pp← S(1λ)
(i,x,w)

tr←− Aθ(pp)
π ← Sθ(i,x, tr)

 .

(3)
An adversary A is honest if it outputs (i,x,w) ∈ Rθ with probability 1. Above, the
notation ASθ

indicates that the simulator S (with oracle access to θ) answers the oracle
queries of A.
Succinctness. In this work, we say that a non-interactive argument system ARG for
RX is succinct if there is a fixed polynomial p such that both the length of the proof and
the running time of the argument verifier are bounded by p(λ, |x|). In this case, we refer
to ARG as a SNARG; if ARG also has knowledge soundness, it is a SNARK.

3.3 Proof-carrying data

A triple of algorithms PCD = (G, I,P,V) is a (preprocessing) proof-carrying data
scheme (PCD scheme) for a class of compliance predicates F relative to a set of oracle
distributions X if the properties below hold.
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Definition 1. A transcript T is a directed acyclic graph where each vertex u ∈ V (T)

is labeled by local data z
(u)
loc and each edge e ∈ E(T) is labeled by a message

z(e) ̸= ⊥. The output of a transcript T, denoted o(T), is z(e) where e = (u, v) is
the lexicographically-first edge such that v is a sink.

Definition 2. A vertex u ∈ V (T) is Φ-compliant for Φ ∈ F if for all outgoing edges
e = (u, v) ∈ E(T) and for all θ ∈

⋃
O∈X supp(O):

– (base case) if u has no incoming edges, Φθ(z(e), z
(u)
loc ,⊥, . . . ,⊥) = 1;

– (recursive case) if u has incoming edges e1, . . . , em, Φθ(z(e), z
(u)
loc , z

(e1), . . . , z(em)) =
1.

We say that T is Φ-compliant if E(T) is non-empty and all vertices incident to an edge
are Φ-compliant.

Completeness. For every oracle distribution O ∈ X and adversary A,

Pr



 Φ ∈ F

∧
(
(∧mi=1zi = ⊥) ∨ (∧mi=1Vθ(ivk, zi, πi) = 1)

)
∧ Φθ(z, zloc, z1, . . . , zm) = 1


⇓

Vθ(ivk, z, π) = 1

∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp← G(1λ)

(Φ, z, zloc, [zi, πi]
m
i=1)← Aθ(pp)

(ipk, ivk)← Iθ(pp, Φ)
π ← Pθ(ipk, z, zloc, [zi, πi]

m
i=1)

 = 1 .

Straightline knowledge soundness. PCD = (G, I,P,V) has straightline knowledge
soundness (with respect to auxiliary input distribution D) if there exists a deterministic
polynomial-time extractor E such that for every oracle distribution O ∈ X and (non-
uniform) polynomial-time adversary P̃,

Pr


Φ ∈ F
∧V(ivk, o, π) = 1

∧
(
T is not Φ-compliant ∨ o(T) ̸= o

)
∣∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp← G(1λ)
ai← D(pp)

(Φ, o, π)
tr←− P̃θ(pp, ai)

(ipk, ivk)← Iθ(pp, Φ)
T← E(pp, Φ, o, π, tr)

 ≤ negl(λ) .

Zero knowledge. PCD has statistical zero knowledge if there exists a probabilistic
polynomial-time stateful simulator S such that for every oracle distribution O ∈ X and
polynomial-size honest (stateful) adversary A, the following distributions are negl(λ)-
close in statistical distance:A

θ(π)

∣∣∣∣∣∣∣∣∣∣
θ ← O(λ)

pp← G(1λ)
(Φ, z, zloc, [zi, πi]

m
i=1)← Aθ(pp)

(ipk, ivk)← Iθ(pp, Φ)
π ← Pθ(ipk, Φ, z, zloc, [zi, πi]

m
i=1)

 and

ASθ (π)

∣∣∣∣∣∣∣∣
θ ← O(λ)

pp← S(1λ)
(Φ, z, zloc, [zi, πi]

m
i=1)

tr←− Aθ(pp)
π ← Sθ(Φ, z, tr)

 .

An adversaryA is honest if its output satisfies the implicant of the completeness condition
with probability 1 (i.e., Φ ∈ F, Φθ(z, zloc, z1, . . . , zm) = 1, and either for all i, zi = ⊥,
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or for all i, Vθ(ivk, zi, πi) = 1). Above, the notation AS indicates that the simulator S
answers oracle queries of A.

Efficiency. The generator G, prover P, indexer I and verifier V run in polynomial time.
A proof π has size poly(λ, |Φ|); in particular, it does not grow with each application of
P.

3.4 Accumulation schemes

We recall the definition of an accumulation scheme from [BCMS20], extended to any
set of oracle distributions; then, in Definition 3 below, we describe how to specialize that
notion to the case of accumulating oracle queries.

Let Φ :
⋃
O∈X supp(O(∗)) × ({0, 1}∗)3 → {0, 1} be a predicate (for clarity we

write Φθ(ppΦ, iΦ, q) for Φ(θ, ppΦ, iΦ, q)). LetH be a probabilistic algorithm with access
to θ, which outputs predicate parameters ppΦ.

An accumulation scheme for (Φ,H) is a tuple of algorithms AS = (G, I,P,V,D)
that have access to the same oracle θ (except for G). These algorithms satisfy complete-
ness and soundness, and optionally also zero knowledge, as specified below.
Completeness. For every oracle distribution O ∈ X and (unbounded) adversary A,

Pr


∀ j ∈ [ℓ], Dθ(dk, accj) = 1

∀ i ∈ [n], Φθ(ppΦ, iΦ, qi) = 1

⇓
Vθ(avk, [qi]

n
i=1, [accj ]

ℓ
j=1, acc, πV) = 1

Dθ(dk, acc) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp← G(1λ)

ppΦ ← Hθ(1λ)

(iΦ, [qi]
n
i=1, [accj ]

ℓ
j=1)← Aθ(pp, ppΦ)

(apk, avk, dk)← Iθ(pp, ppΦ, iΦ)
(acc, πV)← Pθ(apk, [qi]

n
i=1, [accj ]

ℓ
j=1)

 = 1 .

Note that for ℓ = n = 0, the precondition on the left-hand side holds vacuously; this is
required for the completeness condition to be non-trivial.
Soundness. For every oracle distribution O ∈ X and polynomial-size adversary A,

Pr


Vθ(avk, [qi]

n
i=1, [accj ]

ℓ
j=1, acc, πV) = 1

Dθ(dk, acc) = 1

⇓
∀ j ∈ [ℓ], Dθ(dk, accj) = 1

∀ i ∈ [n], Φθ(ppΦ, iΦ, qi) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp← G(1λ)

ppΦ ← Hθ(1λ)(
iΦ [qi]

n
i=1 [accj ]

ℓ
j=1

acc πV

)
← Aθ(pp, ppΦ)

(apk, avk, dk)← Iθ(pp, ppΦ, iΦ)

 ≥ 1−negl(λ) .

Zero knowledge. There exists a polynomial-time stateful simulator S such that for
every oracle distribution O ∈ X and polynomial-size stateful “honest” adversary A (see
below), the following distributions are (statistically/computationally) indistinguishable:

Aθ(acc)

∣∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp← G(1λ)

ppΦ ← Hθ(1λ)
(iΦ, [qi]

n
i=1, [accj ]

ℓ
j=1)← Aθ(pp, ppΦ)

(apk, avk, dk)← Iθ(pp, ppΦ, iΦ)
(acc, πV)← Pθ(apk, [qi]

n
i=1, [accj ]

ℓ
j=1)


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and A
θ(acc)

∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp← S(1λ)

ppΦ ← Hθ(1λ)

(iΦ, [qi]
n
i=1, [accj ]

ℓ
j=1)

tr←− Aθ(pp, ppΦ)
acc← Sθ(ppΦ, iΦ, tr)

 .

Here A is honest if it outputs, with probability 1, a tuple (iΦ, [qi]
n
i=1, [accj ]

ℓ
j=1) such

that Φθ(ppΦ, iΦ, qi) = 1 and Dθ(dk, accj) = 1 for every i ∈ [n] and j ∈ [ℓ]. Note that
the simulator S is not required to simulate the accumulation verifier proof πV.
Accumulation scheme for oracle queries. We explain how to specialize the general
notion of an accumulation scheme above to the particular case of accumulating queries
to a tuple of oracles.

Definition 3. Let X be a set of oracle distributions. An accumulation scheme for
X -queries is an accumulation scheme where: (i) the accumulation verifier V does not
access the oracle; (ii) H = ⊥ (and so ppΦ = ⊥); (iii) predicate inputs q are of the
form (x, y);9 (iv) the predicate Φ is defined such that Φθ(ppΦ, iΦ, x, y) = 1 if and only
if θ(x) = y (in particular, ppΦ and iΦ are ignored).

3.5 Commitment schemes

Let ν ∈ N and let X be a set of oracle distributions, such that each O ∈ X is a
distribution over tuples of oracles (θ1, . . . , θν). A commitment scheme in X is a tuple
CM = (CM.Setup,CM.Commit) with the following syntax.
– CM.Setup, on input a security parameter 1λ, outputs a commitment key ck.
– CM.Commit, on input a commitment key ck, a message m ∈ {0, 1}∗, and randomness
ω, outputs a commitment cm.

The tuple CM satisfies a binding property and, optionally, a hiding property.

– Binding. For every O ∈ X and efficient adversary A,

Pr

 m0 ̸= m1

∧
CM.Commit(ck,m0;ω0) = CM.Commit(ck,m1;ω1)

∣∣∣∣∣∣
(θ1, . . . , θν)← O(λ)
ck← CM.Setup(1λ)

((m0, ω0), (m1, ω1))← A(θ1,...,θν)(ck)


≤ negl(λ) .

– Hiding. For everyO ∈ X and efficient stateful adversaryA that outputs two messages
of the same length, the following distributions are (statistically or computationally)
indistinguishable:

D0(λ) :=

(pp, cm, aux)

∣∣∣∣∣∣∣∣∣∣
(θ1, . . . , θν)← O(λ)
ck← CM.Setup(1λ)

(m0,m1, aux)← A(θ1,...,θν)(ck)
ω ← {0, 1}poly(λ)

cm := CM.Commit(ck,m0;ω)


9 If X is a set of oracle distributions whose support contains tuples of oracles, then x is assumed

to start with the oracle identifier corresponding to the oracle being queried.
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and D1(λ) :=

(pp, cm, aux)

∣∣∣∣∣∣∣∣∣∣
(θ1, . . . , θν)← O(λ)
ck← CM.Setup(1λ)

(m0,m1, aux)← A(θ1,...,θν)(ck)
ω ← {0, 1}poly(λ)

cm := CM.Commit(ck,m1;ω)

 .

Note that in this definition CM does not have access to (θ1, . . . , θν). The above general-
izes the notion of a commitment scheme, which is recovered from the above by setting
the oracles to be empty.

Moreover, we say that CM is s-succinct if for every commitment key ck ∈ CM.Setup(1λ),
message m ∈ {0, 1}∗, and randomness ω, it holds that CM.Commit(ck,m;ω) ∈
{0, 1}s(λ).

We have the following simple claim about any binding and hiding commitment
scheme.

Claim. Let CM be a binding and hiding commitment scheme. Then for every message
m,

Pr
ω,ω′

[
CM.Commit(ck,m, ω) = CM.Commit(ck,m, ω′)

]
= negl(λ) .

A proof of the above claim appears in Claim 3.4 of [CCS22].

3.6 Constraint detection for low-degree polynomials

Definition 4. Let d⃗ = (d1, . . . , dm) ∈ Nm. The low-degree polynomial evaluation code
is defined as follows:

LD[F,m, d⃗] :=
{
c ∈ (Fm → F) : ∃ p ∈ F≤d⃗[X1, . . . , Xm] s.t. ∀x ∈ Fm, c(x) = p(x)

}
.

Further, let F = {Fλ}λ∈N be a family of fields, m : N → N an arity function, and
d⃗ : N→ Nm a degree function. We define

LD[F ,m, d⃗] :=
{
LD[Fλ,m(λ), d⃗(λ)]

}
λ∈N

.

We recall the notion of constraints for linear codes.

Definition 5. Let C ⊆ (D → F) be a linear code. A subset Q ⊆ D is constrained
if there exists a nonzero z : Q → F such that, for every c ∈ C,

∑
x∈Q z(x)c(x) = 0

(equivalently, if there exists z ̸= 0 ∈ C⊥ with supp(z) ⊆ Q); we refer to z as a
constraint on Q. We say that Q is unconstrained if it is not constrained. We say that
Q ⊆ D determines x ∈ D if x ∈ Q or there exists a constraint z on Q ∪ {x} such that
z(x) ̸= 0.

We recall the definition of a constraint detector [BCF+17], which is an algorithm
that determines whether a set of queries Q is constrained and, if so, outputs a constraint.
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Definition 6. Let C ⊆ (D → F) be a linear code. An algorithm CD is a constraint
detector for C if, given as input a set Q ⊆ D, outputs: (i) a basis for the space of
constraints {z : Q → F : ∀ c ∈ C,

∑
x∈Q z(x)c(x) = 0} on Q if Q is constrained;

(ii) ⊥ if Q is unconstrained; A code family {Cλ}λ∈N has efficient constraint detection
if there exists a polynomial-time algorithm CD such that, for every λ ∈ N, CD(1λ, ·) is
a constraint detector for Cλ.

The following theorem is proved in [BCF+17]:

Theorem 1. The code family LD[F ,m, d⃗] has a constraint detector CD(1λ, ·) that runs
in time poly(m(λ), d(λ), log |Fλ|), where d(λ) := maxi∈[m] d(λ)i. In particular, it has
efficient constraint detection.

3.7 Forking lemmas

We state a general forking lemma proved in [BN06].

Lemma 1. Fix t, λ ∈ N. Let A be a probabilistic algorithm that on input x, y1, . . . , yt
returns a pair (I, σ), where I ∈ [t] and σ is referred to as a side output. Let IG be a
probabilistic algorithm that we call the input generator. The accepting probability of A,
denoted acc, is defined as follows:

acc := Pr

 I ≥ 1

∣∣∣∣∣∣
x← IG

y1, . . . , yt ← U({0, 1}λ)
(I, σ)← A(x, y1, . . . , yt)

 .

The forking algorithm ForkA associated to A is the probabilistic algorithm that takes
input x and proceeds as follows:

(i) Pick coins ρ for A at random.
(ii) Sample y1, . . . , yt ← U({0, 1}λ), and run A(x, y1, . . . , yt; ρ) to obtain (I, σ).

(iii) If I = 0 then return (0, ε, ε).
(iv) Otherwise, sample y′I , . . . , y

′
t ← U({0, 1}λ) and runA(x, y1, . . . , yI−1, y′I , . . . , y′t; ρ)

to obtain (I ′, σ′).
(v) If (I = I ′ and yI ̸= y′I) then return (1, σ, σ′).

(vi) Otherwise return (0, ε, ε).
Let

frk := Pr

[
b = 1

∣∣∣∣ x← IG
(b, σ, σ′)← ForkA(x)

]
.

Then

frk ≥ acc ·
(
acc

t
− 1

2λ

)
,

alternatively,

acc ≤ t

2λ
+
√
t · frk .
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3.8 Identical-until-bad

We consider two programs, G and H , which are written in some pseudocode. We say that
G and H are identical-until-bad if they are syntactically identical except for statements
that follow the setting of a bad flag to true. Somewhat more formally, let G and H be
programs written in some pseudocode and let bad be a flag that occurs in both of them.
We say that G and H are identical-until-bad if their code is the same except possibly
places where G has a statement “set the bad flag” followed by some statements SG while
H has a corresponding statement “set the bad flag” followed by some statements SH ,
different from SG.

We refer the reader to [BR06] for further details and a full formal treatment of the
notion of identical-until-bad, which requires specification of the programming language
in question to fully formalise. We stress that that identical-until-bad is a purely syntactic
requirement.

We state the fundamental lemma of game-playing, which is proved in [BR06].

Lemma 2. Let G and H be identical-until-bad programs and let A be an adversary.
Then ∣∣Pr[AG = 1]− Pr[AH = 1]

∣∣ ≤ Pr[AG sets bad] .

4 Arithmetized random oracle model

We define the arithmetized random oracle model. As a first step, we define the arithme-
tized random oracle distribution, which is defined over tuples (ro,wo, v̂o), and explain
how the oracles (ro,wo, v̂o) are sampled.

Definition 7. Let m ∈ N be an arity parameter, λ ∈ N be a security parameter, r ∈ N be
a randomness-size parameter, w ∈ N be a witness-size parameter, and d ∈ N be a degree
parameter. For all oracle circuits B : {0, 1}m+r → {0, 1}w, we define an arithmetized
random oracle distribution ARO[F,m, λ, d,B],10 where F is a finite field and the
support of ARO[F,m, λ, d,B] contains triples (ro,wo, v̂o) that are sampled as follows:

1. Sample the random oracle ro uniformly at random from ({0, 1}m → {0, 1}λ).
2. For every x ∈ {0, 1}m, sample a random string µx ∈ {0, 1}r. Then define the

witness oracle wo : {0, 1}m → {0, 1}w as wo(x) := Bro(x, µx).
3. Define the verification function vo : {0, 1}m+λ+w → {0, 1} as

vo(x, y, z) :=

{
1 if ro(x) = y ∧ wo(x) = z

0 o.w.
.

4. Sample the (extended) verification oracle v̂o : Fm+λ+w → F uniformly at random
from the set{

p ∈ F≤d[X1, . . . , Xm+λ+w] : p equals vo on {0, 1}m+λ+w
}

.

10 Given m ∈ N and the oracle circuit B, the randomness length r and witness size w parameters
are determined. Thus r, w do not appear in the parameterization of ARO.
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5. Output (ro,wo, v̂o).

Next, we define a family of ARO distributions, which is parameterized by a family
of finite fields F = {Fλ}λ∈N and a family of oracle circuits B = {B(·)

λ : {0, 1}m(λ) →
{0, 1}w(λ)}λ∈N. Here, B can be interpreted as the set of all possible adversarial strategies
for learning information about the random oracle, and λ is the security parameter.

Definition 8. Let F = {Fλ}λ∈N be a family of fields, m : N→ N be an arity function,
w : N→ N be a witness-size function, B = {B(·)

λ : {0, 1}m(λ) → {0, 1}w(λ)}λ∈N be a
family of oracle circuits, and d : N→ N be a degree function. We define the arithmetized
random oracle family as

ARO[F ,m, d,B] := {ARO[Fλ,m(λ), λ, d(λ), B
(·)
λ ] }λ∈N .

The “arithmetized random oracle” is the set of all ARO distributions for polynomial-sized
circuit families B.

Definition 9. Let F = {Fλ}λ∈N be a family of fields, m : N→ N be an arity function,
w : N → N be a witness-size function, and d : N → N be a degree function. Then, we
define a set of arithmetized random oracle families as

ARO[F ,m, d] := {ARO[F ,m, d,B] : B is a family of poly(λ)-size oracle circuits} ,

where above B = {B(·)
λ : {0, 1}m(λ) → {0, 1}w(λ)}λ∈N.
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