
Spartan and Bulletproofs are
simulation-extractable (for free!)

Quang Dao1 and Paul Grubbs2

1 Carnegie Mellon University
qvd@andrew.cmu.edu ??

2 University of Michigan
paulgrub@umich.edu

Abstract. Increasing deployment of advanced zero-knowledge proof sys-
tems, especially zkSNARKs, has raised critical questions about their se-
curity against real-world attacks. Two classes of attacks of concern in
practice are adaptive soundness attacks, where an attacker can prove
false statements by choosing its public input after generating a proof,
and malleability attacks, where an attacker can use a valid proof to cre-
ate another valid proof it could not have created itself. Prior work has
shown that simulation-extractability (SIM-EXT), a strong notion of se-
curity for proof systems, rules out these attacks.
In this paper, we prove that two transparent, discrete-log-based zk-
SNARKs, Spartan and Bulletproofs, are simulation-extractable (SIM-EXT)
in the random oracle model if the discrete logarithm assumption holds in
the underlying group. Since these assumptions are required to prove stan-
dard security properties for Spartan and Bulletproofs, our results show
that SIM-EXT is, surprisingly, “for free” with these schemes. Our result
is the first SIM-EXT proof for Spartan and encompasses both linear- and
sublinear-verifier variants. Our result for Bulletproofs encompasses both
the aggregate range proof and arithmetic circuit variants, and is the first
to not rely on the algebraic group model (AGM), resolving an open ques-
tion posed by Ganesh et al. (EUROCRYPT ’22). As part of our analysis,
we develop a generalization of the tree-builder extraction theorem of At-
tema et al. (TCC ’22), which may be of independent interest.

1 Introduction

Zero-knowledge succinct non-interactive arguments of knowledge (zkSNARKs)
allow a computationally-bounded prover to produce a proof about a NP state-
ment without revealing anything other than its validity, and with proof size
sublinear in the size of the witness [12,32,34]. An important line of recent works
[7,9,13,15,17,20,32,35,38,44,48,57,60] has produced concretely efficient construc-
tions of zkSNARKs for range proofs (e.g., Bulletproofs [16]) and general arith-
metic circuit satisfiability (e.g., Spartan [54]) that have seen widespread deploy-
ment, especially in blockchains and cryptocurrencies [8,56,1,53,51,21,61], along
with potential deployment in other areas of interests [40].
?? Part of the work was done while the first author was at the University of Michigan.

mailto:qvd@andrew.cmu.edu
mailto:paulgrub@umich.edu

As zkSNARKs are deployed in practice, it is important to understand whether
they are actually secure against the kinds of attacks they are likely to face in
real systems. Two security properties in particular give us pause: first, adaptive
soundness, where a malicious prover must be unable to prove false statements
even if it chooses the input after generating a proof; a related notion, adaptive
knowledge soundness, guarantees extraction is possible against such an adaptive
prover. The second property is non-malleability, where an accepting proof cannot
be modified into a different one without knowing the witness. Neither property is
implied by standard security definitions like non-adaptive (knowledge) soundness
and zero knowledge, and schemes lacking these properties have been attacked
in practice. For example, the voting system Helios was broken by an adaptive
soundness attack on a zero-knowledge proof [11]; subsequent work found similar
issues with the SwissPost voting system [41] for government elections. Though
not against zero-knowledge proofs directly, malleability attacks are common in
cryptocurrencies: for example, a malleability attack was allegedly used3 to steal
hundreds of millions of dollars from MtGox [47].

Fortunately, a security property called simulation extractability (SIM-EXT)
implies adaptive (knowledge) soundness and non-malleability for zkSNARKs.
Intuitively, SIM-EXT requires that the knowledge extractor succeeds even when
the malicious prover can request simulated proofs for arbitrary statements. If
we could prove zkSNARKs that are already used (or are likely to be used) in
practice are SIM-EXT, we could be more confident they would resist advanced
attacks that use adaptivity or malleability. Ideally, we could prove SIM-EXT in
idealized models (e.g, the random oracle model, or ROM) and using assumptions
(e.g. discrete-log), which are sufficient to prove standard security guarantees for
zkSNARKs; this would indicate SIM-EXT comes (roughly) “for free”.

A pair [29,30] of beautiful recent works by Ganesh et al. on SIM-EXT for
zkSNARKs lays a path towards this goal. In [29], the authors give a general
SIM-EXT theorem for zkSNARKs with updatable SRS, and use it to show PlonK
[28], Marlin [20], and Sonic [45] are all SIM-EXT. In [30], the authors show
SIM-EXT for Bulletproofs. Unfortunately, these works do not get us all the way
towards our goal: first, because their techniques do not extend to transparent
zkSNARKs like Spartan, which use different building blocks; second, because
their results rely on the algebraic group model (AGM) [27] and are not currently
known to hold from discrete log in the ROM.

1.1 Our Results

In this paper we prove that Spartan and Bulletproofs, two state-of-the-art trans-
parent zkSNARKs, satisfy SIM-EXT in the ROM assuming only that the discrete
log assumption holds. Our analyses required developing some new technical tools
which may be of independent interest. Since Spartan and Bulletproofs were
originally analyzed in the ROM and rely on the discrete log assumption, our
3 A later study [22] cast some doubt on these claims, but did find evidence that over
three hundred thousand Bitcoins had been involved in malleability attacks.

2

results imply these protocols are SIM-EXT “for free”—unmodified and without
additional assumptions or stronger idealized models. More precisely, we prove
SIM-EXT for two variants of Spartan—Spartan-NIZK, which has linear verifier
time, and Spartan-SNARK, which has sublinear verifier time—instantiated with
the default Hyrax-based polynomial commitment scheme [57]. These are the first
proofs of SIM-EXT for any Spartan variant; we believe the Spartan-SNARK result
is also the first proof of SIM-EXT for any transparent zkSNARK with sublinear
verifier time. Similarly, we prove SIM-EXT for two versions of Bulletproofs—the
aggregate range proof protocol BP-ARP used in several cryptocurrencies [36,46]
and the arithmetic circuit satisfiability proof BP-ACSPf. Our proofs for these
protocols are the first that do not rely on the algebraic group model.

Our results help to build confidence that state-of-the-art and deployed zk-
SNARKs resist the kinds of attacks these protocols will face as they see wider
deployment in the future. Of more theoretical interest, they also imply the sur-
prising fact that, in the ROM, a powerful primitive like a SIM-EXT zkSNARK
can be built from a very weak assumption like discrete log.

The proofs of these four theorems are nontrivial; to prove them we built sev-
eral new technical tools that may be of independent interest for future SIM-EXT
analyses. We extended prior security notions for SIM-EXT to the transparent
NIZK setting. We also needed to develop a nontrivial generalization of the tree
extractor of Attema et al. [2].

Our analyses are also done with an emphasis on concrete security. Where
possible we try to explicitly measure adversarial runtime and success probability.
We also evaluate our bounds to estimate bit security for typical parameters for
Spartan and Bulletproofs, and compare the bit security we obtain against other
analyses where possible. Our bounds inherit the non-tightness common to most
rewinding-based knowledge soundness analyses of NIZKs, and so the provable
SIM-EXT security we get (in terms of bits) is quite low. Nevertheless, we believe
our results can be improved by future work, and hope they eventually inform
future parameter selection processes for zkSNARK standards [62].

1.2 Technical Overview

We follow the high-level approach to proving SIM-EXT developed by [24] and fur-
ther generalized in [29,30]: for a Fiat-Shamir-compiled argument ΠFS, SIM-EXT
is implied by three other properties: (1) adaptive knowledge soundness, (2) a
form of zero knowledge, and (3) a unique-response property. Since the results
in [24] are specific to Σ-protocols and those in [30] are specific to the AGM, we
take the SIM-EXT theorem of [29] as our starting point. After suitable adapta-
tions to the transparent setting—we give these in Section 3—this theorem says
that ΠFS is SIM-EXT in the ROM if:

1. it is adaptively knowledge sound (hereafter we will omit “adaptive” if it is
clear from context),

2. it is perfect k-ZK, meaning that there exists a simulator that perfectly sim-
ulates honest proofs, but only programs the RO when generating the k-th
challenge,

3

3. it is k-UR for the same round k, meaning no adversary can produce two
accepting proofs that are identical up to the k-th round, even if it can
program that round’s challenge.

Proving these three properties is challenging, and required us to develop novel
techniques which we summarize below.

Knowledge Soundness. We prove knowledge soundness for non-interactive ver-
sions of Spartan and Bulletproofs using a standard chain of reductions: namely,
we reduce to the special soundness of the underlying interactive argument. In-
tuitively, special soundness of a proof system refers to the ability of an extractor
to extract a witness from a tree of accepting transcripts with suitable struc-
ture. For multi-round protocols, special soundness is parameterized by a vector
(n1, n2, . . . , nr) describing the needed structure: each node at level one must
have n1 outgoing edges, level two nodes have n2 edges, etc. Recently, Attema et
al. [2] proved that knowledge soundness of the Fiat-Shamir-compiled argument
ΠFS follows from special soundness of Π. We take it as our starting point; un-
fortunately, we cannot apply it directly to either Spartan or Bulletproofs. There
are two main reasons for this: first, Attema et al. only consider perfect special
soundness, but both Spartan and Bulletproofs only satisfy computational special
soundness—roughly, because an extractor could fail to extract a witness from a
tree of transcripts if a malicious prover finds a nontrivial discrete log relation.

The second reason is more subtle, and has to do with ensuring the tree has
the right structure for extraction to be possible. In Attema et al., each node of
the transcript tree is a prover message whose outgoing edges are labeled with
distinct verifier challenges. For certain rounds in both Spartan and Bulletproofs,
these verifier challenges must satisfy an extra predicate (beyond distinctness)
for extraction to be possible. The tree-builder by Attema et al. does not support
outputting such trees with extra structure.

To address these limitations, in Section 4 we give a generalization of Attema
et al.’s tree-builder that has the desired properties. Our generalization captures
other predicates on verifier challenges using the notion of an efficiently-decidable
partition of the space of challenges. Intuitively, we build a wrapper algorithm
that that sits between the prover and the Attema et al. tree-builder, and ensures
the tree has the right structure by enforcing a partition of the challenge space.

Armed with this generalization, we prove computational special soundness for
all variants of Spartan and Bulletproofs, which in turn implies knowledge sound-
ness for their Fiat-Shamir-compiled versions. In both cases, our generalized tree-
builder is a crucial component: for example, special soundness of Bulletproofs
requires verifier challenges to be distinct modulo ±1, and Spartan requires linear
independence for batching challenges sent during the sumcheck subprotocol.

Building k-ZK Simulators. For SIM-EXT, we must prove that Spartan and Bul-
letproofs are perfect k-ZK, meaning their proofs can be simulated by a simulator
that can only program the RO in a single round. This is a departure from the

4

typical way to build NIZK simulators, which typically reprogram the RO in ev-
ery round; in particular, doing this for Spartan and Bulletproofs requires giving
entirely new simulators for these constructions.

We build our k-ZK simulator for Bulletproofs using an approach similar
to [29]. Our k-ZK simulator construction for Spartan-NIZK uses a novel strat-
egy that is worth highlighting here: it delays the round at which the RO is
reprogrammed as late as possible in the protocol (in fact, our simulator only
needs to reprogram the very last verifier challenge). Another interesting aspect
of our k-ZK simulator for Spartan is that the same simulator works for both
Spartan-NIZK and Spartan-SNARK—though the two protocols have major differ-
ences, we observe that the parts of Spartan-SNARK that work differently than
Spartan-NIZK consist entirely of evaluating (extensions of) public matrices at a
public point, and so are trivially simulatable.

k-Unique Response. To finish, we need to show Spartan and Bulletproofs are
k-UR for the same k as their respective k-ZK simulators. For Spartan variants,
this is straightforward—we need only reprogram the RO during the final Σ-
subprotocol, and it is well known [24] that Σ-protocols satisfy unique response.

For BP-ARP and BP-ACSPf, proving k-UR is more challenging. Indeed, prior
work relied heavily on the AGM for analyzing unique response—for example, [30]
observe that proving their version of unique response is the only part of their
analysis that seems to actually rely on the AGM, and [29] need the AGM to
show that KZG polynomial commitments are unique response.

We prove k-UR for Bulletproofs using a new proof strategy that, intuitively,
replaces the AGM with extraction. In more detail, we extract witnesses from
both proofs output by the k-UR adversary, then argue that either the witnesses
are the same or the adversary has found a discrete log relation. To finish, we
use the (novel) result that the Bulletproofs inner-product argument has unique
proofs. Thus, if the witnesses are the same, the proofs must be the same as well.

Limitations and open questions. Our results do have some important limitations.
Notably, our emphasis on removing the AGM means that the tightness of our
Bulletproofs results is worse than the comparable result of [30]. While this is
inherent in some sense because our extractors use rewinding instead of straight-
line extraction, it means that the bit security of Bulletproofs and Spartan we
could prove with typical parameters would come out to be quite poor. We discuss
this in Section 7.

An interesting open problem we leave to future work is generalizing our
techniques to other transparent zkSNARKs. In particular, there is a great deal
of commonality between our proofs for Spartan and Bulletproofs which could
be abstracted out and proven more generally. As many later works [44,60,35,55]
have built on Spartan viewed as a polynomial IOP [17,20], it would be interesting
to generalize our analyses into a SIM-EXT framework for polynomial IOPs.

5

1.3 Related Work

Simulation-extractability (SIM-EXT) for NIZKs was first defined in [52] (us-
ing different terminology). Thereafter, a long line of work refined and studied
SIM-EXT [24,49], built SIM-EXT NIZKs [37], and showed that SIM-EXT is suf-
ficient for other primitives like signatures of knowledge [19]. Other concurrent
works attacked security of NIZKs in deployed systems, such as the voting system
Helios, showing the importance of adaptive soundness [11] which is implied by
SIM-EXT. Other work has looked at UC security for NIZKs [18] and given results
on SIM-EXT in the QROM [23]. These works are not relevant to our results, since
SIM-EXT does not imply UC security in the ROM; further, we study zkSNARKs
built from discrete log, which is broken by quantum attacks.

The simulation-extractability of zkSNARKs is comparatively less well-studied.
Two important prior works [29,30] which rely on the algebraic group model [27]
(AGM) are described above; [30] proves SIM-EXT of Bulletproofs, and [29] proves
SIM-EXT of Plonk [28], Marlin [20], and Sonic [45].

Other work has investigated generic transforms for achieving SIM-EXT from
any zkSNARK [5], particularly focused on SIM-EXT transforms for the Groth16
zkSNARK [3,4]. Since Groth16 [38] is built using a different approach than either
Spartan or Bulletproofs, and relies on non-falsifiable knowledge assumptions or
the AGM, our results are incomparable to theirs.

Our paper analyzes SIM-EXT for Bulletproofs [16] and Spartan [54], two
transparent zkSNARKs built from discrete-log assumptions. There is a line of
related work building similar SNARKs, such as Hyrax [57], and extensions to
recursive composition like Halo [15] and Nova [44]. We suspect our techniques
would extend to these constructions, and leave extending them to future work.

A key technical tool our results rely on is a “tree-builder” for proving knowl-
edge soundness of NIZKs built from multi-round interactive arguments. As de-
scribed above, our approach is a generalization of a beautiful recent work by
Attema et al. [2]. This work develops a tree-builder for perfect special sound
protocols which are extractable given a tree of distinct verifier challenges; we
generalize their result to support computational special soundness and to allow
different conditions on verifier challenges. Wikstrom [59] gives an alternate con-
struction and analysis of a tree-builder which could have served as a starting
point for us; however, their extractor has a worse concrete running time and
tightness than Attema et al. In a revision of [17], the authors generalize Attema
et al.’s tree builder to handle general predicates on prover messages; since we
need more general predicates on verifier challenges, their generalization is not
directly useful to us. Other recent works [33,42] analyze the knowledge soundness
of Bulletproofs in the AGM/GGM without using an explicit tree-builder by, for
example, going through the notion of round-by-round soundness [10].

Concurrent work. After the acceptance of this paper, Ganesh et al. [31] updated
their ePrint version to contain a proof that Bulletproofs satisfy SIM-EXT in the
ROM, removing the need for the AGM as in their conference version [30]. We
note that their technique is somewhat different from ours, and that our results

6

additionally include proving that Spartan satisfies SIM-EXT. We leave a more
detailed comparison of our work with theirs to the full version.

2 Preliminaries

We use F to denote a finite field with F∗ = F−{0}, and λ to denote the security
parameter. For k, n ∈ N, we denote [k, n] = {k, k + 1, . . . , n}, and [n] = [1, n].
We denote uniform sampling from a set S by a

$← S. We denote vectors by
boldface, e.g. g = (g1, . . . , gn), and write ga to mean ga11 · · · · ·gann . We denote the
length of a vector a by |a|, the inner product between two vectors a,b by a · b
or 〈a,b〉, the Hadamard (entry-wise) product by a ◦ b, and the tensor product
by a⊗ b = (a1b1, . . . , a1bm, . . . , anb1, . . . , anbm).

Our relations are of the form R ⊆ {0, 1}∗×{0, 1}∗×{0, 1}∗ and are efficiently
decidable, e.g. there exists a deterministic polynomial time algorithm that given
(pp, x, w) outputs whether (pp, x, w) ∈ R. We abbreviate PPT for probabilistic
polynomial time, and EPT for expected (probabilistic) polynomial time.

We use code-based games [6] to define many of our security notions. A game
GA1,...,An
S denotes a run of parties A1, . . . ,An on a pre-specified set of procedures

given by S, returning a bit b ∈ {0, 1}. We denote Pr[GA1,...,An
S] the probability

over the random coins used by S and all adversaries that the game’s output is 1.

2.1 Assumptions

We assume the existence of a group generator generating global public parame-
ters ppG := (G,F) ← GroupGen(1λ), where G is a group of prime order, with F
as the corresponding field. These global parameters are used in the setup phase
of every protocol we consider. We also assume a generator sampling procedure
g1, . . . , gn

$← GenSamp(G, n). For space reasons, we omit definitions of the stan-
dard discrete log (DL) and DL relation assumptions, and refer to reader to [33].

2.2 Interactive Arguments

We define an interactive argument for relation R ⊆ {0, 1}∗ × {0, 1}∗ × {0, 1}∗.

Definition 2.1. An interactive argument for a relation R is a tuple of PPT
algorithms Π = (Setup,P,V) with the following syntax:
• Setup(ppG)→ pp : outputs public parameters pp given global parameters ppG,
• 〈P(w),V〉(pp, x) → {0, 1} : an interactive protocol whereby the prover P,
holding a witness w, interacts with the verifier V on common input (pp, x) to
convince V that (pp, x, w) ∈ R. At the end, V outputs a bit for accept/reject.

In the definition above, we assume the existence of a global setup algo-
rithm ppG ← GlobalSetup(1λ) (see Section 2.1), run once and for all before the
setup phase of any interactive argument. For space reasons, we refer to reader
to e.g. [17] for standard definitions of completeness, knowledge soundness, and
honest-verifier zero knowledge for interactive arguments.

7

Definition 2.2 (Public-Coin). An interactive argument Π = (Setup,P,V) is
public-coin if in each round i the verifier V samples its message uniformly at
random from some challenge space Chi, and uses no other randomness.

Any public-coin interactive argument has a general (2r+2)-message, or equiv-
alently, (r + 1)-round format where the verifier sends the 0-th message, and
the prover sends the last message. In particular, the transcript is of the form
tr = (c0, a1, c1, . . . , ar, cr, ar+1), where (a1, . . . , ar+1) are the prover’s messages
and (c0, . . . , cr) are the verifier’s messages. Additionally, we have c0 = ∅ in all
protocols we consider, so that we will only consider (2r + 1)-message protocols
(where the prover sends the first and last message).

2.3 Non-Interactive Arguments in the ROM

In practice, we often use the Fiat-Shamir transform (see Section 2.4) to compile
public-coin interactive arguments into their non-interactive versions, in a model
where both parties have black-box access to a random oracle, i.e. a uniformly
sampled function H : {0, 1}∗ → {0, 1}λ. For public-coin (2r + 1)-message in-
teractive arguments with challenge spaces Ch1, . . . ,Chr, we will actually need r
independent random oracles Hi : {0, 1}∗ → Chi with i ∈ [1, r]. For simplicity, we
will denote these by a single random oracle H, and it will be clear from context
which random oracle is being used in a given round.

Definition 2.3. A non-interactive argument (NARG) in the ROM for a relation
R ⊆ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ is a tuple of algorithms Π = (Setup,P,V), with
P,V having black-box access to a random oracle H, with the following syntax:

• Setup(ppG)→ pp generates the public parameters,
• PH(pp, x, w)→ π generates a proof given pp and an input-witness pair (x,w),
• VH(pp, x, π)→ {0, 1} checks if proof π is valid for pp and input x.

We define the following properties of NARGs:

• Completeness. For every adversary A,

Pr

(pp, x, w) 6∈ R ∨
VH(pp, x, π) = 1

:

pp← Setup(ppG)

(x,w)← AH(pp)

π ← PH(pp, x, w)

 = 1.

• Knowledge Soundness. Π is (adaptively) knowledge sound (KS) if there
exists an extractor E running in expected polynomial time such that for
every PPT adversary P∗, the following probability is negligible in λ:

AdvKS
ΠFS,R(E ,P

∗) :=
∣∣∣Pr[KSP∗0,ΠFS

(λ)]− Pr[KSE,P
∗

1,ΠFS,R(λ)]
∣∣∣.

The knowledge soundness games are defined in Figure 1.

We define zero-knowledge in a model where the random oracle is explicitly-
programmable [58] by the simulator. Here, the simulator S can reprogram the
random oracle H, and this modified oracle is provided to the distinguisher.

8

Game KSP
∗

0,ΠFS
(λ)

pp← Setup(ppG)

(x, π)← (P∗)H(pp)

b← VH
FS(pp, x, π)

return b

Game KSE,P
∗

1,ΠFS,R(λ)

pp← Setup(ppG)

(x, π)← (P∗)H(pp)

b← VH
FS(pp, x, π)

w ← EP
∗
(pp, x, π)

return b ∧ (pp, x, w) ∈ R

Fig. 1: Knowledge soundness security games. Here the extractor E is given black-box
access to P∗. In particular, E implements H for P∗ and can rewind P∗ to any point.

Game ZKD,P0,ΠFS,R(λ)

pp← Setup(ppG)

b← DH(·),P′(pp,·,·)(1λ)

return b

P ′(pp, x, w)

if (pp, x, w) 6∈ R then return ⊥
else return P(pp, x, w)

Game ZKD,S1,ΠFS,R(λ)

pp← Setup(ppG)

b← DH(·),S′(pp,·,·)(1λ)

return b

S ′(pp, x, w)

if (pp, x, w) 6∈ R then return ⊥

else return SRePro(pp, x)

Fig. 2: Zero-knowledge security games. Here the simulator S gets access to a RePro
oracle that on input (a, b) reprograms H(a) := b.

Definition 2.4 (Zero-Knowledge). Π satisfies (statistical) unbounded non-
interactive zero-knowledge (NIZK) if there exists a PPT simulator S such that for
pp ← Setup(ppG) and any unbounded distinguisher D, the following probability
is negligible in λ:

AdvZK
ΠFS,R(S,D) :=

∣∣∣Pr [ZKD,P0,ΠFS,R(λ)
]
− Pr

[
ZKD,S1,ΠFS,R(λ)

]∣∣∣.
The zero-knowledge games are defined in Figure 2.

2.4 The Fiat-Shamir Transformation

We define the Fiat-Shamir transform [25], which removes interaction from any
public-coin interactive argument.

Definition 2.5 (Fiat-Shamir Transformation). Let Π = (Setup,P,V) be a
public-coin (2r+1)-message interactive argument of knowledge. Denote the tran-
script as tr = (a1, c1, . . . , ar, cr, ar+1). The Fiat-Shamir transformation turns Π
into a non-interactive protocol ΠFS in the ROM, where:

• SetupFS(ppG) is the same as Setup(ppG),

9

• the prover PFS, on input (pp, x, w), invokes P(x,w), and instead of asking
the verifier for challenge ci in round i, queries the random oracle to get

ci = H(pp, x, a1, . . . , ai) for all i = 1, . . . , r.

PFS then outputs a non-interactive proof π = (a1, . . . , ar, ar+1).
• the verifier VFS, on input (pp, x, π), derives challenges ci’s by querying the
random oracle as PFS does, then runs V(pp, x, (a1, c1, . . . , ar, cr, ar+1)) and
outputs what V outputs.

For all protocols Π considered in this paper, it is clear that both Π and ΠFS

satisfy (perfect) completeness. Furthermore, ΠFS satisfies knowledge soundness
if Π is (computationally) special sound (see Section 4). For zero-knowledge, we
have a canonical simulator SFS for ΠFS based on any HVZK simulator S for Π.

Definition 2.6 (Canonical Simulator). Let Π be a public-coin interactive
argument with HVZK simulator S. Define the canonical simulator SFS for ΠFS

to be an algorithm that on input (pp, x) runs S(pp, x) to get a transcript tr =
(a1, c1, . . . , ar, cr, ar+1), then reprogram H(pp, x, a1, . . . , ai) := ci for all i ∈ [r].

Remark 2.7. It can be shown that SFS is a NIZK simulator for ΠFS if S is an
HVZK simulator and the fact that the first message a1 has sufficient min-entropy
[24,30]. Looking ahead, given any simulator S for ΠFS, to show that it is a
NIZK simulator, it suffices to show that S produces indistinguishable transcripts
tr = (a1, c1, . . . , ar+1) from honestly generated transcripts, and that the first
message a1 has sufficient min-entropy.

3 Simulation Extractability

We define the central notion of our work, simulation extractability (SIM-EXT),
which requires that extractability holds even when the malicious prover is given
access to simulated proofs. SIM-EXT implies adaptive (knowledge) soundness
and non-malleability for the proof system [30,43,50], and allows building secure
signatures of knowledge via standard transforms [19,39].

Definition 3.1 (Simulation Extractability). Let Π = (Setup,P,V) be a
public-coin zero-knowledge interactive argument for relation R with associated
NIZK ΠFS = (Setup,PFS,VFS). We say ΠFS satisfies simulation extractability
(SIM-EXT) with respect to a simulator S if there exists an efficient simulator-
extractor E such that for every PPT adversary P∗, the following probability is
negligible in λ:

AdvSIM-EXT
ΠFS,R (S, E ,P∗, λ) :=

∣∣∣Pr[SIM-EXTS,P
∗

0,ΠFS
(λ)]− Pr[SIM-EXTE,S,P

∗

1,ΠFS,R(λ)]
∣∣∣.

Games SIM-EXT0 and SIM-EXT1 are defined in Figure 3.

10

Game SIM-EXTS,P
∗

0,ΠFS
(λ)

pp← Setup(ppG)

(x, π)← (P∗)H,S(pp)

b← VH′
FS (pp, x, π)

return b ∧ (x, π) 6∈ QSim

Game SIM-EXTE,S,P
∗

1,ΠFS,R(λ)

pp← Setup(ppG)

(x, π)← (P∗)H,S(pp)

b← VH′
FS (pp, x, π)

w ← EP
∗
(pp, x, π)

return b ∧ (x, π) 6∈ QSim ∧ (pp, x, w) ∈ R

Fig. 3: SIM-EXT security games. In both games, S returns a proof π upon an input x
(and may reprogram the random oracle), while QSim records all pairs (x, π) queried by
P∗. H′ denotes the modified RO after all proof simulation queries. E is given black-box
access to P∗; in particular, it implements H and S for P∗ and can rewind P∗ to any
point in its execution (with same initial randomness).

We will state an adaptation of the results in [29], which establishes a gen-
eral theorem about simulation extractability. In particular, the authors of [29]
define the notion of a k-zero-knowledge simulator that only needs to reprogram
the random oracle in round k. Similarly, they define a property of k-unique re-
sponse, which roughly states that the malicious prover’s responses are uniquely
determined after round k. Together, these two properties (for the same k) along
with knowledge soundness will be enough to show simulation extractability.

Definition 3.2 (k-Zero-Knowledge). Let Π = (Setup,P,V) be a (2r + 1)-
message public-coin interactive argument with HVZK simulator S, and k ∈ [1, r].
Let ΠFS be its associated FS-transformed NIZK. We say ΠFS satisfies (perfect) k-
zero-knowledge (k-ZK) if there exists a zero-knowledge simulator SFS,k that only
needs to program the random oracle in round k, and whose output is identically
distributed to that of honestly generated proofs.

Definition 3.3 (k-Unique Response). Let Π = (Setup,P,V) be a (2r + 1)-
message public-coin interactive argument, with ΠFS its associated FS-transformed
NARG and k ∈ [0, r]. We say ΠFS satisfies k-unique response (k-UR) if for all
PPT adversaries A, the following probability (defined with respect to the game
in Figure 4) is negligible in λ:

Advk-URΠFS
(A) := Pr

[
k-URAΠFS

(λ)
]
.

When k = 0, we say that ΠFS has (computationally) unique proofs.

We now state a key theorem that relates SIM-EXT to these properties; it is
similar to the SIM-EXT theorem given in [29], with SRS update oracles removed.
We give the proof in the full version.

Theorem 3.4. Let ΠFS be a Fiat-Shamir compiled non-interactive argument for
relation R from a (2r+1)-message public-coin interactive argument Π. Assume
ΠFS satisfies KS, has a perfect k-ZK simulator SFS,k for k ∈ [1, r], and satisfies
k-UR (for the same k). Then ΠFS satisfies SIM-EXT.

11

Game k-URAΠFS
(λ)

pp← Setup(1λ, ppG)

(x, π, π′, c)← AH(pp)

b← VH[(pp,x,π|k) 7→c]
FS (pp, x, π) = 1

b′ ← VH[(pp,x,π′|k)7→c]
FS (pp, x, π′) = 1

return b ∧ b′ ∧ π 6= π′ ∧ π|k = π′|k

Fig. 4: Security game for k-unique response. Here H[(pp, x, π|k) 7→ c] denotes the
random oracle where the input (pp, x, π|k) is reprogrammed to output c.

Concretely, let E be a KS extractor for ΠFS. There exists a SIM-EXT simulator-
extractor ESE for ΠFS such that for every PPT prover P∗ against ΠFS that makes
at most qH random oracle queries and qSim simulation queries, there exists an-
other PPT prover P∗KS against KS and PPT adversary A against k-UR such that
AdvSIM-EXT

ΠFS,R (SFS,k, ESE,P∗) ≤ AdvKS
ΠFS,R(E ,P

∗
KS) +Advk-URΠFS

(A) + 2/|Chk|. Here
Chk is the challenge set in round k. Furthermore, both P∗KS and A make at most
qH random oracle queries; their runtime is roughly equal to P∗’s runtime plus
qSim invocations of SFS,k. ESE is nearly as efficient as E.

4 Tree of Transcripts and Special Soundness

In this section, we show how to establish knowledge soundness (KS) of a FS-
transformed protocol ΠFS based on the computational special soundness of the
interactive protocol Π. The key is to construct an efficient tree builder T B that,
given oracle access to a malicious prover P∗ for ΠFS, outputs a suitable tree of
accepting transcripts, upon which a valid witness can be extracted.

Definition 4.1 (Tree of Transcripts). Let Π be a (2r + 1)-message public-
coin interactive argument for a relation R, with challenge spaces Ch1, . . . ,Chr.
Given n = (n1, . . . , nr) ∈ Nr and φ = (φ1, . . . , φr) with φi : Chnii → {0, 1} for
i ∈ [r], we say that T is a (φ,n)-tree of accepting transcripts for pp if:

1. T is a tree of depth r + 1,
2. For each i ∈ [r + 1], each vertex at depth i is labeled with a prover’s i-

th message ai, and if i ≤ r, has exactly ni outgoing edges to its children,
with each edge labeled with a verifier’s i-th challenge ci,1, . . . , ci,ni satisfying
φi(ci,1, . . . , ci,ni) = 1. Additionally, the root’s label is prepended with x (so
the label becomes (x, a1)),

3. The labels on any root-to-leaf path form a valid input-transcript pair (x, tr).

We additionally define T to be accepting with respect to a input-transcript pair
(x, tr) if (x, tr) corresponds to the left-most path of T . We define a predicate
IsAccepting((φ,n), pp, x, (π,)T) to check whether T is a (φ,n)-tree of accepting
transcripts for pp and x, and optionally π.

12

The usual definition of a tree of accepting transcripts [2,14] has φi be the
predicate that the i-th challenges ci,1, . . . , ci,ni , coming from a vertex at depth
i, are distinct (we call this the distinctness predicate). In that case, we will also
abbreviate T as a n-tree of accepting transcripts. However, we will need to
consider more general partition predicates in our proofs of knowledge soundness
for Spartan and Bulletproofs.

Definition 4.2 (Partition Predicate). Let Ch = Ch(1) t Ch(2) · · · t Ch(C) be
a partition P of a set Ch into C blocks. We assume the partition is efficient, i.e.
given an index i ∈ [C], we can enumerate the set Ch(i) in polynomial time. For
n ∈ N, we define the corresponding partition predicate φP,n : Chn → {0, 1} to
be φP,n(c1, . . . , cn) = 1 if and only if c1, . . . , cn belong in distinct blocks of Ch.

Remark 4.3. Looking ahead, we will consider the following partition predicates:

• When Ch = F∗ is partitioned into {x,−x} for all x. We abbreviate this
predicate into the number n of challenges as n±.
• When Ch = F2 is partitioned into {c · x | c ∈ F∗} for all x ∈ {(0, 0), (0, 1)} ∪
{(1, a) | a ∈ F} (this implies linear independence between two vectors). We
abbreviate this predicate into the number n of challenges as nli.

We now state a theorem asserting the existence of an efficient tree-builder
that can generate (φ,n)-trees of accepting transcripts, where φ consists of par-
tition predicates as defined above. In the full version, we give a proof of this
theorem along with a comparison of our tree-builder with that of Wikström [59].

Theorem 4.4 (Efficient Tree Builder). Let Π be a (2r+1)-message public-
coin interactive argument with challenge spaces Ch1, . . . ,Chr. Consider any ef-
ficiently decidable partition Chi = tCij=1Chi,j with minimum partition size C =
mini Ci, and let φ = (φ1, . . . , φr) be the corresponding partition predicate. Con-
sider any n = (n1, . . . , nr) ∈ Nr with N =

∏r
i=1 ni.

There exists a probabilistic algorithm T B for ΠFS with the following guaran-
tees: given oracle access to a malicious prover P∗ for ΠFS with success probability
ε(P∗) := Pr[KSP

∗

0,ΠFS
], T B wins the tree-building game TreeBuildT B,P

∗

ΠFS,(φ,n)
(shown

in Figure 5) with probability at least

Pr
[
TreeBuildT B,P

∗

ΠFS,(φ,n)

]
≥ ε(P∗)−

Q(Q− 1)/2 + (Q+ 1) (
∑r
i=1 ni − r)

C
.

Furthermore, T B makes in expectation at most (Q + 1)(N − 1) + 1 rewinding
calls to P∗, where Q is an upper bound on the number of RO queries of P∗.

We now define computational special soundness, which stipulates the ex-
istence of a tree-extraction procedure T E that, given an appropriate tree of
accepting transcripts produced by an efficient adversary, outputs a witness with
high probability.

13

Game TreeBuildT B,P
∗

ΠFS,(φ,n)(λ)

pp← Setup(ppG)

(x, π)← (P∗)H(pp)

T ← T BP
∗
(pp, x, π)

return (VH(pp, x, π) = 1) ∧
IsAccepting((φ,n), pp, x, π,T)

Game SST E,AΠ,R,(φ,n)(λ)

pp← Setup(ppG)

(x,T)← A(pp)
w ← T E(pp, x,T)

return (pp, x, w) 6∈ R ∧
IsAccepting((φ,n), pp, x,T)

Fig. 5: Games for tree-building and special soundness. Here the tree-builder T B is
given black-box access to P∗. In particular, T B implements H for P∗ and can rewind
P∗ to any point in its execution.

Definition 4.5 (Special Soundness). Let Π be a (2r + 1)-message public-
coin interactive argument for a relation R with challenge spaces Ch1, . . . ,Chr.
For any n = (n1, . . . , nr) ∈ Nr and φ = (φ1, . . . , φr) with φi : Chnii → {0, 1}, we
say Π is (φ,n)-computational special sound if there exists a PPT tree-extraction
algorithm T E such that for all EPT adversary A, the following probability is
negligible in λ:

AdvSS
Π,R,(φ,n)(T E ,A) := Pr

[
SST E,AΠ,R,(φ,n)(λ)

]
.

The special soundness game is shown in Figure 5. We say Π is computational
special sound (SS) if it is (φ,n)-computational special sound for some φ and n.

Using Theorem 4.4 and Definition 4.5, we get the following consequence that
computational special soundness for an interactive protocol implies knowledge
soundness for its non-interactive version.

Lemma 4.6. Let Π be a (2r + 1)-message public-coin interactive argument
that is (φ,n)-computational special sound with tree extractor T E, where n =
(n1, . . . , nr) ∈ Nr and φ is a partition predicate with minimum partition size
C. Then ΠFS satisfies knowledge soundness. Concretely, there exists an EPT
extractor E such that for every PPT adversary P∗ against KS making at most
Q random oracle calls, there exists an EPT adversary A against SS such that

AdvKS
ΠFS,R(E ,P

∗) ≤
Q(Q− 1)/2 + (Q+ 1) (

∑r
i=1 ni − r)

C
+AdvSS

Π,(φ,n)(T E ,A).

Both E and A runs in expected time that is at most O(Q ·N) the runtime of P∗.

Proof. Our proof goes through a sequence of hybrids. Hyb0 is the game KSP
∗

0,ΠFS
.

Hyb1 is the same as Hyb0, except we also run T BP
∗
(pp, x, π)→ T and output 0

if T is not a (φ,n)-tree of accepting transcripts with respect to (pp, x, π). Note
that Hyb1 is the same as the game TreeBuildT B,P

∗

ΠFS,(φ,n)
. Using Theorem 4.4, we get

14

|Pr[Hyb0]− Pr[Hyb1]| ≤
Q(Q− 1)/2 + (Q+ 1) (

∑r
i=1 ni − r)

C
.

We define Hyb2 to be the same as Hyb1, except we also run T E(pp, x,T) → w
and output 0 if (pp, x, w) 6∈ R. We define the extractor E to be as follows:
run T BP

∗
(pp, x, π) → T to obtain a tree of accepting transcripts, then run

T E(pp, x,T)→ w to obtain a witness. By definition of E , we can see that Hyb2
is the same as the game KSE,P

∗

1,ΠFS,R.
We now claim that there exists an adversary A against SS such that

|Pr[Hyb1]− Pr[Hyb2]| ≤ AdvSS
Π,(φ,n)(T E ,A).

We define A to be as follows: given oracle access to P∗, A runs (P∗)H(pp) →
(x, π) by simulating H for P∗, then runs T BP

∗
(pp, x, π) → T , and outputs

(x,T). It is then straightforward to argue that Hyb2 returns 0 while Hyb1 returns
1 precisely when A wins in SS. ut

5 Simulation Extractability of Spartan

In this section, we use our general theorems to prove SIM-EXT of Spartan [54], a
transparent zkSNARKs with security based on the discrete log assumption. [54]
presents two version of Spartan, one with a linear verifier (called Spartan-NIZK)
and one with a sublinear verifier (called Spartan-SNARK) achieved via encoding
the R1CS matrices with a sparse multilinear polynomial commitment.

5.1 Spartan Protocols

We first describe the two variants of Spartan. Note that in a slight abuse of termi-
nology, we will use Spartan-NIZK and Spartan-SNARK to refer to the interactive
versions of their respective protocols. When we wish to refer specifically to the
non-interactive versions, we will write Spartan-NIZKFS and Spartan-SNARKFS.

Definition 5.1 (R1CS). A R1CS instance is a tuple (F, A,B,C,m, n, io) where
A,B,C ∈ Fm×m each with at most n = Ω(m) non-zero entries, and m ≥ |io|+1.
A R1CS witness is a vector w ∈ Fm−|io|−1 such that if Z = (io, 1, w), then
(A · Z) ◦ (B · Z) = C · Z.

Spartan makes further assumptions on the R1CS instances, namely that m =
2µ, n = 2ν are powers of two, and |io|+ 1 = |w| = m/2.

Key ideas. Both the NIZK and SNARK variants of Spartan prove satisfiability
of R1CS instances using roughly the same ideas we now outline. See Figure 6
for a protocol description. It uses the following sub-protocols (description in full
version):

1. The Pedersen commitment scheme ga · hω ← Commit((n,g, h),a;ω).
2. Four Σ-protocols sharing the same setup:

(a) OpenPf to prove knowledge of a commitment C = gx · hω,
(b) EqPf to prove equality of two commitments C1 = gx · hω1 , C2 = gx · hω2 ,

15

(c) ProdPf to prove that three commitments Cv1 , Cv2 , Cv3 satisfy v1 ·v2 = v3,
(d) DotProdPf to prove that a multi-commitment Cx and a commitment Cy

satisfy y = 〈x,a〉 for a public vector a,
3. A (µ + 1)-round public-coin interactive protocol PCMulti.Open for proving

polynomial evaluations of any multilinear polynomial p(X1, . . . , Xµ).
4. Additionally, in the case of Spartan-SNARK, we also need PCSparseMulti.Open

for proving evaluations of sparse multilinear polynomials Ã, B̃, C̃.

At a high level, the main idea of Spartan is to reduce the satisfiability of the
given R1CS instance to a claim that can be verified via sumcheck. To do this,
the matrices A,B,C are interpreted as functions {0, 1}µ × {0, 1}µ → F, and
similarly Z : {0, 1}µ → F, by writing the indices as their binary representations.
We then take the multilinear extension Ã, B̃, C̃, Z̃ of these functions, and define
the polynomial

F̃io(X) =

 ∑
y←{0,1}µ

Ã(X, y) · Z̃(y)

·
 ∑
y←{0,1}µ

B̃(X, y) · Z̃(y)

−
 ∑
y←{0,1}µ

C̃(X, y) · Z̃(y)

 .

Note that F̃io(X) vanishes on {0, 1}µ if and only if the R1CS constraint is
satisfied. Finally, we turn this vanishing condition into a sumcheck instance by
defining Gio,τ (X) = F̃io(X) · ẽq(X, τ) for a random τ ∈ Fµ, supplied by the
verifier. The goal is then to prove that

∑
y∈{0,1}µ Gio,τ (y) = 0. The prover and

verifier engage in sumcheck for this claim. The final step of sumcheck requires
the verifier to evaluate Gio,τ at a random point rx, but the verifier cannot do this
itself; thus, the prover and verifier engage in another run of sumcheck (more pre-
cisely, three runs batched together with verifier randomness) to reduce the task
of evaluating Gio,τ (rx) to evaluating Ã, B̃, C̃ all at (rx, ry), and Z̃ at ry. In both
Spartan-NIZK and Spartan-SNARK, the verifier gets a commitment to the eval-
uation of the witness, and is convinced the committed evaluation is correct via
PCMulti.Open. (Our analyses below assume PCMulti is instantiated with HyraxPC
[57].) In Spartan-NIZK, the verifier evaluates Ã, B̃, C̃ itself; in Spartan-SNARK,
the prover sends the verifier the evaluations and uses PCSparseMulti.Open, a sec-
ondary proof protocol, to convince the verifier of their correctness.

We can compute the number of rounds of Spartan-NIZK to be r = 7µ + 11.
For Spartan-SNARK, the transcript is the same except for the verifier sending its
commitments to Ã, B̃, C̃ to the prover, the evaluations v1, v2, v3, and the O(µ)-
round transcript of PCSparseMulti.Open. Thus, the transcript of Spartan-SNARK
has O(µ) more rounds for evaluating Ã(rx, ry), B̃(rx, ry), C̃(rx, ry).

5.2 SIM-EXT Analysis of Spartan-NIZK

Following Theorem 3.4, to prove that Spartan-NIZKFS satisfies SIM-EXT, we
will need to show that it satisfies knowledge soundness (KS) along with k-ZK
and k-UR for the same round k. By Lemma 4.6, knowledge soundness in turn
depends on computational special soundness (SS) of the interactive protocol
Spartan-NIZK. Our first set of results will be to establish SS of Spartan-NIZK

16

R1CS Relation.

RR1CS =

{
((F,m, n,A,B,C), io, w) :

(A · Z) ◦ (B · Z) = (C · Z), where Z = (io, 1, w)

}
.

Setup Phase. Let µ = logm. Run ppG = (G,F) ← GroupGen(1λ),
ppMulti ← PCMulti.Setup(µ, ppG) and ppΣ ← Σ.Setup(ppG).
Run ppSparse ← PCMulti.Setup(µ, n, ppG). Return pp = (ppMulti, ppΣ , ppSparse).

Interaction Phase.

0. V computes CX̃ ← PCSparseMulti.Commit(pp, X̃) for X ∈ {A,B,C}.

V then sends the coins used in this step to P.
1. P computes Cw̃ ← PCMulti.Commit(ppPC, w̃) and sends Cw̃ to V.
2. V responds with challenge τ $← Fµ.
3. P,V engage in sumcheck for

∑
x∈{0,1}µ Gio,τ (x)

?
= 0.a

At the end, P sends Cex ← Commit(pp, ex) supposedly containing ex = Gio,τ (rx) for
rx

$← Fµ sent by V.
4. P computes vM =

∑
y∈{0,1}µ M̃(rx, y) · Z̃(y) for M ∈ {A,B,C}. It then computes

CvM ← Commit(pp, vM) for M ∈ {A,B,C} and CvAB ← Commit(pp, vA · vB).
P sends CvA , CvB , CvC , CvAB to V.
5. P,V engage in ProdPf to show that vAB = vA · vB .
6. P,V engage in OpenPf to show that CvC is indeed a commitment to vC .
7. P,V engage in EqPf to show that ex = (vAB − vC) · ẽq(rx, τ).
8. V responds with challenges rA, rB , rC

$← F.
9. Let Hrx(Y) =

∑
M∈{A,B,C} rM · M̃(rx, Y) · Z̃(Y) and T =

∑
M∈{A,B,C} rM · vM .

P,V engage in sumcheck for
∑
y∈{0,1}µ Hrx(y) = T .

At the end, P sends a commitment Cey supposedly containing ey = Hrx(ry) for

ry
$← Fµ sent by V.

10. P,V engage in PCMulti.Open for w̃((ry)[1:]) → vw. At the end, both parties get
Cvw and compute

CvZ = C
1−(ry)0
vw · C(ry)0

vio ,

where vio ← (̃io, 1)((ry)[1:]) and Cvio ← Commit(pp, vio; 0).
11. V computes v1 = Ã(rx, ry), v2 = B̃(rx, ry), v3 = C̃(rx, ry).
Instead V receives v1, v2, v3 from P.
Then P,V engage in PCMulti.Open to check that v1, v2, v3 are correct.
12. P,V engage in EqPf to check that ey = (rA · v1 + rB · v2 + rC · v3) · vZ .
a The sumcheck subroutine is described in Figure 7.

Fig. 6: Spartan-NIZK, with modifications for Spartan-SNARK in red .

17

Sumcheck Sub-Protocol. The sumcheck relation is
∑
x∈{0,1}µ p(x) = T , where p

is a multivariate polynomial of individual degree at most d. V is given a commitment
Cp and a commitment CT . The sumcheck subprotocol reduces this claim to the claim
that p(rx)

?
= ex for a random rx

$← Fµ sampled randomly by V, and some claimed
value ex ∈ F available as a commitment Cex to V.

Let e0 = T . For i = 1, . . . , µ:

1. P computes the polynomial pi(X) =
∑
x∈{0,1}µ−i P (r1, . . . , ri−1, X, x), parse it as

a vector of coefficients, then sends Cpi ← Commit(pp, pi;ωpi) to V.
2. V responds with challenge ri

$← F.
3. P computes ei = pi(ri), then sends Cei ← Commit(pp, ei;ωei) to V.
4. V responds with challenges wi,1, wi,2

$← F.
5. P,V compute a = wi,1 · (0k +1k)+wi,2 · rik and Cyi = C

wi,1
ei−1 ·C

wi,2
ei . In addition,

P computes yi = wi,1 · ei−1 + wi,2 · ei and ωyi = wi,1 · ωei−1 + wi,2 · ωei .
6. P,V engage in DotProdPf(pp, (Cpi , Cyi ,a), (pi, ωpi , yi, ωyi)).

Fig. 7: Sumcheck Sub-Protocol

through the following steps: (1) We first analyze the information-theoretic core
of Spartan-NIZK, which is obtained from the protocol by sending all polynomi-
als and evaluations in the clear, and checking the equalities directly. We call
this variant Spartan-Core. (2) We then analyze how to extract from the various
commitments and subprotocols in Spartan-NIZK to recover Spartan-Core.

The soundness of Spartan-Core has been analyzed in [54].

Lemma 5.2 ([54]). Spartan-Core has soundness error 6µ+1
|F| .

Special soundness for Σ-protocols was analyzed in another previous work [57].

Lemma 5.3 ([57]). Let Π ∈ {OpenPf, EqPf, ProdPf, DotProdPf}. Then Π is
2-perfect special sound. Concretely, there exists a tree-extraction algorithm T EΠ
that can extract a valid witness for Π given any 2-tree of accepting transcripts.

We also need to analyze special soundness of PCMulti.Open. Note that while
[57] introduced this protocol, they did not provide a concrete soundness result
for it. The proof of the lemma below appears in the full version.

Lemma 5.4. PCMulti.Open is n = (
√
m, 4±, . . . , 4±︸ ︷︷ ︸

µ/2

, 2)-computational special sound.

Concretely, there exists a tree-extraction algorithm T EPCMulti
such that for any

EPT adversary A against SS of PCMulti.Open, there exists an EPT adversary B
against DL-REL, as efficient as A and T EPCMulti

combined, such that

AdvSS
Π,n(T EPCMulti

,A) ≤ AdvDL-REL
G,
√
m+2(B).

Our next step is to analyze the computational special soundness of the sum-
check subprotocol in Figure 7. Since it is not strictly an interactive argument,
we explicitly state the guarantees of the tree extractor.

18

Lemma 5.5. There exists a tree extractor T ESC such that given a (1, 2li, 2)
µ-tree

of accepting transcripts, produced by an adversary A, for the sumcheck subpro-
tocol, either outputs polynomials p1(X), . . . , pµ(X) that satisfy the information-
theoretic sumcheck protocol, or we can build an adversary B, as efficient as T ESC
and A combined, against DL-REL.

Proof. We will analyze a single iteration i ∈ [µ] of the sumcheck subprotocol;
all other iterations will follow the same reasoning. We construct a tree extractor
T ESC that does the following for each iteration i ∈ [µ]: given a (1, 2li, 2)-tree of
transcripts,

1. Run T EDotProdPf on each (1, 1, 2)-subtree to extract (pi, ωpi , yi, ωyi), where
Cpi = PC.Commit(pp, pi;ωpi), Cyi = Commit(pp, yi;ωyi), 〈pi,ai〉 = yi,

and yi is supposedly equal to wi,1 · ei−1 + wi,2 · ei.
2. Given two pairs of linearly independent challenges (wi,1, wi,2), (w

′
i,1, w

′
i,2),

with extracted witnesses (pi, ωpi , yi, ωyi), (p
′
i, ω
′
pi , y

′
i, ω
′
yi) from the previous

step, we first assert that (pi, ωpi) = (p′i, ω
′
pi). If this assertion fails, then we

have an adversary B against DL-REL since Cpi = gpi ·hωpi = gp
′
i ·hω

′
pi . Next,

we can solve for ei−1, ei, ωei−1
, ωei from the linear equations{

yi = wi,1 · ei−1 + wi,2 · ei
y′i = w′i,1 · ei−1 + w′i,2 · ei

and

{
ωyi = wi,1 · ωei−1

+ wi,2 · ωei
ω′yi = w′i,1 · ωei−1

+ w′i,2 · ωei
.

Recall that we also have 〈pi,ai〉 = yi and 〈pi,a′i〉 = y′i; taking the same linear
combination used to solve the equations above would give us pi(0)+ pi(1) =
ei−1 and pi(ri) = ei. Thus, we have extracted valid polynomials for the
information-theoretic sumcheck protocol.

ut

Putting together the above special soundness results for the subprotocols, we
obtain special soundness for Spartan-NIZK.

Lemma 5.6. Spartan-NIZK satisfies n-computational special soundness, where
n = (1, (1, 2li, 2)

µ, 2, 2, 2, 1, (2, 2li, 2)
µ, (4±, . . . , 4±︸ ︷︷ ︸

µ/2

, 2), 2).

Concretely, there exists a PPT tree extractor T ESpartan-NIZK such that for every
EPT adversary A against SS of Spartan-NIZK, there exists an EPT adversary B
against DL-REL, as efficient as A and T ESpartan-NIZK combined, such that

AdvSS
Spartan-NIZK,n(T ESpartan-NIZK,A) ≤ AdvDL-REL

G,
√
m+2(B) +

6µ+ 1

|F|
.

Proof. We describe the tree extractor T ESpartan-NIZK. Given a n-tree of accepting
transcripts, it runs the following sub-extractors for the corresponding sub-trees:

1. Run T ESC for the first sumcheck subprotocol on each (1, 2li, 2)
µ sub-tree to

extract polynomials pi(X) for i ∈ [µ] that satisfy the information-theoretic
sumcheck protocol.

19

2. Run T EProdPf , T EOpenPf , T EEqPf on each corresponding 2-subtree to extract
claims vA, vB , vC such that ex = (vA · vB − vC) · ẽq(rx, τ).

3. Run T ESC for the second sumcheck subprotocol on each (1, 2li, 2)
µ sub-tree to

extract polynomials pi(X) for i ∈ [µ] that satisfy the information-theoretic
sumcheck protocol.

4. Run T EPCMulti
for the opening argument PCMulti.Open on the (4±, . . . , 4±︸ ︷︷ ︸

µ/2

, 2)

sub-tree, and on 2µ/2 =
√
m different challenges ry provided by the (2, 2li, 2)µ

sub-tree, to extract a multilinear polynomial w̃(X) along with a correct
evaluation w̃(ry) = vw.

5. Run T EEqPf for the final equality proof to verify the equality ey = (rA · vA+
rB · vB + rC · vC) · vZ .

6. Output the R1CS witness w.

Note that the (2, 2li, 2)µ sub-tree in the second sumcheck subprotocol is necessary
for extracting both from sumcheck, as well as from PCMulti.Open. We now con-
sider the following hybrids. Hyb0 corresponds to the game SS for Spartan-NIZK
with the tree extractor constructed above. Hyb1 is the same as Hyb0, but we
additionally reject if the extracted R1CS witness is not satisfying. Conditioned
on the event that none of the sub-extractor fails (and when that happens we get
a DL-REL adversary B), Hyb1 differs from Hyb0 exactly when the soundness of
Spartan-Core is violated, which happens with probability at most 6µ+1

|F| . ut

Using Lemma 4.6 with Lemma 5.6, we conclude that Spartan-NIZKFS satisfies
knowledge soundness. Note that the minimum partition size in the n-tree of
transcripts is C = |F|−1

2 .

Theorem 5.7. Spartan-NIZKFS satisfies knowledge soundness. In particular, there
exists an extractor ESpartan-NIZKFS

such that for every PPT prover P∗ against KS
of Spartan-NIZK making at most Q random oracle queries, there exists an EPT
adversary B against DL-REL such that

AdvKS
Spartan-NIZKFS

(ESpartan-NIZKFS
,P∗)

≤ Q(Q− 1) + (Q+ 1)(13µ+ 10) + 2(6µ+ 1)

|F| − 1
+AdvDL-REL

G,
√
m+2(B).

Here µ = logm. Both B and the extractor ESpartan-NIZKFS
runs in expected time

that is at most O(Q ·m6) the running time of P∗.

Our next task is to exhibit a k-ZK simulator for Spartan-NIZKFS. The high-
level idea is to let the simulator execute all subprotocols except the last with
valid witnesses, then only invoke the simulator for the final EqPf.

Theorem 5.8. Spartan-NIZKFS satisfies (r − 1)-ZK, where r = 7µ + 11 is the
number of rounds of Spartan-NIZK.

Proof. See Figure 8 for a pseudocode description of our simulators. Using the
sumcheck sub-simulator SSCFS

in the top of the figure, we build the full simulator

20

SFS,r−1 for Spartan-NIZKFS. From the construction of SFS,r−1, it is clear that the
proofs produced are accepting; this is because all the verifier’s checks are done
by checking the various proofs, which are either honestly generated, in which
case validity follows from completeness, or by invoking the simulator, in which
case validity follows from NIZK guarantee. Furthermore, SSpartan-NIZKFS,r−1 only
makes a single RO reprogramming, which when the simulator SEqPfFS is invoked.

It remains to show that the output is indistinguishable from that of real tran-
scripts. For the subprotocols, namely the Σ-protocols along with PCMulti.OpenFS,
that we generate transcripts by generating honest proofs, we argue that they
are indistinguishable. Firstly, the inputs to the arguments are the same (being
perfectly blinded commitment). Secondly, the sub-protocols themselves are zero-
knowledge, which implies witness indistinguishability. This further implies that
the honestly generated proofs made by our simulator are identically distributed
as proofs in real transcripts. In the last sub-protocol EqPfFS for which we use
the simulator, we argue indistinguishability using the guarantee of the simulator
SEqPfFS . This concludes the proof of k-ZK. ut

Lemma 5.9. Spartan-NIZKFS satisfies perfect (r − 1)-UR.

Proof. The last two rounds of Spartan-NIZKFS consists of an instance of the
Σ-protocol EqPfFS, which itself satisfies perfect 1-UR. In more detail, the last
message in EqPfFS must be the unique scalar z that satisfies hz = (C1/C2)

c · α,
where C1, C2, α are group elements determined by the previous messages. Hence
Spartan-NIZKFS satisfies perfect (r − 1)-UR. ut

Combining our results above, we obtain SIM-EXT for Spartan-NIZKFS.

Theorem 5.10. Spartan-NIZKFS is simulation-extractable. Concretely, there ex-
ists a simulator-extractor ESpartan-NIZKFS

such that for every PPT adversary P∗
against SIM-EXT, there exists an EPT adversary B against DL-REL such that

AdvSIM-EXT
Spartan-NIZKFS,RR1CS

(SSpartan-NIZKFS,k, ESpartan-NIZKFS
,P∗)

≤ Q(Q− 1) + (Q+ 1)(13µ+ 10) + 2(6µ+ 1) + 2

|F| − 1
+AdvDL-REL

G,
√
m+2(B).

Both B and ESpartan-NIZKFS
runs in expected time at most O(Q ·m6) that of P∗.

5.3 SIM-EXT of Spartan-SNARK

For Spartan-SNARK, the proof of SIM-EXT is similar to that of Spartan-NIZK.
In particular, the proofs of k-ZK and k-UR carries over, and we only need to
modify the proof of special soundness to accommodate for the more complex
sparse multilinear polynomial commitment scheme. In what follows, we let r′ =
7µ+ 11 +O(µ) be the round complexity of Spartan-SNARK.

Lemma 5.11. Spartan-SNARKFS satisfies k-ZK, where k = r′ − 1.

21

Sub-simulator SSCFS .
Input. Public parameters pp, a commitment Ce to some value e allegedly equal to∑
x∈{0,1}µ p(x), with p a multivariate polynomial of individual degree at most d,

and previous transcript tr (including pp, R1CS input (A,B,C, io), and all prover’s
messages so far).
Set e0 = e. For i = 1, . . . , µ:

1. Sample pi(X)
$← F≤d[X] randomly conditioned on pi(0) + pi(1) = ei−1. Compute

a commitment Cpi ← Commit(pp, pi;ωpi) and append Cpi to tr.
2. Obtain challenge ri ← H(tr).
3. Let ei = pi(ri), compute a commitment Cei ← Commit(pp, ei;ωei), and append
Cei to tr.
4. Obtain challenges wi,1, wi,2 ← H(tr).
5. Compute a, Cyi , yi, ωyi as specified in the sumcheck subprotocol. Generate an
honest proof πi ← PDotProdPfFS(pp, (Cpi , Cyi ,ai), (pi, ωpi , yi, ωyi)). Append πi to tr.

After µ rounds, return Ceµ .

Simulator SFS,r−1(pp, (F, A,B,C, io)):
Initialize tr = (pp, A,B,C, io).
1. Sample a random multilinear polynomial w̃ $← F[X1, . . . , Xµ]. Compute Cw̃ ←
PCMulti.Commit(pp, w̃;ωw̃), and append Cw̃ to tr.
2. Obtain challenge τ ← H(tr).
3. Run SSCFS on (pp, Ce) with current transcript tr, and get output Cex ←
Commit(pp, ex;ωex) for some scalar ex ∈ F.
4. Sample vA, vB , vC

$← F at random conditioned on (vA · vB − vC) · ẽq(rx, τ) = ex,
and set vAB = vA · vB . Compute CvM ← Commit(pp, vM ;ωM) for M ∈ {A,B,C}
along with CvAB ← Commit(pp, vAB ;ωAB), and append them to tr.
5. Generate an honest proof

πProdPf ← PProdPfFS(pp, (CvA , CvB , CvAB), (vA, vB , ωvA , ωvB , ωvAB)),

and append it to tr.
6. Generate an honest proof πOpenPf ← POpenPfFS(pp, (CvC), (vC , ωvC)), and append it
to tr.
7. Generate an honest proof πEqPf,1 ← PEqPfFS(pp, (Cex , Cv′), (ωex−ωv′)), where v

′ =

(vA · vB − vC) · ẽq(rx, τ) and Cv′ = (CvAB/CvC)
ẽq(rx,τ); then append it to tr.

8. Obtain challenges rA, rB , rC ← H(tr).
9. Compute CT = rA ·CvA + rB ·CvB + rC ·CvC . Run SSCFS on (pp, CT , tr), obtaining
output Cey ← Commit(pp, ey;ωey).
10. Generate opening proof πPCMulti.Open ← PPCMulti.OpenFS(pp, (Cw̃, ry), (w̃, ωw̃)); at the
end, get Cvw = Commit(pp, vw;ωvw), where vw ← w̃(ry[1 . . .]), and append it to tr.
11. Compute vZ = (1−ry[0])·vw+ry[0]· (̃io, 1)(ry[1 . . .]) and CvZ = C

1−(ry)0
vw ·C(ry)0

vio .
12. Compute v1 = Ã(rx, ry), v2 = B̃(rx, ry), v3 = C̃(rx, ry). Generate a simulated
proof πEqPf,2 ← SEqPfFS for the equality ey = (rA · v1 + rB · v2 + rC · v3) · vZ . Append
the proof to tr.

Return tr.

Fig. 8: Simulators for proof of k-ZK for Spartan.

22

Proof. We minimally modify the k-ZK simulator of Spartan-NIZKFS to also out-
put opening proofs PCSparseMulti.OpenFS for M̃(rx, ry) with M ∈ {A,B,C}. Since
A,B,C are part of the public input, the simulator has full access to the matrices,
and hence can produce the proofs honestly. ut

Lemma 5.12. Spartan-SNARKFS satisfies perfect k-UR, where k = r′ − 1.

Proof. Since Spartan-SNARKFS ends with the same invocation of the equality
proof EqPfFS, we obtain the same result as Lemma 5.9. ut

The proof of knowledge soundness for Spartan-SNARKFS is similar to that of
Spartan-NIZKFS, except we further need to extract the polynomials involved in
PCSparseMulti.Open. We prove the lemma below in the full version.

Lemma 5.13. Spartan-SNARKFS satisfies knowledge soundness. Concretely, there
exists an extractor ESpartan-SNARKFS

such that for every PPT prover P∗ against
KS of Spartan-SNARK making at most Q random oracle queries, there exists an
EPT adversary B against DL-REL such that

AdvKS
Spartan-SNARKFS

(ESpartan-SNARKFS
,P∗)

≤ Q(Q− 1) + (Q+ 1)(25µ+ 9ν + 16) + 6(m+ n) +O(µ+ ν)

|F| − 1
+AdvDL-REL

G,
√
m+n+2(B).

Here µ = logm, ν = log n. Both B and the extractor ESpartan-SNARKFS
runs in

expected time that is at most O(Q ·m7.5 · (m+ n)3) the running time of P∗.

Combining the results above, we obtain SIM-EXT for Spartan-SNARKFS.

Theorem 5.14. Spartan-SNARKFS satisfies SIM-EXT. Concretely, there exists a
simulator-extractor ESpartan-SNARKFS

such that for every PPT adversary P∗ against
SIM-EXT of Spartan-SNARKFS, there exists an EPT adversary B against DL-REL
with

AdvSIM-EXT
Spartan-SNARKFS,RR1CS

(SSpartan-SNARKFS,k, ESpartan-SNARKFS
,P∗)

≤ Q(Q− 1) + (Q+ 1)(25µ+ 9ν + 16) + 6(m+ n) +O(µ+ ν)

|F| − 1
+AdvDL-REL

G,
√
m+n+2(B).

B and ESpartan-SNARKFS
run in expected time O(Q ·m7.5 · (m+ n)3) that of P∗.

6 Simulation Extractability of Bulletproofs

In this section, we show that the Bulletproofs protocols in [16] satisfy SIM-EXT,
without relying on the AGM. The authors of [16] introduced two protocols,
an aggregate range proof BP-ARP and an arithmetic circuit satisfiability proof
BP-ACSPf4, with both building on an inner product argument BP-IPA.

4 To keep the naming consistent with [16], we refer to them as proofs even though
they are actually arguments.

23

6.1 Aggregate Range Proof

We give a full description of the aggregate range proof BP-ARP in Figure 9. The
value m is the number of committed values vi, and n is the bit length of the
upper bound (i.e., we prove vi ∈ [0, 2n − 1] for all i ∈ [m]). Following the same
approach as in Section 5 for Spartan, we need to establish three properties of
BP-ARPFS: (1) knowledge soundness, (2) the existence of a k-ZK simulator, and
(3) k-UR for the same round k. We begin with the proof of knowledge soundness,
which is essentially a restatement of the original result from [16].

Lemma 6.1. BP-ARPFS satisfies (m · n,m + 2, 3, 2, 4±, . . . , 4±︸ ︷︷ ︸
log(m·n)

)-computational

special soundness, and hence knowledge soundness. Concretely, there exists an
extractor EBP-ARPFS

such that for every PPT adversary P∗ against KS making at
most Q random oracle queries, there exists an adversary A against DL-REL with

AdvKS
BP-ARPFS

(EBP-ARPFS
,P∗) ≤ AdvDL-REL

G,2mn+3(A)

+
Q(Q− 1) + 2(Q+ 1) (m(n+ 1) + 3 log(m · n) + 3)

|F| − 1
.

Both A and the extractor EBP-ARPFS
run in expected time that is at most O(Q ·

m4 · n3) times the runtime of P∗.

Proof. The description of a tree extractor T EBP-ARP, which either outputs a valid
witness or a discrete log relation, can be found in [16]. This concludes the proof
of computational special soundness. Combining Theorem 4.4 with Lemma 4.6,
we conclude knowledge soundness for BP-ARPFS. The expected runtime of the
extractor EBP-ARPFS

, as well as the adversary A, is at most O(Q · (mn) · (m+2) ·
6 · (mn)2) = O(Q ·m4 · n3) times the runtime of P∗, by Theorem 4.4. ut

Lemma 6.2. BP-ARPFS satisfies perfect 2-ZK.

Proof. We present the 2-ZK simulator SBP-ARPFS,x in Figure 10, and argue that
its output is identically distributed to the output of an honest prover. All the
challenges are chosen randomly as with real proofs. Next, in both real and sim-
ulated proofs, the proof elements A, T1, βx, µ and the underlying vectors l, r are
distributed uniformly among their respective domains. The proof elements S, T2
are then uniquely determined from the previous ones from the verification equa-
tions that they must satisfy. Finally, both the scalar t̂ and the inner product
argument πBP-IPA is generated deterministically from l, r; this implies identical
distributions for those proof elements as well. ut

Finally, we show the 2-UR property of BP-ARP. This result relies on the fact
that BP-IPAFS has computationally unique proofs, shown in the full version.

Lemma 6.3. BP-ARPFS satisfies 2-UR. In particular, for any adversary A against
2-UR of BP-ARPFS, there exists an adversary B against DL-REL such that

Adv2-UR
BP-ARPFS

(A) ≤ 2 · Q(Q− 1) + 6(Q+ 1) logmn

|F| − 1
+ 3 ·AdvDL-REL

G,2mn+3(B) .

24

Aggregate Range Proof Relation.

RBP-ARP =

{
((m,n,g,h, g, h, u),V, (v,γ)) :

Vj = gvjhγj ∧ vj ∈ [0, 2n − 1] ∀j ∈ [1,m]

}
.

Interaction Phase. Denote ym·n = (1, y, . . . , ym·n−1) ∈ Fm·n.

1. P samples α, ρ $← F, sL, sR
$← Fm·n and computes

aL ∈ {0, 1}m·n such that 〈(aL)[(j−1)n,jn−1],2
n〉 = vj ∀j ∈ [1,m],

aR = aL − 1m·n,

A = hαgaLhaR , S = hρgsLhsR .

P sends A,S to V.
2. V sends challenges y, z $← F∗.
3. P samples β1, β2

$← F and computes

`(X) = (aL − z · 1m·n) + sL ·X,

r(X) = ym·n ◦ (aR + z · 1m·n + sR ·X) +

m∑
j=1

zj+1 ·
(
0(j−1)n‖2n‖0(m−j)n

)
,

t(X) = 〈`(X), r(X)〉 = t0 + t1 ·X + t2 ·X2, T1 = gt1hβ1 , T2 = gt2hβ2 .

P sends T1, T2 to V.
4. V sends challenge x $← F∗.
5. P computes

l = `(x), r = r(x), t̂ = 〈l, r〉, µ = α+ ρ · x,

βx = β2 · x2 + β1 · x+

m∑
j=1

zj+1 · γj .

P sends t̂, βx, µ to V.
6. V sends challenge w $← F∗.
7. P,V both compute

h′ = hy−m·n , u′ = uw,

P ′ = h−µ ·A · Sx · g−z·1
m·n
· (h′)z·y

m·n
·
m∏
j=1

(h′)z
j+1·2n

[(j−1)n,jn−1] · (u′)t̂.

8. P,V engage in BP-IPA for the triple ((m · n,g,h′, u′), P ′, (l, r)).
Verification.

1. V rejects if BP-IPA fails.
2. V computes R = Vz2·zm · g(z−z

2)·〈1m·n,ym·n〉−
∑m
j=1 z

j+2·〈1n,2n〉 · T x1 · T x
2

2 .

3. V checks whether gt̂hβx ?
= R.

Fig. 9: Bulletproofs’ Aggregate Range Proof BP-ARP

25

Simulator SBP-ARPFS,x(pp = (m,n,g,h, g, h, u),V):
1. Initialize tr = (pp,V). Sample α, ρ $← F, aL,aR, sL, sR

$← Fm·n and compute
A = hαgaLhaR , S = hρgsLhsR . Append A,S to tr.
2. Obtain challenges y, z ← H(tr).
3. Sample x $← F∗ and compute µ = α + ρ · x, l = (aL − z · 1m·n) + sL · x, r =

ym·n ◦ (aR + z · 1m·n + sR · x) +
∑m
j=1 z

j+1 ·
(
0(j−1)n‖2n‖0(m−j)n

)
, and t̂ = 〈l, r〉.

4. Sample βx
$← F, T1

$← G, and compute T2 =
(
gt̂−δ(y,z) · hβx ·V−z

2·zm · T−x1

)x−2

,

where δ(y, z) = (z − z2) · 〈1m·n,ym·n〉 −
∑m
j=1 z

j+2 · 〈1n,2n〉. Append T1, T2 to tr.
5. Reprogram H(tr) := x, then append t̂, βx, µ to tr.
6. Obtain challenge w ← H(tr).
7. Compute h′ = hy−m·n , u′ = uw, and

P ′ = h−µ ·A · Sx · g−z·1
m·n
· (h′)z·y

m·n
·
m∏
j=1

(h′)z
j+1·2n

[(j−1)n,jn−1] · (u′)t̂.

8. Generate an honest proof πBP-IPAFS ← PBP-IPAFS((m · n,g,h
′, u′), P ′, (l, r)).

9. Output πBP-ARPFS = (A,S, T1, T2, t̂, βx, µ, πBP-IPAFS).

Fig. 10: BP-ARPFS k-ZK simulator

B runs in expected time at most O(Q ·m2 · n2) that of A’s runtime.

Proof. We proceed through a sequence of hybrids. The high-level idea is to ana-
lyze different cases for where the two proofs π, π′ first differ after the x challenge,
and reduce each case to breaking DL-REL or the unique proof property of BP-IPA
(which in turn reduces to breaking DL-REL).
– Hyb0 is the game 2-URABP-ARPFS

. Recall that in this game, an adversary A
outputs an input V, a challenge x ∈ F∗, and two proofs π, π′ that agrees
up to the x challenge, i.e. we have π = (A,S, T1, T2, t̂, βx, µ, πBP-IPAFS

) and
π′ = (A,S, T1, T2, t̂

′, β′x, µ
′, π′BP-IPAFS

). A wins if π 6= π′ and both proofs are
accepting with respect to the x challenge that it chose.

– Hyb1 is the same as Hyb0, except that we also run EBP-IPAFS
on the proofs

πBP-IPAFS
, π′BP-IPAFS

to extract witnesses (l, r) and (l′, r′). Hyb1 returns 0 if the
extractor aborts on either proofs, or t̂ 6= 〈l, r〉 or t̂′ 6= 〈l′, r′〉.
We can see that Hyb1 is identical to Hyb0, except when the extractor EBP-IPAFS

fails in extracting from either proofs πBP-IPAFS
, π′BP-IPAFS

. The probability that this
happens is precisely bounded by twice the KS advantage of BP-IPAFS. Concretely,
invoking the extractor for BP-IPAFS, there exists an adversary B against DL-REL,
running in expected time at most O(Q ·m2 · n2) that of A’s runtime, such that

|Pr[Hyb0]− Pr[Hyb1]| ≤ 2
Q(Q− 1) + 6(Q+ 1) log(m · n)

|F| − 1
+ 2AdvDL-REL

G,2mn+3(B) .

It remains to show that if Hyb1 returns 1, then there exists an adversary B′
that returns a non-trivial discrete log relation. Adversary B′ is as follows:
• If t̂ 6= t̂′ or βx 6= β′x: since both proofs are accepting and are the same up

to the x challenge, we have
gt̂ · hβx = V z

2

· gδ(y,z) · T x1 · T x
2

2 = gt̂
′
· hβ

′
x .

26

• If (t̂, βx) = (t̂′, β′x) but µ 6= µ′: since both proofs πBP-IPAFS
, π′BP-IPAFS

are
accepting, we have

gl · h(y−m·n◦r) · hµ = A · Sx · g−z·1
m·n
· (h′)z·y

m·n
·
m∏
j=1

(h′)z
j+1·2n

[(j−1)n,jn−1] · uw·t̂

= gl′ · h(y−m·n◦r′) · hµ
′
.

• If (t̂, βx, µ) = (t̂′, β′x, µ
′) but πBP-IPAFS

6= π′BP-IPAFS
: here, we know that both

BP-IPAFS proofs are for the same statement P ′, with extracted witnesses
(l, r), (l′, r′). From the proof that BP-IPAFS is computationally unique, the
two witnesses must be different, which gives a discrete log relation.

Note that the first two cases above give discrete log relations, and if Hyb1 returns
1, then π 6= π′, hence at least one of the above cases happens. Putting everything
together and unifying B,B′ we get the desired bound. ut

We finally obtain SIM-EXT from the previous results and Theorem 3.4.
Theorem 6.4. BP-ARPFS satisfies SIM-EXT. In particular, there exists a simulator-
extractor EBP-ARPFS

such that for any adversary P∗ against SIM-EXT of BP-ARPFS,
there exists an adversary B against DL-REL such that

AdvSIM-EXT
BP-ARPFS

(EBP-ARPFS
,P∗) ≤ 4 ·AdvDL-REL

G,2mn+3(B)

+
3Q(Q− 1) + 2(Q+ 1) (m(n+ 1) + 6 log(mn) + 3) + 2

|F| − 1
.

B runs in expected time at most O(Q ·m4 · n3) the runtime of P∗.

6.2 Arithmetic Circuit Satisfiability Proof

We will describe BP-ACSPf and prove the following theorem in the full version.

Theorem 6.5. BP-ACSPfFS satisfies SIM-EXT. Concretely, there exists a simulator-
extractor EBP-ACSPfFS such that for any adversary P∗ against SIM-EXT of BP-ACSPfFS,
there exists an adversary B against DL-REL such that

AdvSIM-EXT
BP-ACSPfFS(EBP-ACSPfFS ,P∗) ≤4 ·AdvDL-REL

G,2n+1(B)

+
3Q(Q− 1) + 2(Q+ 1)(n+ q + 9 log n+ 6) + 2

|F| − 1
.

Here n is the number of multiplication gates, and q is the number of committed
inputs. B runs in expected time at most O(Q · q · n3) the runtime of P∗.

7 Quantitative discussion of our SIM-EXT bounds

In this section, we briefly show how to interpret the tightness of our SIM-EXT
bounds for Bulletproofs and Spartan, and compare them with the previous anal-
yses of [30,33] using AGM. We leave a detailed discussion to the full version.

27

By Theorem 3.4, we see that the SIM-EXT advantage is tightly related to
the KS advantage. Thus, we will compare the latter. For BP-ARP with m = 1
(range proof of a single value), we compare our KS bound with the AGM-based
bound of [33] in Figure 11. Our approach loses tightness due to two factors:
first, we lose a factor of Q due to rewinding (shown to be somewhat inherent
for the similar case of Schnorr signatures [26]), and second, our DL-REL adver-
sary is expected time, which leads to another “square-root” loss in security [42]
(namely AdvDL-REL

G,2n+3(A) ≤
√
t(A)2/|F| for generic attacks). Our concrete KS ad-

vantages for Spartan is even lower, due to the bigger tree sizes of Spartan. We
leave achieving tighter rewinding-based bounds to future work.

Lemma 6.1 [33, Theorem 4]

Asymptotic
O
(
Q2+Qn
|F|

)
+AdvDL-REL

G,2n+3(A) O
(
Qn
|F|

)
+AdvDL-REL

G,2n+3(A′)

where E[t(A)] = O(Q · n3 · t(P∗)) where t(A′) = O(Q · n)
Concrete ≈ 22 bits of security ≈ 164 bits of security

Fig. 11: Comparison of KS advantages, obtained by rewinding (ours) versus AGM [33],
for Bulletproofs’ single range proof, e.g. BP-ARP with m = 1. Here t(·) denotes the
running time. For concrete advantage, we take |F| ≈ 2256, n = 64, t(P∗) = 248, Q = 240.

References

1. Aleo. https://www.aleo.org/ (2022)
2. Attema, T., Fehr, S., Klooß, M.: Fiat-shamir transformation of multi-round in-

teractive proofs. Cryptology ePrint Archive, Report 2021/1377 (2021), https:
//eprint.iacr.org/2021/1377

3. Baghery, K., Kohlweiss, M., Siim, J., Volkhov, M.: Another look at extraction and
randomization of groth’s zk-SNARK. Cryptology ePrint Archive, Report 2020/811
(2020), https://eprint.iacr.org/2020/811

4. Baghery, K., Pindado, Z., Ràfols, C.: Simulation extractable versions of groth’s
zk-SNARK revisited. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) CANS 20.
LNCS, vol. 12579, pp. 453–461. Springer, Heidelberg (Dec 2020)

5. Baghery, K., Sedaghat, M.: Tiramisu: Black-box simulation extractable NIZKs in
the updatable CRS model. Cryptology ePrint Archive, Report 2020/474 (2020),
https://eprint.iacr.org/2020/474

6. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (May / Jun 2006)

7. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018), https://eprint.iacr.org/2018/046

8. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459–474. IEEE Computer Society Press
(May 2014)

9. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)

28

https://www.aleo.org/
https://eprint.iacr.org/2021/1377
https://eprint.iacr.org/2021/1377
https://eprint.iacr.org/2020/811
https://eprint.iacr.org/2020/474
https://eprint.iacr.org/2018/046

EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128. Springer, Heidelberg
(May 2019)

10. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A.D. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 31–60. Springer,
Heidelberg (Oct / Nov 2016)

11. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: Pitfalls of
the Fiat-Shamir heuristic and applications to Helios. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (Dec 2012)

12. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKs and proof-carrying data. Cryptology ePrint Archive, Report
2012/095 (2012), https://eprint.iacr.org/2012/095

13. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo infinite: Proof-carrying
data from additive polynomial commitments. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021, Part I. LNCS, vol. 12825, pp. 649–680. Springer, Heidelberg, Vir-
tual Event (Aug 2021)

14. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer,
Heidelberg (May 2016)

15. Bowe, S., Grigg, J., Hopwood, D.: Halo: Recursive proof composition without
a trusted setup. Cryptology ePrint Archive, Report 2019/1021 (2019), https:
//eprint.iacr.org/2019/1021

16. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy. pp. 315–334. IEEE Computer Society Press (May 2018)

17. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105,
pp. 677–706. Springer, Heidelberg (May 2020)

18. Canetti, R., Sarkar, P., Wang, X.: Triply adaptive UC NIZK. Cryptology ePrint
Archive, Report 2020/1212 (2020), https://eprint.iacr.org/2020/1212

19. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (Aug 2006)

20. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.P.: Marlin: Pre-
processing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai,
Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738–768. Springer,
Heidelberg (May 2020)

21. Coda. https://codaprotocol.com/ (2022)
22. Decker, C., Wattenhofer, R.: Bitcoin transaction malleability and MtGox. In: Kuty-

lowski, M., Vaidya, J. (eds.) ESORICS 2014, Part II. LNCS, vol. 8713, pp. 313–326.
Springer, Heidelberg (Sep 2014)

23. Don, J., Fehr, S., Majenz, C.: The measure-and-reprogram technique 2.0:
Multi-round fiat-shamir and more. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 602–631. Springer, Heidelberg
(Aug 2020)

24. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of the
Fiat-Shamir transform. In: Galbraith, S.D., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (Dec 2012)

25. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (Aug 1987)

29

https://eprint.iacr.org/2012/095
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2020/1212
https://codaprotocol.com/

26. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr
signatures. Journal of Cryptology 32(2), 566–599 (Apr 2019)

27. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62. Springer, Heidelberg (Aug 2018)

28. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953 (2019), https://eprint.iacr.org/2019/953

29. Ganesh, C., Khoshakhlagh, H., Kohlweiss, M., Nitulescu, A., Zając, M.: What
makes fiat–shamir zksnarks (updatable srs) simulation extractable? In: SCN (2022)

30. Ganesh, C., Orlandi, C., Pancholi, M., Takahashi, A., Tschudi, D.: Fiat-shamir
bulletproofs are non-malleable (in the algebraic group model). In: Dunkelman, O.,
Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol. 13276, pp. 397–
426. Springer, Heidelberg (May / Jun 2022)

31. Ganesh, C., Orlandi, C., Pancholi, M., Takahashi, A., Tschudi, D.: Fiat-shamir
bulletproofs are non-malleable (in the random oracle model). Cryptology ePrint
Archive (2023)

32. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (May 2013)

33. Ghoshal, A., Tessaro, S.: Tight state-restoration soundness in the algebraic group
model. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part III. LNCS, vol.
12827, pp. 64–93. Springer, Heidelberg, Virtual Event (Aug 2021)

34. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC. pp. 291–304. ACM Press
(May 1985)

35. Golovnev, A., Lee, J., Setty, S., Thaler, J., Wahby, R.S.: Brakedown: Linear-
time and post-quantum SNARKs for R1CS. Cryptology ePrint Archive, Report
2021/1043 (2021), https://eprint.iacr.org/2021/1043

36. Grin: a minimal implementation of mimblewimble. https://github.com/
mimblewimble/grin (2022)

37. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol.
4284, pp. 444–459. Springer, Heidelberg (Dec 2006)

38. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin,
M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (May 2016)

39. Groth, J., Maller, M.: Snarky signatures: Minimal signatures of knowledge from
simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part II. LNCS, vol. 10402, pp. 581–612. Springer, Heidelberg (Aug 2017)

40. Grubbs, P., Arun, A., Zhang, Y., Bonneau, J., Walfish, M.: Zero-knowledge mid-
dleboxes. In: Butler, K.R.B., Thomas, K. (eds.) USENIX Security 2022. pp. 4255–
4272. USENIX Association (Aug 2022)

41. Haines, T., Lewis, S.J., Pereira, O., Teague, V.: How not to prove your election
outcome. In: 2020 IEEE Symposium on Security and Privacy. pp. 644–660. IEEE
Computer Society Press (May 2020)

42. Jaeger, J., Tessaro, S.: Expected-time cryptography: Generic techniques and appli-
cations to concrete soundness. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part III.
LNCS, vol. 12552, pp. 414–443. Springer, Heidelberg (Nov 2020)

30

https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2021/1043
https://github.com/mimblewimble/grin
https://github.com/mimblewimble/grin

43. Jain, A., Pandey, O.: Non-malleable zero knowledge: Black-box constructions and
definitional relationships. In: Abdalla, M., Prisco, R.D. (eds.) SCN 14. LNCS, vol.
8642, pp. 435–454. Springer, Heidelberg (Sep 2014)

44. Kothapalli, A., Setty, S., Tzialla, I.: Nova: Recursive zero-knowledge arguments
from folding schemes. Cryptology ePrint Archive, Report 2021/370 (2021), https:
//eprint.iacr.org/2021/370

45. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In:
Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 2111–2128.
ACM Press (Nov 2019)

46. Bulletproofs+ in monero. https://www.getmonero.org/2020/12/24/
Bulletproofs+-in-Monero.html (2020)

47. Mt.Gox press release. https://web.archive.org/web/20140214041924/https://
www.mtgox.com/press_release_20140210.html (2014)

48. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy. pp. 238–252.
IEEE Computer Society Press (May 2013)

49. Pass, R.: On deniability in the common reference string and random oracle model.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Hei-
delberg (Aug 2003)

50. Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-
graphic protocols. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC. pp. 533–
542. ACM Press (May 2005)

51. Polygon. https://polygon.technology/ (2022)
52. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-

ciphertext security. In: 40th FOCS. pp. 543–553. IEEE Computer Society Press
(Oct 1999)

53. Scroll. https://scroll.io/ (2022)
54. Setty, S.: Spartan: Efficient and general-purpose zkSNARKs without trusted setup.

In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172,
pp. 704–737. Springer, Heidelberg (Aug 2020)

55. Setty, S., Lee, J.: Quarks: Quadruple-efficient transparent zkSNARKs. Cryptology
ePrint Archive, Report 2020/1275 (2020), https://eprint.iacr.org/2020/1275

56. Starkware. https://starkware.co/ (2022)
57. Wahby, R.S., Tzialla, I., shelat, a., Thaler, J., Walfish, M.: Doubly-efficient zk-

SNARKs without trusted setup. In: 2018 IEEE Symposium on Security and Pri-
vacy. pp. 926–943. IEEE Computer Society Press (May 2018)

58. Wee, H.: Zero knowledge in the random oracle model, revisited. In: Matsui, M.
(ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 417–434. Springer, Heidelberg (Dec
2009)

59. Wikström, D.: Special soundness in the random oracle model. Cryptology ePrint
Archive, Report 2021/1265 (2021), https://eprint.iacr.org/2021/1265

60. Xie, T., Zhang, Y., Song, D.: Orion: Zero knowledge proof with linear prover time.
Cryptology ePrint Archive, Report 2022/1010 (2022), https://eprint.iacr.org/
2022/1010

61. Zhang, F., Maram, D., Malvai, H., Goldfeder, S., Juels, A.: DECO: Liberating web
data using decentralized oracles for TLS. In: Ligatti, J., Ou, X., Katz, J., Vigna,
G. (eds.) ACM CCS 2020. pp. 1919–1938. ACM Press (Nov 2020)

62. ZKProofs Standards. https://zkproof.org/ (2022)

31

https://eprint.iacr.org/2021/370
https://eprint.iacr.org/2021/370
https://www.getmonero.org/2020/12/24/Bulletproofs+-in-Monero.html
https://www.getmonero.org/2020/12/24/Bulletproofs+-in-Monero.html
https://web.archive.org/web/20140214041924/https://www.mtgox.com/press_release_20140210.html
https://web.archive.org/web/20140214041924/https://www.mtgox.com/press_release_20140210.html
https://polygon.technology/
https://scroll.io/
https://eprint.iacr.org/2020/1275
https://starkware.co/
https://eprint.iacr.org/2021/1265
https://eprint.iacr.org/2022/1010
https://eprint.iacr.org/2022/1010
https://zkproof.org/

	Spartan and Bulletproofs are simulation-extractable (for free!)

