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Abstract. This work provides both negative and positive results for
publicly verifiable quantum money.

— In the first part, we give a general theorem, showing that a certain
natural class of quantum money schemes from lattices cannot be
secure. We use this theorem to break the recent quantum money
proposal of Khesin, Lu, and Shor([KLS22]).

— In the second part, we propose a framework for building quantum
money and quantum lightning we call invariant money which ab-
stracts and formalizes some ideas of quantum money from knots
[FGH*12] and its precedent work [LAF*10]. In addition to for-
malizing this framework, we provide concrete hard computational
problems loosely inspired by classical knowledge-of-exponent assump-
tions, whose hardness would imply the security of quantum lightning,
a strengthening of quantum money where not even the bank can
duplicate banknotes.

— We discuss potential instantiations of our framework, including an
oracle construction using cryptographic group actions and instan-
tiations from rerandomizable functional encryption, isogenies over
elliptic curves, and knots.

1 Introduction

1.1 Motivation

Quantum information promises to revolutionize cryptography. In particular, the
no cloning theorem of quantum mechanics opens the door to quantum cryptog-
raphy: cryptographic applications that are simply impossible classically. The
progenitor of this field, due to Wiesner [Wie83], is quantum money: quantum
digital currency that cannot be counterfeited due to the laws of physics. Since
Wiesner’s proposal, many applications of quantum information to cryptography
have been proposed, including quantum key distribution (QKD) [BB87], ran-
domness expansion [Col09, CY14, BCM™18], quantum copy protection [Aar09,
AL21, ALL*21, CLLZ21], quantum one-time programs [BGS13], and much more.

Throughout the development of quantum cryptography, quantum money
has remained a central object, at least implicitly. Indeed, the techniques used
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for quantum money are closely related to those used in other applications.
For example, the first message in the BB84 quantum QKD protocol [BB87] is
exactly a banknote in Wiesner’s scheme. The techniques used by [BCM™18] to
prove quantumness using classical communication have been used to construct
quantum money with classical communication [RS19]. The subspace states used
by [AC12] to construct quantum money were recently used to build quantum
copy protection [ALLT21].

The Public Verification Barrier. Wiesner’s scheme is only privately verifiable,
meaning that the mint is needed to verify. This results in numerous weaknesses.
Improper verification opens the scheme to active attacks [Lut10]. Moreover,
private verification is not scalable, as the mint would be required to participate
in every single transaction. Wiesner’s scheme also requires essentially perfect
quantum storage, since otherwise banknotes in Wiesner’s scheme will quickly
decohere and be lost.

All these problems are readily solved with publicly verifiable quantum money?,
where anyone can verify, despite the mint being the sole entity that can mint
notes. Public verification immediately eliminates active attacks, and solves the
scaling problem since the transacting users can verify the money for themselves.
Aaronson and Christiano [AC12] also explain that public verifiability allows
for also correcting any decoherance, so users can keep their banknotes alive
indefinitely.

Unfortunately, constructing convincing publicly verifiable quantum money
has become a notoriously hard open question. Firstly, some natural modifica-
tions to Wiesner’s quantum money scheme will not give security under pub-
lic verification [FGH'10]. Aaronson [Aar09], and later Aaronson and Chris-
tiano [AC12] gave publicly verifiable quantum money relative to quantum and
classical oracles, respectively. Such oracle constructions have the advantage
of provable security, but it is often unclear how to instantiate them in the
real world®: in both [Aar09] and [AC12], “candidate” instantiations were pro-
posed, but were later broken [LAF*t10, CPDDF*19]. Another candidate by
Zhandry [Zhal9] was broken by Roberts [Rob21]. Other candidates have been
proposed [FGHT12, Kan18, KSS21], but they all rely on new, untested assump-
tions that have received little cryptanalysis effort. The one exception, suggested
by [BDS16] and proved by [Zhal9], uses indistinguishability obfuscation (iO) to
instantiate Aaronson and Christiano’s scheme [AC12]. Unfortunately, the post-
quantum security of iO remains poorly understood, with all known constructions
of post-quantum i0 [GGH15, BGMZ18, BDGM20, WW21] being best labeled as
candidates, lacking justification under widely studied assumptions.

Thus, it remains a major open question to construct publicly verifiable
quantum money from standard cryptographic tools. Two such post-quantum

4 Sometimes it is also referred to as public-key quantum money. We may use the two
terms interchangeably.

® Quantum oracles are quantum circuits accessible only as a black-box unitary. They
are generally considered as strong relativizing tools when used in proofs. Classical
oracles are black-box classical circuits, a much weaker tool.
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tools we will investigate in this work are the two most influential and well-studied:
lattices and isogenies over elliptic curves.

This public verification barrier is inherited by many proposed applications of
quantum cryptography. For example, quantum copy protection for any function
whose outputs can be verified immediately implies a publicly verifiable quantum
money scheme. As such, all such constructions in the standard model [ALL ™21,
CLLZ21] require at a minimum a computational assumption that implies quantum
money.5

Quantum Money Decentralized: Quantum Lightning An even more ambitious
goal is a publicly verifiable quantum money where the bank/mint itself should
not be capable of duplicating money states. To guarantee unclonability, the
scheme should have a "collision-resistant" flavor: no one can (efficiently) generate
two valid money states with the same serial number. This notion of quantum
money appeared as early in [LAFT10]; the name "quantum lightning" was given
in [Zhal9).

Quantum lightning has broader and more exciting applications: as discussed in
[Zhal9, Col19, CS20, AGKZ20], it can be leveraged as verifiable min-entropy, use-
ful building blocks to enhance blockchain/smart contract protocols and moreover,
it could lead to decentralized cryptocurrency without a blockchain.

Quantum money has a provably secure construction from iO, a strong crypto-
graphic hammer but still a widely used assumption. On the other hand, quantum
lightning from even relatively standard-looking assumptions remains open. Some
existing constructions [Kan18, KSS21] use strong oracles such as quantum oracles,
with conjectured instantiations that did not go through too much cryptanalysis.
[FGH'12] is another candidate built from conjectures in knot theory. But a
correctness proof and security reduction are not provided in their paper.

Collapsing vs. Non-Collapsing With a close relationship to quantum money,
collapsing functions [Unr16] are a central concept in quantum cryptography. A
collapsing function f says that one should not be able to distinguish a super-

lentze)|2e) from a measured pre-image |2;),i € [k] for

position of pre-images
some image y = f(x;), for all ¢ € [k].

While collapsing functions give rise to secure post-quantum cryptography like
commitment schemes, its precise opposite is necessary for quantum money: if no
verification can distinguish a money state in a superposition of many supports
from its measured state, a simple forgery comes ahead. Hence, investigating the
collapsing /non-collapsing properties of hash functions from lattices and isogenies
will provide a win-win insight into quantum money and post-quantum security
of existing cryptographic primitives.

5 This holds true even for certain weaker versions such as copy detection, also known
as infinite term secure software leasing.
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2 Our Results

In this work, we give both negative and positive results for publicly verifiable
quantum money.

Breaking Quantum Money. Very recent work by Khesin, Lu, and Shor [KLS22]
claims to construct publicly verifiable quantum money from the hardness of
worst-case lattice problems, a standard assumption. Our first contribution is to
identify a fatal flaw in their security proof, and moreover show how to exploit
this flaw to forge unlimited money. After communicating this flaw and attack,
the authors of [KL.S22] have retracted their paper.”

More importantly, we show that a general class of natural money schemes
based on lattices cannot be both secure and publicly verifiable. We consider
protocols where the public key is a short wide matrix AT, and a banknote with
serial number u is a superposition of “short” vectors y such that AT -y = u mod gq.
Our attack works whenever A7 is uniformly random. We also generalize this to
handle the case where AT is uniform conditioned on having a few public short
vectors in its kernel. This generalization includes the Khesin-Lu-Shor scheme as
a special case. Our result provides a significant barrier to constructing quantum
money from lattices.

Along the way, we prove that the SIS hash function is collapsing [Unr16] for
all moduli, resolving an important open question in the security of post-quantum
hash functions.®

Invariant Money/Lightning. To complement our negative result, we propose a
new framework for building quantum money, based on invariants. Our framework
abstracts some of the ideas behind the candidate quantum money from knots
in [FGH™12] and behind [LAF*10]. Our main contributions here are two-fold:

— We propose a (classical) oracle construction that implements our framework
assuming the existence of a quantum-secure cryptographic group action and a
relatively modest assumption about generic cryptographic group actions. We
then give proposals for instantiating our invariant framework on more concrete
assumptions. The first is based on isogenies over elliptic curves?; the second is
based on rerandomizable functional encryption with certain properties; finally,
we also discuss the quantum money from knots construction in [FGHT12]
with some modifications.

— In order to gain confidence in our proposals, we for the first time formalize
abstract properties of the invariant money under which security can be
proved. Concretely, we prove that a certain mixing condition is sufficient
to characterize the states accepted by the verifier, and in particular prove

” We thank the authors of [KLS22] for patiently answering our numerous questions
about their work, which was instrumental in helping us identify the flaw.

8 Previously, [LZ19] showed that SIS was collapsing for a super-polynomial modulus.

9 The recent attacks [CD22, MM22, Rob22] on SIDH do not apply to the isogeny
building blocks we need. We will elaborate in the full version
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correctness'?. We also propose “knowledge of path” security properties for
abstract invariant structures which would be sufficient to justify security.
These knowledge of path assumptions are analogs of the “knowledge of
exponent” assumption on groups proposed by Damgird [Dam92]. Under
these assumptions, we are even able to show that the invariants give quantum
lightning [LAF*10, Zhal9], the aforementioned strengthening of quantum
money that is known to have additional applications.

Note that the knowledge of exponent assumption in groups is quantumly
broken on groups due to the discrete logarithm being easy. However, for many
of our assumptions, which are at least conjectured to be quantum-secure, the
analogous knowledge of path assumption appears plausible, though certainly
more cryptanalysis is needed to gain confidence. The main advantage of
our proposed knowledge of path assumption is that it provides a concrete
cryptographic property that cryptographers can study and analyze with a
well-studied classical analog.

3 Technical Overview

3.1 How to Not Build Quantum Money from Lattices

We first describe a natural attempt to construct quantum money from lattices,
which was folklore but first outlined by Zhandry [Zhal9]. The public key will
contain a random tall matrix A € Z**",m > n. To mint a banknote, first
generate a superposition [1)) = 3 ay|y) of short vectors y € Z™, such that |y| <

. A natural |1) is the discrete-Gaussian-weighted state, where ay oc Ve 7lvI*/o?
for a width parameter . Then compute in superposition and measure the output
of the map y — AT -y mod ¢, obtaining u € Z;. The state collapses to:

[a) o Y ayly) -

y:AT.y=u

This will be the money state, and u will be the serial number. This state can
presumably not be copied: if one could construct two copies of |ty ), then one
could measure both, obtaining two short vectors y,y’ with the same coset u. As
[thu) is a superposition of many vectors (since m > n), with high probability
y # y’'. Subtracting gives a short vector y —y’ such that AT . (y —y’) = 0,
solving the Short Integer Solution (SIS) problem. SIS is presumably hard, and
this hardness can be justified based on the hardness of worst-case lattice problems
such as the approximate Shortest Vector Problem (SVP).

The challenge is: how to verify |¢,)? Certainly, one can verify that the support
of a state is only short vectors y such that A” -y = u. But this alone is not

10 [FGH'12] did not analyze correctness of their knot-based proposal, nor analyze the
states accepted by their verifier and formalize the property needed for a security
proof. [LAFT10] had informal correctness analysis on their proposal, but also did
not analyze the security property needed.
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enough: one can fool such a verification by any classical y in the support of |¢)y,).
To forge then, an adversary simply measures |1),) to obtain y, and then copies y
as many times as it likes.

To get the scheme to work, then, one needs a verifier that can distinguish
classical y from superpositions. This is a typical challenge in designing publicly
verifiable money schemes. A typical approach is to perform the quantum Fourier
transform (QFT): the QFT of y will result in a uniform string, whereas the QFT of
|10y ) will presumably have structure. Indeed, if |1, ) is the Gaussian superposition,
following ideas of Regev [Reg05], the QFT of |¢,) will be statistically close to
a superposition of samples A -r + e, where r is uniform in Z7, and e € Z7" is
another discrete Gaussian of width ¢/o. The goal then is to distinguish such
samples from uniform.

Unfortunately, such distinguishing is likely hard, as this task is the famous
(decisional) Learning with Errors (LWE) problem. LWE is presumably hard,
which can be justified based on the hardness of the same worst-case lattice
problems as with SIS, namely SVP. So either LWE is hard, or the quantum
money scheme is insecure in the first place.

Nevertheless, this leaves open a number of possible strategies for designing
quantum money from lattices, including;:

1. What if non-Gaussian |¢)) is chosen?

2. What if distinguishing is not done via the QFT but some other quantum
process?

3. What if we somehow make LWE easy?

The first significant barrier beyond the hardness of LWE is due to Liu and
Zhandry [LZ19]. They show that, if the modulus ¢ is super-polynomial, then the
map y — AT .y for a random A is collapsing [Unr16]: that is, for any starting
state |1y ) of short vectors, distinguishing |t ) from y is infeasible for any efficient
verification process. Collapsing is the preferred notion of post-quantum security
for hash functions, as it is known that collision resistance is often not sufficient
for applications when quantum adversaries are considered.

The result of [LZ19] follows from the hardness of LWE (which is quantumly
equivalent to SIS [Reg05]), albeit with a noise rate super-polynomially smaller
than ¢/c which is a stronger assumption than the hardness with rate ¢/o.
Moreover, their result requires ¢ to be super-polynomially larger than o. In
practice, one usually wants ¢ to be polynomial, and the result of [LZ19] leaves
open the possibility of building quantum money in such a setting.

What about making LWE easy (while SIS remains hard)? The usual approach
in the lattice literature to making decisional LWE easy is to output a short vector
s in the kernel of AT, If |s| < (¢/0), this allows for distinguishing LWE samples
from uniform, since s- (A -r + e) = s - e, which will be small relative to ¢, while
s -x for uniform x will be uniform in Z,. Unfortunately, adding such short vectors
breaks the security proof, since s is a SIS solution, solving SIS is trivially easy by
outputting s. To revive the security, one can try reducing to the 1-SIS problem,
which is to find a short SIS solution that is linearly independent of s. 1-SIS can
be proved hard based on the same worst-case lattice problems as SIS [BF11].



Title Suppressed Due to Excessive Length 7

However, in the scheme above, it is not clear if measuring two forgeries and
taking the difference should result in a vector linearly independent of s.

The Recent Work of [KLS22]. Very recently, Khesin, Lu, and Shor [KLS22]
attempt to provide a quantum money scheme based on lattices. Their scheme
has some similarities to the blueprint discussed above, taking advantage of each
of the strategies 1, 2 and 3. But there are other differences as well: the state
|1) is created as a superposition over a lattice rather than the integers, and the
measurement of u is replaced with a move complex general positive operator-value
measurement (POVM). [KLS22] claims to prove security under the hardness of
finding a second short vector in a random lattice when already given a short
vector. This problem is closely related to 1-SIS, and follows also from the hardness
of worst-case lattice problems.

Our Results. First, we show an alternative view of [KLS22] which shows that it
does, indeed, fall in the above framework. That is, there is a way to view their
scheme as starting from [¢) that is a non-Gaussian superposition of short integer
vectors y. The minting process in our alternate view then measures AT -y, where
A is part of the public key, and is chosen to be uniform except that it is orthogonal
to 3 short vectors sg, s1, 2. These vectors play a role in verification, as they make
the QFT non-uniform. Using this alternative view, we also demonstrate a flaw in
the security proof of [KLS22], showing that forged money states actually do not
yield new short vectors in the lattice. See Section D of the full version for details.

We then go on (Section 5) to show an explicit attack against their money
scheme. More generally, we show an attack on a wide class of instantiations of
the above framework. Our attack works in two steps:

— First, we extend the collapsing result of [LZ19] to also handle the case of

polynomial modulus, and in particular, we only need LWE to be hard for
noise rate that is slightly smaller than ¢/o. This resolves an important open
by showing that SIS is collapsing for all moduli.
Our proof requires a novel reduction that exploits a more delicate analysis of
the quantum states produced in the proof of [LZ19]. We also extend the result
in a meaningful way to the case where several short kernel vectors sg, s1, . . .
are provided. We show that instead of just using y as a forgery (which can
be distinguished using the short vectors s;), a particular superposition over
vectors of the form y + ). ¢;s; can fool any efficient verification. Fooling
verification requires the hardness a certain “k-LWE” problem, which we show
follows from worst-case lattice problems in many settings (see Section E ).
This requires us to extend the known results on k-LWE hardness, which may
be of independent interest.

— Then we show how to construct such a superposition efficiently given only y
and the s;, in many natural settings. Our settings include as a special case
the setting of [KLS22]. Along the way, we explain how to construct Gaussian
superpositions over lattices, when given a short basis. The algorithm is a co-
herent version of the classical discrete Gaussian sampling algorithm [GPVO08].
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In general, it is not possible to take a classical distribution and run it on a
superposition of random coins to get a superposition with weights determined
by the distribution. This is because the random coins themselves will be left
behind and entangled with the resulting state. We show how to implement
the classical algorithm coherently in a way that does not leave the random
coins behind or any other entangled bits. Such an algorithm was previously
folklore (e.g. it was claimed to exist without justification by [KLS22]), but
we take care to actually write out the algorithm.

After communicating this flaw and attack to the authors of [KLS22], they have
retracted their paper.'!

3.2 Quantum Money from Walkable Invariants

In the second part of the paper, we describe a general framework for instantiating
publicly verifiable quantum money from invariants satisfying certain conditions.
This framework abstracts the ideas behind the construction of quantum money
from knots [FGH'12] and its precedent [LAFT10)].

At a high level, we start from a set X, which is partitioned into many disjoint
sets O C X. There is a collection of efficiently computable (and efficiently
invertible) permutations on X, such that for every permutation in the collection
and every O in the partition, the permutation maps elements of O to O. Such a
set of permutations allows one to take an element x € O, and perform a walk
through O. We additionally assume an invariant 7 : X — Y on X, such that [ is
constant on each element O of the partition. In other words, I is invariant under
action by the collection of permutations.

In the case of [FGH'12], X is essentially the set of knot diagrams'?, the
permutations are Reidemeister moves, and the invariant is the Alexander polyno-
mial.

An honest quantum money state will essentially be a uniform superposition
over O 3. Such a state is constructed by first constructing the uniform super-
position over X, and then measuring the invariant 7. Applying a permutation
from the collection will not affect such a state. Thus, verification attempts to test
whether the state is preserved under action by permutations in the collection by
performing an analog of a swap test, and only accepts if the test passes.

In [FGH™12], it is explained why certain attack strategies are likely to be inca-
pable of duplicating banknotes. However, no security proof is given under widely
believed hard computational assumptions. To make matters worse, [FGH'12]
do not analyze what types of states are accepted by the verifier. It could be, for
example, that duplicating a banknote perfectly is computationally infeasible, but

' We once again want to emphasize that the authors of [KLS22] were exceptionally
helpful and we thank them for their time spent helping us understand their work.

2 Due to certain concerns about security, [FGH12] actually sets X to contain extra
information beyond a knot diagram.

13 Technically, it is a uniform superposition over the pre-images of some y in the image
of I. If multiple O have the same y, then the superposition will be over all such O.
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there are fake banknotes that pass verification that can be duplicated; this is
exactly what happens in the lattice-based schemes analyzed above in Section 3.1.
Given the complexities of their scheme, there have been limited efforts to under-
stand the security of the scheme. This is problematic, since there have been many
candidates for public key quantum money that were later found to be insecure.

Generally, a fundamental issue with public key quantum money schemes
is that, while quantum money schemes rely on the no-cloning principle, the
no-cloning theorem is information-theoretic, whereas publicly verifiable quantum
money is always information-theoretically clonable. So unclonability crucially
relies on the adversary being computationally efficient. Such computational
unclonability is far less understood than traditional computational tasks. Indeed,
while there have been a number of candidate post-quantum hard computational
tasks, there are very few quantum money schemes still standing. The challenge is
in understanding if and how quantum information combines with computational
bounds to give computational unclonability.

To overcome this challenge, the security analysis should be broken into two
parts: one part that relies on information-theoretic no-cloning, and another part
that relies on a computational hardness assumption. Of course, the security of the
scheme itself could be such an assumption, so we want to make the assumption
have nothing to do with cloning. One way to accomplish this is to have the
assumption have classical inputs and outputs (which we will call “classically
meaningful”), so that it could in principle be falsified by a classical algorithm,
which are obviously not subject to quantum unclonability. Separating out the
quantum information from the computational aspects would hopefully give a
clearer understanding of why the scheme should be unclonable, hopefully allow
for higher confidence in security. Moreover, as essentially all widely studied
assumptions are classically meaningful, any attempt to prove security under a
widely studied assumptions would have to follow this blueprint, and indeed the
proof of quantum money from obfuscation [Zhal9] is of this form.

Our Results. In this work, we make progress towards justifying invariant-based
quantum money.

— First, we prove that if a random walk induced by the collection of permutations
mixes, then we can completely characterize the states accepted by verification.
The states are exactly the uniform superpositions over O '4. Unfortunately,
it is unclear if the knot construction actually mixes, and any formal proof of
mixing seems likely to advance knot theory'®.

— Second, we provide concrete security properties under which we can prove
security. These properties, while still not well-studied, at least have no
obvious connection to cloning, and are meaningful even classically. Under

14 Or more generally, if multiple O have the same y, then accepting states are exactly
those that place equal weight on elements of each O, but the weights may be different
across different O

15 Nevertheless we provide a discussion on the knot money instantiation in the knot
instantiation section of the full version.
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these assumptions, we can even prove that the schemes are in fact quantum
lightning, the aforementioned strengthening of quantum money where not
even the mint can create two banknotes of the same serial number.

Our Hardness Assumptions We rely on two hardness assumptions in our invariant
money scheme for a provably secure: the path-finding assumption and knowledge
of path finding assumption.

Informally speaking, the path-finding assumption states that, given some
adversarially sampled = from a set of elements X and given a set of "permutations”
X, it is hard for any efficient adversary, given a random z € X, where there
exists some o € X such that o (z) = 2, to find such a 0. One can observe
that it is similar to a “discrete logarithm” style of problem. Even though we
cannot use discrete logarithm due to its quantum insecurity, we have similar
hard problems in certain isogenies over ellitic curves, abstracted as "group action
discrete logarithm" problems [ADMP20)].

Our Knowledge of Path Assumptions. The main novel assumption we use is a
“knowledge of path” assumption. This roughly says that if an algorithm outputs
two elements z, z in the same O, then it must “know” a path between them: a
list of permutations from the collection that, when composed, would take x to z.
While such a knowledge of path assumption is undoubtedly a strong assumption,
it seems plausible in a number of relevant contexts (e.g. elliptic curve isogenies
that have no known non-trivial attacks or “generic” group actions).

Formalizing the knowledge of path assumption is non-trivial. The obvious
classical way to define knowledge of path is to say that for any adversary, there
is an extractor that can compute the path between x and z. Importantly, the
extractor must be given the same random coins as the adversary, so that it can
compute x and z for itself and moreover know what random choices the adversary
made that lead to z, z. Essentially, by also giving the random coins, we would be
effectively making the adversary deterministic, which is crucial for the extractor’s
output to be related to the adversary’s output.

Unfortunately, quantumly the above argument does not make much sense, as
quantum algorithms can have randomness without having explicit random coins.
In fact, there are quantum procedures that are inherently probabilistic, in the
sense that the process is efficient, but there is no way to run the process twice
and get the same outcome both times. This is actually crucial to our setting: we
are targeting the stronger quantum lightning, which means that even the mint
cannot create two banknotes with the same serial number. This means that the
minting process is inherently probabilistic. The adversary could, for example,
run the minting process, but with its own minting key. Such an adversary would
then be inherently probabilistic and we absolutely would need a definition that
can handle such adversaries.

Our solution is to exploit the fact that quantum algorithms can always be
implemented reversibly. We then observe that with a classical reversible adversary,
an equivalent way to define knowledge assumptions would be to just feed the
entire final state of the adversary (including output) into the extractor. By
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reversibility, this is equivalent to giving the input, coins included, to the extractor.
But this alternate extraction notion actually does make sense quantumly. Thus
our knowledge of path assumption is defined as giving the extractor the entire
final (quantum) state of the reversible adversary, and asking that the extractor
can find a path between x and z. This assumption allows us to bypass the issue
of inherently probabilistic algorithms, and is sufficient for us to prove security.

Instantiations of Invariant Quantum Money and Lightning After we provide the
characterization of security needed for invariant money, we discuss four candidate
instantiations'®:

— We show a construction from structured oracles and generic cryptographic
group actions. Notably, while we do not know how to instantiate these oracles,
we can prove that this construction is secure assuming the existence of a
cryptographic group action and the assumption that the knowledge of path
assumption holds over a generic cryptographic group action.!”

— We explain how re-randomizable functional encryption, a type of functional
encryption with special properties that seem reasonable, can be used to
build another candidate quantum lightning. We don’t currently have a prov-
ably secure construction from standard cryptographic assumptions for this
special re-randomizable functional encryption, but we provide a candidate
construction based on some relatively well-studied primitives.

— Elliptic curve isogenies are our final new candidate instantiation. We outline
how, given some assumptions about sampling certain superpositions of elliptic
curves, it may be possible to build quantum lightning from isogeny-based
assumptions.

— Finally, we analyze the construction of quantum money from knots in [FGH112]
in our framework.

For all these three constructions, we show that their corresponding path-finding
problem between two elements z, z in the same O is relatively straightforward
to study (reducible to reasonably well-founded assumptions). Nevertheless, we
need the knowledge of path assumptions to show that we can extract these paths
from a (unitary) adversary. We believe that one may show a knowledge-of-path
property when replacing some plain model components in the above candidates
with (quantum accessible) classical oracles, thus giving the possibility for a first
quantum lightning scheme relative to only classical oracles and widely studied
assumptions.

4 Preliminaries

In this section we explain some background material needed for our work.

16 Throughout the sections on invariant quantum money framework and construction in
the full verison, we will sometimes interchangeably use "money" or "lightning". But
in fact the proposed candidates are all candidates for quantum lightning.

17 This seems like a very plausible assumption to us: classically, the knowledge of
exponent would almost trivially hold over generic groups.
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For quantum notations, we denote |-) as the notation for a pure state and
[-}(:] for its density matrix. p denotes a general mixed state.

We will go over some fundamental lattice facts and then move to quantum
money definitions. Due to the restriction of space, we leave some additional lattice
basics, hardness theorems and necessary quantum background (in particular
related to lattices) to Appendix preliminaries section of the full version.

4.1 Lattice Basics

We say a distribution D is (B, d)-bounded if the probability that D outputs a
value larger than B is less than §. We extend this to distributions that output
vectors in an entry-by-entry way. Given a set of vectors B = {by,...,b,}, we
define the norm of B, denoted ||B||, as the length of the longest vector in B, so
[|B|| = max; ||b;||. For any lattice A, we define the minimum distance (or first
successive minimum) A; (A) as the length of the shortest nonzero lattice vector
in A.

We next define discrete Gaussians formally. Since we later use their lemmas,
our definition is loosely based on that of [BLPT13].

Definition 1. For any o > 0, the n-dimensional Gaussian function p, : R™ —
[0,1] is defined as

pr(x)=¢"%

We define the discrete Gaussian function with parameter o at point p € R™, which
we usually denote Dy or just ¥, when the context is clear, as the function over
all of the integers'y € Z™ such that the probability mass of any y is proportional
to

_ (p-y)?
e " o2

We can also define more complicated discrete Gaussians over lattices. In this case,
let X be a matriz in R™*™. The discrete Gaussian over a lattice A with center p
and “skew” parameter X is the function over all lattice points in A such that the
probability mass of any y is proportional to

e—n(p—yﬁ(zzT)”(p—y)’

very similar to as before. We usually denote this type of discrete Gaussian as
Y sp or Dy, 5, where we sometimes substitute o for 3 when ¥ = o -1,
where 1, is the n x n identity matriz. We also sometimes omit parameters when
they are obvious (e.g. 0) in context.

We will explain how to efficiently sample discrete Gaussians quantumly in
B.3 of the full version.
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4.2 General LWE Definition

In this section we define basic LWE with an eye towards eventually defining
k-LWE. We note that, while equivalent to the standard definitions, our definitions
here are presented a little bit differently than usual in lattice cryptography. This
is so that we can keep the notation more consistent with the typical quantum
money and quantum algorithms presentation styles. We first provide a properly
parameterized definition of the LWE problem [Reg05].

Definition 2. Learning with Errors (LWE) Problem: Let n, m, and q be
integers, let Da and Dy be distributions over Zy, and let D be a distribution
over Z'. Let A € ZJ**™ be a matriz where each row is sampled from Da, let
r € Z; be a vector sampled from Dy, and let e € ZJ' be a vector sampled from
D . Finally, let t € Z* be a uniformly random vector.

The (n,m,q,Da, Dy, D )-LWE problem is defined to be distinguishing between

the following distributions:

(A;A -r+e) and (A,t).

4.3 Quantum Money and Quantum Lightning

Here, we define public key quantum money and quantum lightning. Following
Aaronson and Christiano [AC12], we will only consider so-called “mini-schemes”,
where there is only a single banknote.

Both quantum money and quantum lightning share the same syntax and
correctness requirements. There are two quantum polynomial-time algorithms
Gen, Ver such that:

— Gen(1*) samples a classical serial number o and a quantum state [t)).
— Ver(o, |1)) outputs a bit 0 or 1.

Correctness. We require that there exists a negligible function negl such that
Pr[Ver(Gen(1*))] > 1 — negl()).

Security. Where public key quantum money and quantum lightning differ is
in security. The differences are analogous to the differences between one-way
functions and collision resistance.

Definition 3 (Quantum Money Unforgeability). (Gen, Ver) is secure public
key quantum money if, for all quantum polynomial-time A, there exists a negligible
negl such that A wins the following game with probability at most negl:

— The challenger runs (o, [¢)) < Gen(1}), and gives o, |¢) to A.

— A produces a potentially entangled joint state p1 2 over two quantum registers.
Let p1, p2 be the states of the two registers. A sends py2 to the challenger.

— The challenger runs by < Ver(o,p1) and by < Ver(o,p2). A wins if by =
by = 1.
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Definition 4 (Quantum Lightning Unforgeability). (Gen, Ver) is secure
quantum lightning if, for all quantum polynomial-time A, there exists a negligible
negl such that A wins the following game with probability at most negl:

— A, on input 1*, produces and sends to the challenger o and p1,2, where p1 2
is a potentially entangled joint state over two quantum registers.

— The challenger runs by < Ver(o,p1) and b < Ver(o,p2). A wins if by =
by = 1.

The difference between quantum lightning and quantum money is therefore
that in quantum lightning, unclonability holds, even for adversarially constructed
states.

Note that, as with classical collision resistance, quantum lightning does not
exist against non-uniform adversaries. Like in the case of collision resistance, we
can update the syntax and security definition to utilize a common reference string
(crs), which which case non-uniform security can hold. For this paper, to keep
the discussion simple, we will largely ignore the issue of non-uniform security.

5 Our General Attack on a Class of Quantum Money

Due to limitation of space, we leave a detailed discussion of the [KLS22] money
scheme and its flaw in of the full version.

Now, we show that a natural class of schemes, including the equivalent view
on [KLS22] demonstrated in the full version, cannot possibly give secure quantum
money schemes, regardless of how the verifier works.

5.1 The General Scheme

Here, we describe a general scheme which captures the alternate view above.
Here, we use somewhat more standard notation from the lattice literature. Here
we give a table describing how the symbols from section C map to this section:

This Section Section C.3
q P
n 1
m d=d+2
A v’ as a column vector
1) |9")
u T
W |k + v x 0 x w(y/g00))

Setup. Let g be a super-polynomial, which may or may not be prime. Sample
from some distribution several short vectors si,...,s, € Z;" for a constant £, and
assemble them as a matrix S € Z;”Xf . Then generate a random matrix A € Zy**"
such that AT -S = 0 mod q.
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Minting. Create some superposition |[¢)) of vectors in y € Z;" such that an all
but negligible fraction of the support of |¢) are on vectors with norm W. Let ay,
be the amplitude of y in |1)).

Then apply the following map to |¢)):

ly) = |y, AT - y mod )

Finally, measure the second register to obtain u € Zj. This is the serial number,
and the note is |ty ), whatever remains of the first register, which is a superposition
over short vectors y such that A7 -y = u.

Verification. We do not specify verification. Indeed, in the following we will show
that the money scheme is insecure, for any efficient verification scheme.

5.2 Attacking the General Scheme

We now show how to attack the general scheme. Let C be a matrix whose columns

span the space orthogonal to the columns of S. Let [¢],) be the state sampled

from |1,) by measuring y — C7 -y, and letting |¢),) be whatever is left over.
Our attack will consist of two parts:

— Showing that |¢],) is indistinguishable from [y, ), for any efficient verification
procedure. We show (Section 5.3) that this follows from a certain “k-LWE”
assumption, which depends on the parameters of the scheme (k,n,m,q, etc).
In Section D of the full version, we justify the assumption in certain general
cases, based on the assumed hardness of worst-case lattice problems. Note that
these lattice problems are essentially (up to small differences in parameters)
the same assumptions we would expect are needed to show security for the
money scheme in the first place. As such, if &-LWE does not hold for these
special cases, most likely the quantum money scheme is insecure anyway. Our
cases include the case of [KLS22].

— Showing that |¢!,) can be cloned. Our attack first measures [¢),) to obtain a
single vector y in it’s support. To complete the attack, it remains to construct
[¢1) from y; by repeating such a process many times on the same y, we
successfully clone. We show (Section 5.4) that in certain general cases how
to perform such a construction. Our cases include the case of [KLS22].

Taken together, our attack shows that not only is [KLS22] insecure, but that
it quite unlikely that any tweak to the scheme will fix it.

5.3 Indistinguishability of |/ )

Here, we show that our fake quantum money state |1)!,) passes verification, despite
being a very different state that |1,). We claim that, from the perspective of any
efficient verification algorithm, [¢!,) and |¢y) are indistinguishable. This would
mean our attack succeeds.
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Toward this end, let C € ZZTX(M_Z) be a matrix whose rows span the space
orthogonal to S: CT - S = 0. Notice that the state [1,) can be equivalently
constructed by applying the partial measurement of CT -y to |t)y)

Consider the following problem, which is closely related to “k-LWE”(definition4
in the full version):

Problem 1. Let n,m,q, X be functions of the security parameter, and D a dis-
tribution over S. The (n,m,q, X, ¢, D)-LWE problem is to efficiently distinguish
the following two distributions:

(A,A-r+e) and (A,C-r'+e),

Where r is uniform in Z, r’ is uniform in Z;"’l, and e is Gaussian of width Y.
We say the problem is hard if, for all polynomial time quantum algorithms, the
distinguishing advantage is negligible.

In Section D of the full version, we explain that in many parameter settings,
including importantly the setting of [KLS22], that the hardness of Problem 1 is
true (assuming standard lattice assumptions).

With the hardness of Problem 1, we can show the following, which is a
generalization of a result of [LZ19] that showed that the SIS hash function is
collapsing for super-polynomial modulus:

Theorem 1. Consider sampling A, S as above, and consider any efficient al-
gorithm that, given A,S, samples a u and a state |¢y) with the guarantee that
all the support of |¢u) is on vectors 'y such that (1) AT -y = umod q and (2)
lylo <W.

Now suppose |¢y) is sampled according to this process, and then either (A)
|pu) is produced, or (B) |¢l,) is produced, where |¢,) is the result of applying the
partial measurement of CT -y to the state |py).

Suppose there exists X such that /W X = w(y/log \) such that (n,m,q, X, ¢, D)-
LWE is hard. Then cases (A) and (B) are computationally indistinguishable.

Note that an interesting consequence of Theorem 1 in the case £ = 0 is that
it shows that the SIS hash function is collapsing for any modulus, under an
appropriate (plain) LWE distribution. This improves upon [LZ19], who showed
the same but only for super-polynomial modulus. We now give the proof of
Theorem 1:

Proof. For an integer ¢, let |-]; denote the function that maps a point z € Z, to
the z € {0, |¢/t], |2¢/t],-, | (t—1)q/t]} that minimizes |z — x|. Here, |z — x| is the
smallest @ such that z = x &+ a mod ¢. In other words, |-]; is a course rounding
function that rounds an x € Z, to one of ¢ points that are evenly spread out in
Z,.

Let p be a mixed quantum state, whose support is guaranteed to be on y
such that (1) AT -y = umod ¢ and (2) |y|]a < W. For a quantum process M
acting on p, let M (p) be the mixed state produced by applying M; to p. We will
consider a few types of procedures applied to on quantum states.
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My: Given A, My is just the partial measurement of y — CT -y.

M?: Given A, to apply this measurement, first sample an LWE sample b = A-r+e.
Then apply the measurement y — |b - y|;. Discard the measurement outcome,
and output the remaining state.

Lemma 1. For any constants t,d, M(p) is statistically close to %MfXd(p) +
1
(1—=a)p
Note that Lemma 1 means that M! can be realized by the mixture of two

measurements: Mf *d with probability 1 /t2, and the identity with probability
(1 — é) We now give the proof.

Proof. Consider the action of M{ on |y)(y’|, for a constant ¢. First, an LWE
sample b = A-r+e is chosen. Then conditioned on this sample, if |b-y]; = [b-y’]+,
the output is |y)(y’|. Otherwise the output is 0. Averaging over all b, we have
that

Mi(ly)y'l) = Prl[b-yli = [b-y']i]

where the probability is over b sampled as b = A - r + e. Recalling that u =
AT .y = AT .y’ we have that:

b-y=r-u+e-y
b.y/:r.u+e.y/

Now, by our choice of X, |e- (y — y’)| < g/t for any constant ¢, except with
negligible probability. We will therefore assume this is the case, incurring only a
negligible error.

Note that z := r - u is uniform in Z, and independent of e - y,e - y’. So
measuring |b - y|; is identical to measuring the result of rounding e -y, except
that the rounding boundaries are rotated by a random z € Z,. Since the rounding
boundaries are ¢/t apart, at most a single rounding boundary can be between
e-y and e-y’, where “between” means lying in the shorter of the two intervals
(of length |e - (y — y’)|) resulting by cutting the circle Z, at the points e - y and
e y.|b-yl: =|b-y'l]: if and only if no rounding boundary is between them.

Since the cyclic shift z is uniform each rounding boundary is uniform. Since
there are ¢ rounding boundaries and no two of them can between e -y and e - y’,
we have that, conditioned on e, the probability |b-y]; # |b-y’]; is therefore
é\e - (y —y')|. Averaging over all e, we have that, up to negligible error:

MWD = (1- Lelle v =y

Notice then that M{(|y)(y’]) = 1M(|y)(y') + (1~ 3) [y) (|- By lincarity,
we therefore prove Lemma 1. O

Note that the proof of Lemma 1 also demonstrates that My and M} commute,
since their action on density matrices is just component-wise multiplication by a
fixed matrix.
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M}: Given A, to apply this measurement, first sample an LWE sample b =
C -1’ + e. Then apply the measurement y — |b - y]|;. Let p; be the probability
that |«]¢; = |y]: for uniformly random z,y € Z,. Note that for any constant ¢,
pe <t '+ 0(qh).

Lemma 2. For any constant t, Mi(p) is statistically close to Mo(Mi(p))+p:(p—
Mo(p))-

Note that unlike Lemma 1, the expression in Lemma 2 does not correspond
to a mixture of measurements applied to p. However, we will later see how to
combine Lemma 2 with Lemma 1 to obtain such a mixture.

Proof. The proof proceeds similarly to Lemma 1. We consider the action of M}
on |y)({y’|, and conclude that

M(ly)y'l) = Prl[b - yli = [b-y']]

where the probability is over b = C - r’ + e. But now we have that

b-y=r7T.Cly+e-y

We consider two cases:

— CT .y =CT .y’ This case is essentially identical to the proof of Lemma 1,
and we conclude that Prp[|b-y]; = |b-y']{]=1— éEeHe -(y = ¥")|]- Note
that for such y,y’, we also have

Mo(M{(ly)(y' ) +pe(Iy) (' |- Mo(ly) (') = M7 (Mo(|y)(y']))+pe x0 = 1—5

since My is the identity on such |y)(y’|. Thus, we have the desired equality
for p = |y)(y'|.

— CT .y #Cyp-y'. In this case, b-y and b - y’ are independent and uniform
over Z,. Therefore, Prp[|b-y]; = |b-y']:] = pi- Note that for such y,y’,
we also have

Mo (M ([y){y') + pe(ly)(y'| = Mo(ly){y'])) = 0+ pely)(¥']
since My (|Jy)(y’|) = 0 in this case.

Thus for each |y)(y’|, we have the desired equality. By linearity, this thus extends
to all p. O

Combining Lemmas 1 and 2, we obtain:

Elle-(y-')] -

Corollary 1. For any constants t,d, M (p) is statistically close to L Mo(M{*%(p))+

(1 =2 —py) Mo(p) + pep.
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For d such that 1 — i — p; > 0, this represents a mixture of measurements
My o MI*? My, and the identity.

We are now ready to prove Theorem 1. Suppose there is an algorithm A that
constructs a mixed state p, and then can distinguish p from My(p) with (signed)
advantage €. Let d be a positive integer, to be chosen later. Let pg = p, and
pi = MfXd(pi_l). Note that for any polynomial ¢, p; can be efficiently constructed.
Let €g = ¢, and ¢; be the (signed) distinguishing advantage of A when given p; vs
Mo(ps).

Let d; be the (signed) distinguishing advantage of A for M(p;) and M{(p;).
Write g =1 — é — p¢. Invoking Lemma 1 and Corollary 1 with d, we have that

1
0i = ~€it1 + g€

Now, we note that §; must be negligible, by the assumed hardness of (n, m, g, X, £, D)-
LWE. Solving the recursion gives:

ci(—dg)™ =€~

ISR

1—1
> (—dg) 78541
=0

Next, assume d is chosen so that dg is a constant greater than 1. Define T =
E;;Ol(dg)_j = % — 2790 Consider the adversary A’ for (n,m,q, X, ¢, D)-
LWE, which does the following:

— On input A, S,b, where b= A-r+eorb =C-r'+e, it chooses j € [0, A\ —1]
with probability (dg)~7/T

Then it constructs p according to A.

— Next, A’ computes p; by applying MfXd to p for j times.

— Now A’ applies the measurement y +— |b - y]|; to p;, obtaining p’.

— A’ runs the distinguisher for A, obtaining a bit b

A’ outputs b if j is even, 1 — b if j is odd.

Note that if b is A-r+e, then p’ = M{(p;), and if b is C-r’ +e, then p’ = M(p;).
Therefore, the distinguishing advantage of A’ is:

1 A—1 _
0= j;(—dg)*ﬂém

Thus, we have that
_ T
ex(—dg) ™ =€ — 56 ,

Noting that €y must trivially be in [-1/2,1/2], we have that:

d Lo i-a 1 oM
> 2 (1= 2 > — =) =
o> 2 (e| L (dg) ) >d <1 dg) 1~ 2

Thus, if A has non-negligible distinguishing advantage, so does A’, breaking the
(n,m,q, X, ¢, D)-LWE assumption. This completes the proof of Theorem 1. [



20 Jiahui Liu, Hart Montgomery, and Mark Zhandry

5.4 Constructing |¢!)

Here, we explain how to construct |+¢],), given just the vector y that resulted
from measuring it. We first observe that, since |¢],) has support only on vectors
that differ from y by multiples of the columns of S, we can write:

|Yy) Z ayts.tly +S-t)
t

Where ay, is the amplitude of y in |¢). This gives a hint as to how to construct
|1l,): create a superposition over short linear combinations of S, and then use
linear algebra to transition to a superposition over y + S - t, weighted according
to a. The problem of course is that o may be arbitrary except for having support
only on short vectors. Therefore, we do not expect to be able to construct |¢])
in full generality, and instead focus on special (but natural) cases, which suffice
for our use.

Wide Gaussian Distributed. Suppose the initial state |¢)) is the discrete Gaussian
over the integers: 1)) = |¥zm 5 ) for some center ¢ and covariance matrix X.
Then [¢7,) is simply

|‘Il£+y,2,c>

Here, L is the integer lattice generated by the columns of S, and £ + y is the
lattice £ shifted by y. We can construct the state |¥ -y 5 ¢) by first constructing
|¥ . 5 c—y), and then adding y to the superposition. Thus, as long as sl.x-l.s, <
1/w(+/log A) for all 4, we can construct the necessary state.

Constant Dimension, Hyper-ellipsoid Bounded. Here, we restrict £ to having a
constant number of columns, but greatly generalize the distributions that can be
handled.

A hyper-ellipsoid is specified by a positive definite matrix X', which defines
theset Exc={y:(y—¢c)T-M-(y—c) <1}

Definition 5 (Good Hyper-ellipsoid). A good hyper-ellipsoid for |1} is an
Ex ¢ such that there exists a function n(\) and polynomials p(\), g(N\) such that,
if |¥) is measured to get a vectory, then each of the following are true except
with negligible probability:

— ¥ € Ex . In other words, Ex; ¢ contains essentially all the mass of |1).

— lax|? < n(X\). In other words, 1 is an approxvimate upper bound on c.

— If a random vector x is chosen from Ex cN{y +S -t :t € Z'}, then with
probability at least 1/p(\), |ax|®> > n/q(\). In other words, Ex . doesn’t
contain too many points with mass too much lower than 7.

Taken together, a good hyper-ellipsoid is one that fits reasonably well around
the [¢). It must contain essentially all the support of |¢), but can over-approximate
it by a polynomial factor.
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Lemma 3. Suppose there is a good hyper-ellipsoid for |¢), and that oy, can be
efficiently computed given any vector'y. Then there is a polynomial-time algorithm
which constructs |Y,) from'y

Proof. Let Esx; . be the good hyper-ellipsoid. Let £ be the lattice generated by
the columns of S. By assumption, with overwhelming probability if we measure
[¢) to get y, we have y € Ex ¢. Let Exv o be the ellipsoid that is the intersection
of Ex; . and the affine space {y +S -t :t € R‘}.

Claim. There is PPT algorithm which, given S, Y’ computes T = {ry, -+ ,rp}
such that:

—rl (X)) t.r; <2foralli e [¢], and
~ EseN{y+T-t:tcZ'}=Eson{y+S-t:teZz}.

Proof. Write (X/)1as (/)" =UT - U.Let S ={s} =U"sy,...,s, =U-s,},
and let £’ be the lattice generated by S’. Since £ is constant, we can find shortest
vectors in £" in polynomial time. Therefore, compute r/, ..., r, such that r} is
the shortest vector in £’ that is linearly independent from {r},...,r}_;}. Then
let ¢' be such that |r},|> <2, but [r}, ., |* > 2, or £ = £ if no such ¢ exists.

Finally, let r; = U~! - r}. Clearly, we have that r} - (X’)~!-r; < 2. It remains
to show that Exy o N{y + T -t:t € Z'} = Exr o N{y +S -t :t e Z'}. First,
we notice that the lattice £(T) spanned by T is a sub-lattice of £(S) spanned by
S. So one containment is trivial. Now assume toward contradiction that there
isax€FEseN{y+S-t:teZz' thatis not in Ex» o N{y +T-t:tcZ"}.
This means x —y is in £(S). We also have that (y — )T - (X)) 1. (y—¢/) <1
(since and (x —¢/)T - (X')71. (x — ¢/) < 1. By the triangle inequality, we have
therefore that (x —y)? - (X')~!- (x—y) < 2.

But then we have that U-(x —y) has norm at most 2, lies in £’, and is linearly

independent of {r/,...,r},}. This contradicts that r, ; (which has norm squared
strictly greater than 2) is a shortest vector linearly independent of {r},...,r}}.
This completes the proof of the claim. O

We now return to proving Lemma 3. Let 8 = w(log A). We construct |¢,) in
three steps:

— We first construct a state negligibly close to |¥ .4y g5 .c/), as we did in the
Gaussian-distributed case above.

— We then construct the state |E), defined as the uniform superposition over
the intersection of £L+y and Ex . |E) will be obtained from |¥ .4y g5 cr)
via a measurement.

— Construct [¢/,) from |E). This also will be obtained via a measurement.

We now describe the two measurements. We start from the second. Let 7, p, g
be the values guaranteed by the goodness of Ex; . Define nx = 1/n if |ax|* <7,
and otherwise 1y = 1/|ax|?. To obtain |¢!) from |E), we apply the following
map in superposition and measure the second register:

%) = [x) (Vo) + VT Teax?I1))
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Suppose for the moment that 7y = 1/n for all x. Then conditioned on
the measurement outcome being 0, the resulting state is exactly |¢!). By the
guarantee that Ex . is good, we have that except with negligible probability
over the choice of y, all but a negligible fraction of the support of |¢!,) satisfies
Nx = 1/1n. Therefore, we will assume (with negligible error) this is the case. The
probability the measurement is 0 (over the choice of y as well) is Ex« gy, [2 /7],
which, with probability at least 1/p over the choice of y, is at least 1/¢. Thus,
the overall probability of outputting O is inverse polynomial, and in this case we
produce a state negligibly close to |¢7,).

It remains to construct |E) from |W,iy g5 o). This follows a very similar
rejection-sampling argument. Let

e /B x Ver(x=eNT-(BX)(x—¢)  if (x — /)T (2) - (x—¢) <1
T 0 otherwise

Note that 0 < v < 1. Now apply to ¥y g5 e) the map |x) — |x)(7x|0) +
/1 —12|1)), and measure the second coordinate. If the measurement outcome is
0, then the resulting state is exactly |E). For x € Esr o/, we have 75 > e /B >
1—o0(1). Therefore, the probability the measurement outputs 0 is at least 1 —o(1)
times the probability measuring ¥, g5 o produces an x € Ex or. This latter
probability is Oy(3~%/?), where the constant hidden by the big O depends on
£. Since £ is constant and S is polynomial (in fact, sub-polynomial), the overall
probability is polynomial. This completes the construction of |¢!,) and the proof
of Lemma 3. O

Applying to [KLS22]: To avoid confusion, we first refer the readers to our alternate
view on [KLS22| scheme in section C.3 and then we will see how to apply our
attack onto their scheme in section C.5 of the full version.

6 Invariant Money

From this section on, we discuss our positive results on quantum money/lightning.

We now describe our framework for instantiating quantum money using
invariants, or more precisely what we call walkable invariants.

Let X,Y be sets, and I : X — Y an efficiently computable function from X
to Y. I will be called the “invariant.” We will additionally assume a collection
of permutations o; : X — X indexed by i € [r] for some integer r, with the
property that the permutations respect the invariant:

I(oi(z) ) = I(x),Vi € [r]

In other words, action by each o; preserves the value of the invariant. We
require that o; is efficiently computable given . » may be polynomial or may be
exponential. To make the formalism below simpler, we will be implicitly assuming
that there exists a perfect matching between the o; such that for any matched
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04,0y, we have oy = 0 1 Moreover, i’ can be found given i. This can be relaxed
somewhat to just requiring that o, 1 can be efficiently computed given i, but
requires a slightly more complicated set of definitions.

Given a point z, the orbit of x, denoted O, C X, is the set of all z such
that there exists a non-negative integer k and 41,...,4; € [r] such that z =
04, (04, (- -+ 04, (2))). In other words, O, is the set of all z “reachable” from x
by applying some sequence of permutations. Note that I(z) = y for any z € O,.
We will therefore somewhat abuse notation, and define I(O,) = y. We also let
P, be the set of pre-images of y: P, = {z € X : I(z) = y}.

We will additionally require a couple properties, which will be necessary for
the quantum money scheme to compile:

— Efficient Generation of Superpositions: It is possible to construct the

uniform superposition over X: | X) := ﬁ D owex 1)

— Mixing Walks: For an orbit O, with a slight abuse of notation let oo ; be the
(possibly exponentially large) permutation matrix associated with the action
by o; on O. Then let My = %Zie[r} 00,; be the component-wise average of
the matrices. Let A1 (O), A2(O) be the largest two eigenvalues by absolute
value'®, counting multiplicities. Note that A\;(O) = 1, with corresponding
eigenvector the all-1’s vector. We need that there is an inverse polynomial
0 such that, for every orbit O, A\2(O) < 1 — §. This is basically just a way
of saying that a random walk on the orbit using the ¢; mixes in polynomial
time.

We call such a structure above a walkable invariant.

6.1 Quantum Money from Walkable Invariants

We now describe the basic quantum money scheme.

Minting. To mint a note, first construct the uniform superposition |X) over X.
Then apply the invariant I in superposition and measure, obtaining a string ¥,
and the state collapsing to:

1
Py) = — T
) Ty|;y| )

This is the quantum money state, with serial number y.

Verification. To verify a supposed quantum money state |¢) with serial number
y, we do the following.

— First check that the support of |¢) is contained in P,. This is done by simply
applying the invariant I in superposition, and measuring if the output is y.
If the check fails immediately reject.

18 They are real-valued, since Mo is symmetric, owing to the fact that we assumed the
o; are perfectly matched into pairs that are inverses of each other.
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— Then apply the projective measurement given by the projection >, P, |0){O],
where O ranges over the orbits contained in P, and |O) := ﬁ >wco ).

In other words, project onto states where, for each orbit, the weights of z in
that orbit are all identical; weights between different orbits are allowed to be
different.

We cannot perform this measurement exactly, but we can perform it approxi-
mately using the fact that A2(O) < 1—4. This is described in Section 6.2 below.
Outside of Section 6.2, we will assume for simplicity that the measurement is
provided exactly.

If the projection rejects, reject the quantum money state. Otherwise accept.

It is hopefully clear that honestly-generated money states pass verification.
Certainly their support will be contained in P,, and they apply equal weight to
each element in an orbit (and in fact, equal weight across orbits).

6.2 Approximate Verification

Here, we explain how to approximately perform the verification projection V =
>_ocp, |O)O|, using the fact that A»(0) <1 — 4 for all O. The algorithm we
provide is an abstraction of the verification procedure of [FGH"12], except that
that work presented the algorithm without any analysis. We prove that the
algorithm is statistically close to the projection V', provided the mixing condition
A2(0) < 1—4 is met.

Theorem 2. Assume A2(0) < 1—§ for all O, for some inverse-polynomial 6.
Then there is a QPT algorithm V such that, for any state |b), if we let [{)') be
the un-normalized post-measurement state from applying V to |1} in the case Vv
accepts, then ') is negligibly close to V|)).

We refer the readers to section E.1 of the full version for the proof due to
restriction on the space.

6.3 Hardness Assumptions

We rely on two hardness assumptions in our inviant money scheme: the path-
finding assumpion and the knowledge of path assumption. Due to space constraints,
we refer the readers to E.2 for the presentation on our hardness assumptions
needed.

Informally speaking, the path-finding assumption states that, given some
adversarially sampled z in a set X, it is hard for any efficient adversary, given a
random 2’ € X such that there exists some o such that o (x) = 2/, to find such
ao.

The knowledge of path assumption can be thought of as a quantum analogue
to the (classical) knowledge of exponent assumption. We define two different
versions of the knowledge of path assumption to account for the fact that some
of our invariants could be invertible.
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6.4 Security

Theorem 3. Assuming the Path-Finding assumption and the Knowledge of Path
Assumption , the scheme above is secure quantum lightning. If the invariant is
invertible, then assuming the Path-Finding assumption , the Knowledge of Path
Assumption for Invertible Invariants , and the Inversion Inverting assumption ,
the scheme above is secure quantum lightning.

We refer the readers to E.3 of the full version for the formal statements of
the above assumptions and the proof on the above theorem.
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