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Abstract. If everyone were to use anonymous credentials for all access
control needs, it would be impossible to trace wrongdoers, by design. This
would make legitimate controls, such as tracing illicit trade and terror
suspects, impossible to carry out. Here, we propose a privacy-preserving
blueprint capability that allows an auditor to publish an encoding pk,
of the function f(x,-) for a publicly known function f and a secret input
z. For example, x may be a secret watchlist, and f(z,y) may return y if
y € z. On input her data y and the auditor’s pk,, a user can compute an
escrow Z such that anyone can verify that Z was computed correctly from
the user’s credential attributes, and moreover, the auditor can recover
f(z,y) from Z. Our contributions are:

— We define secure f-blueprint systems; our definition is designed to
provide a modular extension to anonymous credential systems.

— We show that secure f-blueprint systems can be constructed for all
functions f from fully homomorphic encryption and NIZK proof sys-
tems. This result is of theoretical interest but is not efficient enough
for practical use.

— We realize an optimal blueprint system under the DDH assumption
in the random-oracle model for the watchlist function.

1 Introduction

Cryptography offers powerful answers on how to strike a balance between privacy
and accountability. The study of anonymous credentials [27I55/T7I54IT8IT92] has
given us general practical tools that make it possible to obtain and prove posses-
sion of cryptographic credentials without revealing any additional information.
In other words, users can obtain credentials without revealing who they are, and
then prove possession of credentials in a way that is unlinkable to the session
where these credentials were obtained and to other sessions in which they were
shown. Anonymous credentials can be shown a limited number of times (com-
pact e-cash) [15], or at a limited rate total or per verifier [I4I16]. Anonymous
credentials are compatible with identity escrow [513], where and appropriate
trusted authority can establish the identity of the user when needed.

In this paper, we extend the state-of-the-art on anonymous credentials by
adding a new desirable feature: that of a privacy-preserving blueprint capability:
even a malicious authority cannot learn anything about a user other than what’s
revealed by comparing the blueprinted data with the user’s data.
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Consider anonymous e-cash with a secret watchlist as a motivating applica-
tion. In anonymous e-cash [25126I28/15], we have a Bank that issues e-coins (cre-
dentials), Users who withdraw and spend them, and Vendors (or Verifiers) that
verify e-coins and accept them as payment in exchange for goods and services.
Some small number of users are suspected of financial crimes, and, unbeknownst
to them, a judge has placed them on a watchlist. We need a mechanism that
allows an auditor to trace the transactions of these watchlisted users without
violating the privacy of any other users, and also while keeping the contents of
the watchlist confidential from everyone.

A high-level definition of a privacy-preserving blueprint. We have three types
of participants: the users, the verifiers, and the de-anonymization auditor. On
input z (for example, a watchlist), the auditor outputs a blueprint pk, that the
users and verifiers will need.

Next, the user and the verifier engage in an anonymous transaction; we don’t
actually care what else happens in this transaction; the user might be proving to
the verifier that they are authorized, or it may be an e-cash transaction. What
we do care about is that, as a by-product of this transaction, the user and the
verifier have agreed on a cryptographic commitment C' such that (1) the user
is in possession of the opening of C; and (2) the transaction that just occurred
guarantees that the opening of C' contains user data y that is relevant for the
auditor’s needs. For example, imagine that x is a watchlist consisting of names of
individuals of interest, and y contains a user’s name; then this user is of interest
to the auditor if y € x.

To enhance this anonymous transaction with privacy-preserving blueprint
capability, the user runs the algorithm Escrow to compute a value Z that is an
escrow of the opening of the commitment C; from Z, the auditor will be able to
recover the information relevant to him, and no other information about the user.
Specifically, in the watchlist scenario, the auditor will recover y if y € z, but will
learn nothing about the user if y ¢ x. More generally, in an f-blueprint scheme,
the auditor will recover f(x,y) and no additional information. The verifier’s job
is to verify the escrow Z against C using VerEscrow and only let the transaction
go through if, indeed, it verifies.

It is important that even a malicious auditor cannot create a blueprint that
corresponds to an unauthorized input x. To capture this, we also require that
there is a publicly available cryptographic commitment Ca. Outside of our pro-
tocol, we expect a mechanism for arriving at an acceptable (but secret) input x
and the commitment Ca to z. For example, a judge may publish a commitment
to a secret watchlist, and privately reveal the opening to the auditor; or several
authorities may be responsible for different components of a watchlist and the
auditor aggregates them together in a publicly verifiable fashion; or another dis-
tributed protocol can be agreed upon for arriving at the commitment Ca such
that its opening (i.e., z) is known to the auditor. To ensure that only such an
authorized secret input « is blueprinted, a secure blueprint scheme must include
an algorithm VerPK that verifies that pk, indeed corresponds to the value to
which Cjp is a commitment.
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Our security definition mandates that the following properties hold: (1)
correctness, so that honestly created blueprints and escrows pass VerPK and
VerEscrow, respectively, and the escrow Z correctly decrypts; (2) soundness of
VerEscrow that ensures that if, for a commitment C, escrow Z is accepted, then
it correctly decrypts to f(z,y) where x is the opening of Ca and y is the open-
ing of C; (3) blueprint hiding, i.e., the blueprint pk, does not reveal anything
about = other than what the adversary can learn by forming valid escrows and
submitting them for decryption; (4) privacy against a dishonest auditor that
ensures that even if the auditor is malicious, an honest user’s escrow contains no
information beyond f(z,y), where z is the opening of Ca and y is the opening of
C; and finally (5) privacy with an honest auditor that ensures that an adversary
who does not control the auditor learns nothing from the escrows. We give a
precise formal definition of an f-blueprint scheme in Sect. [3]

Our results. Our first result is a blueprint scheme specifically for watchlists;
more precisely, it is an f-blueprint scheme for

y Hy=uylyandy, €x
f(.’L'7 y) = { .
1 otherwise

where y; denotes O(log A) most significant bits of y. This first scheme is secure in
the random-oracle model under the decisional Diffie-Hellman assumption. The
size of pky is optimal at O(An) where ) is the security parameter, which is linear
in the number of bits needed to represent a group element; and the watchlist x
consists of n elements of Z,, where ¢ (logg = ©(\)) is the order of the group.
The size of the escrow Z is also O(An).

Our second result is an f-blueprint scheme for any f from fully homomorphic
encryption (FHE) and non-interactive zero-knowledge proofs of knowledge. In
the full version of this paper [52], we also show how to obtain an f-blueprint
scheme for any f from non-interactive secure computation (NISC) [50].

Technical roadmap. We obtain the results above via the same general method:
by first defining (Sect. [4]) and then realizing (Sections |§| and [7)) a homomorphic-
enough cryptosystem (HEC) for the function f. We can think of a homomorphic-
enough cryptosystem as a protocol between Alice and Bob that works as follows:
first, Alice uses the HECENC algorithm to encode her input z into a value X,
and she also obtains a decryption key d for future use; next, Bob uses HECEVAL
to compute an encryption Z of z = f(x,y) from Alice’s encoding X and his
input y. Finally, Alice runs HECDEC to recover z from Z. To be useful for
our application, an HEC scheme must be correct even when the inputs to the
algorithms are chosen maliciously, and it also must ensure that X hides z, and
that X and Z together hide the inputs x and y. Additionally, it must allow for
an algorithm HECDIRECT that computes an encryption Z of z directly from
X and z = f(z,y), such that its output is indistinguishable from the output of
HECEVAL, even if Alice is malicious.
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A HEC combined with an appropriate non-interactive zero-knowledge (NIZK)
proof system gives a generic construction of an f-blueprint:. The auditor ob-
tains (X,d) < HECENC(z), and an NIZK proof ma that X was computed
correctly in a way that corresponds to the opening of Ca; he sets the blueprint
as pky = (X, wa). Verifying this blueprint amounts to verifying ma. To compute
the escrow Z, the user obtains Z’ + HECEVAL(X,y) and then a proof 7z that
7' was computed correctly from X and the opening of C; then set Z = (Z', 7z).
Verifying the escrow amounts to verifying 7. Finally, in order to recover f(z,y)
from the escrow Z, the auditor uses the decryption key d to run HECDEC(d, Z').

Given this roadmap, our theoretical construction that works for any f is
relatively straightforward: we show that HEC can be realized from circuit-private
fully homomorphic encryption [6J60I35] which, in turn, can be realized from
regular fully homomorphic encryption [46IT0I947]. The circuit-privacy guarantee
ensures that Z hides Bob’s input y from a malicious Alice. Alternatively, as we
explore in the full version of this paper [52], it can be realized for any f from
a related primitive of non-interactive secure computation (NISC) [50]. Since
here we don’t aim for efficiency, general (inefficient) simulation-extractable NIZK
PoK can be used for the proofs. This instantiation of our generic construction
is presented in Sect. []

Our practical construction for watchlists under the decisional Diffie-Hellman
assumption is not as straightforward: first, it requires that we construct a prac-
tical homomorphic enough cryptosystem based on DDH, and next we need effi-
cient non-interactive zero-knowledge proof systems for computing and verifying
wa and 7z. Let us give a brief overview.

Our HEC construction uses the ElGamal cryptosystem [36l65] as a building
block. Suppose as part of setup we are given a group G of order g in which the
decisional Diffie-Hellman assumption holds. Let g be a generator of G. In order
to encode her input z = (a1, ..., a,), Alice’s HECENC algorithm first generates
an ElGamal key pair (pk,sk). She then picks a random s < Z; and computes
the coefficients cy,..., ¢, of the n-degree polynomial p(x) = s[](x — a;) for
which ay,...,a, are the n zeroes. The encoding X are ElGamal encryptions
Co,...,C, of the values g%, -, ¢g°» under the ElGamal public key pk, so the
output of HECENC is X = (Cy,...,Cp,pk), and d = sk.

Bob’s algorithm HECEVAL computes Z as follows: first, it parses y = y1|y2
(recall that y; denotes the first O(log A) bits of y). Then Bob obtains an ElGa-
mal encryption E of g?(¥2) from the encrypted coefficients Cy, . .., Cp: since the

ElGamal cryptosystem is multiplicatively homomorphic, E = CoC{*CY : e Cﬁg
is the desired ciphertext (for an appropriate multiplication operation on ElGa-
mal ciphertexts). Next, let F' be an encryption of ¢¥; finally, Bob obtains the
ciphertext Z = F'E", i.e., Bob uses F to mask the encryption of ¢¥; if F is an
encryption of 0, the mask won’t work and Z will decrypt to g¥.

This is reminiscent of the private set intersection construction of Freedman,
Nissim and Pinkas [42], but with a subtle difference: the polynomial encoded
as part of X has an additional random coefficient, s. Thus, even if Bob knows
Alice’s entire input z, he still does not know p(a) for a ¢ x. This ensures that in
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the event that f(z,y) = L, Bob cannot set r in such a way that Z will decrypt
to a value of his choice; instead, it will decrypt to a random value.

Finally, HECDEC(d, Z) decrypts the ElGamal ciphertext Z to some group
element u € G, and for each a; € z, and for all possible values for y;, checks
whether ¢g¥1% = . If it finds such a pair, it outputs it; else, it outputs L.

Plugging in this HEC scheme in our generic construction gives us an efficient
blueprint scheme for watchlists as long as we can also find efficient instantiations
of the NIZK proof systems for computing the proofs ma and 7. As was already
well-known [44123|58], we can represent the statement that a given ElGamal
ciphertext encrypts g% such that a given Pedersen [62] commitment C is a com-
mitment to a as a statement about equality of discrete logarithm representations;
moreover, we can also represent statements about polynomial relationships be-
tween committed values (i.e., that C), is a commitment to the value p(aq, ..., ar)
where p is a polynomial, and commitments C1,...,Cy are to values ay,...,a)
as statements about equality of representations. Using this fact, as well as the
fact that efficient NIZK proofs of knowledge for equality of discrete logarithm
representations in the random-oracle model are known [44J433T], we can also
efficiently instantiate the NIZK proof system in the random-oracle model.

A subtlety in using these random-oracle-based proof systems, however, is that
generally such proof systems’ knowledge extractors require black-box access to
the adversary and involve rewinding it. In situations where the adversary expects
to also issue queries to its challenger, and a security experiment or reduction
must extract the adversary’s witness in order to answer them, using such proof
systems runs into the nested rewinding problem. One could opt to use straight-
line extractable proofs instead (in such proofs, the knowledge extractor does not
need to rewind the adversary); however, known techniques to achieve straight-
line extraction come either at a w(log\) multiplicative cost [I3I39] or require
cumbersome setup assumptions [21].

A more efficient technique is to have a common random string (CRS) and
interpret it as an ElGamal public key. There is an efficient X-protocol [31] for
proving that the contents of two ElGamal ciphertexts under two different keys are
equal; it can be converted into a non-interactive zero-knowledge proof using the
Fiat-Shamir heuristic [38] in the random-oracle model. If one of these public keys
comes from the CRS, then the soundness of the proof system allows for straight-
line extraction that uses the corresponding secret key as the extraction trapdoor.
Here we give a formalization of this previously used (e.g. [20]) approach.

Specifically, we formulate a new flavor of NIZK proof of knowledge systems:
black-box extractability with partial straight-line (BB-PSL) extraction, and give
an efficient NIZK BB-PLS PoK proof system for equality of discrete-logarithm
representations. This proof system allows straight-line extraction (i.e. extraction
from the proof itself, without rewinding the adversary) of a function of the wit-
ness (for example, instead of extracting w the extractor computes g*); this gives
the security experiment enough information to proceed. Although this approach
is somewhat folklore, we believe our rigorous formulation and instantiation in
the random-oracle model (Sect. may be of independent interest.
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How our scheme builds on the anonymous credentials literature. Note that, as
stated so far, neither the definitions nor the schemes concern themselves with
credentials. Instead, the user and the verifier agree on a commitment C' to the
user’s relevant attribute y. Out of band, the user may have already convinced the
verifier that she has a credential from some third-party organization attesting
that y is meaningful. For example, if y is the user’s name, then the third-party
organization might be the passport bureau. Indeed, this is how anonymous cre-
dentials work in general [B4UI8IT9[2], and therefore this modeling of the problem
allows us to add this feature to anonymous credentials in a modular way. More-
over, our ElGamal-based scheme is compatible with literature on anonymous
credentials [BATI8ITINZ] and compact e-cash and variants [I5T6/14] because Ped-
ersen commitments are used everywhere.

Related work. Group signatures and identity escrow schemes [2922I5TIT15] al-
low users to issue signatures anonymously on behalf of a group such that an
anonymity-revoking trustee can discover the identity of the signer. The differ-
ence between this scenario and what we are doing here is that in group signatures
the signer’s identity is always recoverable by the trustee, while here it is only
recoverable if it matches the watchlist.

Group signatures with message-dependent opening [63] and bifurcated [53],
multimodal and related signatures [5934J4T] allow a tracing authority to recover
a function of the user’s private information that’s known to the user at the time of
group-signing or credential showing. In contrast, in a secure blueprinting scheme,
the user knows only one of two inputs to this function.

Another related line of work specifically for watchlists is private set inter-
section (PSI) [42124]. Although techniques from PSI are helpful here, in general
PSI is an interactive two-party protocol, while here, the Auditor who knows the
watchlist x is offline at the time when the user is forming the escrow. Private
searching on streaming data [61] allows an untrusted proxy to process streaming
data using encrypted keywords. The resulting encrypted data does not come
with any assurance that it was correct. In contrast, in our scenario, the verifier
and the auditor can both verify that Z was computed correctly.

A series of recent papers explored accountable law enforcement access sys-
tem [48/40J64/49]. None of them, however, consider integration with anonymous
credential systems for privacy-preserving authentication. Break-glass encryption
by Scafuro [64] realizes a mechanism in which the auditor can decrypt Alice’s
ciphertexts simply be reliably revealing that he did so, i.e., that he broke the
glass. The choice of which messages are to be leaked can happen even after Al-
ice’s public key is generated. Scafuro achieves this in certain strong models, such
as those of hardware tokens and existence of a blockchain. In abuse-resistant law
enforcement access systems (ARLEAS) [49], a law enforcement agency with a
valid warrant can secretly place a user Alice under surveillance. They will be able
to decrypt messages that are encrypted to Alice’s public key, but not those en-
crypted to other users for whom surveillance has not been authorized. Moreover,
ARLEAS make it possible for an email server to enforce compliance by verifying
that an encrypted message indeed allows lawful access by law enforcement; and
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(in a nutshell) all participants can verify the validity of all warrants even though
they are unable to tell who is under surveillance. In our view, ARLEAS follows
principles that are similar to ours: finding a way to reconcile the need to monitor
illegal activity with privacy needs of the law-abiding public. However, since AR~
LEAS concerns itself with encryption, while we worry about privacy-preserving
authentication, our technical contributions are somewhat orthogonal.

2 Preliminaries

The ElGamal Cryptosystem and Its Security. Let KGen be an algorithm that,
on input a description of a group G with generator g of prime order ¢ in which
the discrete-logarithm problem is hard for PPT (in the security parameter 1*)
adversaries, outputs (1) a public key pk consisting of an element y < G; and
(2) a secret key sk = s such that g° = y. The encryption algorithm Enc encrypts
a message m € G by sampling r <$ Z, and outputting the ciphertext ¢ =
(¢g",my"). The decryption algorithm Dec decrypts ¢ = (a,b) € G? by computing
ba~*. We use ¢ < Enc(pk,m) and Enc(pk,m;) to make randomness explicit.

ElGamal is semantically secure under the decisional Diffie-Hellman assump-
tion [66]. In this paper, we use the equivalent notion of security against chosen
plaintext attack (IND-CPA) formulated by Boneh and Shoup [7]. In their se-
curity game, the adversary continuously interacts with either the 0-encryption
oracle that always encrypts the first of the two messages the adversary sends it,
or with the 1-encryption oracle that always encrypts the second message. Their
security definition is more convenient for us because it allows us to avoid an
additional hybrid argument.

Let @ : G? x G — G? be the operator for the homomorphic composition
of two ElGamal ciphertexts ¢; = (a1,b1) € G?,¢2 = (a2,b2) € G? such that:
c1®co = (ay - ag, by - by) where - is the group operator of G. We also write ¢* as
shorthand for repeated operation of ¢ with itself a times.

Definition 1 (Statistically hiding non-interactive commitment). A pair
of algorithms (CSetup, Commit) constitute a statistically hiding non-interactive
commitment scheme for message space Mpqr and randomness space Rcper if
they satisfy (1) statistical hiding, i.e., for any cpar output by CSetup(1?), for
any mo, m1 € Mepar, the distributions D(cpar, mg) and D(cpar,mq) are statis-
tically close, where D(cpar,m) = {r <= R¢pqr : Commitcpg,-(m;r)}; and (2) com-
putational binding, i.e. for any PPT adversary A, there exists a negligible v such
that Prlcpar < CSetup(1}); (mg, 79, m1,71) < A(cpar) : Commit cpar(mo; o) =
Commitcpgr(ma;71) Amg # ma] = v(X)

We will use the Pedersen commitment scheme which employs a cyclic group G
of prime order gq. Let g, h1, ho, ..., h, be generators of G and m1,mg,...,m, €
Zy, then Commitp, p, .., g(m1,Mm2,...,my,) samples r <$ Z, and computes
g" TT_; hi"*. This scheme is binding under the discrete logarithm assumption in
G. We write Commity, ., ,¢(m1,...,mp;7) to make randomness explicit.
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2.1 Non-interactive Zero Knowledge

Let R be a polynomial-time verifiable binary relation. For a pair (x,w) € R, we
refer to x as the statement and w as the witness. Let £ = {x | Jw : (x,w) € R}.

A non-interactive proof system for R consists of a prover algorithm P and
verifier algorithm V both given access to a setup S. The setup can either be a
random oracle or a reference string—we show later how we abstract over the
differences in their interfaces. P takes as input a statement x and witness w,
and outputs a proof 7 if (x,w) € R and L otherwise. V takes as input (x,)
and either outputs 1 or 0.

Definition 2 (NIZK). Let S be the setup, and (P,V) be a pair of algorithms with
access to setup S. @ = (S,P,V) is a simulation-sound (optionally extractable)
non-interactive zero-knowledge proof system for relation R C X x Y if it has the
following properties:

Completeness: For all (x,w) € R, Pr[r + PS(x,w) : V3(x,7) = 0] = 0.

S is a stateful oracle that captures both the common-random-string setting and
the random-oracle setting. In the random-oracle setting, S responds to a query
m by sampling a random string h of appropriate length ¢ (clear from context).
In the common-reference-string (CRS) setup, it samples a reference string on
the first invocation, and from then onward returns the same reference string to
all callers.

Zero-knowledge: The zero-knowledge property requires that no adversary can
distinguish the real game in which the setup is generated honestly and an honest
prover computes proofs using the correct algorithm P, from the simulated game
in which the proofs are computed by a simulator that does not take witnesses as
inputs, and in which the setup is also generated by the simulator. More formally,
there exist probabilistic polynomial time (PPT) simulator algorithms (SimS, Sim)
such that, for any PPT adversary A interacting in the experiment in Fig.
the advantage function v(\) defined below is negligible:

AdVNZE(\) = ‘Pr{NIZKA’O(l’\) - 0} - Pr[NIZKA’l(l*) - o} ‘ =v())

NIZK40(1%) Os(m) Op (x, w)

S
return AP )12 state, h, 7eq + SimS(state,m) if (x,w) ¢ R : return L
NIZKA1 (1Y) return h state, 7 < Sim(state, x)

return

return A%°°) (1%

Fig.2.1: NIZK game
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SimS shares state with Sim modeling both RO programming and CRS trapdoors.
Additionally there is an extraction trapdoor 7. that will be used below to define
simulation extractability.

Soundness: A proof system is sound if no adversary can fool a verifier into
accepting a proof of a false statement. It is simulation sound if the adversary
cannot do so even given oracle access to the simulator — of course in that case
the adversary is prohibited from outputting statement-proof pairs for which the
proof was obtained from the simulator. It is a proof of knowledge if a knowledge
extractor algorithm can compute the witness given appropriate access to the ad-
versarial prover’s algorithm. We explore various flavors of simulation soundness
in the full version of this paper [52], but here we focus on just one of them: the
flavor of a proof of knowledge that allows for (partial) straight-line extraction.

2.2 NIZK Proof of Knowledge

Simulation Extractability: A proof system is extractable (also often called a
proof of knowledge, or PoK for short) if there exists a polynomial-time extractor
algorithm that, on input a proof « for a statement x that passes verification,
outputs the witness w for x. In order to reconcile extractability with the zero-
knowledge property, it is important that the extractor algorithm Ext have some
additional information that is not available to any regular participants in the
system. This information depends on the setup S: in the CRS setting, it is a
trapdoor that corresponds to the CRS; in the random-oracle setting it comes
from the ability to observe the adversary’s queries to the random oracle. Note
that, in addition, trapdoors can be embedded by programming the random ora-
cle. Further, a proof system is simulation-extractable if the extractor algorithm
works even when the adversary has oracle access to the simulator and can thus
obtain simulated proofs.

Let Q denote the simulator’s query tape that records all the queries the
adversary 4 made to the simulator. Qs denotes the setup query tape that records
the queries, replies, and embedded trapdoors of the simulated setup; this is
explicitly recorded by Og and Os. As we will discuss below, Og additionally
reveals to A the extraction trapdoor 7g; this captures adaptive extraction from
many proofs.

Ad attractive definition of simulation extractability is the one of straight-line
extractability [39]: the extractor obtains the witness just from Qs and the pair
(x, 7). A weaker definition allows for black-box extractability, where the extrac-
tor additionally obtains black-box access to A, i.e. it can reset it to a previous
state. By BB(A) we denote this mode of access to A, and by Ext®8Y(Qs, x, 7)
we denote an extractor algorithm that, in addition to its inputs, also has this
access to A. See the full version of this paper for additional discussions and the
definition of the black-box simulation extractability game NISimBBExtract.We
now propose a notion that falls between straight-line and black-box simulation
extractability.
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Black-Box with Partial Straight Line (BB-PSL) Simulation Extractabil-
ity: Sometimes, it is good enough that a straight-line extractor be able to learn
something about the witness, say some function f(w), not necessarily the entire
witness. For such a scenario, it is convenient to have two extractors: Ext that
is a black-box extractor that extracts the entire witness given black-box access
to the adversary, and ExtSL that extracts some function of that witness in a
straight-line fashion. The reason this is good enough for some proofs of security
is that, in a reduction, f(w) may be enough information for the reduction to
know how to proceed, without the need to reset the entire security experiment.
This is similar to f-extractability [4].

Let us now formalize BB-PSL simulation extractability; let & = (S,P,V)
be an NIZK proof system satisfying the zero-knowledge property above; let
(SimS, Sim) be the simulator. Let f be any polynomial-time computable function.
@ is f-BB-PSL simulation-extractable if there exists a pair of polynomial-time
extractor algorithms (Ext, ExtSL) such that for any PPT adversary A participat-
ing in the game defined in Fig. the advantage function v(\) defined below
is negligible. As mentioned before, Q denotes the query tape. Qg, denotes the
setup query tape that records the queries, replies, and embedded trapdoors of
the simulated setup; this is explicitly recorded by Os.

AdylySImBBPSLEXtract () — py [ f-NISimBBPSLExtract*(1*) = 1| = v()

for some negligible function v.

f-NISimBBPSLExtract*(1*)

10 Q,0Qs <[]

2 (x,m) ¢ A%OOsmO) (1)

3: w o Ext®®W(Qs, x, m)

4: w' « ExtSL(Qs,x, )

5: return VOS(x,m) A (x,7) € QA (x,w) € RAW # f(w)

Os(m) Os(m) Osim (x)

1: state, h, Tex ¢ SimS(state,m) 1: state,m < Sim(state, x)
2: Qs.add((m, h, Text)) 2: Q.add((x, 7))

3: return h, Tex 3: return 7w

Fig.2.2: f-NISimBBPSLExtract game

More on the simulator and extractor. In the games NIZK, NISimSound,
and NISimBBPSLExtract the simulator initializes and updates the setup using
SimS and then responds to queries from A for simulated proofs using Sim. Note



Privacy-Preserving Blueprints 11

that the two halves of the simulator, SimS and Sim, share state information,
and update it when queried. This captures both the CRS and the random-oracle
settings. In the CRS setting, SimS computes the reference string S so that it can
pass the corresponding simulation trapdoor to Sim via the shared state. In the
random-oracle (RO) setting, SimS programs the random oracle (computes the
value h that the random oracle will return when queried on m) and uses the
shared state in order to memorize the information that Sim will need to use & in
the future. Similarly, in the random-oracle mode, Sim has the ability to program
the random oracle as well and memorize what it did using the state variable.

In the simulation extractability experiments, the extractor Ext takes Qg as
input. In the CRS model, Qs will contain the extraction trapdoor corresponding
to the CRS. In the RO model, Qs also contains information that the simulator
algorithms SimS generated, such as how the RO was programmed and where the
adversary queried it. It does not, however, contain the simulation trapdoor or
give the extractor the ability to program the RO.

Our definition requires successful extraction even when all information in Qs,
in particular Tg, is available to the adversary. This allows the adversary to run
Ext itself, and thus allows for extraction from multiple proofs.

Instantiating Simulation Extractable proofs. While simulation-extractable
proof systems exist for all NP relations [33], there are multiple ways to realize
non-interactive zero-knowledge (NIZK) proof systems more efficiently. One of
them is to start with X-protocols and convert them into a NIZK proof in the
random oracle model, e.g. using the techniques of [38I37U56]. As we will elabo-
rate below, X' protocols are particularly suitable for proving knowledge of group
isomorphisms such as discrete logarithm representations; see, e.g. [57]. They can
also efficiently prove disjunctive statements [30]. This has been used for range
proofs.

Bulletproofs [12] is a practically efficient NIZK proof system for arithmetic
circuits, specifically optimized for range-proofs. Recent work shows that Bullet-
proofs are simulation extractable [45] and can be integrated with X-protocols [11].

Bernhard et al. [6, Theorem 1] state that Fiat-Shamir X-protocols are black-
box simulation extractable with respect to expected polynomial-time adversaries.
To show partial straightline extractability we use a theorem of [37, Theorem 2]
that shows that X-protocols compiled using Fiat-Shamir are simulation-sound
and adapt the theorem of [32] Theorem F.1] which shows how to transform
simulation-sound into simulation-extractable NIZK, by encrypting the witness
to the sky. Our approach differs from their approach in that we only encrypt a
partial witness and can thus use groups for which computing discrete logarithms
is hard.

In Sect. we give a construction from X-protocols of a proof system ¥
for equality of discrete logarithm representation relations and prove that it is
an f-BB-PSL simulation-extractable NIZK proof system in the random-oracle
model for an appropriate f.

Notation. When using NIZK proofs of knowledge in a protocol, it is convenient
to be able to compactly specify what exactly the prover is proving its knowledge
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of. We shall use the notation:
T4 POKg/{W : R(x,w)}

to indicate that the proof m was computed as follows: the proof system ¥ =
(S,P,V) for the relation R was used; the prover ran P3(x,w); to verify 7, the
algorithm VS (x, ) needs to be run. In other words, the value w in this notation
is the witness the knowledge of which the prover is proving to the verifier, while
x is known to the verifier. A helpful feature of this notation is that it describes
what we need ¥ to be: it needs to be a NIZK PoK for the relation R.

2.3 X-protocol for proof of equality of discrete logarithm
representations

Let Reqrep be the following relation: Reqrep(x, w) accepts if x = (G, {z;, {gi1,- - .,
9im} 1) where G is the description of a group of order ¢, and all the x;s and
gi,js are elements of G, and witness w = {w;}72; such that z; = [[j_, gf)]]

P—V On input the (x, W) € Regrep, the Prover chooses e;j «— Z, for 1 < j <m

and computes d; =[]~ g;; for 1 <i < n. Finally, the Prover sends to the

Verifier the values com = (d1,...,d,).

P+V On input x and com, the Verifier responds with a challenge chal = ¢ for
¢4 Ly

P—V The Prover receives chal = ¢ and computes s; = e; + cw; mod ¢ for
1 <4 <m, and sends res = (s1, ..., $m) to the Verifier.

Verification The Verifier accepts if for all 1 < i < n, d;z{ = H;":l g;’], rejects
otherwise.

Simulation On input x and chal = ¢, the simulator chooses s; < Z, for 1 <
j < m, and sets d; = ([]}~, g;%)/x¢ for 1 < i < n. He then sets com =

4,J
(di,...,dn) and res = (s1,...,8m).
Extraction On input two accepting transcripts for the same com = (dy, ..., d,),
namely chal = ¢, res = (s1,...,5mn), and chal’ = ¢/, res’ = (s},...,s!,), out-

put w; = (s; — s})/(c — ) mod g for 1 < j <m.

2.4 From XY-protocols to BB simulation extractable NIZK PoK via
Fiat-Shamir

Let Wegrep = (Seqrep, Pegreps Veqrep) be the proof system we get from the X-protocol
described in Sect. via the Fiat-Shamir heuristic. Specifically, Seqrep is a ran-
dom oracle.

We use a theorem of [37, Theorem 2] that shows that X-protocols compiled
using Fiat-Shamir are simulation-sound; moreover, it follows from a theorem of
[0, Theorem 1] and the proof of [37, Theorem 3] that it is in fact black-box
simulation extractable.

Recall that the notation 7 < POKgxeqrep{W ¢ Regrep (X,W)} denotes that the

proof 7 is the output of Pegrep.
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2.5 ¢g®-BB-PSL simulation extractable NIZK from Weqep

Now we want a BB-PSL simulation extractable proof system for Reqrep such
that, in a straight-line fashion, a function of w can be extracted. Specifically,
recall that x = (G,{zi,{gi,1,---,9im}}i=1) and w = {w;}7", such that x; =
H;'n:1 g:,}j] .

Consider the following proof system ¥ = (S,P,V) for the relation Regrep
and for the function f(J,-), defined as follows. Let g be the generator of G
included in the description of G. Let J be a subset of the set of indices [m]. Let
f(Jow) ={g" : jeJ}.

S is a random oracle, but we interpret its output as follows: On input the
description of a group G with generator g of order ¢, outputs a random element
h of G; we can think of this h as the public key of the ElGamal cryptosystem.

P works as follows: on input x = (G,{z;,{gi1,...,9im}}i=) and w =
{w;}7,, it first obtains h = S(G) and then forms the ElGamal ciphertexts
of g%ir for each ji € J: (ck,1,¢k,2) = (g7, gWirh™), for 1 < k < |J|.

It then forms x’ and w’ that allow us to express the following relation R as
a special case of Regrep:

R={x',w|x'=(x{(¢j1,¢.2)}) and
w' = (w,w") where w” = (r1,..., 7)) such that

for 1 <k < |J|, (ck1,ch2) = (9™, g% h"™)

In order to express x’ and w’ as a statement and witness for Regrep, form
them as follows: x' = (G, {%},{g} 1, -+ iy} }i=1), Where

n' =n+2/J|,m =m+|J|

For 1 <4 <mn, x =, and for 1 < j <m, g ; = gi j, and for m < j <m+|J|,
g;,j =1L

For 1 <k < |J|, x;+2(k71)+1 = Ck1, g;+2(k71)+1)m+k =g, and for £ # m + k,
L<t<m+|J], 9%+2(k71)+1,e =1

For 1 <k < |J|, @0 01 = k2, Gnyory, = 9> Ini2kmsk = h, and for £ ¢
{e.m+ kL 1<l<m+|J], 9 op—1)41,6 = 1-

s

Set w = (w1, ..., Wm,"1,...,7E). Using the algorithm Pegreps COMPUtE Teqrep <

PoK%qrep{\w’ : Reqrep(x’,\w')}, and output m = ({(ck,1,¢k,2)}, Teqrep)-

V works as follows: on input the statement x, and the proof 7 = ({(ck,1,¢k,2)},
Teqrep); first compute x’ exactly the same way as the prover’s algorithm P did.
Then output ngrep (x', Teqrep)-

Theorem 1. Let the relation Reqep = {(x,w)} be an equality of discrete loga-
rithm representations relation. For any J C [m], let f(J,w) = {g*7 : j € J}.
The proof system ¥ = (S,P,V) is an f(J,-)-BB-PSL simulation-extractable
NIZK proof system in the random-oracle model.
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Proof (Sketch). We need to describe the setup simulator, the proof simulator,

the extractor trapdoor and the two extractors.

SimS(state,m) — (state, b/, Te,): On input the description of a group G with
generator g of order ¢, sample Tg < Z, and output the hash value that
will be interpreted as the element g™ of G; we can think of this as the
public key of the ElGamal cryptosystem for secret key 7g,:. On other inputs
simulate the random oracle faithfully.

Sim(state,x) — (state,7): On input x, the simulator extends x with random
ElGamal ciphertexts to x’, chooses ¢ <= Zg, sj < Zg for 1 < j < m+ |J|,

and sets d; = ([[7" 2 /x¢ for 1 < i < m + 2|J|. He then sets com =

j=1 Yi)j
(di,...,dyy2)g)), stores H[x,com] = c in state, sets chal = ¢, and res =
(s1,...,8m) and return (chal, res).

Ext®8(Qg, x, 7) — w: Parse 7 as (chal, res) and compute com as Sim. Rewind
BB(A) to the point where it queried the random oracle on (x,com) and
provide it fresh random results. Repeat until it obtains two accepting tran-
scripts for the same com = (di, ..., dn42)5)) and then run the extractor of
the X-protocol to obtain w’. Remove the last k elements to obtain w.

ExtSL(Qs,x,m) — f(J,w): Parse x as (G, {xi,{gi’h...,gi,m}}?ifm), obtain
Text from the entry (G, h, Tex) of Qs. Interpret the last 2|.J| elements z; as
ElGamal ciphertext and decrypt them to obtain f(.J, w). O

3 Definition of Security of f-Blueprint Scheme

Our scheme features three parties: an auditor, a set of users, and a set of re-
cipients. It is tied to a non-interactive commitment scheme (CSetup, Commit);
let cpar be the parameters of the commitment scheme output by CSetup. The
auditor A has private input « and publishes a commitment Ca = Commiteper ().
The user has private data y and publishes a commitment C' = Commitcpa, ().
For example, x could be a list and y could be the user’s attributes in a credential
system. The auditor creates a key pair (pka,sk,) corresponding to its input z,
and the user can escrow its private data y under pk, to obtain an escrow Z. We
require that Z decrypts (with the help of sk ) to f(z,y) for a function f that all
parties have agreed upon in advance. In the definition, we do not restrict f: it
can be any efficiently computable function. Moreover, an escrow recipient R can
verify that indeed Z was computed correctly for the given pk, and C. Similarly,
a privacy-conscious user can verify that indeed pk, was computed correctly for
the given warrants data commitment Ca.

Definition 3. An f-blueprint scheme tied to a non-interactive commitment
scheme (CSetup, Commit) consists of the following probabilistic polynomial time
algorithms:

Setup(1*, cpar) — A: is the algorithm that sets up the public parameters A. It
takes as input the security parameter 1* and the commitment parameters
cpar output by CSetup(1?); to reduce the number of inputs to the rest of
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the algorithms, A includes 1* and cpar; we will also write Commit instead
of Commitpq, to reduce notational overhead.

KeyGen(A, z,7a) — (pka,ska): is the key generation algorithm for auditor A. It
takes in input 1*, parameters A, and values (x,7a), and outputs the key
pair (pka,ska). The values (z,7a) define a commitment Ca. This allows to
integrate KeyGen into larger systemsﬂ

VerPK(A, pka, Ca) — 1 or 0: is the algorithm that, on input the auditor’s public
key pka and a commitment Cha, verifies that the warrant public key was
computed correctly for the commitment Ch.

Escrow(A, pka,y,r) — Z: is the algorithm that, on input the values (y,r) outputs
an escrow Z for commitment C' = Commit(y;r).

VerEscrow (A, pka, C, Z) — 1 or 0: is the algorithm that, on input the auditor’s
public key pka, a commitment C, and an escrow Z, verifies that the escrow
was computed correctly for the commitment C'.

Decrypt(A,sky, C, Z) — f(x,y) or L: is the algorithm that, on input the audi-
tor’s secret key skp , a commitment C' and an escrow Z such that VerEscrow(A,
pka, C, Z) = 1, decrypts the escrow. Our security properties will ensure that
it will output f(z,y) if C is a commitment to y.

Definition 4 (Secure blueprint). An f-blueprint scheme Blu=(Setup,KeyGen,
VerPK, Escrow, VerEscrow, Decrypt) tied to commitment scheme (CSetup, Commit)
constitutes a secure f-blueprint scheme if it satisfies the following properties:

Correctness of VerPK and VerEscrow: Values (cpar,pka, Ca,C, Z) are gen-
erated honestly if: (1) cpar is generated by CSetup(1*); (2) A is generated by
Setup(1*, cpar); (3) pky is the output of KeyGen(A, x,74); (4) Ca = Commit par(
z;7rA); (B) C = Commitepe,(y;7); (6) Z is generated by Escrow(A, pka,y, 7).
For honestly generated values (cpar, pka, Ca, C, Z), we require that algorithms
VerEscrow and VerPK accept with probability 1.

Correctness of Decrypt: Similarly, we require for honestly generated (cpar, pka,
ska, C, Z) that with overwhelming probability Decrypt(A,ska, C, Z) = f(z,y).

Soundness: Let C and C be commitments whose openings (z,7a) and (y,r) are
known to the adversary. Let (pka,ska) « KeyGen(A, z,7a) be honestly derived
keys. Soundness guarantees that any pka, Z pair that passes VerEscrow(A, pka,
C, Z) will decrypt to f(x,y) with overwhelming probability. More formally, for
all PPT adversaries A involved in the experiment in Fig. [3.1] there exists a
negligible function v such that: Advfﬂg‘,ﬂ (\) =Pr [Soundé‘,u (\) = 1} =v(\)
Blueprint Hiding: We want to make sure that pk, just reveals that x is a
valid first argument to f (i.e. this may possibly reveal the size of x or an upper
bound on its size). Otherwise, x is hidden even from an adversary who (1) may
already know a lot of information about x a-priori; and (2) has oracle access to
Decrypt(A, skp, -, ).

3 E.g., A can prove that = does not contain journalists, but does contain all Russian oli-
garchs on the OFAC’s sanctions list. https://home. treasury.gov/policy-issues/
financial-sanctions


https://home.treasury.gov/policy-issues/financial-sanctions
https://home.treasury.gov/policy-issues/financial-sanctions

16 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

Soundg, (\)

1: cpar CSetup(l)‘)
2: A<« Setup(lA7 cpar)
z,ra — A1, A)
(pka,ska) < KeyGen(A,z,ra)
(C.y,r, Z) < Alpka)
return [C = Commit(y;r)A
VerEscrow (A, pka, C, Z) A Decrypt(A, sk, C, Z) # f(x,y)]

N O ot W

Fig. 3.1: Experiments Soundg), ()

We formalize this security property by requiring that there exist a simula-
tor Sim = (SimSetup, SimKeygen, SimDecrypt) such that a PPT adversary can-
not distinguish between the following two games: the “real” game in which
A is chosen honestly, the public key pk, is computed correctly for adversari-
ally chosen z,ra, and the adversary’s decryption queries (C,Z) are answered
with Decrypt(4,ska, C, Z); and the “ideal” game in which A is computed using
SimSetup, the public key pky is computed using SimKeygen independently of x
(although with access to the commitment Ca), and the adversary’s decryption
query Z; is answered by first running SimDecrypt to obtain enough information
about the user’s data y; to be able to compute f(x,y;). When we say “enough
information,” we mean that SimDecrypt obtains y; = ¢(y;) for some function g
such that f(x,y) = f*(x,g(y)) for an efficiently computable f*, for all possible
inputs (x,y

More formally, for all probabilistic poly-time adversaries A involved in the
game described in Fig. the advantage function satisfies:

AV (V) = | Pr[BHreald, (1) = 0] — Pr[BHidealgl, 5i(3) = 0| = v(3)

for some negligible v.
Privacy against Dishonest Auditor: There exists a simulator such that the
adversary’s views in the following two games are indistinguishable:

1. Real Game: The adversary generates the public key and the data x cor-
responding to this public key, honest users follow the Escrow protocol using
adversarial inputs and openings.

2. Privacy-Preserving Game: The adversary generates the public key and
the data z corresponding to this public key. Next, for adversarially cho-
sen inputs and openings, the users run a simulator algorithm that depends

4 For example, if « is a list (x1,...,%,) and f(z,y) checks if y = x; for some i, g(y)
can be a one-way permutation: in order to determine whether y is on the list, it is
sufficient to compute g(z;) and compare it to y* = g(y).
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BHrealg), (\) BHidealg}, sim())

1: cpar + CSetup(1™) 1: cpar < CSetup(1?)

2: A+ Setup(l/\, cpar) 2: (A, state) + SimSetup(l)‘7 cpar)

3: (x,7a,state ) < A1}, A) 3: (x,7a,state ) < A1, A)

4: 4: dsim < (|z|, Commit(z;7a))

5:  (pka,sky) < KeyGen(A,z,ra) 5: (pka,ska) < SimKeygen (17, state, dsim)

00 (Pkaska, - .
6: return A%Psa) (ol state) . return AC!(PRasEte, ) (pk,, state ,)

Oo(pka,ska, C, Z) O1(pka, simtrap, x,C, Z)

1: if =VerEscrow(A, pka, C, Z) 1: if =VerEscrow(A, pka, C, Z)

2: return | 2: return |

3: return Decrypt(A,ska,C,Z) 3: y* « SimDecrypt(state, C, Z)
4: return f(z,y) = f*(z,y")

Fig. 3.2: Experiments BHreal4, (\) and BHideaI“é,uSim()\)

only on the commitment and f(z,y) but is independent of the commitment
openings.

More formally, there exists algorithms Sim = (SimSetup, SimEscrow) such that,
for any PPT adversary 4 involved in the game described in Fig. the following
equation holds for some negligible function v:

AVEBE sim(X) = | Pr[PADAZ g (V) = 1] = Pr[PADAG G, (1) = 1]] = v(Y)

Privacy with Honest Auditor: There exists a simulator Sim such that the
adversary’s views in the following two games are indistinguishable:

1. Real Game: The honest auditor generates the public key on input x pro-
vided by the adversary, and honest users follow the Escrow protocol on input
adversarially chosen openings.

2. Privacy-Preserving Game: The honest auditor generates the public key
on input z provided by the adversary. On input adversary-generated com-
mitments and openings, the users run a simulator that is independent of y
(although with access to the commitment C) to form their escrows.

In both of these games, the adversary has oracle access to the decryption algo-
rithm.

We formalize these two games in Fig. We require that there exists a
simulator Sim = (SimSetup, SimEscrow) such that, for any PPT adversary A
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PADAG sim (M)

1: cpar + CSetup(1™)

2: Ao+ Setup(lA7 cpar); (A1, state) «— SimSetup(lA, cpar)
3: (x,ra, pka, state ;) A(l’\,Ab)

4: if VerPK(Ay, pky, Commit(z;ra)) =0 : return L

5: return A%®") (state ;)

Oo(y, ) O1(y,r)
1: return Escrow(Ao, pka,y,7) 1: return SimEscrow(state, A1, pky, Commit(y;r),
2: f(z,y)

Fig. 3.3: Game PADAS"())

involved in the game described in the figure, the following equation holds:
AdVER, () = | Pr[PWHAZ 5., (1) = 0] = Pr[PWHAZ g, (3) = 0] | = v(3)

for some negligible function v.

4 Homomorphic Enough Encryption

Definition 5 (Homomorphic-enough cryptosystem (HEC) for a func-
tion family). Let F' = {f | f : domaing, x domainy, — range;} be a set
of polynomial-time computable functions. We say that the set HEC of algo-
rithms (HECseTupP, HECENC, HECEVAL, HECDEC, HECDIRECT) constitute a
homomorphic-enough cryptosystem (HEC) for F if they satisfy the following
input-output, correctness, and security requirements:

HECSETUP(1*) — hecpar is a PPT algorithm that, on input the security pa-
rameter, outputs the parameters hecpar; in case there is no HECSETUP
algorithm, hecpar = 1*.

HECENC(hecpar, f,z) — (X, d) is a PPT algorithm that, on input the param-
eters hecpar, a function f € F, and a value x € domainy,, outputs an
encrypted representation X of the function f(z,-), and a decryption key d.

HECEvAL(hecpar, f, X,y) — Z is a PPT algorithm that, on input the parame-
ters hecpar, a function f € F, an encrypted representation of f(z,-), and a
value y € domainy,,, outputs a ciphertext Z, an encryption of f(z,y).

HECDEC(hecpar,d, Z) — z is a polynomial-time algorithm that, on input the
parameters hecpar, the decryption key d, and a ciphertext Z, decrypts Z to
obtain a value z.
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1: cpar + CSetup(1™)

2: Ao+ Setup(lA, cpar); Ay < SimSetup(lA, cpar)
3: M« |[]

a: x,ra — ALY, A)

5: (pka,skas) < KeyGen(Ay, z,7a)

Escrow . .y oDecrypt .
6: return A% ()0 (Aoskars )(PkA)

Ogscrow(y, T') Olliscraw(y7 T')

1: return Escrow(Ag, pka,y,7) 1: C = Commit(y;r)
2: Z < SimEscrow(state, A1, pky, C)
3: M[C, Z] < f(z,y)
4

return Z

PPt (A, sky, C, Z)

1: if M[C,Z] is defined return M[C, Z]
2: return Decrypt(Ai,sky, C, Z)

Fig. 3.4: Game PWHAZ ¢, ())

HECDIRECT (hecpar, X, z) — Z is a PPT algorithm that, on input hecpar, an
encrypted representation X of some function, and a value z, outputs a
ciphertext Z.

HEC correctness. For a given adversary A and HEC, let Advyge 4(A) be

the probability that the experiment HECCORRECT in Fig. [£.] accepts. HEC is

correct if Advype 4(A) is negligible for all PPT algorithms A.

Security of x, security of = and y from third parties, and security of
DirectZ. Consider Fig. For a given HEC and an adversary A, and for b €
{0,1}, let piﬁgx (A) be the probability that .A outputs 0 in experiment SECXJ',
let piﬁ‘gxy()\) be the probability that A outputs 0 in experiment SECXY{;‘, and
let palngCTZ (M) be the probability that A outputs 0 in experiment DIRECTZbA.

HEC provides security for x if or any PPT A, |p§ﬁgx()\) - piﬁ‘{x(/\)\ is neg-
ligible. HEC provides security for x and y from third parties if or any PPT A,
|p§f78XY()\) — piﬁ(jxy()\ﬂ is negligible. HEC provides security of DIRECTZ if or
any PPT A, |pa{%ECTZ()\) - pB{f{ECTZ (M| is negligible.

Remark. Why do we need HECDIRECT? It allows us to directly form a cipher-
text Z that will decrypt to a specific value z. If the function f is not one-way
and it is easy, given z, to sample = and y such that z = f(z,y), then we can de-
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HECCORRECT () SECXY#(N)

1: hecpar < HECSETUP(A) 1: hecpar + HECSETUP(1)

2: (f,x,state) « A(1*, hecpar) 2: (f,xo,z1,state) < A(1%, hecpar)
3: if f e F,xz € domaing , 3: if f € F,xo,21 € domaing .

4 (X,d) + HECENC(hecpar, f, ) 4: X, _ < HECENC(hecpar, f,zp)
5: (y,72) < A(state, X) 5 (yo, y1, state) « A(X, state)

6 if y € domainy,, 6: if yo,y1 € domainy,,

7: 7 < HECEvVAL(hecpar, f, X ,y;rz) 7 7 <+ HECEVAL(hecpar, f, X, yp)
8 if HECDEC(hecpar,d, Z) # f(z,y)  8: return A(Z, state)

9 return 1 9: return A(L, state)

10 : return 0 10: return A(L,state)

11: return 0

DIRECTZ7 ())

12: return 0
1: hecpar + HECsETUP(1%)

SECX{' (V) 2: (f,x,y,rx,state) < A(1*, hecpar)

1: hecpar + HECsETUP(1%) 3: if f € F,x € domaing .,y € domaing
2: (f,mo,x1,state) « A(1*, hecpar) 4: X,_ = HECENC(hecpar, f,x;rx)

3: if f € F,xo,z1 € domaing , 5: Zy + HECEvAL(hecpar, f, X,y)

4: X, _ <+ HECENC(hecpar, f, ) 6 : 71 < HECDIRECT (hecpar, X, f(z,y))
5 return A(hecpar, X, state) 7: return A(hecpar, Zy, state)

6: return A(L,state) 8: return A(L,state)

Fig.4.1: HEC correctness and security games

rive such Z by computing (X, d) = HECENC(hecpar, f,z) and then computing
7 = HECEvAL(hecpar, f, X,y). But in general, it is helpful (for some appli-
cations) to have a separate algorithm HECDIRECT(hecpar, X, z) such that, if
X = HECENC(hecpar, f,x), then Z = HECDIRECT (hecpar, X, z) decrypts to z
using the decryption key that corresponds to X, i.e. z = HECDEC(hecpar, d, Z).

5 A Generic f-Blueprint scheme from HEC

We construct a privacy-preserving blueprint scheme using a commitment scheme,
a homomorphic-enough cryptosystem, as well as two NIZK proof systems as
building blocks. The scheme consists of the following six algorithms:

Setup takes A and a commitment setup as input and generates hecpar and
assigns the NIZK oracles S; and S;. Note that when instantiated using real
hash functions or reference strings both RO and CRS setups can be represented
as bit-strings in implementations. KeyGen uses the HEC scheme to compute an
encrypted representation of the function f(z,-) and proves that it was computed
correctly. VerPK verifies that pk, was computed correctly with respect to the
auditor’s commitment Ca. Escrow homomorphically evaluates f(x,-) on y to
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obtain a ciphertext and proves that it was formed correctly. VerEscrow verifies
the ciphertext with respect to the user’s commitment C, and Decrypt decrypts.

Our construction in Fig. uses VerPK as a subroutine in Escrow and
VerEscrow. To be consistent with the syntax we add Ca to pka. Similarly, we use
VerEscrow in Decrypt and add pkp to ska.

Setup(A, cpar) Escrow(A, pky,y,7)
hecpar < HECSETUP(I)‘) parse A = (), cpar, hecpar,S1,S2)
return A = (), cpar, hecpar,S1,S2) parse pky, = (X, Cha,-)

if VerPK(A, pk,,Ca) =0
KeyGen(A, z,7p) return 0
parse A = (X, cpar, hecpar,S1,S2) sz HECEVAL (hecpar, f, X, )
(X,d) & HECeNC(hecpar, f, ) C = Commitcpar (y; )

Ca = Commitepar (z;70) . PoKiv,"'z{(y, )

PoK3, { : 5
ma ¢ PoKy, (@, dy7x, 7a) Z = HECEVAL(hecpar, f, X, y;75)

X = HE ;
(X,d) CENC(hecpar, f,z;7x) ANC = Commitcmr(y;r)}

A Ca = Commitepar(z; TA))} return (Z )

pka < (X, Ca, a);sky < (Pka, d)
return (pky,sk,) VerEscrow(A, pky, C, Z = (Z,my))

parse A = (), cpar, hecpar,S1,S2)
VerPK(A, pky, Ca) parse pky = (. Ca, )
A — =& ’ -

parse A = (), cpar, hecpar,S1,S2) return VerPK (A, pky, Ca)
p— ! A~
parse pky = (X, G, ma) AVE((Z, heepar, £, X, C, cpar), )

return Vfl ((X, hecpar, f,Ca, cpar), wa)
A (Ca = Ch) Decrypt(A, sky, C, Z = (Z,7y))

parse A = (), cpar, hecpar,S1,S2)

parse sk, = (pka, d)

if VerEscrow(A, pka,C,Z) =0
return 0

return HECDEC(hecpar, d, Z)

Fig.5.1: Construction of generic f-blueprint scheme

Theorem 2. If HEC is a secure homomorphic-enough cryptosystem, the com-
mitment scheme is binding, and the NIZK PoKs ¥y and W5 are zero-knowledge
and BB-PSL simulation extractable then our generic blueprint scheme is a secure
f-blueprint scheme.
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Note that, our formal security theorem does not require the commitment
to be hiding. It only shows, using simulation, that no additional information
besides the commitment is revealed. To benefit from the hiding and privacy
properties of the blueprint scheme it is, however, crucial that the transaction
system employing it uses a hiding commitment scheme.

We prove correctness of VerEscrow and VerPK, correctness of Decrypt, sound-
ness, blueprint hiding, privacy against dishonest auditor, and privacy with honest
auditor in separate lemmas. The statement and proof of these lemmas are in the
full version [52].

6 HEC from the ElGamal Cryptosystem

For a binary string y (or an integer which can be interpreted as a binary string)
and an integer k, let lobitsy(y) = v mod 2*; i.e., lobits;(y) denotes the k least
significant bits of y (or, equivalently, the corresponding integer). Let domaing , =
{0,1}". Let us use bold font to indicate that x is a set of values; let W, = {x |
x C domaing ,|x| = ¢}. Let the function family Fy = {f;}, where fi : Wy x
domaing , — domainy , is defined as follows:
y lobits,(y) € x
|0 otherwise
In other words, the function reveals y if lobitsi(y) € x, and nothing otherwise.
In this section, we will use the ElGamal cryptosystem in order to construct
an HEC for f, € F, for any k, ¢ such that £ and 2'v—* are polynomial in A. Our
cryptosystem will use a group G of prime order ¢ > 2.

fk(xvy) = {

6.1 The EIGamalHEC Construction and Its Security

The idea of our construction EIGamalHEC for a HEC for functions fi € Fy, is
that HECENC outputs the ElGamal ciphertexts of the coefficients of a random
polynomial P of degree ¢ = |x| whose roots are elements of x. More precisely,
P=s H‘;jl(x —x;), that is P = ijo P;x*. The randomness in P comes from
the choice of the leading coefficient s. HECENC outputs the ciphertexts C;
Enc(g”*) that encrypt the coefficients P; of P; these ciphertext are part of X.

Using these ciphertexts {C;} and the homomorphic properties of ElGamal,
HECEVAL computes an encryption of ¢g"F(obitss @)+ for a random r. Note that
if lobits,(y) € x, this is just an encryption of g¥; otherwise, it is an encryption
of a random element of G. Thus, HECDEC can use the ElGamal decryption
algorithm to obtain some group element ¢g*, and then use the fact that ¢ and
2lv=F 10 either recover y with exhaustive search, or determine that fi(x,y) = 0.

Fig. describes our construction, EIGamalHEC. Here, (KGen, Enc, Dec) are
the key generation, encryption, and decryption algorithms of ElGamal. Recall
that @ is the homomorphic operator for ciphertexts.

Theorem 3. Under the decisional Diffie-Hellman assumption, EIGamalHEC con-
stitutes a homomorphic-enough encryption for fi, any k,€ such that £ and 2'v—F
are polynomial in X\, for any fr € Fy.
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HECENC(hecpar, fi, X) HECEVAL(hecpar, fi, X, y)
1: (pkg,sky) < KGen(1*) 1: parse X = (pkg, Co,...,Cx))
2: S§<¢% Z; x|

x|

2: eval @(Ci)bbits’“(y)i
3: PesH(X—xi) i=0
1=1

3: enc <+ Enc(pkg,g¥)
4: for i in{0,...,|x|} 4: 1824
5: C; + Enc(pkg,g"") 5: return Z = eval” @ enc

6: return (X = (pkg, Co,...,Cx),
( (Pkiz, Co <I) HECDIRECT (hecpar, X , z)

Te A= (ke fu)
1: parse X = (pkg,Co,...,Clx)
HECDEC(hecpar,d = (skg, fx,%x), Z) 2: ifz=10
1: D < Dec(sky, Z) 31 P8l
2: for y in domains, Alobitsy(y) €x  4: return Enc(pky, ¢°)
3 if g¢ =D 5: return Enc(pky,g”)
4: return y
5: return ()

Fig.6.1: Our Construction EIGamalHEC

We prove each of the required security properties in a separate lemma in
the full version [52]. As surprisingly, one of the most challenging lemmas is
HECCorrectness due to the adversaries control over the evaluation random-
ness, we reproduce it here.

Lemma 1. Under the decisional Diffie-Hellman assumption, EIGamalHEC sat-
isfies the correctness property of HEC for fi.

Proof. Let A be a PPT adversary playing the HEC correctness game with
ElGamalHEC. Let e4(1*) be the probability that the challenger accepts. Below,
we (1) provide modified games G and G such that the probability that the chal-
lenger in Gy accepts is also €4(1%); (2) prove that the probability €/,(1*) that
the challenger in G accepts is negligible; (3) give a reduction Bygc that breaks
the security of the ElGamal cryptosystem with advantage e 4(1*) —¢€/4(1*). Since
the ElGamal cryptosystem is secure under the DDH assumption, it follows that,
under the DDH assumption, € 4(1*) is negligible.

(1) First, consider the following game Gy, which is the same as the HEC cor-
rectness game with our ElGamal instantiation, except that actual polynomial
evaluation instead of homomorphic evaluation. Gy first obtains (f,x,state) «+
A(1, hecpar); if f € F,x € domaing x, then it computes X as HECENC(hecpar,
fx, %), except that it renames P into Py and s into s, i.e., it computes a poly-
nomial Py(x) = so H‘;jl(x — x;), where {z;} = x. Next, it invokes .4 again to
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IND-CPAg5(1%) Ou(pk g, Mo, m1)

1: (pkg,sky) <s KGen(1%) 1: return Enc(pkg,ms)
2: return BO®E ) (12 pk,)

B ) (1% pky,) from A attacking correctness of EIGamalHEC
1: hecpar < HECSETUP(\) X « (pkg, Co,...,Cix))
2: (f,x,state) < A(1*, hecpar)  (y:7z) < A(state, X)

3: if f € F,x € domaing x if y € domaing,y

41 s sZ parse 7z = (T, TEnc)

5: 81 4sZ, y' « Po(lobitsy (y))r +y
Ix| if (lobitsy(y') € x)

6: Py < s0 H(X — ;) A (lobitsy (y) ¢ x)
i‘:‘l return 1

7 P« s H(X — ) return 0
i=1 return 0

8 : for i in {0,...,|z|} return 0

9: C; — Oy(ghi, gmri)

Fig. 6.2: Reduction for part (3) of the proof of Lemma

receive (y,rz) < A(state, X); from it, it computes 3y’ < Py(lobitsy(y))rz + v.
If (lobits(y’) € x) A (lobits(y) ¢ x), accept. That is, instead of a homomorphic
evaluation of Py using the ciphertexts Cy, ..., C|y|, followed by decrypting the
resulting ciphertext, it performs an actual evaluation of Py. Observe that the
probability that the challenger in Gy accepts is the same as in the original cor-
rectness game due to the correctness of homomorphic polynomial evaluation.

Second, consider the game (G; that proceeds similarly to Gy: in addition to
polynomial P, it computes a polynomial Pj(x) = s1 H‘;jl(x — x;) with its own
random value s; that it uses within HECENC (instead of Py). Thus, X consists of
the ciphertexts that correspond to coefficients of P;. Running HECEVAL followed
by HECDEC on input y would correspond to homomorphically evaluating P; (y);
instead, G; (like G) uses Py to compute 3’ <— Py(lobitsg (y))rz + y and accepts
if (lobits(y’) € x) A (lobits(y) ¢ x).

(2) Let us prove that the probability €/4(1*) that the challenger in Gy accepts
is negligible. The challenger will accept only if lobits(y) ¢ x, so let us consider this
case. Then Py(lobits,(y)) # 0, and, since s¢ is random, y' = Py(lobits,(y)) # 0
is independent of A’s view. Thus, for any = € x, Pr[lobits(y’) = x] ~ 27%, thus
the probability that G accepts is ~ |x|27*.

(3) We construct the reduction Bugc to the security of the ElGamal cryp-
tosystem. Recall that, under the DDH assumption, the ElGamal cryptosystem
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is CPA-secure using the formulation of Boneh and Shoup (see Sect. ; we use
this version of (multi-instance) CPA-security in our reduction (this makes the
proof simpler as it avoids the hybrid argument). Bygc creates both polyno-
mials P; < s; HL);'1(X —x;), j € {0,1}. Let P;; be their coefficients. It ob-
tains the encryption of the coefficients of one of these polynomials via the El-
Gamal challenger: C; < Op(gfi,g™). This is described in more detail in
Fig. Observe that, Bgﬁ%") (1*, pkj;) creates the same view for A as G. There-
fore, Pr [IND—CPABHEC’O(P‘) = O} = e4(1*) and Pr[IND-CPABHEC,l(l)‘) = 0] =
€/4(1*). Since ElGamal is CPA-secure under the DDH assumption, €4(1%) —
€4(1*) < Pr[IND-CPAg,,,0(1*) = 0] — Pr[IND-CPAg,, 1(1*) = 0] is negligi-
ble as required. a

6.2 From ElGamalHEC to an Efficient Secure Blueprint Scheme

In order to use our HEC construction in Fig. to construct our Generic f-
blueprint scheme in Fig. [5.1] we need a BB simulation extractable proof system
for ¥; to prove knowledge of the witness in the following relation:

{x = (X, hecpar, f,Ca, cpar),

(X,d) = HECENC(hecpar, f,x;7rx) /\}
w = (X7 da TerA)

Ca = Commitpqr (X;7A)

The building blocks of this relation are statements about the message and ran-
domness of ElGamal encryption and the opening of Pedersen commitments that
can be expressed as statements about discrete logarithms representations in
Regrep- By Theorem [T}, we have a BB simulation-extractible NIZK proof system
for Reqrep and in extension ¥;.

For our specific construction, we assume that the auditor’s commitment Cp
contains commitments to coefficients of the polynomial P’ = H‘Z’il(x - X;).
To prove that we encrypted some polynomial P = sP’ involves proving that
P = sP’. We first prove that we have properly encrypted the coefficients of P’.
Then, we can exponentiate these encrypted values by s, effectively multiplying
the coefficients by s. See the full version [52] for more details.

Additionally, we require that there exists a f’-BB-PSL simulation extractable
proof system for ¥, such that there exists an efficiently computable function f*
where f*(x, f'(y)) = f(x,y) for all (f,x,y) € F x domainsx x domaing . Recall
that W5 is used to prove the following relation:

{x = (Z, hecpar, f, X, C, cpar), 7= HECEVAL(hecpar, f, X, y;75) /\}
w = (y,7,75) C = Commit par (y;7)

We need a range proof to prove that lobits (y) is used to generate Eval in Z. This
can be done using Bulletproofs [I2]. The rest of the building blocks for the rela-
tion involves statements about ElGamal encryption and Pedersen commitments,
we can again be expressed as eqrep relation statement.

Theorem |1 guarantees a f(.J, -)-BB-PSL simulation extractable NIZK system
for eqrep, and in extension W,. Recall that f(J,w) = {¢g%7 : j € J}. Here, if we
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choose J to be a singleton containing just the index corresponding to y in w, we
get a g¥-BB-PSL simulation extractable NIZK system. Luckily, knowing x and
y is sufficient to compute f(x,y). Here, f*(x,g¥) can be computed similar to
HECDEC in Fig. [6.1] We first iterate over all 3 values such that lobitsg(y') € x.
If g = ¢¥, we return y'. If no such value exists, we return (). Since |x|2tv—F
is polynomial in A, f* is efficiently computable. See full version [52] for more
details.

7 HEC for any f from Fully Homomorphic Encryption

Definition 6 (Circuit-private (CP) fully homomorphic encryption
(FHE)). A tuple of algorithms (FHEKeyGen, FHEEnc, FHEDec, FHEEval) consti-
tute a secure fully homomorphic public-key encryption scheme [LOJTOI977] if:

Input-output specification: FHEKeyGen(1*, A) takes as input the security
parameter and possibly system parameters A and outputs a secret key FHESK
and a public key FHEPK . FHEEnc(FHEPK ) takes as input the public key
and a bit b € {0,1} and outputs a ciphertext c. FHEDec(FHESK , c) takes as
input a ciphertezt ¢ and outputs the decrypted bitb € {0,1}. FHEEval(FHEPK,

D, cy,...,cn) takes as input a public key, a Boolean circuit & : {0,1}" —
{0,1}, and n ciphertexts and outputs a ciphertext cg; correctness (below)
ensures that cg is an encryption of (b, ..., by,) where ¢; is an encryption
Of b1

Correctness of evaluation: For any integer n (polynomial in \) for any cir-
cuit @ with n inputs of size that is polynomial in A, for all x € {0,1}", the
event that FHEDec(FHESK , C) # ®(x) where (FHESK , FHEPK) are output
by FHEKeyGen, c1, ..., ¢, are ciphertexts where ¢; < FHEEnc(FHEPK , x;),
and cg = FHEEval(FHEPK ,®,c1, ..., cy), has probability 0.

Security: FHE must satisfy the standard definition of semantic security.

Compactness: What makes fully homomorphic encryption non-trivial is the
property that the ciphertext ce should be of a fixed length that is indepen-
dent of the size of the circuit @ and of n. More formally, there exists a
polynomial s(\) such that for all circuits @, for all (FHESK, FHEPK) out-
put by FHEKeyGen(\) and for all input ciphertexts ci,...,c, generated by
FHEEnc(FHEPK,-), ¢ generated by FHEEval(FHEPK ,®,cy,...,¢y,) is at
most s(A) bits long.

An FHE scheme is, additionally, circuit-private [[OJ60/8[35] for a circuit
family C if for any PPT algorithm A that outputs (R, Po, D1, (x1,71), -, (Tn, 7)),
the probability of distinguishing the homomorphic evaluation of &g on {c¢; =
FHEEnc(FHEPK , x;;7:) }iejn) where FHEPK is computed as FHEKeyGen(1*; R)
cannot be distinguished from the corresponding evaluation of ®1 on the same
ciphertexts, as long as Po(x1,...,2n) = P1(z1,...,2y).

Bibliographic note. Definitions of circuit-privacy in the literature come in differ-
ent flavors; we chose the formulation that makes it easiest to prove Theorem [
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below. The strongest, malicious circuit-privacy [60U35], is strictly stronger than
what we give here; therefore, constructions that achieve it automatically achieve
the definition here. Constructions of circuit-private FHE from regular FHE have
been given by Ostrovsky et al. [60] and by Déttling and Dujmovié [35].

Similarly, we chose to formulate correctness as perfect correctness, rather
than allowing a negligible probability (over the randomness for the key genera-
tion, encryption, and evaluation) of a decryption error. Our construction below
also achieves HEC from schemes that are strongly correct, i.e. where the prob-
ability of a decryption error is non-zero, but with high probability, no efficient
adversary can find a public key and a set of ciphertexts and a circuit that will
cause a decryption error. Achieving strong correctness from the more standard
notion of correctness with overwhelming probability can be done with standard
techniques, see the full version [52].

Construction of HEC for any f from CP-FHE. For a Boolean function
g : {0,1}% x {0,1}% ~ {0,1}, an £,-bit string y and a value z € {0,1}2, let
@9 .(v) be the Boolean circuit that outputs g(z,y) if z; = 0, and zo otherwise.

Recall that our goal is to construct a secure f-HEC scheme with a direct
encryption algorithm; suppose that the length of the output of f is £; for 1 <

j < ¢, let fj(z,y) be the Boolean function that outputs the j™ bit of f(z,y).

Suppose we are given an FHE scheme that is circuit-private for the families of

circuits {C;} defined as follows: C; = {@572(90) : y€{0,1}%,2€{0,1}2}.

HECSETUP(1*) — A : Generate the FHE parameters A, if needed.

HECENC(1M, A, f,2) — (X, d) : Generate (FHESK , FHEPK ) <+ FHEKeyGen(1*,
A). Let |x| = n; set ¢; + FHEEnc(FHEPK , z;). Output X = (FHEPK , ¢y,

., ¢n), and decryption key d = FHESK.

HECEvAL(hecpar, f,X,y) — Z : Parse X = (FHEPK, ci,...,c,). For j =
1 to £, compute Z; + FHEEval(FHEPK, &) c1,...,¢,). Output Z =
(Zla ceey ZZ)

HECDEC(hecpar,d, Z) — = : Output (FHEDec(d, Z1), ..., FHEDec(d, Z;)).

HECDIRECT (hecpar, X,z) — Z : Parse X = (FHEPK,cy,...,c,). For j =
1 to ¢, compute Z; + FHEEvaI(FHEPK7@g@}lzﬁch...,cn). Output Z =
(Z1,..., Zy).

Theorem 4. If (FHEKeyGen, FHEEnc, FHEDec, FHEEval) is a fully-homomorphic
public-key encryption scheme that is circuit-private for circuit family {ij . f€
F'} defined above, then our construction above constitutes a homomorphic-enough
encryption for the family F.

Proof. (Sketch) Correctness follows from the perfect correctness of FHE. Secu-
rity of = by semantic security of FHE. Security of # and y from third parties is
also by semantic security. Finally, the security of the direct encryption algorithm
follows by circuit privacy.

Combining the fact that circuit-private FHE exists if and only FHE exists,
and (as we saw earlier) the fact that HEC and simulation-extractable NIZK [33]
give us a secure blueprint scheme, we have the following result:



28

Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

Corollary 1. If fully homomorphic encryption and simulation extractable NIZK
exist, then for any function f, secure f-blueprint scheme is realizable.
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