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Abstract. We propose a new garbled RAM construction called NanoGRAM,
which achieves an amortized cost of O(\ - (W log N + log® N)) bits per
memory access, where A is the security parameter, W is the block size,
and N is the total number of blocks, and 6() hides poly log log factors.
For sufficiently large blocks where W = .Q(log2 N), our scheme achieves
6()\ - Wlog N) cost per memory access, where the dependence on N is
optimal (barring poly log log factors), in terms of the evaluator’s runtime.
Our asymptotical performance matches even the interactive state-of-the-
art (modulo polyloglog factors), that is, running Circuit ORAM atop
garbled circuit, and yet we remove the logarithmic number of interac-
tions necessary in this baseline. Furthermore, we achieve asymptotical
improvement over the recent work of Heath et al. (Eurocrypt ’22). Our
scheme adopts the same assumptions as the mainstream literature on
practical garbled circuits, i.e., circular correlation-robust hashes or a ran-
dom oracle. We evaluate the concrete performance of NanoGRAM and
compare it with a couple of baselines that are asymptotically less effi-
cient. We show that NanoGRAM starts to outperform the naive linear-
scan garbled RAM at a memory size of N = 2° and starts to outperform
the recent construction of Heath et al. at N = 2'3.

Finally, as a by product, we also show the existence of a garbled RAM
scheme assuming only one-way functions, with an amortized cost of O(\2-
(Wlog N +1log® N)) per memory access. Again, the dependence on N is
nearly optimal for blocks of size W = 2(log® N) bits.

1 Introduction

Garbled circuits, originally proposed by Yao [39,40], is a cryptographic tech-
nique for two parties to perform secure computation over their private data in
two rounds. At a high level, a garbler can garble some computation expressed
as a circuit as well as the inputs. An evaluator who obtains the garbled circuit
and garbled inputs can securely evaluate the function over the inputs, result-
ing in garbled outputs that can only be decoded using the garbler’s secret key.

* Author ordering is randomized. The full version of the paper can be accessed at
https://eprint.iacr.org/2022/191.
** The work was done while the author was a postdoctoral researcher at CMU.



The evaluator learns nothing about the garbled inputs or outputs. Subsequently,
numerous works have focused on making garbled circuits increasingly more prac-
tical [1,10,21-26,32,39,40,42]. In practice, however, computations are expressed
in the Random Access Machine (RAM) model which is a mismatch for the circuit
model. Converting RAM programs to circuits in general incur polynomial over-
head in the RAM’s space and time, making it prohibitive in practice especially
when the computation involves big data. To avoid this expensive RAM-to-circuit
conversion overhead, the elegant work of Lu and Ostrovsky [28] suggested a new
abstraction called garbled RAM, which aims to garble a RAM program directly
without converting it to a circuit. From a theoretical perspective, the goal of gar-
bled RAM is to garble a program incurring only poly(\,log N) overhead where A
is the security parameter and N denotes the space of the RAM. Throughout the
paper, we often use the metric “amortized cost per memory access” to character-
ize the performance of a garbled RAM scheme, which is the number of bits that
must be communicated per memory access. Since the original work of Lu and
Ostrovsky [28], a line of works [14,17,24,29] have focused on improving garbled
RAM constructions.

With the exception of the most recent work by Heath et al. [24], prior
works on garbled RAM [14,17,29] did not care about the poly factor in the
poly(\, log N) overhead, let alone concrete performance. Nonetheless, since gar-
bled RAM was originally motivated by the need to speed up garbled random-
access computation on big data, clearly, our dream is to make garbled RAM
practical some day. The very recent work of Heath et al. [24] took a pioneering
step towards this dream: they constructed a garbled RAM scheme that achieves
O(X- (W log?® N +1log* N)) overhead where T denotes the block size. Specifically,
when the block size W = 2(log® N), their scheme achieves O(X\ - W - log® N)
overhead. Their scheme assumes the existence of a circular correlation-robust
hash or a random oracle — the same assumptions as the mainstream practical
garbled circuit literature, including FreeXOR [10,26] and subsequent improve-
ments [25,32,42].

As a baseline of comparison, imagine that we actually allowed interaction. In
this case, the state-of-the-art (for moderately large data) is running the Circuit
ORAM algorithm [37] on top of an efficient garbled circuit implementation. In
this case, the overhead would be O(X-(W log N 4log® N)), which is a logarithmic
factor smaller than that of Heath et al. [24]. In this paper, we ask the following
natural question:

Can we have a (non-interactive) garbled RAM scheme whose asymptotical
performance is competitive to the interactive state-of-the-art, that is, running
Circuit ORAM on top of garbled circuits?

Our results and contributions. We answer the above question affirmatively. Fol-
lowing the elegant work of Heath et al. [24], we take another significant step
forward towards the dream of making garbled RAM practical. Concretely, we
show a new garbled RAM construction called NanoGRAM, that incurs O()\-

(Wlog N +log® N )) overhead where O(-) hides polyloglog factors. In compar-



Table 1: Comparison with prior works, where Sy denotes the circuit size of
the PRF that outputs A bits, and CCR hash is Circular Correlation-Robust
hash. See Appendix G and H of the online full version [30] for details.

Assumption Cost per access Blackbox
Lu and Ostrovsky [28] Circular GC* O(ASAW log? N) No
Hazay and Lilintal [20] OWF O(ASy - (Wlog N + Mlog? N + log® N) No
Garg et al. [14] OWF O (A% - (W log* N 4 log® N)) Yes
Heath et al. [24] CCR hashes O (A (Wlog® N + log* N)) Yes
OWEF? O (A% - (W log? N + log* N)) Yes
This work CCR hashes 19) (A (Wlog N + log® N)) Yes
CCR hashes® O (AB - (Wlog N + log® N)) Yes
OWF O (A% - (W log N + log® N)) Yes

a. Circularly secure garbled circuit, see [17].
b. This is not documented in their paper, but it is a standard method to tweak their scheme.
c. Our practically efficient scheme, where B is the statistical security parameter.

ison with Heath et al. [24], we save almost a logarithmic factor. Our scheme
makes the same assumptions as Heath et al. [24] as well as the standard litera-
ture on efficient garbled circuits [10, 25,26, 32,42], i.e., either assuming circular
correlation-robust hashes or the random oracle model. Further, our garbled RAM
construction is blackbox in the sense that it does not require garbling the circuit
of some cryptographic primitive such as a pseudorandom function (PRF).

Theorem 1 (Garbled RAM from circular correlation-robust hashes).
Assume circular correlation-robust hashes or the random oracle model. There is
a blackbox garbled RAM scheme where each memory access incurs an amortized
cost of O ()\ - (Wlog N + log® N)) where X is the security parameter, W is the
block size, and N is the total number of blocks.

As a direct corollary, if W = Q(log2 N), then our garbled RAM scheme

achieves 6()\ -W -log N) amortized cost per memory access.

Modulo the polyloglog factors, we believe that there may be some barri-
ers for further improving our asymptotical results for blackbox garbled RAMs.
First, for block sizes W = .Q(log2 N), our scheme has optimal dependence on N
(barring poly log log factors) due to well-known ORAM lower bounds [18,19,27].
Second, for small block sizes, any further asymptotical improvement would likely
imply a statistically secure ORAM that breaks the O(log2 N) barrier — this is
arguably the biggest open problem in the ORAM line of work, and no progress
has been made for a long time®. Although computationally secure ORAMs [2,31]
are a logarithmic factor more efficient than statistically secure ones, so far we
do not know how to use computationally secure ORAM techniques in black-
box garbled RAMs, i.e., without having to garble the PRF employed by the
ORAM. Third, as mentioned, even when allowing interactions, we do not know

3 Carbled RAM only needs an ORAM in a relaxed model where we do not charge the
cost of pre-processing, but even in this relaxed model, it remains an open question
how to construct a o(log® N) statistical ORAM.



any scheme that performs asymptotically better than the Circuit-ORAM-over-
garbled-circuit baseline.

Our work also gives rise to a garbled RAM scheme from OWF but it incurs
an extra A factor in cost, as stated in the following corollary:

Corollary 1 (Garbled RAM from one-way functions). Assume the exis-
tence of one-way functions. There exists a garbled RAM scheme that_achieves
O(/\2 - (log® N + W log N)) amortized cost per memory access, where O(+) hides
poly loglog A factors.

In particular, for large enough blocks W = Q(log2 N), the resulting garbled
RAM incurs 6()\2 - Wlog N)) amortized cost per memory access.

Compared to prior works. Table 1 compares our asymptotical result with prior
garbled RAM works. The ealier works (e.g., [14,17,28]) used ORAM as a black-
box and did not care about how large the poly log is. Both Heath et al. [24] and
our work observe that to optimize the polylog factors, we need to open up the
underlying ORAM, and tailor the ORAM’s design specifically for garbled RAM.
In our paper, a key observation is that the more uncertainty there is regarding
which address will be accessed, the more overhead we need to pay to account for
the uncertainty. Therefore, one of our main techniques is to localize the uncer-
tainty (of which address is accessed) to polylogarithmically sized regions.

Besides those listed in the table, Gentry et al. [17] also propose a garbled
RAM scheme from one-way function and identity-based encryption with poly-
logarithmic cost. Additionally, they also propose a garbled RAM scheme from
one-way function only but the asymptotical cost is N€¢ for some constant € €
(0,1). We did not include it in the table because the result is subsumed by
Garg et al. [14]. The table also did not include reusable Garbled RAM [4,5,9]
which are based on indistinguishability-based obfuscation (i0). Known reusable
garbled RAM constructions can compress the total communication but they do
not save the evaluator’s runtime.

Concrete performance. In additional to our main results, we explore the concrete
performance. In Appendix A of the online full version [30], we suggest several
practical optimizations to our garbled RAM scheme described in Theorem 1.
Our practically efficient scheme eliminates constant and poly log log factors while
introducing a statistical security parameter, as shown in Table 1. We developed a
simulator for our garbled RAM scheme with these suggested optimizations. Our
simulation results show that we break even with the naive linear scan GRAM
at about N = 2% memory size, and we start to outperform the prior work
EpiGRAM [24] at about N = 23 memory size.

2 Technical Roadmap

2.1 Background

Encodings. We will use the following forms of encodings.



— Garbling. Suppose we choose some secret key sk = A = {0,1}* where A is
the security parameter. Suppose every wire, which carries one bit, is assigned
a label (also called a language) L € {0,1}*. The garbling of a bit b € {0,1}
on this wire, denoted {b}, is computed as {b} = A-b & L. This encoding
approach was first proposed in the elegant Free XOR work [26]. For a vector
of bits z € {0,1}*, we use {z} to mean the garbling of each bit one by one.
— Sharing. For efficiency purposes, we also adopt another form of encodings
called sharings [24] that support only restricted forms of computation to be
elaborated later. Given a random label (also called a language) L € {0,1}*,
we can create a sharing [x] of a k bit string x € {0, 1}*, that is, [z] = 2@ L.

For the time being, the reader may imagine that all encodings are in the form
of garblings. We will explain how to use sharings to improve the efficiency later.

The language translation problem. In a garbled circuit scheme, every garbled gate
essentially performs some garbled computation over the garbled input wires, the
computation result is encoded using the language of the output wires. Since the
wiring in a circuit is static, the garbler knows the mapping between each gate’s
output and input languages a-priori, and can prepare the garbled truth table for
each gate accordingly.

As prior works observed [14,17,24,28,29], in a garbled RAM scheme, the key
challange is that of a dynamic language translation for a memory read or write.
Take memory read for example, and henceforth, we also refer to each memory
word as a block. Suppose that some garbled block resides at some physical loca-
tion «, and is therefore garbled using a language related to the physical location
a. We want to read the block back, but instead encoded using a global-time-
dependent label. Only in this way, can we successfully feed this garbled block
to the CPU’s garbled next-instruction circuit. One can imagine that the gar-
bler prepares a garbled next-instruction circuit for every time step ¢, and each
such garbled circuit speaks a language dependent on the time ¢. The challenge
is that the physical location to read in each time step ¢ is dynamically gener-
ated, and cannot be determined statically at garbling time. This means that we
need to dynamically translate location-dependent encodings to time-dependent
encodings.

Switch: a minimal gadget for dynamic translation. A garbled switch, proposed
in the elegant work of Heath et al. [24], is a basic building block that performs
dynamic translation between a parent and two children nodes. Suppose that the
parent node receives some garbled data and a garbled direction bit indicating
which of the two children should receive the data. The parent node now wants to
re-encode the data using a language that the corresponding child recognizes, so
the child can receive the data and potentially perform some garbled computation
on it. The security requirement says that the evaluator cannot learn anything
about the encoded data, but it is allowed to learn the direction bit. Imagine that
each node keeps track of some local time which corresponds to the number of
times the node has been invoked. When garbled data arrives at any node, the



input data should be encoded using a label that depends on the node’s local time.
To garble such a switch, the main challenge comes from the fact that the parent
and the two children have different local clocks. When the parent routes garbled
data to one of the children, it must re-encode the data using a language that
depends on the child’s local time. Unfortunately, the garbler cannot statically
predict the mapping between the parent’s local time and the destination child’s
local time.
Informally, a garbled switch has the following abstraction:

— Garble. The garbler receives an array of input labels denoted InL, and
two stacks of output labels denoted OutLgy and OutL, respectively. Specif-
ically, InL[r] denotes the language of the 7-th invocation of the parent node,
OutL[7]| denotes the language of the 7-th invocation of the left child, and
OutL [7] denotes the language of the 7-th invocation of the right child. The
garbler then outputs some garbled circuitry GC and garbled memory Gmem
to be consumed later by the evaluator.

— Switch. The evaluator can consume GC and Gmem to perform garbled switch
operations described below. In every time step 7 (of the parent), the parent
receives {b} and {data} where b € {0,1} is a direction bit and data denotes
the data to be routed to the b-th child. The evaluator can securely evaluate
the following functionality: pop the next unconsumed label L from the b-th
stack OutL,, re-encode data using the label L, and output the result. We
allow the evaluator to learn the direction bit b, however, it should not learn
anything about the garbled data data.

Heath et al. [24] proposed an elegant idea that leverages two garbled stacks [24,
38,42] to realize a garbled switch. Specifically, the garbler initializes two garbled
stacks with the encoded contents OutLy and OutLy, respectively. Whenever
a new request arrives at the parent node, the evaluator makes a real pop from
the b-th stack and makes a fake pop from the (1 — b)-th stack. The result of
the real pop is an encoded label that corresponds to the current local time of
the b-th child. The result of the fake pop is simply an encoding of 0. Observe
that both popped values are encoded using labels dependent on the parent’s
local time. Similarly, the input {data} is also garbled using a label dependent
on the parent’s local time. This makes it possible for the garbler to prepare a
garbled circuit in advance that re-encodes the input {data} using the popped
label instead.

The cost of garbling such a switch is directly related to how many accesses
we must provide. Suppose that each of the two children can be visited at most
m times, and thus the parent can be visited at most 2m times. In this case, the
parent’s switch would need two garbled stacks each of capacity m. Using existing
garbled stack techniques [24, 38,42], the cost is Ox(w - mlogm) where w is the
payload length (i.e., the bit width of data), and we use Oy (+) to hide factors that
depend on the security parameter . This directly translates to an amortized
cost of Oy (w - logm) per switch operation. Note that later on, we will actually
care about minimizing the factors that depend on A and w; however, for ease of
understanding, we ignore these factors for the time being.



Why Heath et al. [24] is inefficient. At a very high level, Heath et al. [24] builds
upon this minimal switch gadget that is capable of dynamic translation, and
eventually obtains a full garbled RAM. Their blueprint is to first use garbled
switches to build an access-revealing one-time memory, and then upgrade the
access-revealing one-time memory to a full-fledged garbled RAM through a hi-
erarchical data structure and recursion techniques. Interestingly, their usage of
the hierarchical data structure and recursion is novel and tailored specifically for
garbled RAM; it makes use of the fact that the data structure performs shufflling
and the garbler is aware of the data shuffling pattern ahead of time, since the
garbler is choosing the random coins used in the shuffling.

There are a couple of reasons why the approach of Heath et al. [24] is asymp-
totically and concretely non-optimal. One of the most important reasons is be-
cause their composition of garbled switches in a tree-like fashion is inefficient.
To obtain an access-revealing one-time memory of size n, they need to garble
a tree of switches with n leaves. The root node must provision for up to n ac-
cesses, each of the root’s children must provision for n/2 accesses, ..., and each
leaf must provision for one access. For simplicity, assume w > logn. The total
cost to garble the tree of switches would therefore be Oy (w - nlog®n); which
translates to an amortized cost of Oy (w - log?n) for each single request to the
one-time memory. This cost is pre-recursion. After applying the full recursion,
their asymptotical cost* becomes Ox(W -log® N + log* N).

_ We wish to reduce the cost by roughly a logarithmic factor, that is, we aim for
Ox(W -log N) pre-recursion cost per memory access where O(-) hides poly log log
factors, rather than their Oy (W -log? N) cost.

2.2 Our Approach

As mentioned, with the exception of Heath et al. [24], earlier works on garbled
RAM [14,17,28,29] adopt a two-step compilation approach : 1) compile the RAM
program to an Oblivious RAM whose memory access patterns are safe to reveal
— this approach can rely on off-the-shelf Oblivious RAM algorithms [7, 37];
2) compile an oblivious RAM to a garbled RAM (where the garbling does not
shield memory accesses). Each step of the compilation incurs a separate poly-
logarithmic overhead, and the two sources of overheads are multiplied. Heath et
al. [24] suggested a second approach where we work at a lower level of abstraction,
and design customized garbled data structures and gadgets and then compose
them into a Garbled RAM scheme.

First attempt. We adopt the second approach. Since a garbled RAM scheme must
embed some Oblivious RAM (ORAM) scheme in it, a natural attempt is to take

4 Throughout the paper, we use capitalized letters N and W to denote the number
of blocks and block size of the final GRAM construction, and we use small letters
n, m, and w to denote the size and payload length of building blocks. The reason for
this distinction is because we need to instantiate multiple instances of these building
blocks with varying parameters in the final scheme.



a state-of-the-art statistically secure ORAM?® such as Circuit ORAM [7,37], and
ask how we can garble such a data structure.

We briefly describe the underlying non-recursive tree-based data structure
that underlies Circuit ORAM [7,37]. The full ORAM scheme involves creating
logarithmically many such trees through a standard recursion technique [33,35].
The pre-recursion ORAM tree is a binary tree with n leaf nodes, and each non-
root node is a bucket of some capacity O(1). The root bucket is super-logarithmic
in size for storing overflowing blocks. The main path invariant is that every block
is assigned to a random path (i.e., a path from the root to a random leaf node),
and the choice of this random path is not revealed until the block is next accessed.
To fetch a block, one looks up the path where the block resides through recursion,
and the path can be identified by a leaf node often denoted leaf — we also call leaf
the block’s position identifier. Then, one looks up all buckets on the path from
the root to the leaf node leaf. When a block with the requested logical address
addr is encountered, the block is removed from the corresponding bucket. At this
moment, the block is updated if the current operation is a write operation, and
a new random path is chosen for the block. The block is then added back to the
root bucket tagged with its new position identifier. After every access, we need to
perform some maintenance operation that moves blocks closer to the leaf level,
such that none of the buckets will overflow except with negligible probability. We
may assume that the access patterns of the maintainance operations are a-priori
fixed, e.g., using the reverse lexicographical order eviction idea first suggested
by Gentry et al. [16].

To garble such a tree-based ORAM, a main challenge is that online phase
has dynamic access patterns: every time we request a block, it goes through
a random path in the ORAM tree. To solve this challenge, we can potentially
rely on the garbled switch data structure. Suppose that every node in the tree
has a garbled switch. When a memory access request arrives, it comes with
{addr,leaf} where addr is the block’s logical address, and leaf is the block’s
position identifier; further, the request is garbled using a global-time-dependent
label which also coincides with the local time of the root switch. Note that
the cleartext value of leaf may be safely exposed to the evaluator. Recall that
during this access, each bucket on some path will search for a block with the
desired logical address addr, and if so, it returns the block’s payload; else, it
returns 0. We want to make sure that each bucket’s fetch result is encoded
using some global-time-dependent language, and the collection of all O(logn)
languages are denoted Lo, ..., Lo(iogn)- Let {Lo, ..., Logogn)}} be an encoding
of these languages under some global-time-dependent label that is recognized by
the root whose local clock coincides with the global clock.

5 Although computationally secure ORAMs can achieve asymptotically better over-
head in cloud outsourcing scenarios, we currently do not know any way to use com-
putationally secure ORAMs in blackbox garbled RAM schemes, without having to
securely evaluate the circuits of cryptographic primitives such as pseudo-random
functions.
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Fig.1: XOR trick.

Now, imagine that the root receives the information {addr, leaf, Lo, ..., Lo(iogn) }-

It uses b = leaf[0] as the direction bit, and wants to route the information it has
received to the b-th child. To achieve this, it must first re-encode the pair addr
and leaf using a label that is dependent on the local time of the b-th child —
and this can be accomplished by the garbled switch. Imagine that every node
along the path does the same, and each node uses the next bit in leaf to decide
its direction. In this way, each node along the path can receive a fetch instruc-
tion garbled using a language that matches its local time, and it can look in its
own garbled memory whether a block exists with the desired addr. The fetch
result is garbled using the corresponding garbled label which it received as part
of the garbled input (i.e., Lo, ..., Loogn))- Finally, some garbled CPU circuit
can securely aggregate all O(logn) fetched results into a final result.

This naive scheme has two sources of inefficiency. First, the root switch must
provision for n accesses, each of the root’s children must provision for n/2=+o(n)
accesses with high probability, and so on. Therefore, the total cost of all the
switches is O A(w-log2 n) where w denotes the length of the payload being routed.
The second drawback is the fact that the length of the payload w is large, since
we need to route O(logn) labels each of A bits long.

These two sources of inefficiency each incurs an extra logn factor that we
want to get rid off. Below we discuss how to overcome these two sources of
inefficiency. We shall begin with the second problem, which is a little easier than
the first one.

Passing a Single Label with an XOR Trick To overcome the second chal-
lenge, we introduce an XOR trick as depicted in Figure 1. Assume that each
node in the tree has a garbled bucket henceforth denoted GBkt and a garbled
switch denoted GSwitch. A garbled bucket GBkt supports a Read operation: when
given a logical address {addr}} garbled under an local-time-dependent input la-
bel, it will output the corresponding block’s contents {val} if the block is found,
or output {0} if not found. Further, the result is garbled using a local-time-



dependent output label. Suppose that we want the final memory fetch result
to be encoded under some global-time-dependent label K. Henceforth assume
that the root is at level 0 of the tree, and let ¢y.x = O(logn) be the leaf
level. As we traverse the path, each non-leaf bucket along the way encodes its
result using labels Lo, L1, ..., Ly, —1, respectively (we abuse notations where
Lo, Ly,... are now local-time-dependent). Our idea is to pass an encoding of the
label Ly, = K@ Lo®...® Ly, -1 to the leaf node, such that the leaf bucket
will encode its fetch result using the label Ly, . This way, all the labels would
XOR to K. This means that when we XOR the garbling of all £, + 1 fetched
results, we obtain a garbling of the fetched result encoded under the label K. To
achieve this, we can have each node in a non-leaf level ¢ pass an encoding of the
residual label Ry = K & Ly @ ... ® Ly_; to its child, encoded using a language
dependent on the child’s local time. The XOR trick saves us one logarithmic
factor in cost.

max

Splitting Switches into Poly-logarithmically Sized Ones To overcome the
first challenge, our idea is to avoid using big switches that must be provisioned
with a large number of accesses. Instead, we want to break up the big switches
into poly-logarithmically sized ones. To achieve this, we observe that we can
leverage ideas from the Bucket ORAM algorithm [13].

Background on Bucket ORAM. At a very high level, Bucket ORAM is a tree-
based ORAM but with a hierarchical-style rebuild algorithm.

Let T be the maximum runtime of the RAM program, and let NV be its space.
In the Bucket ORAM tree, each bucket has size 2B = O(log(L)) where § is
the statistical failure probability. Like in any tree-based ORAM scheme [33],
a bucket can store either filler blocks denoted L or real blocks of the format
(addr, leaf, data) where addr is the block’s logical address, leaf denotes its position
identifier, and data denotes its payload. The read phase of the algorithm is also
like any tree-based ORAM |[7, 33,34, 37]. To read a block, we first recursively
look up its position identifier denoted leaf, we then look up the path from the
root leading to leaf for the block requested. The block is removed from the
corresponding bucket if found. Besides the tree data structure, there is also a
small stash that can store up to B blocks. Any memory request must also search
in the stash for the desired block. Moreover, after a block is fetched, it will
be added to the stash (possibly with an updated payload string). For the time
being, one can imagine that each bucket itself as well as the stash implement
small ORAMs [6,8,11] such that they can look up a block in poly log log(¥)
time.

Interestingly, the maintainance phase of Bucket ORAM actually resembles
a hierarchical ORAM [18,19]. Suppose that n and B are powers of 2. Let root
be at level 0, and let £.x = logy 5. Each level i is rebuilt every 2¢. B steps. In
particular, at the end of some time step ¢, if t + 1 is a multiple of n, we need
to rebuild levels 0, . .., £ihax into level £,.x and empty all remaining levels. Else,
if we can express t + 1 as j - 2¢ for some odd integer j, then we need to rebuild

10
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time ¢, the Lt/(B . 2Z)J—th copy is active. The numbers show which copies of
garbled circuitry correspond to which tree node in the same level.

levels 0,...,¢ — 1 into level ¢, emptying the levels 0,...,¢ — 1 in the process.
Further, the rebuild process must respect the position identifier each block has
chosen. The Bucket ORAM work [13] shows how to accomplish this rebuild
using a circuit whose size is linear in total number of elements involved in the
rebuilding. For the purpose of this work, the details of the rebuild algorithm is not
too important. Therefore, we give a brief description below and refer the reader
to the Bucket ORAM work [13] for details. At a high level, the Bucket ORAM
work suggested that this rebuild can be accomplished through a sequence of
MergeSplit operations. In each MergeSplit operation, we take a pair of buckets as
inputs and and output a pair of buckets. Each real block in the input buckets will
go into one of the output buckets, and the choice depends on the corresponding
bit in their leaf label. The MergeSplit operation essentially relies on sorting of
objects with 1-bit keys, i.e., compaction [2]. Indeed, if we use a linear-sized
compaction circuit to realize each MergeSplit, the total cost of the rebuild would
be linear. For our paper, it does not matter to our final asymptotics even if we
used bitonic sort to implement the MergeSplit, since this part of the overhead
will not be the dominating factor.

Splitting switches into poly-logarithmically sized ones. As shown in Figure 2, each
node at level £ in the tree has T'/(2° - B) instances of GBkt and GSwitch. The
instances are indexed from 0, 1,...,7/(2"- B) — 1. During time step t € [0: T),
the garbled instances indexed |t/(2° - B)| are active. Whenever a level is rebuilt,
the existing GBkt and GSwitch instances corresponding to all tree nodes in this
level finalize, and new instances are initialized.

Due to the rebuild schedule of Bucket ORAM, we know in advance for each
instance at some parent node, which instances of its children it must communi-
cate with. In other words, the communication graph between the instances are
statically determined.
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There are, however, some subtle challenges we need to resolve for this idea
to work. Observe that half the switches finalize together with their children —
this case is a little easier to handle since the new instances that take over can
start fresh. For the other half, when they finalize, their children do not finalize at
the same time. However, their children’s local clocks have already advanced to
some dynamic value which cannot be predicted in advance. In this case, we need
to implement an explicit hand-over operation such that the new switches can
inherit the necessary states from the switches whose jobs they are taking over.
To achieve this we need the help of garbled data structures supporting dynamic
finalization which we explain below.

Garbled Data Structures with Dynamic Finalization We adopt a modu-
lar framework to present our scheme which makes it easier to verify its correct-
ness and security. A new abstraction we propose is a garbled data structure with
a dynamic finalization — we believe that our definitions may be of independent
interest in future works on garbled data structures and algorithms.

Consider some data structure that supports some function calls Funcy,...,
Func.. Additionally, there is a special function called Finalize which is called at
the end of its life cycle to output some final garbled state — for example, the
final garbled state can be an encoding of all unvisited blocks stored in the data
structure. We assume that except for the Finalize function, the call schedule for
all other functions are fixed a-priori. The Finalize function, however, may be
called at any time t* within some a-priori known time bound #,,.x. No matter
in which local time step t* the function Finalize is invoked, the finalized states
it outputs must be garbled under some fixed label (that does not depend on
t*). To enforce that the evaluator calls Finalize at the right time, the Finalize
call has to take in a garbled signal {1} that explicitly authorizes the call. More
specifically, a garbled data structure supporting dynamic finalization has the
following abstraction:

— Garbler. The garbler takes in some initial memory array DB, input and
output labels denoted InLi and OutL, and outputs the garbled circuit GC
and initial garbled memory Gmem. Specifically, InLL and OutL provide the
following labels:

InL = (Io, .. ,Itmaxfl, Co, ceey Ct
OutL = (00, ey Otn]ax_l’ F)

Cy

max— 19 max)

where for 7 € [0 : tmax), Ir and O, denote the time-dependent labels used

to encode the input and the output of the 7-th (non-Finalize) operation,

respectively; for t* € [0 : tmax], Ci+ is the label used to encode the finalization

signal should Finalize be invoked at time step t*; and F' denotes the label used

to encode the final state st output by Finalize.

— Evaluator.

1. In each local time step 7 € [0 : tmax), the evaluator can call garbled

operations {outp} «+ Funcl-GTC(Gmem, {inp}) where the call schedule i, €
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[c] is fixed a-priori. The inputs and outputs must be garbled under labels
dependent on the local time. The operations may cause updates to the
internal garbled memory.

2. At some dynamic point of time t* € [0 : tynax, the evaluator may call
st < FinalizeGC(Gmem, I) The evaluator must input a garbled finalization
signal 1 (which is garbled under a t*-dependent label). Intuitively, this
signal forces the evaluator to evaluate Finalize in the intended time step
t* and not any other time step. The Finalize algorithm outputs a garbled
final state denoted st, which is garbled under the fixed label F' which is
independent of t*.

Garbled data structures with dynamic finalization are used in multiple places
in our construction. For example,

— Each GBkt instance is visited a dynamic number of times before finalization,
and when finalized, it must output the remaining unvisited elements encoded
under some fixed label. The results will then be passed to the garbled re-
builder algorithm.

— Each GSwitch instance is also visited a dynamic number of times just like
GBkt. As mentioned earlier, for half of the switches, when they finalize, they
must pass some internal state to the next switch that takes over, such that
the next switch knows the local clocks of the children.

— Finally, some of the building blocks (e.g., garbled stack, access-revealing one-
time memory) we use to construct our GBkt and GSwitch are also garbled
data structures with dynamic finalization.

We formally define the security for such garbled data structures with dynamic
finalization in Section 3, and we give efficient instantiations partly relying on a
building block called an expiring vault (see Appendix D.1 of the online full
version [30]).

The need to support dynamic finalization complicates our construction. In
several cases, we cannot use existing building blocks for this reason and have to
construct our own variants. For example, in our construction, each GBkt itself
is a small garbled dictionary capable of translating a memory fetch result from
using a location-based label to using a local-time-dependent label. Since we need
a dynamic finalization capability from the GBkt, we cannot directly use prior
work such as Heath et al. [24]. Similarly, for other seemingly standard building
blocks such as garbled stack, we also have to construct our own variants and
prove them secure.

Additional Optimizations So far, we have explained our ideas assuming that
all wires are encoded using garbling. To save a factor of \, we adopt several ideas
suggested by Heath et al. [24]. In particular, we will encode some wires using
sharings rather than garblings. Unlike garblings, sharings are space-preserving
since the sharing of some string has the same length as the original string.
However, sharings can only be involved in restricted computations.
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1. a shared bit can be XORed with another shared bit or a constant value
known at garbling time that is hard-wired in the garbled circuitry or gar-
bled memory, and the outcome of such an operation is a sharing too, i.e.,
(=], [¥]) = [= & yl;

2. a shared string may be multipled with a garbled bit whose cleartext value
is known by the evaluator, and the result of the operation is a sharing,
ie., ({{bE}, [[y]]) — [b-y] where y € {0,1}*. Throughout the paper, if the
evaluator is allowed to know the cleartext of some garbled value {val}, we
often write {val®} to make this explicit.

The elegant work by Heath et al. [24] described techniques to efficiently imple-
ment the above operations involving shared bits, assuming the existence of a
random oracle. Specifically, the first type of operations require only 1 bit per
XOR gate, the second type of operations require only O(k + A) bits to garble a
gate that multiply {b¥} with [y] where k is the bit-width of y.

Later on in our constructions, the data stored in garbled stacks which are
part of the garbled switches will be in the form of sharings; furthermore, the
labels passed long the tree paths will also be in the form of sharings. These
optimizations save us a A factor in the final costs.

3 Definitions: Garbled Data Structure

Recall that in Section 2.1, we defined two types of encodings called sharings and
garblings for garbled circuits. We refer the reader to Appendix B of the online
full version [30] for a more detailed review of garbled circuits. We now proceed
to define garbled data structures.

Our building blocks involve several garbled data structures. An evaluator
can invoke multiple garbled operations of the data structure during its life cycle.
Every garbled data structure has a local time denoted 7 € [0 : tyax] Where tpax
is the maximum number of operations supported. When the 7-th operation is
called, we say that the garbled data structure is in local time 7. Unless otherwise
stated, our garbled data structures will have the following interface where we
use T to denote an encoding of = which is either a garbling or sharing of z:

— Gmem, GC <« Garble(1*, sk, params, DB, InL, OutL): the algorithm takes in
the security parameter, some secret key sk € {0,1}*, parameters params
(explained shortly), the initial memory array DB, input and output labels
denoted InL and OutL used to encode the garbled inputs and outputs re-
spectively. It outputs the garbled memory Gmem and some garbled circuits
denoted GC. Here, the parameters params typically contains the word size
often denoted w, the length (often denoted m) of the initial memory array
DB, and the maximum number of operations denoted .-

— Gmem’, outp Funch(Gmem7 iﬁfn),

Gmem'’, outp FuncSC(Gmem7 i;;)): some functions to be called by the eval-

uator. We assume that the call schedule for the functions Funcy, ..., Func,
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is known a-priori, where the call schedule specifies exactly which of these
functions will be invoked in each time step 7 € [0 : tyax). For the evaluator
to evaluate these functions in a garbled manner, it needs to consume the gar-
bled circuitry GC which we write in the superscript of the procedure. Calling
these garbled operations not only outputs some encoded answer outp, but
also may result in updates to the internal encoded memory denoted Gmem'.
The inputs inp and outputs outp are garbled using labels dependent on the
data structure’s local time.

— st « Finalize®(Gmem,1): the Finalize function can be invoked in any time
step t* € [0 : tmax|, where t* also denotes the number of operations invoked
prior to calling Finalize. Unless otherwise noted, exactly when Finalize will be
invoked is unknown at the time of garbling. To successfully invoke Finalize, the
evaluator must input a garbled finalization signal 1 (which is garbled under
a t*-dependent label). Intuitively, this signal forces the evaluator to evaluate
Finalize in the intended time step ¢* and not any other time step. The Finalize
algorithm outputs a garbled final state denoted st, which is garbled under a
fixed label which is independent of t*.

The input /output labels InL and OutL fed into the Garble algorithm should
contain the following:

InL := (Io, ey Ittx)ax_:l’ CQ, ey Ctn\ax_l’ Ctmax)
OutL := (Oy,...,0; F)

max— 17

where for 7 € [0 : tmax), I and O, denote the time-dependent labels used to
encode the input inp and the output outp in the 7-th time step, respectively;
for t* € [0 : tmax), Ct= is the label used to encode the finalization signal should
Finalize be invoked at time step t*; and F' denotes the label used to encode the
final state st output by Finalize.

Relationship with garbled circuits. Garbled circuits can be viewed as a special
case of our garbled data structure formulation. Specifically, a garbled circuit can
be viewed as a garbled data structure that supports only one operation Func
after garbling. For this reason, we do not give a separate definition for garbled
circuits. Later on, we will rely on garbled circuits as a building block to construct
garbled data structures.

Correctness. Suppose that there is some (insecure) data structure DS support-
ing the operations f1,...,f. and fin. We say that a garbled data structure
scheme correctly implements DS iff for any A € N, any sk € {0,1}*, any
params = (m, w, tmax ), any DB, any InL and OutL, any 1 < t* < t;,.x, any se-
quence of function calls g, ...,i#=—1 € [¢], any input sequence inpy, ..., iNPg_;:
let outpy, ...,outp,._1,st be the correct outcomes when we initialize DS with
DB and then make the calls {f; (inp,)},c[o:e+), and fin in sequence, then, the
following must be true with probability 1:

— Gmem, GC <« Garble(1*, sk, params,In , LOutDBu);
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— for 7 € [0 : t*): let inp, be a correct encoding of inp, using label I, let
Gmem, outp.. FunchC(Gmem, inp..);

— let 1 be a correct encoding of the finalization signal 1 under label Cy«, let
st « Finalize®“(Gmem, 1);

— then, it must be that {o/u_ﬁ):}TE[O:t*) and st are valid encodings of the correct
outputs {outp, },c[o:c+) and st, under the labels {O;},¢[o.¢+) and F, respec-

tively.

Security. We define the security of garbled data structures below.

Definition 1 (Security of garbled data structures (and garbled cir-
cuits)). We say that a garbled data structure scheme is secure w.r.t. some leak-
age function Leak(-), iff there exists probabilistic polynomial-time (p.p.t.) simu-
lators Sim, such that for for any A € N, any params = (m, w, tmax), any DB, any
1 < t* < tmax, any sequence of function calls ig,...,i+—1 € [c5 for any input
sequence inpgy, . . ., iNP_1, any output labels OutL of appropriate length, for any
subset of inputs S C {inp,, 1;}-c[0:+) whose encodings are to be simulated, for
any choice of InL[~S] where InL[~S] denotes the part of InL used to encode the
set =S, the outputs of the real and ideal experiments below are computationally
indistinguishable:

Real experiment. Input: A\, params, DB, ¢*, function calls ig, . .., it-—1 € [cinput
sequence inpg, ..., iNp._1, subset of inputs S, subset of input labels InL[-S5],
output labels OutL.

1. Sample sk ¢+ Gen(1%), and sample the remaining unspecified input labels
InL[S] at random;

2. Let {g, ::S'} = {i/rrp:, 1:}76[0:,5*) be correctly encoded inputs and finalization
signals using sk and labels InL;

3. Let Gmem, GC < Garble(1*, sk, params, DB, InL, OutL);

4. Output Gmem, GC, S.

Ideal experiment. Input: A\, params, DB, t*, function calls g, . ..,i»_1 € [¢], in-
put sequence inpg, . . ., inp;«_1, subset of inputs S, subset of input labels DB(.S],
output labels utLO.

1. Sample sk + Gen(1*);

2. Let =S be correctly encoded inputs in subset =S using sk and labels DB(S];
3. Run the ideal functionality using the given In , function calls f;;,..., fi,._,,
and input sequence inpg, . . ., inp;«_;, and finally, run fin. Let outpy, ..., outp,._;
and st be the results correspondingly;

4. Let {m}re[om*) and st be correctly encoded outputs and finalized state
using sk and labels OutL;
5. Run the simulator

Sim (1>‘, params, t*, {iT,cﬁﬁnT}Te[o;t*),sTt,:g, Leak({i,, iin}Te[O:t*)))

and output the result.
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Note that when —S = (), then the above notion is a direct adaptation of
the standard security definition for garbled circuits to garbled data structures.
Therefore, the above definition can be viewed as a generalization of standard
garbled circuit security. In particular, this generalization allows us to fix the
encodings of a subset of the inputs denoted -5, feed these encodings =S to the
simulator, and have the simulator simulate the the rest of the garbled inputs .S,
along with the garbled circuitry GC and garbled memory Gmem. We sometimes
refer to the set of inputs —.S whose input labels have been fixed as the fized
set, and the set of inputs S whose input labels are not fixed as the free set. We
make this generalization for convenience later. Jumping ahead, when we write
our garbled algorithms, we often allow garbled input sharing, that is, the same
garbled input wire is fed into two or more garbled components. In this case, we
will need to use the generalized security definition in our proofs.

As mentioned earlier, we have two forms of encodings, garblings and sharings.
Later in our constructions, in fact only garbled wires (as opposed to shared wires)
can be input to multiple garbled components. Therefore, we additionally impose
the following constraints to Definition 1:

— The fixed set =5 must contain only garbled inputs variables;
— Any shared input must be in the free set S.

Existing constructions of garbled circuits [1, 10,25, 26, 32, 39,40, 42], includ-
ing the techniques needed from Heath et al. [24] naturally satisfy the above
generalized notion too.

Encoding cleartext outputs. Later in our construction, sometimes we also have a
garbled circuit or garbled data structure output cleartext rather than encoded
outputs. Our above formulation actually also captures cleartext outputs if we use
the encoding scheme described in Appendix B.1 of the online full version [30],
and thus we can adopt this formulation without loss of generality. In particular,
a cleartext output bit can be expressed as either a sharing whose label is 0, or a
garbling whose label ends with a 0 bit. In particular, we will follow the approach
mentioned in prior work [24,42], where we choose A at random subject to the
last bit being 1. In this way, as long as the label of a garbling ends with a 0 bit,
the last bit of the encoding will be the cleartext value of the bit.

Performance metric. In this paper, we measure cost by the size of the garbled
program, in terms of the number of bits. We often use the metric “cost per access”
where we amortize the total cost over the number of memory accesses.

Remark 1. Unless otherwise noted, we assume the above syntax and conventions
for any garbled data structure we define. There is one slight exception, which is
the data structure GSwitch defined in Section 4.2 — in fact, this is the critical
data structure for handling the non-determinism of memory accesses. Jumping
ahead a little, GSwitch is initialized with two stacks of output labels denoted
OutL and OutL;, and every operation, one label is popped from a stack of
choice, and this popped label will be used as the output label.
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Remark 2. Known garbled circuits constructions [1,10,21-26, 32,39, 40,42] also
satisfy the following notion of simulation — our proofs also make use of this
simulation notion. There exists a simulator Sim’, such that for any output labels

OutL,
GC = Sim’ (1%, C)

where GC is the honest garbling of the circuit C' using randomly generated input
labels as well as OutL, and = means computational indistinguishability. This
notion says we can simulate the garbled circuitry without knowing the (encoded)
outputs, if we do not have to also simulate the active encoded inputs.

3.1 Notational Conventions

Omitting Gmem and GC without risking ambiguity. In the above, we use Gmem
to denote a garbled data structure’s internal encoded memory. Since the external
caller of the data structure need not worry about Gmem, when we write our algo-
rithms, we often omit writing the Gmem term explicitly. Moreover, we also omit
writing the GC in the superscript of the garbled function calls without risking
ambiguity. For example, suppose we use GDataStruct to denote some instance of
a garbled data structure, we often write outp «— GDataStruct.Func;(inp), omit-
ting the Gmem as well as the GC-superscript. This means that this function call
is consuming the Gmem and GC of the GDataStruct instance.

Implicit label matching convention. We often rely on an implicit label matching
convention to describe our garbled data structures. For example, if we write the
following statements as part of the evaluator’s algorithm:

GDataStructg.Func({z}) :
{y} + GDataStruct;.Foo({z});
{z} < GDataStructy.Bar({y});
output {z};

Assuming that GDataStruct; and GDataStruct, are not called anywhere else, then
the above implies that

— the input label of the 7-th call to GDataStructg.Func should match the the
input label of the 7-th call to GDataStruct;.Foo;

— the output label of the 7-th call to GDataStruct;.Foo should match the the
input label of the 7-th call to GDataStruct,.Bar;

— the output label of the 7-th call to GDataStructg.Func should match the the
output label of the 7-th call to GDataStruct,.Bar;

Unless otherwise noted, the labels for all variables are randomly selected sub-

ject to such implicit matching constraints (which can always be unambiguously
implied by our algorithm description).
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4 Building Blocks for Garbled Memory

4.1 Stack (GStack)

Definition A garbled stack GStack is initialized with some initial memory array
denoted DB, and it supports Pop operations controlled by a flag denoted b €
{0,1}. If b = 0, nothing will be popped, and if b = 1 an element will be popped
from the stack. In our application later, it is actually safe to reveal the control
flag b. For GStack, we let params = (m, w, tmax ), where m is the number of entries
in the initial DB, w is the bit-width of each entry, and ty.x is the maximum
number of Pop operations. It is promised that at most m number of Pop calls
will have the flag b set to 1, i.e., the stack will never deplete. We shall assume
that m is a power of 2, and moreover, m > 16.

— Gmem, GC < Garble(1*, sk, params, DB, InL, OutL): takes in the security
parameter A\, the parameters params, the initial stack elements DB containing
m elements each of size w, and the input/output garbling labels denoted InL
and OutL respectively, and outputs some internal garbled memory Gmem
and garbled circuitry GC.

— Gmem', [res] + PopGC(Gmem, {bF}): depending on the flag b, either pop an
element from the stack or do nothing. Correctness requires that 1) if b = 1,
then the result res = DBJcnt,| where 7 is the current time step, and cnt,
denotes the total number of Pop operations so far (not counting the current
one) where the flag b = 1; and 2) if b = 0, then the result res = 0. Moreover,
it must be that Lblg[[resﬂ) is the 7-th output label contained in OutL.

— {ucnt} « Finalize®“(Gmem, {1}): upon receiving a garbled signal {1} indi-
cating that the data structure should be finalized in this time step, output a
garbling of ucnt, the total number of elements popped expressed in a unary
format and prepended with Os to a length of m. Correctness also requires
that Lbl({ucnt}) is the finalization label contained in OutL.

Construction Although efficient garbled stacks have been proposed in earlier
works [24,38,41,42], we need a variant that supports dynamic finalization. To
support this new feature, we propose a new abstraction called a garbled vault
denoted GVault in Appendix D.1 of the online full version [30]. We use GVault
to construct a new garbled stack with dynamic finalization in Appendix D.2 of
the online full version [30].

4.2 Switch (GSwitch)

A switch is a two-way router. Imagine that the switch receives some message
msg := (leaf,addr, L). The first bit of leaf, that is, leaf[0], is used to determine
whether the message is supposed to be forwarded to its left child or right child.
The switch has a hard-wired array denoted RdL of length t,,,x, Where t,,.x is the
maximum number of times that the switch can be invoked. The switch wants to
route the transformed message (leaf[1 :],addr, L ® RdAL]7]) to the child selected
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by leaf[0], where 7 is the switch’s local time step, i.e., how many times it has been
invoked before (not including the current invocation). Later on, every node in
the ORAM tree will employ such a switch to pass on information to one of its two
children during an ORAM fetch operation.® Altogether, this allows us to read
and remove a block along a path from the root to some leaf node. In particular,
each node consumes the next bit in the leaf identifier to determine the routing
direction. The term RdL(7] is the local-time-dependent output label used by
the garbled bucket paired with the switch, and we want to xor the incoming
label L with RAL|[7] before passing it on — see Section 2.2 for a more detailed
explanation.

When we want to garble a switch, the main challenge is that of label trans-
lation: the input msg = ({leaf,addr}_,[L],) is encoded using a local-time-
dependent label where 7 denotes the local time of the switch. The switch needs
to re-encode the transformed message (leaf[l :],addr, L & RdL[7]) under a la-
bel that is dependent on the child’s local time. However, the child’s local time
cannot be predicted at the garble time, since it depends on the actual inputs
leaf which are chosen dynamically online. We adapt an elegant idea proposed by
Heath et al. [24] to solve this problem. Suppose that we are promised that each
child will be invoked at most ¢/ number of times. We will create two garbled

max
stacks each containing ¢/, labels (denoted OutLy and OutLy, respectively),
corresponding to the languages of the left and right children each time they are
invoked. Given the direction bit b := leaf[0], we securely pop the next label from
b-th stack, and we use this popped label to re-encode the output message to
be routed to the corresponding child. Later in our application, we are actually
allowed to leak the leaf part of the input which is related to the memory access
patterns. More specifically, leaf actually corresponds to a path in the Bucket

ORAM tree [13], and since its choice is random, it is safe to reveal leaf.

Definition For GSwitch, we define params = (B, w) where 2B is the maximum
number of times Switch can be invoked, and w records the lengths of of the
inputs to Switch, including the lengths of leaf, addr, and L. The lengths of all
other variables will be determined by A, w, and B. Specifically, RdL contains 2B
entries each of |L| bits long; InL contains 2B entries each of A(|leaf|+ |addr|)+|L|
bits long; for b € {0,1}, OutL; contains 2B entries each of [InL| bits long; and
FinL contains 2B entries each of 2B\ bits long if InitL = {), else it contains 2B
entries each of 2\ bits long.

For each b € {0, 1}, it is promised that Switch will only be invoked at most
B times with the direction bit leaf[0] = b. Later in our application, in fact, we
guarantee that in expectation, Switch is invoked only B times, and the probability
that there will be 2B or more invocations is negligibly small. A garbled switch
GSwitch consists of the following possibly randomized algorithms:

— Gmem, GC <« Garble(1*, sk, params, RAL, InL, OutLg, OutL;, FinL): the Garble
algorithm takes in the security parameter 1*, the secret key sk, parameters

S Using switches of arity-2 is the most efficient with our current techniques.
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params a list of labels RdL to be consumed in each time step (by the associ-

ated garbled bucket), the input labels InL, two lists of output labels OutLg

and OutL;, as well as labels denoted FinL used to encode the output of

Finalize. It outputs the garbled circuits GC and the initial garbled memory

Gmem.

We often write InLi InitL, ReqL, Ctrll. where the part InitL is con-

sumed by Init, the part ReqL is consumed by Switch, and the part CtrlL is

used to garble the finalization signals for all time steps.

— Gmem’ « InitS“(Gmem, {st”}): this function may be called at most once
upfront before any invocation of Switch. Specifically, if we parse InL :=
(InitL, , ) where InL was passed to Garble, Init should be invoked if
InitL # 0; else it will not be invoked.

— Gmem’, {leaf'}, faddr’}, [L] + Switch®“(Gmem, {leaf”}, {addr}, [L]): for
correctness, the outputs must satisfy: leaf’ = leaf[l :], addr’ = addr, L' =
L @ RAL[7] where 7 is the current local time step. Moreover, let b = leaf|[0],
and let cnty be the number of times Switch has been invoked with direc-
tion bit leaf[0] = b (not counting the current one); then, it must be that
Lbl({leaf'}, faddr'}, [L']) is the first [InL| — X bits of OutLy[cnt,] — the
last A bits are reserved for garbling the finalization signal.

— {st} or {1.,1r} < Finalize(Gmem, {1}) :

e If InitL # (), the output should be of the form {1,,1z}}, where LbI({1.})
is the last 2\ bits of OutLg[cnty] and Lbl({1r}) is the last 2\ bits of
OutL; [cnty]. Here, we use the subscripts “L” and “R” are used to differen-
tiate the two 1 bits;

e Else if InitL = @) the output should be of the form {st}; furthermore, st is
of the form st := (sty, st;), such that for b € {0, 1}, each st; is a bit vector
containing exactly cnt, and padded with Os to a length of exactly B, where
cnty, is the total number of times Switch has been invoked a direction bit
leaf[0] = b; and moreover, Lbl({st}) = FinL.

Remark 3 (Two types of GSwitches depending on whether InitL = (). Later
on in our construction (see also Figure 2), there will be two types of garbled
switches, those that correspond to empty buckets of the Bucket ORAM (i.e.,
where InitL = () and those that correspond to full buckets (i.e., where InitL #
). For the latter type (InitL # (), when the switch first becomes active, its
children switches have been operating for a while, and this is why we need
to call its Init procedure to synchronize its state with its children. The input
to the Init is passed down from the previous parent of their children, i.e., the
garbled switch whose role it is taking over. The former type (InitL = ) need
not perform initialization, since their children switches are fresh when they first
become active. When the latter type (InitL # () finalizes, its children need to
be “rebuilt” as well; this is why it needs to pass the authenticated finalization
signals {1,1z} to its children.

Construction Although Heath et al. [24] describe a garbled switch scheme for
constructing an access-revealing garbled one-time memory, again we need a new
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Evaluator Garbler

— Init({stf’}):  // called when InitL # ()

1. parse {stg} = {ﬁbai}be{o,l},ie[OQB); Create two garbled staclf:s GSt_acko
2. for b € {0,1}, i € [0 : 2B), call and GStack; as explained in a
GStacky.Pop({5s,: }); separate subroutine;
— Switch({leaf?}, {addr}, [L]) :
1. Call  {Bo = leaf[0]}, {51 =1— 5o}, For feach 7 € [0 : 2B), create the
{leaf’ = leaf[1 :]}, faddr’ = addr}, sharing [RAL[7]], and garble the
L' = Lo RAL[7] + GCSw; circuit (whose functional-

GCSw. ({leaf}, faddr}, L , RdAL[r] ); ity is defined on the left);
2. For b € {0,1},
Ky, + GStacky.Pop({5u});
// here _ means ignore the last 2\ bits

3. Output  ({leaf’}, {addr'}, L' ) @ For each 7 € [0 : 2B),
Ko © K1 ©TrL,. compute the translation label
TrL, := LbI([Ko], ) ®LbI([K1],)®
— Finalize({1}): Lbi({leaf’, addr"} , [L]);
1. If InitL # (), call:
o {11,1r} < Decqyj(ct,); If InitL # 0, then, for each
e K} « GStacko.Pop({1.}); 7 € [0 : 2B], create the ciphertext
e _,Ki « GStacki.Pop({1r}); thd = Et”C{l}%(fllelR}}T),
! / / an compute r - =
o fLi={1}® K ©Trlo Ll G ) & LBI({1]) and
o {iz} ={1}® Ki &Trl1 TrL), := Lbl( K] )& LbI({1}).
and output {17, 17}. ’ T T
2. Else, call

o {st,} « GStacko.Finalize({1}),
o {st; } < GStack;.Finalize({1}),
and output {sty, st }.

Fig. 3: GSwitch algorithm.

variant that supports 1) dynamic finalization; and 2) the XOR trick. We therefore
describe a new variant supporting these features. Our construction is explained
in Figure 3 which calls the following subroutine for creating the garbled stacks.
Note that when InitL # (), we are using the variant of GStack that does not
have a Finalize call (see Appendix D.2 of the online full version [30]).

Subroutine for creating garbled stacks

— Let m = 2B and let w = |OutL[0]|. Parse InL := (InitL, , ).
— If InitL # 0, then: let ¢y = 4B + 1; parse InitL := (InitLg, InitL;),

and let ctrlLi{O, 1}*. For b € {0, 1}, let IL; = InitLy||[rand()||ctrlL €
{0, 1332t X Jot, Oy & {0, 1}t (w4Y),
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— Else, let timax = 2B; let ctrlL&-{0, 1}, for b € {0,1}, let IL, = rand()|
ctrlL € {0,1}2!maxA; let OL = rand()||FinL € {0, 1 }tmaxwtm-A,
// GStacko and GStacky share the same finalization signal labels for all
time steps

— For b € {0,1}: call (GStack,.Gmem, GStack,.GC) ¢ GStack,.Garble(1*,
sk, params = (m, w, tmax), DB = OutL,, IL;, OL;).

In Figure 3, when we write the evaluator’s algorithm, we do not explicitly write
the time step 7, however, keep in mind that the inputs and outputs of Switch
as well as the inputs to Finalize are actually encoded using 7-dependent labels.
When we write the garbler’s algorithm, since the garbler must create some gar-
bled circuitry per time step 7, we explicitly write out the current time step 7 in
subscript, e.g., {var}_means the variable garbled under a 7-dependent label.

The cost of GSwitch is dominated by the garbled stacks which take O(log B)
overhead. Thus, the construction in Figure 3 costs O (B (A - w; 4+ wsy) - log B)
bits, where wy = |leaf| + |addr| and wy = |L|.

Security Proofs We defer the security proofs for GSwitch to Appendix D.3 of
the online full version [30].

Leaf Switches (GLeafSwitch) We need a special (but simpler) type of switches
for the leaf level. We defer the detailed description of the leaf switches to Ap-
pendix D.4 of the online full version [30].

5 Non-Recursive Garbled Memory (NRGRAM)

5.1 Definition

A non-recursive garbled memory (NRGRAM) is almost an entire garbled memory,
except that to access each logical addr, one has to provide a position identifier
(both garbled and in cleartext) henceforth denoted {{leaf?}, which specifies a
path in the Bucket ORAM tree that the requested block resides on. More specif-
ically, let params = (n,w,T) where n denotes the total number of blocks stored
in the NRGRAM, w denotes the bit-width of each block’s payload (not including
metadata fields such as addr and leaf), and T denotes the maximum number of
time steps. The call schedule is fixed a-priori: it must be a sequence of alternat-
ing requests ReadRm, Add, ReadRm, Add, ..., and in total there are T' number
of ReadRm operations and 7" number of Add operations.

A non-recursive garbled memory (NRGRAM) provides the following interface:

— Gmem, GC + Garble(1*, sk, params,InLR,InLA,OutL): upon receiving the
input labels InL% for all the ReadRm calls and the input labels InL* for all
the Add calls, as well as the output labels QutL for the ReadRm calls, output
GC and the initial Gmem:;
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— Gmem', {rdata} + ReadRm®“(Gmem, {addr, leaf”}): upon receiving {addr, leaf”},
output {rdata}. If addr exists in the data structure and provided that {leaf”}
is a correct position identifier garbled under InL*[t] where ¢t denotes the local
time, then rdata should be the value of the block at logical address addr; else
if addr is not found, then rdata = L. In either case, Lbl(rdata) should match
OutL[t].

— Gmem’ + AddGC(Gmem,{addr, leaf, data}}): upon receiving a garbled block
{addr, leaf, data}, add it to the data structure. Henceforth, before addr is
requested again, the block should reside on the path corresponding to leaf.

The local time ¢t of a NRGRAM data structure is the number of times Add
has been invoked (not counting the current invocation we are currently inside
an Add call). Later in our full garbled RAM scheme, in every RAM step, each
NRGRAM’s ReadRM and Add functions will be each invoked once. Therefore,
each NRGRAM’s local time ¢ coincides with the global time t of the garbled
RAM, and each NRGRAM must support 1" calls which is the same as the RAM’s
maximum runtime. For this reason, we use the letter ¢ to denote the NRGRAM’s
local time, and use T to denote the maximum number of time steps that must
be supported.

Remark 4. We assume the first bit of the data field is used to encode whether
the block is L. Specifically, if the first bit is 0, then the block is treated as L. We
assume that when the honest evaluator calls Add({addr, leaf, data}), the first bit
of data is set to 1.

5.2 Data Structures and Labels

Without loss of generality, we may assume the capacity of the non-recursive
ORAM tree n, the bucket capacity B, and the RAM’s runtime 7" are all powers
of 2. Let root be at level 0, and leaf be at level /.« := log, %. We assume
that the RAM program starts at time ¢ = 0, and every time step the clock ¢
increments by 1. Since in every RAM step, each non-recursive bucket ORAM
is invoked once, the global time ¢ also coincides with the non-recursive ORAM
tree’s local time step.

Additional building blocks. To construct our NRGRAM, we need a few additional
building blocks, namely, garbled buckets denoted GBkt, garbled level rebuilder
GRebuild, and garbled stash GStash. Their functionalities are roughly summa-
rized below.

— GStash supports functions Read, Add, and Finalize, and it is parameterized by
the maximum number of operations GStash.m and the word size GStash.w.

— GBkt is parameterized by the number of entries m, the maximum number of
operations tmax, and the bit-width of each entry w. It supports Init({DB})
which initializes the bucket with the list DB, Read({addr}) which looks up
the entry addr, and Finalize. Similar to GSwitch, we write the input labels
as (InitL, ReqL, CtrlL) for (Init, Read, Finalize) correspondingly, and the
output labels of Read and Finalize are written as (RdL, FinL).
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— GRebuild is parameterized by the time ¢ and a corresponding level ¢ €
[0, £imax] that depends on ¢. It takes in the stash the and the levels from 0 to
¢, and then it outputs a new stash and new levels from 0 to min(¢+ 1, £ppax).

We defer the description of these building blocks to Appendix D.7, D.6, and C.1
of the online full version [30].

Garbled circuit inventory. All of the following garbled circuits are prepared by
the garbler upfront in one shot. Each node at level £ in the tree has 7//(2°-B) in-
stances (i.e., copies) of the following garbled circuitry: 1) GSwitch or GLeafSwitch,
and 2) GBkt. The instances are indexed from 0,1,...,7/(2¢-B) — 1. During the
fetch phase of time step ¢ € [0 : T'), the garbled instance indexed [t/(2° - B)| will
be active.

During time step ¢t € [0 : T — 2], if (t+ 1) modn = j - (B-2°) where
7 is an odd integer, then there is some garbled circuitry that rebuilds levels
0,1,...,¢. In particular, if £ = /.y, then the rebuild takes as input garbled
levels 0,1, ...,¢ and outputs new garbled levels 0,1,...,/¢; else, it takes garbled
levels 0,1,...,¢ — 1 and outputs new garbled levels 0,1,..., /.

There are in total T'/B instances of GStash, indexed by 0,1,...,7/B — 1.
During time step t, the |¢/B|-th GStash instance is active.

Terminology. We shall use the notation GStash’ to denote the the GStash in-
stance active at time ¢. We use the notation GSwitch""?, GLeafSwitch""! or GBkt"*
to denote the GSwitch, GLeafSwitch, or GBkt instance associated with tree node
V and active at time ¢. Sometimes we represent a tree node V' = (i, 7) which
refers to the the j-th tree node in the i-th level. Using this notation, the same
GStash, GSwitch, or GBkt instance may have multiple aliases. Similarly, we use
GRebuild! to denote the GRebulid instance to be invoked at the end of time step
t.

We say that GSwitch"”" is the parent of GSwitch”’ (or GLeafSwitch”"') if
V is a parent of U in the bucket ORAM tree; in this case, we also say that
GSwitch”" or GLeafSwitch”"" is a (left or right) child of GSwitch""*. Note that
these two GSwitch instances must be active at the same time for them to have
a parent/child relationship. We often say that a switch instance GSwitch""? (or
GLeafSwitch'"") and a bucket instance GBkt""" are paired with each other — note
that they are active at the same time ¢ and belonging to the same tree node V.

Choosing labels. For each GStash, GSwitch, GLeafSwitch, and GBkt instance, the
garbler chooses all of the labels (needed by the Garble procedures) at random,
subject to the following constraints:

— GSwitch”™" and its paired GBkt"" share the same address labels (for the
{addr} inputs to the Read or Switch procedures) and finalization signal labels
in all time steps. Moreover, GBkt""!.RdL = GSwitch""*.RdL (or GBkt""*.RdL =
GLeafSwitch""* = RdL for the leaf level).
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— The call at time ¢ to GSwitch™°"! should adopt the input labels InL"[t] (of
the NRGRAM); further, GStash’, GBkt"*°"*, and GSwitch™°"! share the same
address labels (for the {addr} inputs to the Read or Switch procedure) in all
time steps. Further, the call at time ¢ to GStash’.Add should adopt the input
labels InL*[t] (of the NRGRAM);

— If non-leaf switches GSwitchg and GSwitch; are the left and right children of
GSwitch, then, for each 7 € [0 : 2B], let

GSwitch.OutLg[7] := GSwitchg.ReqL[7]||GSwitchg.CtrlL|7]
GSwitch.OutLq[r] := GSwitch; .ReqL[7]||GSwitch;.CtrlL[7]

If leaf switches GLeafSwitchy and GLeafSwitch; are the left and right children
of GSwitch, and moreover, GBkty and GBkt; are the two buckets associated
with GLeafSwitchy and GLeafSwitchy, respectively, then, for all 7 € [0 : 2B],
let”

GSwitch.OutLg[7] := GBktg.ReqL[r]||GLeafSwitchg.InL(7]||GBkty.CtrlL[7]
GSwitch.OutL [7] := GBkt;.ReqL|r]||GLeafSwitch,.InL[r]||GBkt, .CtrIL[r]

— If GSwitch”"" and GSwitch”""™ are not the same instance and they have
the same children, then, let GSwitch""! FinL = GSwitch”"""! InitL and let
GSwitch""! InitL = () — in this case, our algorithm will not call GSwitch"!.Init
but will call GSwitch""* Init.

For each level rebuilder instance denoted GRebuild?, let ¢ be the time step
at the end of which this rebuilder instance GRebuild" is invoked — it must be
that (t +1) mod n is an odd multiple of 2°. Suppose £ # liax, i.e., the rebuild
takes in levels 0,1,...,¢ — 1 and rebuilds levels 0,1,...,¢ — the case where
£ = lax is similar. The garbler chooses the input and output labels of GRebuild?
as follows. For i € [0 : £), let GBkt(i’O)’t7 ceey GBkt»2' =1t he the garbled bucket
instances active in level i at time ¢, and let GStash® be the garbled stash active at
time ¢; then, GRebuild.InL = GStash” FinL||{GBkt"/)"*. FinL};c0.¢) jco-2:)- For

i€[0:4],let GBkt(#0)#+1 .,GBkt(i’Qi_l)’tH be the garbled bucket instances
active in level i at time ¢t + 1, and let GStash’™ be the garbled stash instance
active at time ¢ 4+ 1. Then, GRebuild*.OutL := {GBkt(l’J)’tH.InitL}ie[O:a’jepl].

5.3 Construction

We describe our NRGRAM construction in Figure 4, where the relevant data
structures and how to choose the encoding labels were explained earlier in Sec-
tion 5.2. In the step marked (), the same variables {leaf}, {addr},[L] are
overwritten by the outcome of the call to GSwitch”"".Switch({leaf}, {addr},
[L]); keep in mind that the output variables do not have the same labels as the
input variables, although the notation is the same.

" The leaf switches take no {addr} nor Finalize, and hence the parent GSwitch outputs
{addr} or Finalize only to the children buckets (Figuer 4).
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Evaluator

ReadRm ({addr, leaf” }):

—if t = 0, then for every tree node V, call
GBkt"".Init({bkt? });

_, {{rdatas} < GStash’.Read({addr});

— L = L*[t] ;

— For each node V' in the tree from the root to leaf,
o If V is not a leaf: let {leaf}, faddr}, L «
GSwitch"* Switch({leaf}, {addr}, L ); ()
e Else: TrL + GLeafSwitch""*.Switch( L );
e {rdata;} < GBkt"’.Read({addr}) where £ de-
notes the level of V;

— Let {rdata} := TrL® {rdatas } ® (@ﬁr:“gx{[rdatag})
and output {rdata}.

Add ({addr, leaf, data}):
— If t+1 =T, return; else continue with the follow-
ing.
— Call GStash®.Add({addr, leaf, data});
— If (¢t + 1) is a multiple of n: invoke the gar-
bled rebuilding algorithm similar to the case be-
low marked (%), except that here, we shuffle levels

0,...,%max into levels 0, ..., lmax;
— Else if (t4+1) mod n = j - (B -2%) for some odd
integer j and some integer £: (%)

o Let {stash} < GStash‘.Finalize();

e Call RecFinalize(root, {1*},,¢) described below;

e For each level ¢ € [0 : £), let {level;} :=
Uje[0:2¢) I bkts,; } where the variables {bkt; ;} are
output inside the RecFinalize call;

o {leveli}, i <
GRebuild" ({stash} {level; }, 5.0 1);

e For i € [0: ¢], parse {level;} := {bkt;j}je[om);
for j € [0:2"), call GBkt™)-*+* Init({bkt] ; });

RecFinalize(V, {1}, ¢)

— {bkty} « GBkt""! Finalize({1});

— If ¢ the leaf level, then return; else let {st}
or {1z,1r} <  GSwitch"".Finalize({1}); if
GSwitchV"'*! has the same children switches as
GSwitch"*, call GSwitch""*™!.Init({st});

— Let UL, Ugr be the children of V, if the level of UL,
and Ur is at most ¢, call RecFinalize(Ur, {1 },¢),
RecFinalize(Ur, {1r }, ¢).

Garbler

for every tree node V, let bkt?, be an array
of Os of appropriate length, create garbled
state {bkt) };

for t € [0 : T), let L*[t] = OutL[t] ®
GStash’.OutL[t mod BJ;

create sharings L™ := {L"[t]® Kt }ecjo.1)
where K; should match the part of
GSwitch™°"* InL that is used for encod-
ing the input L at time ¢;

call GSwitch.Garble for all GSwitch in-
stances; call GLeafSwitch.Garble for all
GLeafSwitch instances;

call GBkt.Garble for all GBkt instances;

call GStash.Garble for all GStash in-
stances;

for every t € [0 : T) such that ¢t + 1
is a multiple of B, create a garbled
finalization signal {1}, using the label
GSwitch™*°“*.CtrlL[B];

call GRebuild.Garble for all
instances;

GRebuild

Fig. 4: Non-Recursive Garbled RAM (NRGRAM) construction.
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The garbled data structures adopt the following parameters (see the supple-
mentary for the parameters of GStash, GLeafSwitch, and GBkt):

— For each GStash instance, the maximum number of operations GStash.m = B,
and the word size GStash.w = w + log, n;

— For each GSwitch instance at level £ of the tree, let GSwitch.B = B, and the
addr field has bit width log, n, the leaf field has bit width log, n — ¢, the bit
width of the L field has width A - w;

— Each GlLeafSwitch instance is parametrized with the maximum number of
invocations GlLeafSwitch.t,,.x = GLeafSwitch.m = 2B and the element bit-
width GLeafSwitch.w = A - w;

— Each GBkt instance adopts the parameters GBkt.m = GBkt.t.x = 2B, and
the bit widths of the addr and val fields are log, n and w, respectively.

We now analyze the asymptotic performance of our NRGRAM scheme. One
can easily verify that the dominating cost is incurred by the GBkt instances. The
total cost of our NRGRAM is

T
O(1)- 5 +logn-B-A- (w-log®B +logn -log” B + log" B)

=0 (T -logn-\- (w + log nlog B + log? B) - log? B)

Proof of security. We defer the proof of security for our NRGRAM to Appendix E
of the online full version [30].

6 Final Garbled RAM (GRAM) and Concrete

Performance

Full garbled RAM construction. Our final garbled RAM scheme is obtained by
applying the standard recursion technique [33,35] to the NRGRAM. The idea
is to recursively store the position map in a smaller NRGRAM, and then store
the position map of the position map in an even smaller NRGRAM, and do on.
The recursion will stop in logarithmically many iterations as long as the block
size is at least C'log NV for some appropriate constant C. We defer the detailed
construction and proofs to Appendix F of the online full version [30].

Practical optimizations and concrete performance. In Appendix A.1 of the online
full version [30], we propose several practical optimizations for our garbled RAM
scheme.

We also developed a simulator to evaluate the concrete performance of our
scheme. We defer the detailed explanation of the simulator and our experimental
methology to Appendix A.2 of the online full version [30]. In Figure 5a, we
compared the performance of NanoGRAM with that of the naive linear-scan
GRAM as well as EpiGRAM [24], where the word size W = 128 bits. Here, we use
a standard platform-independent performance metric, i.e., the garbled circuit size
amortized to each memory access, that is used in this line of work [24,32]. Given
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Fig. 5: Concrete performance of NanoGRAM. The y-axis is the size of the
garbled RAM program amortized to each memory access.

the circuit size, we can estimate the runtime on typical computers using the
results of earlier works [32]. In NanoGRAM, since the parameter B (i.e., average
load per bucket) has to be at least 64 or 128 to get a reasonable statistical security
parameter, the smallest N we used in our experiment is 28. Just like EpiGRAM,
we start to outperform the naive linear-scan GRAM at about N = 2°. Our
concrete performance is on par with EpiGRAM at small choices of N, but at
about N = 23, we start to outperform EpiGRAM, and as shown in the figure,
the improvement is of an asymptotical nature — the larger the IV, the greater
our speedup.

Figure 5b shows the cost breakdown for the NRGRAM for the final data level.
The breakdown suggests that the garbled buckets are the most costly, whereas
the garbled switches closely follow. This plot also shows the motivation for our
optimizations — had we not performed these optimizations, the total garbled
bucket cost would be more than 2x higher than the total garbled switch cost.
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