
Batch Bootstrapping II:
Bootstrapping in Polynomial Modulus Only Requires Õ(1) FHE

Multiplications in Amortization

Feng-Hao Liu1, Han Wang (Corresponding Author)2,3

1 Florida Atlantic University, Boca Raton, FL, USA. liuf@fau.edu.
2 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Science, Beijing, China. {wanghan}@iie.ac.cn.
3 School of Cyber Security, University of Chinese Academy of Science, Beijing, China.

Abstract. This work continues the exploration of the batch framework
proposed in Batch Bootstrapping I (Liu and Wang, Eurocrypt 2023).
By further designing novel batch homomorphic algorithms based on the
batch framework, this work shows how to bootstrap λ LWE input ci-
phertexts within a polynomial modulus, using Õ(λ) FHE multiplica-
tions. This implies an amortized complexity Õ(1) FHE multiplications
per input ciphertext, significantly improving our first work (whose amor-
tized complexity is Õ(λ0.75)) and the theoretical state of the art MS18
(Micciancio and Sorrell, ICALP 2018), whose amortized complexity is
O(31/ϵ · λϵ), for any arbitrary constant ϵ.
We believe that all our new homomorphic algorithms might be useful in
general applications, and thus can be of independent interests.

1 Introduction

This work is the second work of the Batch Bootstrapping series, aiming to ad-
vance the frontier of the Fully homomorphic encryption (FHE). We continue the
exploration of the algebraic batch bootstrapping framework of the first work [8],
and our particular goal is to prove the following theorem:

Theorem 1.1 (Main Result of this Work, Informal) Bootstrapping within
a polynomial modulus requires Õ(1) FHE multiplications in amortization.

Contexts. FHE [6] is a powerful cryptographic tool that allows arbitrary com-
putation over encrypted data, without the secret key. Currently, the only known
way to achieve “fully”-HE is via the bootstrapping paradigm, which was origi-
nally perceived as theoretical only for its large computation overhead. After more
than a decade of research and optimizations, there has been significant progress
toward more efficient realizations. As major prior results (before the first work)
have been summarized in the first work [8], curious readers can find relevant
references there, so we do not repeat the presentation.

Below, we just go directly to the point, by staring with what is not achieved
in [8], and a comparison with the current state of the art. In this way, the readers
can easily identify the “delta”, when reading the contributions of this work.

Challenges in the Prior Work. We first present a quick summary of the
work [8], and state what was not solved. In Section 3, we give a more detailed
review of the foundation, based on which, we develop various new homomorphic
algorithms to further improve the frontier of the bootstrapping paradigm.

Briefly, the work [8] proposes a new batch framework, allowing single in-
struction multiple data (SIMD) operations that are compatible with FHEW-like
(e.g., [4, 5]) bootstrapping methods. The framework allows SIMD computation
over r = O(λ0.25−o(1)) slots, where λ is the security parameter. Applying this to
the AP14/FHEW/TFHE methods, we can bootstrap r = O(λ0.25−o(1)) LWE ci-
phertexts within a polynomial modulus, using Õ(λ) FHE multiplications, mean-
ing Õ(λ0.75) FHE multiplications in amortization. This is an improvement of a
factor of O(r) over the prior non-batch methods. We notice that all these meth-
ods only require workspace O(1) FHE ciphertext for computation (excluding the
input and the bootstrapping keys).

If more workspace for computation is available, the theoretical complexity of
the above however, is not better than that of the existing method MS18 [12],
whose amortized cost is O(31/ϵ · λϵ) FHE multiplications per input ciphertext,
where ϵ > 0 is an arbitrary constant. However, the dependency on ϵ posts an
undesirable tradeoff between theory and practice – to achieve the best asymp-
totic complexity, ϵ should approach 0, e.g., 0.01, yet the constant would become
prohibitively large, e.g., 3100. Thus, it is not clear whether MS18 can lead to a
practical method that matches their best theoretical indication.

Focus of this Work. An obvious open question is whether the tradeoff as
stated above is inherent for the MS18 approach [12]. This work shows how to
break the technical limitations, by developing various new batch homomorphic
algorithms under the batch framework foundation [8]. Below we elaborate.

1.1 Our Contributions

The main result of this work is to prove Theorem 1.1. To achieve this, we first
develop several new critical batch homomorphic algorithms based on the batch
framework of [8]. These new algorithms play as important building blocks to
improve the MS18 method, leading to our main result.

Recall that r = O(λ0.25−o(1)) denotes the number of slots that the batch
framework [8] can support. Using this foundation, we develop significant new
batch homomorphic methods as stated below.

– We first propose a new batch vector-matrix multiplication algorithm, com-
puting a vector of dimension w (in the clear) left multiplied by an encrypted
matrix of dimension h × w for h < r, using Õ(w + r) FHE multiplications.
Thus, the amortized cost is Õ(1+w/r) FHE multiplications per dimension.
As a ring multiplication can be expressed as the coefficient vector multiplied
by the rotation matrix, our new batch algorithm immediately gives a batch
algorithm for multiplying two ring elements of dimension 2d with amortized
complexity Õ(1 + 2d/r) FHE multiplications. Particularly, for 2d < r, the
amortized complexity would be Õ(1) FHE multiplications per dimension.
See Section 4 for details.

2

– Next we construct a new batch homomorphic (inverse) Discrete Fourier
Transform (DFT) of dimension 2d < r, with amortized complexity Õ(1)
FHE multiplications per dimension.
To achieve this, we design three critical subroutines over packed ciphertexts:
(1) homomorphic permutation, (2) homomorphic inverse over the exponents,
and (3) batch homomorphic anti-cyclic rotation (via (1) + (2)). The batch
homomorphic DFT/inverse-DFT can be achieved by using as a key building
block the batch homomorphic anti-cyclic rotation. See Section 5 for details.

– We show that our batch homomorphic DFT/inverse-DFT is compatible with
the recursive optimization of the Nussbaumer Transform. This plays a critical
step to get rid of the dependency on ϵ as required by the MS18 framework.
See Section 6 for details.

Putting these algorithms together, we are able to improve the overall MS18
bootstrapping method and achieve Theorem 1.1. See Section 7 for details of the
final algorithm. We believe that all the new batch algorithms above can be of
independent interests and might find applications in broader scoped of homo-
morphic computation. Below we present a table to compare results of this work
with prior explicit methods (i.e., bootstrapping within a polynomial modulus).

Ref. Amortized Complexity for Bootstrapping
(# of FHE Multiplications per input LWE ciphertext)

[1, 4, 5] O(λ)

[2] O(λ/ log λ)

[12] O(31/ϵ · λϵ)

[8] Õ(λ0.75)

This work Õ(1)

Table 1. Comparison with prior work.

1.2 Technical Overview

We give a quick review of MS18 [12], and then present our new insights to break
the technical limitation. We first recall the overall goal below.

The Goal. Let {cti = (ai, bi) ∈ Zn
q × Zq}i∈[n] be n LWE ciphertexts of di-

mension n, and each bi = ⟨ai, s⟩ + ei + q/2 ·mi, i.e., an encryption of the bit
mi. The goal is to compute bootstrapping of these n input ciphertexts (given
appropriate bootstrapping keys), resulting in {ct′i = (a′

i, b
′
i) ∈ Zn

q × Zq}i∈[n],
where each output ct′i encrypts the same underlying message mi as cti.

The MS18 Framework. To achieve the goal, the MS18 framework does the
following high-level steps:

1. First convert the input ciphertexts, i.e., {cti}i∈[n], into a Ring-LWE cipher-
text (a, b) ∈ Rq ×Rq for ring R of degree n. Namely, b = as+ e+ q/2 ·m,
where m is a ring element such that coeffs(m) = (m1, . . . ,mn), s is a ring
element representing the secret key.

3

2. Let z = b− as. Given (a, b) in the clear and appropriate bootstrapping keys
that encrypt the secret s, the next step computes n Ring-LWE ciphretexts
d1, . . . ,dn, where each di ∈ RLWE.Enc(Xcoeffs(z)[i]). That is, the resulting
ciphertexts encrypt the coefficients of z in the exponents.

3. Apply the sample-extraction procedure of [4, 5]. As a result, we have ct′i ∈
LWE.Enc(Round(coeffs(z)[i])), where Round is the Ring-LWE decryption round-
ing procedure.

It is easy to verify correctness of this approach. For complexity, the first and third
steps are rather efficient as shown by [12]. The second step is the most computa-
tionally heavy one, and requires new techniques of homomorphic computation.
The work MS18 [12] shows that this step can be achieved by O(31/ϵ ·λ1+ϵ) FHE
(particularly Ring-GSW) multiplications, and thus the amortized complexity is
O(31/ϵ·λϵ) FHE multiplications per input LWE ciphertext (by setting n = O(λ)).
This work shows how to further improve the efficiency of Step 2 by designing
several new batch methods under the framework of [8].

In order to understand our insights, we need to delve into Step 2. Below we
elaborate on this step, and some technical challenges that MS18 [12] faced. Then
we present our new insight that breaks all these challenges.

More Details on Step 2. We notice that as long as we can homomorphically
compute the coefficients of w = −as in the exponents, i.e., c̃ti ∈ RLWE.Enc(Xcoeffs(w)[i]),
then this step can be achieved by additionally multiplying Xcoeffs(b)[i] to c̃ti.
Thus, we focus on how to homomorphically compute w given a in the clear and
s encrypted under an appropriate form.

Naively, we can express coeffs(w) = Coeffs-Rot(a)·coeffs(s) where Coeffs-Rot(a)
is the anti-cyclic rotation matrix of a and coeffs(·) denotes the coefficients of the
input ring element. Then given bootstrapping keys BKi = RGSW.Enc(coeffs(s)[i]),
we can achieve the task by using the FHEW-(like) method on every row of the
rotation matrix Coeffs-Rot(a). However, this approach does not improve the
amortized complexity at all, as it is basically the same as applying the straight-
forward method on individual input ciphertexts, separately.

To further improve the complexity, the work MS18 [12] explores nice recursive
property from the algebraic ring in a novel way. Below we present some basic
high level ideas, and the novel contributions of MS18.

We first recall that currently the most efficient way to compute ring mul-
tiplications is via the Fast Fourier Transform (FFT) technique, or its Number
Theoretic Transform (NTT) variant as follow. To multiply ring elements a and
s, we first convert a and s into the FFT/NTT form (ã1, . . . , ãn) and (s̃1, . . . , s̃n)
respectively. Next we do a component-wise multiplication, and then convert the
outcome back to the coefficient form using inverse FFT/NTT.

Following this idea, if we can adopt the idea to the homomorphic compu-
tation, then we can achieve the Step 2. However, there are several technical
subtleties that a direct adoption would not work. Consider the following at-
tempt: let BKi = RGSW.Enc(X s̃i) be the bootstrapping key, encrypting the
FFT/NTT coefficients in the exponents. Then we first homomorphically com-

4

pute ct′i = RGSW.Enc(X s̃i·ãi), which can be done via the method of [5]. Fi-
nally we compute the inverse-FFT/NTT for the final outcome. This idea seems
promising, but would face the following technical barriers.

– The FFT representation needs to work with complex numbers, which is
not compatible with the existing FHE schemes, especially for encrypting an
element in the exponent.

– The NTT representation would require special property on the modulus q,
i.e., qR fully splits. Such a modulus must be greater to n (and might be even
much larger), and thus might not be compatible with FHEW, on which the
MS18 framework is based.

– This subtle barrier is identified by the work MS18 [12] – the noise growth
of the homomorphic computation based on FHEW would be O(λρ) where ρ
is the recursive depth of the inverse FFT/NTT step. In order to bootstrap
within a polynomial modulus, the recursive depth ρ can only be O(1). As the
complexity of (inverse)-FFT/NTT is better for larger recursive depth, this
constraint seems to post an inherent barrier of efficiency of homomorphic
(inverse)-FFT/NTT. In fact, this is also a major reason why MS18 has the
dependency on ϵ.

To tackle the first two challenges as above, one novel technical insight of MS18 [12]
is to (recursively) apply the Nussbaumer Transform over the FHEW frame-
work [5], yet the third challenge still remains. This work shows that our new
algorithms developed under the batch framework of [8] provide a novel way that
solves the third challenge. We next elaborate on the idea of the Nussbaumer
Transform, and then our new insights.

Nussbaumer Transform. We describe the high level concept using the alge-
braic language, which might look different from the description in MS18 [12]
(and some other references), but what we state captures exactly the same algo-
rithm. The algebraic presentation would be simpler for distilling its algorithmic
ideas, assuming some algebraic number theory backgrounds.

Let d > 2 be a power of two, and Z[ξ2d] be a subring of Z[ξd2] where ξm
is the m-th root of unity. To multiply a, s ∈ Z[ξd2], the Nussbaumer Transform
does essentially the following steps:

– Convert a, s into 2d points in the subring Z[ξ2d], namely (ã1, . . . , ã2d) and
(s̃1, . . . , s̃2d) via the Discrete Fourier Transform (DFT).

– Multiply the points in the subring coordinate-wisely, resulting in (z̃1, . . . , z̃2d).
– Convert the result back to z ∈ Z[ξd2] via the inverse DFT.

The DFT and inverse-DFT require the computation to support operations with
the 2d-th root of unity, i.e., ξ2d, and its powers. Beautifully in the Nussbaumer
Transform as above, we have ξ2d ∈ Z[ξ2d] ⊂ Z[ξd2], and thus, this required ele-
ment and its powers naturally reside in the subring and the ring! This structure
naturally supports the DFT/inverse-DFT, solving the first two challenges above.

This idea can be optimized in a recursive way. For example, consider the
following tower of subrings: Z[ξdρ] ⊃ Z[ξdρ−1] ⊃ · · · ⊃ Z[ξd2] ⊃ Z[ξ2d] for d > 2
being some power of two. In order to compute ring multiplications over Z[ξdρ],

5

we can first recursively convert the elements into two vectors, each of 2ρ ·d points
in Z[ξ2d]. Then we compute the point-wise multiplication over Z[ξ2d], and finally
convert them back to an element in Z[ξdρ] by the inverse-DFT, recursively.

Now, let us describe the homomorphic version of the above idea, using as
example the one-level recursion for simplicity of exposition, i.e., multiplying
a, s ∈ Z[ξd2] as above. The computation consists of the following three high level
parts. (1) We can set the bootstrapping key as BKij = RGSW.Enc(Xcoeffs(s̃i)[j]).
(2) Then we homomorphically compute Cij = RGSW.Enc(Xcoeffs(z̃i)[j]), where
z̃i = ãi · s̃i ∈ Z[ξ2d]. (3) Finally we apply the homomorphic inverse DFT over
these Cij ’s as the MS18 method [12], resulting in what we want.

Limitations in MS18. To implement the above high level steps, MS18 however
faces several technical challenges.

– First, to multiply elements in the bottom base field Z[ξ2d], MS18 uses the
textbook multiplication4, whose amortized complexity is roughly O(d) FHE
multiplications per dimension.

– For the inverse DFT computation, MS18 also uses the straight-forward mul-
tiplication with the inverse-DFT matrix (of dimension 2d), and similarly, the
amortized complexity is roughly O(d) multiplications per dimension.

Analyzing the recursion with the above facts, MS18 can compute multiplication
over Z[ξd2] roughly with amortized complexity O(d) FHE multiplications per
dimension. As MS18 observed, the recursive depth can be at most ρ = O(1)
to maintain a polynomial modulus, because the noise growth is roughly O(λρ).
This would imply d = O(λϵ), where ϵ = O(1/ρ) = O(1). Applying the argument
recursively, their overall algorithm can achieve the amortized complexity O(λϵ)
FHE multiplications per input LWE ciphertext.

Our New Insights. Here we observe – as long as we can improve the amortized
complexity of the ring multiplications over Z[ξ2d] and inverse-DFT of dimension
2d, we can improve the overall algorithm. Due to the noise growth, we cannot
set d = O(1) as it would require a large recursive depth, i.e., ρ = O(log λ).
To handle this barrier, we next observe that the batch framework of our first
work [8] is exactly the technical tool we need. Even though it can only batch
r = O(λ0.25−o(1)) slots, we can set r > 2d such that the amortized complexity of
the sub-ring multiplication over Z[ξ2d] is small. Similarly, this idea can be applied
to the inverse-DFT as well. Particularly, under the batch framework of [8], we
develope the following new methods.

– We design a new homomorphic ring multiplication over Z[ξ2d], using Õ(d+
d2/r) FHE multiplications. Thus, the amortized complexity is Õ(1) FHE
multiplications per dimension.

– We design a new homomorphic inverse-DFT with dimension 2d, with amor-
tized complexity Õ(1) FHE multiplications per dimension.

4 As this is the bottom base field, no further recursive acceleration can be applied
(e.g., Karatsuba or Toom-Cook).

6

Using a similar analysis of MS18 [12], we can then prove that the overall amor-
tized complexity is Õ(1) FHE multiplications, to bootstrap one input LWE ci-
phertext, achieving our main result. We notice that to implement the above high
level picture requires substantial new design ideas over the batch framework [8].
We elaborate on the details of each piece in the coming sections.

2 Preliminaries
In this section, we present the preliminaries of this work. We note that this work
shares a lot of common background with the first work of the series [8], so many
basic materials are described verbatim as those in the first work.

Notations. Denote the set of integers by Z, the set of rational numbers by Q,
real numbers by R, and complex numbers by C. Notation log refers to the base-2
logarithm. For a positive k ∈ Z, let [k] be the set of integers {1, ..., k}. We denote
[a, b] as the set [a, b] ∩ Z for any integers a ≤ b.

In this work, a vector is always a column vector by default and is denoted
by a bold lower-case letter, e.g., x. We use ∥x∥2 denotes the l2-norm and ∥x∥∞
denotes the l∞-norm of x. We use bold capital letters to denote matrices. For
a matrix X, X⊤ denotes the transpose of X. Given some set S, Sm×n denotes
the set of all m × n matrices with entries in S. For matrices X ∈ Sm×n1 and
Y ∈ Sm×n2 over some set S, [X∥Y](∈ Sm×(n1+n2)) denotes the concatenation
of X with Y. Let X be a matrix with even columns a matrix, and denote
X = (X(1)∥X(2)), where X(1) is the left half sub-matrix of X and X(2) is the
right half sub-matrix.

For a set A and a probability distribution P, we use a← A to denote that a
is uniformly chosen from A and a ← P to denote that a is chosen according to
the distribution P.
Vector/Matrix Indexing. For vector a, we use a[i] to describe the i-th ele-
ment. Similarly, for matrix X, we use X[i, j] to index the element in i-th row
and j-th column. For an n-dimensional vector a, we usually start the index from
1, i.e., a = (a[1], . . . ,a[n]), and set a[0] = a[n]. Similarly, for an n ×m matrix
X, we usually start the index from X[1, 1] to X[n,m], and set X[0, j] = X[n, j]
and X[i, 0] = X[i,m] for general i, j’s. For RGSW scheme, we use a bold and
upper case variable, e.g., C to describe a ciphertext as it is a ring matrix. We

use
−→
C to describe a vector of ciphertexts, and

−→
C [j] to index the j-th ciphertext.

Similar to the previous case,
−→
C [0] =

−→
C [n] indexes the n-th ciphertext where n

is the vector dimension.

2.1 Lattices and sub-Gaussian Random Variables.

Lattices. An n-dimension (full-rank) lattice Λ ⊆ Rn is the set of all integer
linear combinations of some set of independent basis vectors B = {b1, . . . , bn} ⊆
Rn, Λ = L(B) = {

∑n
i=1 zibi : zi ∈ Z}.

Sub-Gaussian. As discussed in [1,5], it is convenient to use the notion of sub-
Gaussian to analyze the error growth in the FHE constructions. A sub-gaussian
variable X with parameter α > 0 satisfies E[e2πtX] ≤ eπα

2/t2 , for all t ∈ R.

7

– Boundedness: If X is a sub-Gaussian variable with parameter r > 0, then
Pr[|X| ≥ t] ≤ 2 exp(−πt2/r2).

– Homogeneity: If X is a sub-Gaussian variable with parameter r > 0, then
cX is sub-gaussian with parameter c · r for any constant c ≥ 0.

– Pythagorean additivity: If X1 and X2 are two sub-Gaussian variables with
parameter r1 and r2 respectively, then X1+X2 is sub-Gaussian with param-
eter r1 + r2, or

√
r21 + r22 if the two random variables are independent.

g−1 algorithm. This algorithm is used heavily in the research of FHE as we
summarize in the following lemma.

Lemma 2.1 For a given integer q, let ℓ = ⌈log q⌉ and g = (1, 2, .., 2ℓ−1). Then
there is a randomized, efficiently computable algorithm denoted as g−1 : Zq → Zℓ

such that the output of the function, x← g−1(a) is sub-gaussian with parameter
O(1), satisfying ⟨g,x⟩ = a mod q.

We can extend g−1 to the matrix case (using the notation G−1(·)) by applying
g−1(·) to each entry of the matrix.

2.2 Algebraic Number Theory Background

We present some necessary background of algebraic number theory. This work
heavily uses number fields and their rings of integers, and particularly, we rep-
resent a ring element as an algebraic number, instead of a polynomial. This
representation gives more algebraic insights for our designs and analyses. Due
to space limit, we defer some basic concepts in the full version of this work, and
note that more details can be found in the work [10].

Number Fields. This work focuses on number fields as field extension that
can be expressed as K = Q(α), by adjoining some α to Q where α is a root of
some irreducible polynomial f(x) ∈ Z[x]. Let ξm be the m-th root of unity, and
Q(ξm) is known as the m-th cyclotomic field. Suppose Φm(x) is the m-th cyclo-
tomic polynomial, then the Z-ring homomorphism Υ induces an isomorphism of
Z[x]/Φm(x) ∼= Z[ξm] as:

Υ : Z[x]→ Z[ξm] such that x 7→ ξm.

We also use the concept of tensor fields, whose preliminaries are presented in
the full version. Below we present a useful decomposition property.

Lemma 2.2 [10] Let m =
∏

ℓ mℓ be the prime-power factorization. Then K =
Q(ξm) is isomorphic to the tensor product ⊗ℓQ(ξmℓ

), via the bijection
∏

ℓ aℓ 7→
⊗ℓ(aℓ), where each aℓ in Kℓ can be naturally embedded in the field K.

Geometry of Number Fields. Throughout this work, we use the canonical
embedding to define norms for algebraic numbers. As argued in [10], this defini-
tion is independent of the representation of the algebraic number and can give
us better bounds in the setting of general cyclotomic fields. Due to space limit,
we defer the details to the full version of this work.

8

Trace, Ring of Integers, and Duality. The first work of this series [8] devel-
oped the batch homomorphic computation based heavily on the concepts of the
algebraic trace, tensor rings, and their duals. This work builds upon the prior
results in a black-box way, so our new results can still be accessible without the
mathematical details.

2.3 Learning with Errors Assumption

Our schemes and analyses are based on the learning with errors (LWE) and the
ring version RLWE (in general cyclotomic rings) as introduced by [9, 17]. We
assume that the readers are familiar with these problems, and defer more details
to the full version.

2.4 RLWE/RGSW in General Cyclotomic Rings

We present the schemes RLWE [9, 10] and RGSW [1, 7] in the setting of general
cyclotomic rings. As the first work [8] showed, the noise behavior of the homo-
morphic operations in general cyclotomic rings is similar to that in the setting
of power-of-two’s, under the analysis of the canonical embedding [9, 10]. Below,
we describe these schemes with a lemma that summarizes the noise growth.

Below we describe the parameters of the RLWE and RGSW schemes.

– λ: the security parameter.

– R: the m-th cyclotomic ring with degree N = ϕ(m).

– Q: the modulus.

– RQ: the quotient ring R/QR.
– D: some error distribution over R.
– ℓ: set ℓ = ⌈logQ⌉ (with respect to some log base).

RLWE Scheme. We describe the basic symmetric RLWE encryption scheme (in
the primal form for simplicity). The scheme contains the following algorithms.

– KeyGen(1λ): Choose randomly s← RQ and output sk := (1,−s)⊤ ∈ R2
Q.

– Enc(sk, µ ∈ Rt): Sample a uniform ring element a← RQ and a noise e← D.

The output ciphertext is set as c :=

(
sa+ e

a

)
+

(⌊
Q
t

⌉
µ

0

)
∈ R2

Q.

We call
⌊
Q
t

⌉
µ the encoded message of c and µ the encrypted message of c.

– Dec(c, sk): The algorithm outputs an element µ in Rt as follow:

µ = ⌊⟨(1,−s), c⟩⌉t := ⌊t⟨(1,−s), c⟩/Q⌉ mod t.

We use RLWEt/Q
s (µ) to denote the set of all RLWE ciphertexts of encoded message

µ under secret s with ciphertext modulus Q and plaintext modulus t. Sometimes,

we use RLWEQ
s (

⌊
Q
t

⌉
µ) to denote the same set. The latter notion drops the t in

the super-script, but presents the whole encoded message in the parentheses.

9

RGSW Scheme. Now we present the RGSW scheme. We notice that this work
suffices to use the symmetric-key version of RGSW, so we just present this for
simplicity. The public-key version works analogously.

Denote the fixed gadget vector as g⊤ = (1, 2, ..., 2ℓ−1), and the gadget matrix
as G = g⊤⊗I2. As demonstrated by [1,11], the gadget vector/matrix play a vital
role in the homomorphic computation methods. Similar to the RLWE scheme
above, we present the primal version of RGSW.

– KeyGen(1λ): Choose randomly s← RQ and set sk := (1,−s)⊤ ∈ R2
Q.

– Enc(sk, µ ∈ R2): Sample a uniform vector a ← R2ℓ
Q and a noise vector

e← D2ℓ. The ciphertext is set as C :=

(
sa⊤ + e⊤

a⊤

)
+ µG ∈ R2×2ℓ

Q .

– Dec(C, sk): The algorithm outputs an element µ in Rt as follow:

µ =
⌊
⟨(1,−s)⊤, c(ℓ−1)⟩

⌉
mod 2,

where c(ℓ−1) is the (ℓ− 1)-th column of C.
– Homomorphic Addition C1 ⊞C2: It takes as inputs two RGSW cipher-

texts C1, C2 under the same secret key sk and outputs C1⊞C2 := C1+C2.
– Homomorphic Multiplication C1 � C2: It takes as inputs two RGSW

ciphertexts C1, C2 under the same secret key sk and outputs the following
as the result of homomorphic multiplication: C1 � C2 ← C1 ·G−1(C2).
Here G−1(·) can be either deterministic or randomized. As argued by [1], a
randomized instantiation can yield tighter parameters of the noise growth
than those derived from the deterministic version. We notice that in the ring
setting, a basis needs to be specified when computing G−1.

– External Product C1⊠ c2: It takes as inputs a RGSW ciphertexts C1 and
a RLWE ciphertext c2 under the same secret key sk and outputs the following
RLWE ciphertext as the result of external product: C1 ⊠ c2 ← C1 · g−1(c2).

The IND-CPA security of the above RGSW scheme (for general cyclotomic rings)
follows from the RLWE assumption, using the same argument of [1,7]. Below we
present some notations for the noise analysis.

Definition 2.3 Adapt the notations from the above. Given a ciphertext C that
encrypts message µ under a secret key sk = (1,−s)⊤, we can express as the
following relation sk⊤ ·C = µ · sk⊤ ·G+e⊤ ∈ Rm

Q , for some error vector e. Then

define Errµ(C) := e⊤ = sk⊤ ·C− µ · sk⊤ ·G. When the context is clear, we may
drop the index µ.

We use RGSWQ
s (µ) to denote the set of all the RGSW ciphertexts that encrypt

µ under secret s in the modulo Q space. If the parameters Q are clear from the
context, we would use the abbreviation RGSWs(µ) for simplicity.

Note. The above error function can be defined for RLWE ciphertexts analo-
gously. We do not present another definition to avoid repetition.

The following analysis was developed by the prior work of the series [8].

10

Lemma 2.4 ([8]) For any RGSW ciphertexts C1,C2 that encrypt µ1, µ2 with
the error terms e1, e2 respectively, then we have the following.

– Err(C1 ⊞C2) = e⊤1 + e⊤2 .
– Err(C1 � C2) = e⊤1 ·G−1(C2) + µ1 · e⊤2 .

Furthermore, suppose G−1 is sampled with respect to some Z-basis of R, i.e.,
B = {b1, ..., bn}, such that for all i ∈ [n] ∥σ(bi)∥∞ ≤ 1. Then the following
holds.

– Denote e⊤1 ·G−1(C2) as e⊤ = (e1, ..., e2ℓ). Then each entry of e is an inde-
pendent random variable.

– ||σ(e)||∞ is upper bounded by a sub-Gaussian variable with parameter O(r),
for some real positive r ≤

√
N · logQ · ∥σ(e1)∥∞.

Encrypted Elements in the Exponents. Next we define a notation for
RGSW ciphertexts, encrypting integers of a vector in the exponents. This nota-
tion will be convenient for the presentation of our new homomorphic algorithms.

Definition 2.5 Let ξp be the p-th root of unity which is included in the message
space of RGSW. Given an integer vector a = (a0, a1, · · · , an−1) ∈ Zn, we denote
RGSW.EncVec-Exp(a) as a vector of ciphertexts, each entry of which is a RGSW

ciphertext encrypting ξai
q . Namely,

−→
C = (C0, · · · ,Cn−1) ∈ RGSW.EncVec-Exp(a),

where each Ci ∈ RGSW(ξai
q).

The parameter ξq will be specified in each algorithm that uses RGSW.EncVec-Exp.
Moreover, there exists a homomorphic anti-rotation algorithm Anti-Rot(·, ·) that
on input

−→
C ∈ RGSW.EncVec-Exp(a) and z ∈ Z outputs a rotated ciphertext

−→
C ′ ∈ RGSW.EncVec-Exp(Anti-Rot(a, z)), where Anti-Rot(a, z) is the anti-cyclic
rotation of z positions in the plaintext. The error growth is only increased by an
additive term e′ that is independent of the input ciphertext.

3 Foundation Developed in Batch Bootstrapping I

In this section, we present the framework of batch homomorphic computation of
the work [8]. To be rigorous, our presentation uses the math concepts of tensor
rings and dual basis. To make it more friendly to the general, we abstract the
required homomorphic methods and analyses in a modular way, so that how to
apply the framework can be accessible without going into the math details. The
main results and algorithms of this work will be presented using the modular
abstraction of the homomorphic methods.

Math Background and Notations. Let K = K1 ⊗ K2 ⊗ K3 be a tensor
field of three linearly disjoint fields, and R1, R2, R3 be their rings of integers,
respectively. It follows that the ring of integers ofK (denoted asR) is isomorphic
to R1 ⊗R2 ⊗R3. Furthermore, we present some useful facts and notations.

– K12 and K13 denote K1 ⊗K2 and K1 ⊗K3, respectively.

11

– R,R12 andR13 denote the rings of integers ofK,K12, andK13, respectively.
It is known that R ∼= R1 ⊗R2 ⊗R3, R12

∼= R1 ⊗R2, and R13
∼= R1 ⊗R3.

– Let (v1, v2, . . . , vρ) and (w1,w2, . . . ,wτ) be some Z-bases of R2 and R3, re-
spectively, where ρ and τ are the degrees of the rings R2 and R3.

– Denote (v∨1 , v
∨
2 , . . . , v

∨
ρ) and (w∨

1 ,w
∨
2 , . . . ,w

∨
τ) as the corresponding Z-bases

of the dual spaces R∨
2 and R∨

3 , respectively.
– Let r = min(ρ, τ), the maximal number of slots our method can pack.
– Denote the trace functions (with respect to different underlying subfields) as

TrK/K12
: K → K12 and TrK/K13

: K → K13

In our instantiation, we set K := Q[ξqρ′τ ′] ∼= Q[ξq]⊗Q[ξρ′]⊗Q[ξτ ′] := K1⊗K2⊗
K3, where q is equal to the modulus of input (Ring)-LWE being bootstrapped,
ρ′ and τ ′ are powers of some prime numbers of size O(1). Moreover, we have
ρ = ϕ(ρ′) and τ = ϕ(τ ′).

3.1 The Framework of Batch Homomorphic Computation

By using the tensor of three rings, the work [8] showed how to batch homomor-
phic computation as we summarize below.

Message Packing and Operations. First, the message space is the first ring,
i.e., R1, and the other two rings, i.e., R2,R3 are the work rings for computation.
Particularly, there are features as following:

1. There are four modes of packing, i.e.,mode ∈ {“R′′
12, “R′′

13, “R12 → R′′
13, “R13 →

R′′
12}, where a vector of messages can be packed with respect to.

2. There is an algorithm Pack that on input a vector (of messages) x = (x1, . . . , xr) ∈
Rr

1 and mode outputs a packed message x. Particularly, if mode = “R′′
12,

then x ∈ R1 ⊗ R2; mode = “R′′
13, x ∈ R1 ⊗ R3; mode = “R12 → R′′

13,
x ∈ R1 ⊗R∨

2 ⊗R3; mode = “R13 → R′′
12, x ∈ R1 ⊗R2 ⊗R∨

3 .
3. For any two packed messages (x,mode) and (y,mode) where x = Pack(x,mode)

and y = Pack(y,mode), (x+ y,mode) = Pack((x+ y),mode).
4. There is a multiplication method that on input two packed messages (x,mode1)

and (y,mode2), outputs a packed message (z,mode3) with the following. If
mode1 = “R′′

12, mode2 = “R12 → R′′
13 or vice versa, then mode3 = “R′′

13. If
mode1 = “R′′

13, mode2 = “R13 → R′′
12 or vice versa, then mode3 = “R′′

12.
For all the other cases, mode3 = ⊥.
Moreover, (z,mode3) = Pack(z,mode3) where z = (x1y1, . . . , xryr).

Ciphertext Packing and Operations. For RGSW instantiated over the ten-
sor ring R, the work [8] realizes homomorphic methods for the above plaintext
packing and operations. Particularly, we have the following.

1. There is an algorithm RGSW-Pack that on input mode and C1, . . . ,Cr where
each Ci ∈ RGSW(xi) ∈ R2×2ℓ and xi ∈ R1, outputs a packed ciphertext
(C,mode). The ciphertext C ∈ R2×2ℓ or the dual ring (omitting the modu-
lus), depending on mode the same way as Item 2 of the plaintext packing.
Importantly, the size of C is the same as that of each Ci, meaning that the
packing method is non-trivial.

12

2. Let (Cx,mode) and (Cy,mode) be two packed ciphertexts of the message
vectors x = (x1, . . . , xr) ∈ Rr

1, y = (y1, . . . , yr) ∈ Rr
1. Then (Cx+Cy,mode)

is a packed ciphertext of the message vector x+ y.
3. Continue from the above notation. There is a non-trivial5 batch homomor-

phic algorithm Batch-Mult that on input (Cx,mode1) and (Cy,mode2) out-
puts (Cz,mode3) where the modes mode1,mode2,mode3 follow the relation
as described in item 4 of the above plaintext packing. Moreover, Cz is a
packed ciphertext that corresponds to the vector of messages (x1y1, . . . , xryr).

4. There is an algorithm UnPack that on input a packed ciphertext (Cx,mode)
outputs C1, . . . ,Cr where each Ci ∈ RGSW(xi) for xi ∈ R1.

Remark 3.1 In the framework, only two ciphertexts/plaintexts of the modes
(“R′′

12 and “R12 → R′′
13) or (“R13 and “R13 → R′′

12) can be homomorphically
multiplied. All the other combinations do not support the multiplication, e.g., if
C1 is mode “R′′

12 and C2 is mode “R′′
12, then they cannot be multiplied.

Parameters and Computational Efficiency. The first work [8] showed that
the following parameters and computational complexity are feasible. First, we set
the first ring as the q-th cyclotomic ring, i.e., R1 = Z(ξq), where q the modulus
of the input LWE being bootstrapped. Then we set the maximal number of slots
as r = deg(R2/Q) ≈ deg(R3/Q) = O(

√
N/q). Asymptotically, this would be

q = Õ(
√
λ), meaning that r = O(λ0.25−o(1)).

For the (homomorphic) efficiency, the following can be achieved.

– RGSW-Pack requires O(r) RGSW additions.
– Efficiency of the packed addition is the same as that of the RGSW addition.
– Batch-Mult for packed ciphertexts takes O(log λ) number of calls to RGSW

multiplications, i.e., �, by setting R2 and R3 as cyclotomic rings with a
proper tower structure.
Note: this satisfies the non-trivial requirement as O(log λ) calls of RGSW
multiplications are much less than the trivial non-batch method, which re-
quires r = O(λ0.25−o(1)) RGSW multiplications.

– UnPack takes O(r) RGSW multiplications.

Noise Growth. The noise growth depends on how we choose the basis for G−1

to which the RGSW multiplication is with respect (see Lemma 2.4 for reference).
For the case of general cyclotomic rings, the work [8] showed a way to instantiate
a short basis (with infinity norms 1 for all elements in the basis) and all the
necessary components, leading to the following results:

Theorem 3.2 ([8]) Let C be a RGSW ciphertext that encrypts m ∈ R, and
denote Err(C) := (Err1(C)∥Err2(C)), where Err1(C) is the first half of the error
vector, and Err2(C) is the other half. There exists a homomorphic method Eval-
TrK/K12

that on input C outputs C′ ∈ RGSW(TrK/K13
(m)), satisfying Err1(C

′) =
TrK/K12

(Err1(C))+e′ for some e′ that is independent of C. Moreover, Err2(C
′) =

s · TrK/K12
(Err1(C)) + e′′ for some e′′ that is independent of C.

5 The term non-trivial requires Batch-Mult to be much more efficient than the trivial
non-batch computation, i.e., computing r RGSW multiplications separately and then
packing the outcomes into one ciphertext.

13

Theorem 3.3 ([8]) Let C1, . . . ,Cr be RGSW ciphertexts with error terms e1, . . . , er,
messages µ1, . . . , µr ∈ R1 and C′

1, . . . ,C
′
r be RGSW ciphertexts with error terms

e′1, . . . , e
′
r, messages µ′

1, . . . , µ
′
r ∈ R1. Denote

– RGSW-Pack(C1, . . . ,Cr, “R12”) as D,
– RGSW-Pack(C′

1, . . . ,C
′
r, “R12 → R13”) as D′,

– Batch-Mult(D′,D) as F,
– the encrypted messages of the packed ciphertexts D as µD,
– the encrypted messages of the packed ciphertexts D′ as µD′ .

Then, µD =
∑r

i=1 µi · vi, µD′ =
∑r

i=1 µ
′
i · v∨i wi and F is a packed RGSW cipher-

text encrypting TrK/K13
(µD · µD′) with mode R13.

Combing Algorithm 3.2, then we have Err1(F) = TrK/K13
(
∑

i e
′
iv

∨
i wiG

−1(D(1))+

µD′(e
(1)
i vi))+e′ and Err2(F) = s·TrK/K13

(
∑

i e
′
iv

∨
i wiG

−1(D(1))+µD′(e
(1)
i vi))+

e′′, where e′ and e′′ are independent of C.

Corollary 3.4 ([8]) Adapt the notations of Theorems 3.3. If the errors of the
key-switch keys is upper bounded by E, and g−1 is with respect to the basis
B1 ⊗ B2 ⊗ B3. Denote the error of the output by Err(F) = (e⊤1 ||e⊤2), where e1
and e2 are both ℓ-entry vectors. Then ∥Err1(F)∥∞ is upper bounded by

2ρ(p1 − 1)
√
N logQ

ρ′

∑
∥e′

i∥∞ + ρ∥µD′∥
∑
∥ei∥∞ + ∥e′∥∞,

where ∥e′∥∞ is a sub-Gaussian with parameter upper bounded by 3ρ′
√
N logQE.

∥Err2(F)∥∞ is upper bounded by

2ρ(p1 − 1)
√
N logQ∥s∥∞
ρ′

∑
∥e′

i∥∞ + ρ∥s∥∞∥µD′∥
∑
∥ei∥∞ + ∥e′′∥∞,

where ∥e′′∥∞ is a sub-Gaussian with parameter upper bounded by (3ρ′∥s∥∞ +
2)
√
N logQE.

4 New Batch Homomorphic Algorithms

Here we present some critical batch homomorphic algorithms, which will be
used as building blocks to improve the MS18 method [12]. As discussed in the
introduction, an important goal is to design a batch algorithm that gives a better
amortized efficiency to compute ring multiplications of the sub-ring Z[ξ2d].

To achieve this, we first consider a more general setting of batch vector-matrix
multiplication of the following form. The input contains:

1. v vectors a1 . . .av where for k ∈ [v], ak ∈ {0, 1}w;
2. v matrices of ciphertexts {Ck,(i,j)}i∈[h],j∈[w],k∈[v], where eachCk,(i,j) ∈ RGSW(ξ

Mk[i,j]
q)

and for each k ∈ [v], Mk is a matrix in the domain Zh×w
q .

Let zk = Mk ·ak ∈ Zh
q for k ∈ [v]. The goal is to compute a vector of ciphertext

−→
C ∈ RGSW.EncVec-Exp(z1∥z2∥ . . . ∥zv), where ∥ denotes the concatenation.

14

Even though each input vector ai ∈ {0, 1}w is just a bit vector, this still
suffices to capture general vector-matrix multiplication in Zq by using the tech-
nique of bit-decomposition and power-of-2. Particularly, any X · y is equivalent
to X′ ·y′ where X′ is the power-of-2 matrix, i.e., = g⊤⊗X, and y′ = G−1(y) is
the bit-decomposition vector. Therefore, this form of homomorphic computation
would be sufficient for our later algorithms.

For the naive un-batch homomorphic computation, this would require v ·h ·w
RGSW multiplications. In the next section, we show that suppose the input
ciphertext is packed under the batch framework [8], then we can improve the
efficiency by using roughly O(v · h · w/r) RGSW multiplications. By using this
batch algorithm, we can derive more efficient homomorphic ring multiplications
of the sub-ring Z[ξ2d] and other critical procedures as we will present next.

Note: our further presentation heavily uses indices to vectors and matrices,
and thus we would recommend the readers to quickly recall the indexing rules
of this work as described in the preliminary (Section 2). Consider an example
with an n-dimensional vector a. We represent it as (a[1],a[2], . . . ,a[n]), and
for convenience we use a[0] as a reference to a[n] – namely, they are the same
variable holding the same value.

4.1 Batch “Vector”-“Encrypted Matrix” Multiplication

Let {Mk}k∈[v] be matrices, each belonging to Zh×w
q , and {Ck,(i,j)}i∈[h],j∈[w],k∈[v]

be RGSW ciphertexts as specified as above. Now we consider the following pre-
processing of the ciphertexts. In our applications, we assume w to be even, which
is without loss of generality. Importantly, for the best amortized efficiency, we
require the constraint hv ≤ r, where r (which can be set to O(λ0.25−o(1))) is the
number of slots supports by the framework [8]. Intuitively, this means that we
have a sufficient number of slots to pack the inputs.

Let
−−→
Cki := (Ck,(1,i),Ck,(2,i), · · · ,Ck,(h,i))

⊤ as the i-th column vector of
{Ck,(i,j)}i∈[h],j∈[w]. Then the pre-processing step pre-computes the following
packed ciphertexts.

Pre-computing Bki’s. We pack the column vectors into mode “R12 → R13”
and mode “R12 → R13”, alternately. Let ηk ∈ Zv be the vector with only one 1
in the k-th entry and 0 elsewhere, i.e., (0, 0, . . . , 1, 0, . . . , 0)⊤. Then we compute:

Bk1 =RGSW-Pack(
−−→
Ck1 ⊗ ηk, “R12 →R13”)

Bk2 =RGSW-Pack(
−−→
Ck2 ⊗ ηk, “R13 →R12”)

· · ·

Bkw =RGSW-Pack(
−−→
Ckw ⊗ ηk, “R13 →R12”)

Moreover, we set

G0 = RGSW-Pack(G,G, · · · ,G, “R13 → R12”)

G1 = RGSW-Pack(G,G, · · · ,G, “R12 → R13”)

15

Algorithm 4.1: VecMatMult(·, ·)
Input :
– ak ∈ {0, 1}w, for k ∈ [v]
– a vector of (pre-processed) packed RGSW ciphertext {Bki}i∈[w],k∈[v].

Output : a ciphertext vector
−→
C ∈ RGSW.EncVec-Exp(z1|| · · · ||zv), where

zk = Mk · ak.

1 ACC0 = RGSW-Pack(G,G, · · · ,G, “R12”);
2 for i = 1 to w do
3 Bi =

∑
k∈[v]

(
ak[i] ·Bki + (1− ak[i]) ·G(i mod 2)

)
;

4 ACCi=Batch-Mult(ACCi−1,Bi);

5
−→
C = UnPack(ACCw);

6 Return:
−→
C ;

Next we present Algorithm 4.1 and Theorem 4.1 to capture the the correctness
and error growth. As the proof technique is similar to that of [8], due to the
space limit, we defer the proof to the full version.

Theorem 4.1 Algorithm 4.1 satisfies the correctness as required by the input/output
specification. Moreover, let s be the secret of the RGSW scheme and E be the
upper bound (infinity norm of the canonical embedding) of errors in all evalua-

tion keys and the packed RGSW ciphertexts in {Bki}. Then max ∥Err(
−→
C [i])∥∞

is bounded by a sub-Gaussian variable with parameter O(γ) such that γ ≤
wvr2

√
N logQ · ∥s∥∞ · E.

Complexity. The preprocessing step takes wv RGSW-Pack packing, and thus
requires O(wvr) RGSW additions. For the online computation, we have O(wv)
RGSW additions and w Batch-Mult’s in the for loop. Then we compute UnPack(),
which is roughly vh Batch-Mult’s. We notice that one Batch-Mult is roughly
O(log λ) RGSW multiplications. Thus in total, we have O(wv) RGSW additions
and O((w + vh) log λ) RGSW multiplications. In amortization, this would be
O(wv/(vh)) RGSW additions and O((w+vh) log λ/(vh)) RGSW multiplications,
per dimension (over h) per vector-matrix pair (over v).

4.2 Multiplications over Small(er) Rings

Now we show how to achieve a batch homomorphic multiplication over Z[ξ2d]
for 2dv < r with good amortized complexity, by using the homomorphic method
as we developed above. Particularly, let d be a power of two such that 2dv < r,
and {ak}k∈[v], {xk}k∈[v] be ring elements over Z[ξ2d]. We consider the task of
homomorphic computation of {akxk}k∈[v] where each ak ∈ Z[ξ2d] is in the clear
and xk ∈ Z[ξ2d] is encrypted in some form, as we formalize below.

Task Specifications. Let Xk = Coeffs-Rot(xk) ∈ Z2d×2d
q be the anti-cyclic

rotation matrix of xk for k ∈ [v]. Set the power-of-two matrix, i.e., Mk = g⊤ ⊗
Xk ∈ Z2d×2d log q

q , and generate RGSW ciphertexts {Ck,(i,j)}i∈[2d],j∈[2d log q],k∈[v],

16

each of which encrypts the corresponding entry Mk[i, j] of Mk. Finally, let
{Bkj}j∈[2d log q],k∈[v] be the packed ciphertext as computed in the pre-processing
of Section 4.1. Now we formally present the task statement:

– Input: Let a1, . . . , av ∈ Zq[ξ2d] and {Bkj}j∈[2d log q],k∈[v] be the packed ci-
phertexts that represent the pre-processed ciphertext of xk ∈ Zq[ξ2d].

– Output: (
−→
C ′

1,
−→
C ′

2, . . . ,
−→
C ′

v) such that for each k ∈ [v],
−→
C ′

k[i] ∈ RGSW(mk[i]),

mk[i] = ξ
zk[i]
q and zk = coeffs(ak · xk).

This task can be achieved easily given Algorithm 4.1 as we present below.

Algorithm 4.2: Multiplications over Small(er) Rings

Input : a1, . . . , av ∈ Zq[ξ2d] and {Bkj}j∈[2d log q],k∈[v] (as specified above).

Output : (
−→
C ′

1, . . . ,
−→
C ′

v) (as specified above).

1 a′
k = g−1(coeffs(ak)), for k ∈ [v];

2 Return: VecMatMult
(
{a′

k}, {Bkj}k∈[v],j∈[2d log q]

)
(setting h = 2d,

w = 2d log q in Algorithm 4.1).

Theorem 4.2 The above algorithm satisfies the correctness as required by the
input/output specification.

This theorem simply follows from Theorem 4.1.

Complexity. The complexity of this algorithm follows essentially the same as
that of Algorithm 4.1, by setting h = 2d, w = 2d log q. Assuming that d = λO(1),
v = λO(1), q = poly(λ), then the amortized complexity of the online computation
would be O(log λ) RGSW additions, and O(log λ) RGSW multiplications. This
can be simplified as O(log λ) = Õ(1) RGSW multiplications, per dimension (over
2d) per ring multiplication (over v).

5 Homomorphic DFT/inverse-DFT

In this section, we consider another form of batch vector-matrix multiplication
where the vector is encrypted and the matrix is in the clear yet of some special
form, where each entry is a power of a root of unity. By setting the matrix to the
DFT (or respectively DFT−1) matrix, this task would immediately give a batch
homomorphic DFT/inverse-DFT, which is another important building block of
the bootstrapping framework of MS18 [12]. Here we present an efficient batch
DFT/inverse-DFT with dimension 2d < r where r = O(λ0.25−o(1)) is the number
of slots that the batch framework can support. Then in Section 6, we show that
a recursive optimization can be further applied for larger dimensions, e.g., O(λ)
as required by the bootstrapping. Below we present a detailed formulation.

Setting. Let m > d be two numbers of powers of two. Clearly, we have 2d|m,
and thus Z[ξ2d] is a sub-ring of Z[ξm]. Let M ∈ Zq[ξ2d]

2d×2d be a matrix where

each entry is some power of the 2d-th root of unity, i.e., each M[i, j] = ξ
δij
2d

for δij ∈ Z2d, and let a ∈ Zq[ξm]2d be a vector of elements in the ring of the
extension field. This task is to homomorphically compute M · a, where M is in
the clear and a is encrypted in some form as specified next.

17

Basic Facts. We first describe some useful facts in the algebraic number the-
ory. We know that d′ = m/(2d) is the degree of field extension Q(ξm)/Q(ξ2d).
Then for any x ∈ Z[ξm], we can uniquely represent x as d′ Z[ξ2d]-coefficients (say,
x0, x1, . . . , xd′−1 ∈ Z[ξ2d]d

′
) over someQ(ξ2d)-basis ofQ(ξm), e.g., {1, ξm, ξ2m, . . . , ξd

′−1
m },

meaning that x =
∑

0≤i<d′ xiξ
i
m. The coefficients can be viewed as a vector

space with coefficients in Z[ξ2d], i.e., for any x′ ∈ Z[ξ2d], we have x′ · x =∑
0≤i<d′(x′ · xi)ξ

i
m, whose Z[ξ2d]-coefficients are (x′x0, . . . , x

′xd′−1).

We notice that the matrix M in the setting suffices to capture the case of
DFT/inverse-DFT, as the DFT matrix (of dimension 2d) can be expressed as

MDFT =

 ξ1·12d ξ1·12d · · · ξ1·2d2d

ξ2·12d ξ2·12d · · · ξ2·2d2d

· · ·
ξ2d·12d ξ2d·22d · · · ξ2d·2d2d

 .

The inverse DFT matrix can be expressed as MDFT−1 = (2d)−1 ·M∗
DFT where

∗ denotes the conjugate. We notice that for the homomorphic DFT−1 over the
exponent (over R1 = Z[ξq]), we need that 2d to be relatively prime to q, and
thus (2d)−1 exists when taking modulo q. In our setting, this is not a problem
as we can set q to be a prime. For the work [12], they use power-of-two q as
required by the FHEW framework [5]. In this case, they would need to change
the degree of DFT into 3’s powers.

Next we present the details of the task.

Task Specifications. Now we specify how a = (a1, . . . , a2d) ∈ Zq[ξm]2d is
encrypted. For each i ∈ [2d], we represent ai =

∑
0≤j<d′ aijξ

j
m where each aij ∈

Z[ξ2d]. Similar to the indexing principle as we used for vectors/matrices, we

let a(2d)(j) = a0j and a(i)(d′) = ai0 for general i, j’s. Then we denote
−→
Cij ∈

RGSW.EncVec-Exp(coeffs(aij)) for i ∈ [2d], j ∈ [d′]. Given these ciphertexts, we
formally describe the task statement:

– Input: (1) M ∈ Zq[ξ2d]
2d×2d such that each M[i, j] = ξ

δij
2d for δij ∈ Z2d. (2){−→

Cij ∈ RGSW.EncVec-Exp(coeffs(aij))
}
i∈[2d],j∈[d′]

– Output: {
−→
C ′

ij}i∈[2d],j∈[d′] such that
−→
C ′

ij ∈ RGSW.EncVec-Exp(coeffs(zij))
for each i ∈ [2d], j ∈ [d′] with the following conditions. Let each zi ∈ Zq[ξm]
be the i-th element entry of M · a, i.e., zi = M · a[i] ∈ Zq[ξm], and

(zi0, . . . , zi(d′−1)) ∈ Zq[ξ2d]
d′

be its unique coefficient representation with

respect to the power basis, i.e., zi =
∑

0≤j<d′ zijξ
j
2d. Note: for convenience,

the following two variables are equivalent zid′ := zi0, as the indexing rule of
vectors/matrices.

(*) Importantly, in this section we assume 2d < r, where r is the number of
slots the batch framework supports. Intuitively, this allows us to encrypt all the
coefficients of aij ∈ Z[ξ2d] in one packed RGSW cipherext.

18

5.1 First Attempt

At a first sight, the main task can be achieved by using the prior batch vector-
matrix multiplication (Algorithm 4.1). Following this intuition, below we present
an attempt that would almost achieve our task, yet would require too many
homomorphic additions. Even though unsatisfactory, this attempt still gives in-
sights that lead to our further improvements in the next section. Thus, we still
present this algorithm here as a good warm up for the readers.

Recall the following procedure from Section 2.4: there is an efficient homo-

morphic procedure Anti-Rot(·, ·) that given as inputs
−→
C ∈ RGSW.EncVec-Exp(coeffs(z))

for z ∈ Z[ξ2d], and δ ∈ Z2d, outputs
−→
C ′ ∈ RGSW.EncVec-Exp(coeffs(z · ξδ2d)). We

notice that in the setting power-of-two, coeffs(z · ξ2d) is an anti-cyclic rotation
of coeffs(z), and this procedure can be computed homomorphically. Next we
present the algorithm below.

Algorithm 5.1: Batch Vector-Matrix Mult for Special Matrices

Input :
– M ∈ Zq[ξ2d]

2d×2d, where each entry is a power of ξ2d;

–
{−→
Cij ∈ RGSW.EncVec-Exp(coeffs(aij))

}
i∈[2d],j∈[d′]

, as specified above.

Output : {
−→
C ′

ij}i∈[2d],j∈[d′] as specified above.

1 Let v = (1, 1, . . . , 1) ∈ {0, 1}2d be the all-one vector;
2 for i = 1 to 2d do
3 for j = 1 to d′ do
4 for k = 1 to 2d do

5 set
−→
Rkj = Anti-Rot(

−→
Ckj ,M[i, k]);

6 set Dkj = RGSW-Pack(
−→
Rkj) (to the appropriate mode, either

“R12 → R13” or “R13 →R12”) ;

7 Set
−→
C ′

ij = VecMatMult(v, {Dkj}i∈[2d]) ;

8 Return: {
−→
C ′

ij}i∈[2d],j∈[d′].

The correctness can be easily verified so we do not present the details. Below
we just analyze the complexity and point out a technical subtlety that this
algorithm does not satisfy our efficiency requirement.

Complexity Analysis. From the computation, at least the algorithm needs
2dd′ VecMatMult(), each of which is roughly 2d Batch-Mult, and 4d2d′ RGSW-
Pack. As we analyzed, each Batch-Mult is roughly O(d log λ) RGSW multiplica-
tions, and each RGSW-Pack is roughly O(d) RGSW additions. Thus in total this
would be O(d2d′) RGSW multiplications and O(d3d′) RGSW additions. In amor-
tization (per ring dimension m and per inverse-DFT dimension 2d), this would
be Õ(1) RGSW multiplications and O(d) RGSW additions. At first it seems we
can neglect the RGSW additions, yet in our parameter setting later, we will re-
quire d = λO(1). As a RGSW multiplication is roughly equal to O(log λ) RGSW

19

additions, then the overall amortized complexity will be dominated by the O(d)
RGSW additions. This will prevent us from getting the desired efficiency, i.e.,
overall Õ(1) RGSW multiplications for bootstrapping, per input ciphertext.

This drawback comes from Step 6, where the above algorithm needs too many
calls to RGSW-Pack. At a high level, we need to perform anti-cyclic rotations on
the ciphertexts, and then perform the vector-matrix multiplication. The input
matrices {Dkj} to VecMatMult() need to be packed in the mode of either “R12 →
R13” or “R13 → R12”, but we do not know how to perform homomorphic anti-
cyclic rotations over packed ciphertexts of these modes. Therefore, the above
method can only perform anti-cyclic rotations on un-packed ciphertexts (Step
5) and then compute different packed ciphertexts (Step 6) for each call of the
vector-matrix multiplication (Step 7).

5.2 New Building Blocks

In this section, we present some useful batch homomorphic algorithms, which
will be used as major building blocks for our improved method. Particularly,
we identify a new batch homomorphic method to compute anti-cyclic rotations
for packed ciphertexts of modes “R′′

12 and “R′′
13. Even though this does not

solve the challenge described in the prior section6, later on we will show a new
homomorphic method that can incorporate the new homomorphic anti-cyclic
algorithm, resulting in the overall improvement.

We now present the task for our new homomorphic method. Let x be some
vector, and y be its anti-cyclic rotation, i.e., y = Anti-Rot(x). Given input a
packed ciphertext C ∈ RGSW(

∑
i∈[r] xivi) of mode “R′′

12 (or “R′′
13 respectively),

our goal is to compute a packed ciphertext C ∈ RGSW(
∑

i∈[r] yivi).
To achieve this, we first consider the following two sub-tasks:

Sub-Task I: Batch Permutation: Given input (1) a permutation π : [r] →
[r] ∈ Sr where Sr is the symmetric group of degree r, and (2) a packed ciphertext
C ∈ RGSW(

∑
i∈[r] xivi) of mode “R′′

12 (or “R′′
13 respectively), the goal is to

compute a packed ciphertext C′ ∈ RGSW(
∑

i∈[r] xπ(i)wi) (or the other mode

respectively). This can be achieved by the Algorithm 5.2.

Algorithm 5.2: Batch-Permute(·, ·)
Input :
– C, a packed RGSW ciphertext encrypting

∑
i∈[r] xivi;

– π, a permutation in the symmetric group Sr.

Output : C′, a packed RGSW ciphertext encrypting
∑

xiwπ(i).

1 Let Cπ =
∑

i∈[r] v
∨
i wπ(i), i.e., a packed ciphertext of mode R12 →R13;

2 Return: C′ = Batch-Mult(C,Cπ).

6 Recall that the challenge is to homomorphically rotates batch ciphertexts of modes
“R12 →R′′

13 or “R13 →R′′
12.

20

Sub-Task II: Batch Inverse Automorphism: Given input a packed cipher-
text C ∈ RGSW(

∑
i∈[r] ξ

ai
q vi) of mode “R′′

12 (or “R′′
13 respectively), the goal is

to compute a packed ciphertext C′ ∈ RGSW(
∑

i∈[r] ξ
−ai
q vi) (or the other mode

respectively). In another word, this is to homomorphically conjugate the plain-
texts (the R1 part) while keeping the basis {vi} intact. The can be achieved by
Algorithm 5.3.

Algorithm 5.3: Inv-Auto(·)
Input : C, a packed RGSW ciphertext encrypting

∑
i∈[r] ξ

ai
q vi, i.e.,

plaintext Pack(ξa1
q , · · · , ξar

q) in mode R12;
Output : C′, a packed RGSW ciphertext encrypting

∑
i∈[r] ξ

−ai
q vi, i.e.,

Pack(ξ−a1
q , · · · , ξ−ar

q) in mode R12;

1 Let σ be the automorphism of R, satisfying ξq 7→ ξ−1
q , ξρ′ 7→ ξρ′ and ξτ ′ 7→ ξτ ′ ;

2 Apply σ to each entry of C and get C;

3 Return: RGSW-KS(C, evk(σ
−1))

Combining the above two algorithms, we can homomorphically evaluate the
homomorphic anti-cyclic rotation over packed ciphertexts as Algorithm 5.4.

Algorithm 5.4: Batch-Anti-Rot(·,·)
Input :
– C, a packed RGSW ciphertext encrypting

∑
i∈[r] ξ

ai
q vi, i.e., plaintext

Pack(ξa1
q , · · · , ξar

q) in mode R12;
– a monomial ξδq .

Output : C′, a packed RGSW ciphertext encrypting∑
i∈[δ] ξ

−ar−δ+i
q wi +

∑
i∈[r−δ] ξ

ai
q wi+δ, namely, plaintext is

Pack(ξ
−ar−δ+1
q , · · · , ξ−ar

q , ξa1
q , · · · , ξar−δ

q), the anti-cyclic rotation of
the input in mode R12;

1 Let πδ be the cyclic rotation that shifts δ;
2 ACC=Batch-Permute(C, πδ);
3 ACC′=Inv-Auto(ACC);
4 ACC+ = Batch-Mult(ACC,

∑r
i=δ+1 vi · w

∨
i);

5 ACC− = Batch-Mult(ACC′,
∑δ

i=1 vi · w
∨
i);

6 C′ = ACC+ + ACC−;
7 Return: C′

Theorem 5.1 The above algorithm satisfies the correctness as required by the
input/output specification.

The correctness can be easily verified. We do not analyze the noise here. In-
stead, we analyze the overall noise behavior in our Algorithm 5.5, the improved
homomorphic anti-cyclic rotation.

21

5.3 Our Improved Method

Now we describe our new improved algorithm to achieve the main task of this
section, by using the new algorithms in Section 5.2 as critical building blocks.
We first present some basic ideas for the plaintext computation, and then the
homomorphic method.

We use the following (simplified) example to illustrate our core idea. Given
b = (b1, . . . , b2d) ∈ Zq[ξ2d]

2d and x = (ξδ12d, . . . , ξ
δ2d
2d), the task is to compute

the inner product ⟨b,x⟩. In the homomorphic computation, b is encrypted and
x is in the clear. At a high level, Algorithm 5.1 performs the computation as:∑

i∈[2d] coeffs
(
bi · ξδi2d

)
. Even though the term coeffs

(
bi · ξδi2d

)
can be (homo-

morphically) computed by using Anti-Rot, i.e., permuting the coefficients and
negating some of them properly, the homomorphic algorithm requires to pack the

coefficients in every coeffs
(
bi · ξδi2d

)
in modeR12 → R13 orR13 → R12, resulting

in the undesired O(d3d′) homomorphic additions. It is unclear whether there is
an efficient homomorphic method transforming a ciphertext of Pack(coeffs(bi))
into another of Pack(Anti-Rot(coeffs(bi), ξ

δi
2d)), under the modes R12 → R13 or

R13 → R12. It is important to notice that our algorithm in the above section
(Section 5.2) can compute the anti-cyclic rotation for ciphertexts of mode R12

or R13 but not R12 → R13 or R13 → R12.
To tackle the above challenge, we consider another way of computation. First

we observe that the inner product ⟨b,x⟩ can be re-expressed as computing g2d
recursively as follow: g1 = b1 · ξδ1−δ2

2d , for 1 < j < 2d, gj = (gj−1 + bj) · ξ
δj−δj+1

2d ,

g2d = (g2d−1 + b2d) · ξδ2d2d . It is not hard to verify that these two computation
methods are equivalent, producing the same value for any b and x.

Now, we can homomorphically compute the above sequence using an ACC
storing each gj in mode either R12 or R13. Let consider an example where gj is
stored in mode R12. Now suppose the ciphertexts that encrypt the coefficients
of bj+1 are packed into mode R12 → R13. Then we can compute a ciphertext D
of gj+1 in mode R13, and then apply the homomorphic Anti-Rot on D to update
the ACC, which works because D is in mode R13. Proceeding in this way, the
final ACC would be a ciphertext that encrypts g2d = ⟨b,x⟩. We formalize the
idea into Algorithm 5.5.

Theorem 5.2 summarizes the correctness and error growth. As the proof is
similar to that of Theorem 4.1 (though much tedious), due to space limit we
defer the proof to the full version.

Theorem 5.2 The above algorithm satisfies the correctness as required by the
main task specification in this section .

Moreover, let s be the secret of the RGSW scheme and E be the upper bound
(infinity norm of the canonical embedding) of errors in all evaluation keys and

the packed RGSW ciphertexts in
{−→
Cij

}
i∈[2d],j∈[d′]

. Then the error of each RGSW

ciphertext in
{−→
C ′

ij

}
i∈[2d],j∈[d′]

is bounded by a sub-Gaussian variable with pa-

rameter O(γ) such that γ ≤ dr3∥s∥
√
N logQE.

22

Algorithm 5.5: RGSW.EncVec-MatMult(·, ·)
Input :
1. M ∈ Zq[ξ2d]

2d×2d where each entry is a power of ξ2d.

2.
{−→
Ckj ∈ RGSW.EncVec-Exp(coeffs(akj))

}
k∈[2d],j∈[d′]

, as above in the task

specifications.

Output : {
−→
C ′

ij}i∈[2d],j∈[d′] as required above.

1 for j = 1 to d′, k = 1 to 2d do

2 Ckj=RGSW-Pack(
−→
Ckj , “R1,(3−(k mod 2)) →R1,(2+(k mod 2))”);

3 Initialize ACC0=RGSW-Pack(G, · · · ,G, ”R12”);
4 for i = 1 to 2d do
5 for j = 1 to d′ do
6 ACCR=ACC0;
7 for k = 1 to 2d− 1 do
8 ACCM = Batch-Mult(ACCR,Ckj);
9 ACCR = Batch-Anti-Rot(ACCM ,M[i, k]/M[i, k + 1]);

10 ACCM = Batch-Mult(ACCR,C(2d)j);
11 ACCR = Batch-Anti-Rot(ACCM ,M[i, 2d]);

12 Set
−→
C ′

ij = UnPack(ACCR);

13 Return: {
−→
C ′

ij}i∈[2d],j∈[d′].

Efficiency. The algorithm makes O(d′d) calls to RGSW-Pack, O(d2d′) calls to
Batch-Mult, and O(dd′) calls to UnPack. Similar to the prior analysis, this would
be upper bounded by O(d2d′) RGSW additions and Õ(d2d′) RGSW multiplica-
tions, which is dominated by O(d2d′) RGSW multiplications. Thus, in amorti-
zation (per ring dimension m = 2dd′ per inverse-DFT dimension 2d) the cost
would be Õ(1) RGSW multiplications.

6 Homomorphic DFT−1, Recursively
The multiplication of the DFT/inverse-DFT matrix is a critical step for realizing
the recursive DFT/inverse-DFT. In this section, we show how to achieve a homo-
morphic DFT/inverse-DFT by applying the method in Section 5 recursively, via
the Nussbaumer Transform as identified by MS18 [12]. First we present the Nuss-
baumer Transform using the language of algebraic extension, which might give
a better intuition than the polynomial representation as used in the work [12].

6.1 Nussbaumer Transform

Let K ⊇ E ⊇ Q be towers of field extensions, where K = Q(ξn), E = Q(ξn′) for
n > n′. Denote d = n/n′ be the degree of the field extensionK/E, and we assume
that 2d | n′, which is required by the DFT framework as we further elaborate
later. At a high level, Nussbaumer Transform shows that the multiplication
operation (of two elements) in K can be reduced to 2 · d multiplications of
elements in E in the following way.

First we observe that K is a field extension over E that can be expressed in
a polynomial quotient ring with coefficients in E, i.e., K ∼= E[X]/(Xd − ξn′),

23

where ξn′ ∈ E is the n′-th root of unity. Then any two ring elements a, b ∈ K
can be expressed as a ∼= a(X) = a0 + a1X + · · · + ad−1X

d−1 and b ∼= b(X) =
b0 + b1X + · · · + bd−1X

d−1, where all the coefficients are in E. In this way,
the multiplication of a · b ∈ K can be computed equivalently as a(X) · b(X)
mod (Xd − ξn′) ∈ E[X]/(Xd − ξn′).

To compute a(X) · b(X) in the DFT manner, we notice that the 2d-th root
of unity, denoted as ω = ξ2d, would be used. If the underlying coefficients are
in Q, then we inherently need to work with complex numbers, which are not
compatible with the FHEW-based computation. Interestingly, if the coefficients
are in E, then we do have ω = ξ2d ∈ E = Q(ξn′) as long as 2d | n′. Now
we can compute DFT-based multiplication with integral coefficients. This is
compatible with FHEW as demonstrated by [12], and can be further batched by
our framework as we will show in the next section. Now we present the DFT-
based multiplication in details.

– Convert a(X) in the DFT representation as (a(ω0), . . . , a(ω2d−1)) ∈ E2d,
and similarly b(X) as (b(ω0), . . . , b(ω2d−1)) ∈ E2d.

– Multiply the vectors component-wisely, and obtain (c(ω0), . . . , c(ω2d−1)).
– Convert the resulting vector back to the polynomial c(X) using inverse DFT,

and then output c(X) mod (Xd − ξn′).

We notice that a(X) · b(X) is a polynomial of degree at most 2(d − 1) < 2d,
and therefore, can be uniquely interpolated from the DFT representation of 2d
points. Thus, c(X) mod Xd − ξn′ would give the correct answer. We notice
that there is a natural mapping from c(X) to the ring element in K, namely
c(X) 7→ c(ξn), which can be thought as plugging in X with ξn.

Recursive Optimizations. This process can be further optimized by recur-
sively computing multiplications in E, as long as there is another intermediate
field E ⊃ F ⊃ Q. Under this observation, a tower structure would give the best
performance for recursion. Particularly, we assume that n = 2dρ for some integer
ρ > 1, and n, d are both two’s power, i.e., d = 2δ, and n = 2δρ+1. This allows us
to present the recursive optimization in a clean way.

Let DFT2d be an algorithm parameterized by 2d and DFT−1
2d be the inverse-

DFT algorithm parameterized by 2d. We present these algorithms in Algo-
rithms 6.1 and 6.2. The correctness and efficiency can be easily verified and
analyzed. Here our description can help readers get better intuitions of the ho-
momorphic version of the inverse-DFT.

Importantly, these two algorithms are defined for general (recursive) inputs,
which can be of varying input lengths. In the first level, DFT2d takes input
a ∈ Z[ξn], and DFT−1

2d takes input a ∈ Z[ξ2d](2d)
ρ−1

.

6.2 Homomorphic Evaluation

Now we present the homomorphic algorithm for the recursive inverse-DFT as
Aglrotihm 6.3. Here we describe the specifications.

– Input: The input contains ciphertext vectors that encrypts a ∈ Z[ξn′](2d)
ρ′−1

,
where a is the input of the plaintext-based algorithm DFT−1 as Algorithm 6.2.

24

Algorithm 6.1: DFT2d

Input : a ∈ Q(ξn′) for n′ = 2dρ
′

Output : a ∈ Q(ξ2d)
(2d)ρ

′−1

1 if n′ = 2d then
2 return a
3 else

4 represent a ∼= a(X) = a0 + a1X + · · ·+ ad−1X
d−1, where each

ai ∈ Q(ξn′/d);
5 let ω = ξ2d ∈ Q(ξn′/d);

6 compute (a′
0, . . . , a

′
2d−1) := (a0, . . . , ad−1, 0, . . . , 0) ·MDFT; // a′

i = a(ωi)

7 return
(
DFT2d(a

′
1), . . . ,DFT2d(a

′
2d)

)
.

Algorithm 6.2: DFT−1
2d

Input : a ∈ Q(ξn′)(2d)
ρ′−1

Output : a ∈ Q(ξn′dρ′−1)

1 if ρ′ = 1 then
2 return: a;
3 else

4 parse a = (a1, . . . ,a2d) where each ai ∈ Q(ξn′)(2d)
ρ′−2

;

5 compute a′
i = DFT−1

2d (ai) for i ∈ [2d];
6 compute (a1, . . . , a2d) = (a′

1, . . . , a
′
2d) ·MDFT−1 ;

7 compute a(X) = a0 + a1X + · · ·+ a2d−1X
2d−1 mod Xd − ξn′dρ′−2 , where

we set a0 = a2d;
8 return a ∼= a(X) as an element in the extension field Q(ξn′dρ′−1).

Specifically, let ρ′, n′ be two parameters as implicit inputs, indicating which
recursive level the algorithm is at. The (explicit) input contains (2d)ρ

′−1

ciphertext vectors
{−→
Ci

}
i∈[(2d)ρ′−1]

, where each
−→
Ci ∈

RGSW.EncVec-Exp(coeffs(a[i])), meaning that it encrypts all the coefficients
of a[i] in the exponents.

– Output: Let a = DFT−1(a) ∈ Z[ξn′dρ′−1]. The output contains a ciphertext

vector
−→
C ′ ∈ RGSW.EncVec-Exp(coeffs(a)), meaning that it encrypts all the

coefficients of a in the exponents.

Before presenting our homomorphic algorithm, we first introduce some useful
facts for “change of representation”. Letm ≥ 2d be two numbers of two’s powers.
Below, we consider two particular ways to represent a ring element.

• Given ring element a ∈ Z[ξm], we can express it as a Z-coefficient vector of
dimension m/2, denoted as coeffs(a) with respect to the power basis, namely
a 7→ (a1, . . . , am/2) ∈ Zm/2 such that a = a0 +

∑
i∈[m/2−1] aiξ

i
m. Using our

indexing rule for convenience, we set am/2 as an alias variable of a0.

25

• On the other hand, we can also represent a as a Z[ξ2d]-coefficient vector of
dimension m/(2d), namely a 7→ (a′1, . . . , a

′
m/(2d)) ∈ Z[ξ2d]m/(2d) such that

a = a′0 +
∑

i∈[m/(2d)−1] a
′
iξ

i
m. Similarly, we set a′m/(2d) as an alias variable of

a′0. Of course each a′i can be further expanded by the Z-coefficient represen-
tation, namely a′i 7→ (a′i1, . . . , a

′
id) denoted as coeffs(a′i).

These two representations are equivalent as they both represent the same ring
element. Moreover, the two representations can be mutually converted from one
to the other, just by permuting/rearranging the indices. Thus, this also gives

an efficient homomorphic method for converting a ciphertext vector
−→
C that

encrypts (a1, . . . , am/2), into ciphertext vectors {
−→
Ci}i∈[m/(2d)] where each

−→
Ci

encrypts coeffs(a′i), and vice versa. As it just requires to permute the indices, no
heavy homomorphic method (even addition) is required.

We can formalize the conversions as the following two algorithms, and their
homomorphic variants work analogously.

– Rearr: on input m → 2d, coeffs(a) ∈ Zm/2 representing the Z coefficients of

a ∈ Z[ξm], outputs
(
coeffs(a′1), . . . , coeffs(a

′
m/(2d))

)
;

– Rev-Rearr: on input 2d → m,
(
coeffs(a′1), . . . , coeffs(a

′
m/(2d))

)
representing

(a′1, . . . , a
′
m/(2d)) ∈ Z[ξ2d]m/(2d), outputs coeffs(a) ∈ Zm/2 where a ∈ Z[ξm].

We notice that it is natural to present our homomorphic inverse-DFT algorithm
using the first representation. However, it is more natural to use the second rep-
resentation for the improved batch homomorphic multiplication of the inverse-
DFT matrix as we designed in Algorithm 5.5. Thus, we introduce the above two
efficient conversions to glue these two parts together. Additionally, we also define
the following notation for convenience.

Definition 6.1 Let a|b be integers. Define sets S1, . . . , Sa that equally partition
[b] as: S1 = [b/a], S2 = [b/a+ 1, 2b/a], . . . , and Sa = [(a− 1)b/a+ 1, b].

Now we present our new method in Algorithm 6.3 and summarize the result in
Theorem 6.2. Due to space limit, we defer the proof to the full version.

Theorem 6.2 The above algorithm satisfies the correctness as required by the
task specification in this section .

Moreover, let s be the secret of the RGSW scheme and E be the upper bound of

errors in all evaluation keys and in all RGSW ciphertexts in
{−→
Cij

}
i∈[(2d)ρ′−1],j∈[d′]

.

Then the error of each RGSW ciphertext in output is bounded by a sub-Gaussian
variable with parameter O(γ) such that γ ≤ (dr3∥s∥N logQ)ρ

′
E.

Complexity. We can show that the amortized complexity of the recursive
version is still Õ(1) RGSW multiplications. Intuitively, if the multiplication of
inverse-DFT matrix has Õ(1) amortized complexity (which is true for our Al-
gorithm 5.5), then we can achieve Õ(ρ) amortized complexity where ρ is the

26

Algorithm 6.3: Hom-DFT−1

Input : Integers ρ′, n′ and ciphertext vectors
{−→
Ci

}
i∈[(2d)ρ

′−1]

Output : A ciphertext vector
−→
C ′ as specified above.

1 if ρ′ = 1 then

2 Return:
−→
C ;

3 else

4 Let S1, . . . , S2d be the sets that equally partition [(2d)ρ
′−1];

5 For i ∈ [2d], compute
−→
C ′

i = Hom-DFT−1
(
{
−→
Cj}j∈Si

)
;

6 For i ∈ [2d], compute {
−→
C′

ij}j∈[d′′] = Rearr((2d)ρ
′−2 → 2d,

−→
C ′

i), where

d′′ = n′dρ
′−2/(2d);

7 {
−→
C ′′

ij}i∈[2d],j∈[d′′] = RGSW.EncVec-MatMult(MDFT−1 , {
−→
C′

ij}i∈[2d],j∈[d′′]);

8 For i ∈ [2d], compute
−→
C ′′

i = Rev-Rearr(2d→ (2d)ρ
′−2, {

−→
C ′′

ij}j∈[d′′]);

9 For i ∈ [d+ 1, 2d],
−→
C ′′

i = Anti-Rot(
−→
C ′′

i , ξn′dρ′−2);
10 for i = 1 to d do

11 for j = 1 to n′dρ
′−2 do

12
−→
C ′′

i [j] =
−→
C ′′

i [k] �
−→
C ′′

i+d[k];

13
−→
C ′ = Rev-Rearr((2d)ρ

′−2 → (2d)ρ
′−1, {

−→
C ′′

i }i∈[d]);

14 Return:
−→
C ′;

recursive depth. We will set parameters such that ρ = O(1), and thus the overall
amortized complexity matches what we claimed. Below we elaborate.

Let n = (2d)ρ be the final output (ring) dimension. Similar to the anal-
ysis of [12], we first identify that that at level i of the recursion, the algo-
rithm makes (2d)i calls to the RGSW.EncVec-MatMult algorithm, with dimension
mi = (2d)ρ−i−1. Thus at this level, each call would be Õ(mi× 2d) = Õ((2d)ρ−i)
RGSW multiplications, resulting in a total complexity (at this level) Õ((2d)ρ)
as the setting of parameters. Thus, in total there would be Õ(ρ(2d)ρ) RGSW
multiplications. For the case where ρ = O(1), this would be Õ((2d)ρ), implying
the amortized complexity Õ(1) RGSW multiplications per dimension.

7 Putting Things Together – Faster Bootstrapping

Now we present how to use our new batch algorithms in Sections 4 and 6 to
improve MS18 [12], resulting an overall more efficient bootstrapping method.

7.1 MSB Extract and LWE Packing

We recall several building blocks from the literature.
– From [12], there is a conversion algorithm that takes input n LWE ciphertexts

(under the same secret key), and outputs (a, b) ∈ RLWE with secret z ∈ R,
of dimension n, such that b−az = ∆m+e where coeffs(m)[i] corresponds to
the i-th message, ∆ is some scaling number, e.g., q/2, and q is the modulus.

27

– From [4,5,8,12], there is an algorithmmsbExtract that on inputC ∈ RGSW(ξmq)
outputs an LWE ciphertext c ∈ LWE(f(m)), where f(m) denotes the most
significant bit. Assuming β is the error bound of the input ciphertext, then
the error in the resulting ciphertext is bounded by O(qβ).

7.2 Our Batch Bootstrapping Method

Parameters. Here are the parameters used in our overall bootstrapping.

– N : the ring dimension of RGSW (the bootstrapping keys).
– n: the dimension of input LWE ciphertexts, and number of input ciphertexts.

Here we set n to be a power of two.
– q: the input LWE modulus. In the batch framework, R1 is set to be Z[ξq].
– 2d: the parameter of DFT/DFT−1. We set d to be a power of two.
– ρ: the depth of the recursive algorithm. We set n = 2dρ.
– r: the maximal number of slots we can packed in the batch framework of [8].
– v: the number of inputs in Algorithm 4.2. We require r > 2dv.

The Bootstrapping Algorithm. We first present how the bootstrapping keys
are constructed. Let z be the secret of the RLWE ciphertext derived from packing
n input LWE ciphertexts. Let (z1, . . . , z(2d)ρ−1) = DFT(z), Zk = Coeffs-Rot(zk) ∈
Z2d×2d
q be the anti-cyclic rotation matrix of zk, and the corresponding power-

of-two matrix, i.e., Mk = g⊤ ⊗ Xk ∈ Z2d×2d log q
q . Then we generate RGSW

ciphertexts {Ck,(i,j)}i∈[2d],j∈[2d log q],k∈[(2d)ρ−1], each of which encrypts the corre-
sponding entry Mk[i, j] in the exponents.

Now we equally partition [(2d)ρ−1] into v′ sets (ref. Definition 6.1), namely,
U1, . . . , Uv′ where v′ = (2d)ρ−1/v. For each w ∈ [v′], we pack the ciphertexts
{Ck,(i,j)}i∈[2d],j∈[2d log q],k∈Uw

according to the pre-processing step of Section 4.1,

obtaining the resulting packed ciphertext as {B(w)
kj }w∈[v′],j∈[2d log q],k∈Uw

.

Note. The above step uses many indices, which might look overwhelming. Here
we remind readers the high level ideas, which would be helpful in understanding
what we are doing. Basically, we first encrypt the (power-or-two) rotation ma-
trices of (z1, . . . , z(2d)ρ−1) in the exponents as {Ck,(i,j)}i∈[2d],j∈[2d log q],k∈[(2d)ρ−1].
To compute multiplications over the sub-ring Z[ξ2d], we would need to pack these
ciphertexts according to Algorithm 4.2, particularly the preprocessing steps in
Section 4.1. Given these packed ciphertexts and ring elements (x1, . . . , x(2d)ρ−1) ∈
Z[ξ2d](2d)

ρ−1

, we can homomorphically compute the coefficients (x1z1, . . . , x(2d)ρ−1z(2d)ρ−1)
in the exponents, in a batch way using Algorithm 4.2.

Now we present our batch bootstrapping algorithm in Algorithm 7.1, and
Theorem 7.1 to summarize the correctness and noise growth. The proof follows
from Theorems 4.1 and 6.2 in a straight-forward way.

Theorem 7.1 Adapt the notations above. If each (bi,ai) in the input is an
LWE ciphertext encrypting µi, then the output are LWE ciphertexts encrypting
µi respectively.

Moreover, let s be the secret of the RGSW scheme, E be the upper bound of er-

rors in all evaluation keys and in all RGSW ciphertexts in {B(i)
kj }i∈[v′],j∈[2d log q],k∈Ui

.
Then the error of each LWE ciphertext in output is bounded by a sub-Gaussian
variable with parameter O(γ) such that γ ≤

√
n log qdρr3ρ+3∥s∥ρ+1(N logQ)ρ+1/2E.

28

Algorithm 7.1: Batch Ring Bootstrapping

Input :
– n LWE ciphertexts
– Bootstrapping keys: {B(i)

kj }i∈[v′],j∈[2d log q],k∈Ui
.

Output : n bootstrapped LWE ciphertexts.

1 Convert n LWE ciphertexts into one RLWE ciphertext (a(ξn), b(ξn)) under
some secret z(ξn);

2 (ai)i∈[(2d)ρ−1] ← DFT(a);

3 for i = 1 to v′ do

4 (
−→
Ci1, · · · ,

−→
Civ)= VecMatMult((ai)i∈Ui , {B

(i)
kj }i∈[v′],j∈[2d log q],k∈Ui

);

5 Set
−→
C ′

(i−1)v+j =
−→
Cij , for i ∈ [v′] and j ∈ [v];

6
−→
C ′′ =Hom-DFT−1(

−→
C ′

1, · · · ,
−→
C ′

(2d)ρ−1);

7 For i ∈ [n],
−→
C ′′[i] =

−→
C ′′[i] · ξbiq ;

8 For i ∈ [n], (b′i,a
′
i) = msbExtract(

−→
C ′′[i]);

9 Return: {(b′i,a′
i)}i∈[n].

7.3 Efficiency

To analyze the asymptotic efficiency, we first determine all the parameters in
terms of the security parameter λ. Similar to our first work [8], we set n = O(λ),
q = Õ(

√
n), N = O(n). In this way, the batch parameter can be set as r ≈

O(
√

N/q) = O(λ1/4−o(1)). Then we set d = O(λ0.2), v = O(λ0.04), satisfying
2dv < r. Finally, we can set ρ = 5, which is O(1), meaning that the noise
growth in Theorem 7.1 can be bounded by a fixed polynomial. Moreover, we
have n = 2dρ = O(λ).

By plugging these parameters to the above analysis, now we analyze the
efficiency of the overall Algorithm 7.1. It requires Õ(2dvv′) = Õ(n) RGSW mul-
tiplications in the first for loop (Lines 3 - 4), as analyzed in Section 4. The
Hom-DFT−1 would require Õ((2d)ρ) = Õ(n) RGSW multiplications as analyzed
in Section 6. The other steps are dominated by these two modules. Thus, the
overall complexity is Õ(n) RGSW multiplications to bootstrap n = O(λ) LWE
input ciphertexts. In amortization, this would be Õ(1) RGSW multiplications
per input LWE ciphertext as claimed.

Acknowledgement. The authors would like to thank anonymous reviewers
for their insightful comments that significantly help improve the presentation.
Feng-Hao Liu is supported by NSF CNS-1942400. Han Wang is supported by
the National Key R&D Program of China under Grant 2020YFA0712303 and
State Key Laboratory of Information Security under Grant TC20221013042.

References

1. J. Alperin-Sheriff and C. Peikert. Faster bootstrapping with polynomial error.
In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of
LNCS, pages 297–314. Springer, Heidelberg, Aug. 2014.

29

2. G. Bonnoron, L. Ducas, and M. Fillinger. Large FHE gates from tensored
homomorphic accumulator. In A. Joux, A. Nitaj, and T. Rachidi, editors,
AFRICACRYPT 18, volume 10831 of LNCS, pages 217–251. Springer, Heidelberg,
May 2018.

3. Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical hardness
of learning with errors. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors,
45th ACM STOC, pages 575–584. ACM Press, June 2013.

4. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In J. H. Cheon and T. Takagi,
editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 3–33. Springer,
Heidelberg, Dec. 2016.

5. L. Ducas and D. Micciancio. FHEW: Bootstrapping homomorphic encryption in
less than a second. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015,
Part I, volume 9056 of LNCS, pages 617–640. Springer, Heidelberg, Apr. 2015.

6. C. Gentry. Fully homomorphic encryption using ideal lattices. In Mitzenmacher
[13], pages 169–178.

7. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In R. Canetti
and J. A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages
75–92. Springer, Heidelberg, Aug. 2013.

8. F.-H. Liu and H. Wang. Batch bootstrapping I: A new framework for simd boot-
strapping in polynomial modulus. In Eurocrypt 2023.

9. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with
errors over rings. In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS,
pages 1–23. Springer, Heidelberg, May / June 2010.

10. V. Lyubashevsky, C. Peikert, and O. Regev. A toolkit for ring-LWE cryptography.
In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of
LNCS, pages 35–54. Springer, Heidelberg, May 2013.

11. D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 700–718. Springer, Heidelberg, Apr. 2012.

12. D. Micciancio and J. Sorrell. Ring packing and amortized FHEW bootstrapping.
In I. Chatzigiannakis, C. Kaklamanis, D. Marx, and D. Sannella, editors, ICALP
2018, volume 107 of LIPIcs, pages 100:1–100:14. Schloss Dagstuhl, July 2018.

13. M. Mitzenmacher, editor. 41st ACM STOC. ACM Press, May / June 2009.
14. C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem:

extended abstract. In Mitzenmacher [13], pages 333–342.
15. C. Peikert. How (not) to instantiate ring-LWE. In V. Zikas and R. De Prisco,

editors, SCN 16, volume 9841 of LNCS, pages 411–430. Springer, Heidelberg,
Aug. / Sept. 2016.

16. C. Peikert, O. Regev, and N. Stephens-Davidowitz. Pseudorandomness of ring-
LWE for any ring and modulus. In H. Hatami, P. McKenzie, and V. King, editors,
49th ACM STOC, pages 461–473. ACM Press, June 2017.

17. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In H. N. Gabow and R. Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press,
May 2005.

30

	Batch Bootstrapping II: Bootstrapping in Polynomial Modulus Only Requires (1) FHE Multiplications in Amortization

