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Abstract. Building on recent compilers for efficient disjunctive com-
position (e.g. an OR of multiple clauses) of zero-knowledge proofs (e.g.
Goel et al. [EUROCRYPT’22]) we propose a new compiler that, when
applied to sublinear-sized proofs, can result in sublinear-size disjunc-
tive zero-knowledge with sublinear proving times (without meaning-
fully increasing proof sizes). Our key observation is that simulation in
sublinear-size zero-knowledge proof systems can be much faster (both
concretely and asymptotically) than the honest prover. We study ap-
plying our compiler to two classes of O(logn)-round protocols: inter-
active oracle proofs, specifically Aurora [EUROCRYPT’19] and Fractal
[EUROCRYPT’20], and folding arguments, specifically Compressed X-
protocols [CR-YPTO’20, CRYPTO’21] and Bulletproofs [S&P’18]. This
study validates that the compiler can lead to significant savings. For
example, applying our compiler to Fractal enables us to prove a dis-
junction of £ clauses, each of size N, with only O((N + £) - polylog(N))
computation, versus O(¢N - polylog(N)) when proving the disjunction
directly. We also find that our compiler offers a new lens through which
to understand zero-knowledge proofs, evidenced by multiple examples of
protocols with the same “standalone” complexity that each behave very
differently when stacked.

1 Introduction

Zero-knowledge proofs and arguments [30] allow a prover to convince the verifier
of the validity of an NP statement without revealing anything beyond the validity
itself. Early results established that such protocols exist for all NP languages [29],
and recent work has proposed zero-knowledge proofs that are more practically
efficient [36,12,31,37,19,10,34]. Many of these efficient zero-knowledge proofs are
now being used in practice [9,48,23], and zero-knowledge proofs have become a
critical component of constructing larger cryptographic systems.

Disjunctive Zero-Knowledge. A disjunctive statement is an NP statement
consisting of a logical OR of a set of clauses. We refer to zero-knowledge proofs
optimized for disjunctive statements as “disjunctive zero-knowledge”. Disjunc-
tive zero-knowledge is central to privacy-preserving systems where revealing



which clause a prover has a witness for might reveal their identity. Disjunc-
tive zero-knowledge has received a great deal of attention [22,1,24] and recently
there has been renewed interest in optimizing cryptographic protocols for dis-
junctions, both in the context of zero-knowledge [32,21,41,34,26,4,7] and secure
multiparty computation [33,35,27].

The simplest approach to disjunctive zero-knowledge is to appeal to NP-
completeness: a disjunction of NP statements is itself an NP statement which
can be proved using a proof system for NP. In practice, however, this has two
key drawbacks: first, the individual clauses may be of a special form that admits
efficient zero-knowledge proofs (e.g. a discrete-log relation) but that structure
can not be preserved under disjunction. Second, even if the clauses are general
circuits, if the clauses are distinct then the resulting circuit is as large as the
sum of the size of individual clauses. As a result, the complexity of the proof
system grows at least linearly in the number of clauses.

In light of this, one alternative approach that has been explored in the liter-
ature is to manually modify specific zero-knowledge protocols directly [32,34,4]
such that they naturally support disjunctive statements. Excitingly, recent work
has shown that manual modification can result in protocols with communication
sub-linear in the number of clauses [34,4]. However, such approaches rely strongly
on the structure of individual protocols and do not necessarily generalize.

A more robust approach is to build disjunctive compilers [22,1,7,26], generic
approaches that automatically transform large classes of zero-knowledge proto-
cols into disjunctive zero-knowledge protocols. The seminal work in this area
is [22], which proposed an approach that compiled X-protocols for disjunctions
by having the prover simulate the clauses for which it did not have a witness.
More recently, Baum et al. [7] and Goel et al. [26] built upon this idea to com-
pile large classes of zero-knowledge protocols into disjunctive zero-knowledge
protocols with communication complexity sub-linear in the number of clauses.

Succinct Proofs. A proof system is succinct if its communication cost is poly-
logarithmic in the size of the computation being proven. Succinct zero-knowledge
proofs are the subject of a long and active line of research ([39,25,12,31,11,17]
and many others) and in recent years have become efficient enough to use in prac-
tice. Many such proof systems support some expressive NP-complete problem,
e.g. arithmetic circuit satisfiability. This raises a natural suggestion: to prove a
disjunctive statement, one could simply construct a circuit for the disjunction
and employ a succinct proof system. The size of the resulting proof would be
only slightly larger than a proof for a single clause.

The main caveat is that, while the proof size is essentially unaffected, the
time and space complexities of the prover increase by at least a multiplicative
factor of the number of distinct clauses, compared to the cost of proving a single
clause. Since succinct proof systems typically have quite high prover complexity,
avoiding this increase would result in significant savings.

Stacking Succinct Proofs. In our work, we explore how we can apply the
frameworks developed in recent research on minimizing the communication com-
plexity of disjunctive zero-knowledge (specifically [26]) to achieve succinct proofs



for disjunctions which avoid this multiplicative blowup in the prover computa-
tion time.

At the heart of our approach is the observation that succinct proof systems
often have faster simulators than provers. Intuitively, this is because the cost
of “cheating” the verifier in a zero-knowledge protocol generally scales with the
verifier’s running time, rather than the prover’s. Thus, following the approach of
Cramer, Damgard and Schoenmakers, [22], the prover in a succinct proof system
can run the (more efficient) simulator for the inactive clauses instead of the (less
efficient) prover algorithm.

Taken together, we obtain succinct proof systems that can prove disjunctions
without incurring a multiplicative increase in prover complexity in the number
of clauses. We also show that in some cases, we can also avoid a similar increase
in the verifier’s complexity using batching techniques.

Set Membership vs. True Disjunctions. There is an important case in which
appealing to NP completeness is concretely efficient: specifically, if (1) the zero-
knowledge protocol supports an expressive NP-complete language, and (2) there
is a high degree of homogeneity between the clauses. If a prover wants to prove
eg X3 € LV...Vxg € L, it can do so efficiently by proving the statement
“3(7,x),st.x € LA x =X, (so the choice of branch is part of the NP witness).
The size of this circuit is only slightly larger than the circuit for £ itself. We
refer to such statements as set membership statements.

Our results are most significant in the case of what we call true disjunctions,
i.e., where the prover wants to prove e.g. x; € L1 V...V xy € Ly making the
above transformation more expensive. In addition to being a more technically
challenging statement structure, true disjunctions are also important for many
applications. For example, Heath and Kolesnikov studied showing the existence
of a bug in a code base [34] in zero-knowledge, which implicitly embeds a true
disjunction. It is easy to imagine many other such applications: a prover could
want to demonstrate that a image is the product of applying one of a number
of sanctioned image modification algorithms (eg. blur, red eye, etc...) to some
committed photograph, or a financial institution might want to demonstrate that
a transaction satisfies one of a number of policies that would make it compliant.

1.1 Owur Contributions

Framework for Prover-Efficient Succinct Disjunctive Zero-Knowledge.
We present a framework, which we refer to as speed stacking, for composing suc-
cinct proofs for disjunctions that often yield significant improvements in prover
time. We do this by extending the notion of a “stackable” X-protocol, introduced
by Goel et al. [26], to a more general notion of a “stackable” interactive proto-
col. At a high level, a protocol is stackable if it has a zero-knowledge simulator
which can be decomposed into a randomized, statement-independent part Sganp,
and a deterministic part Sppr that completes the work of Sganp for some specific
statement. We then show how to compile a stackable zero-knowledge interactive
protocol (ZK-IP) into a disjunctive zero-knowledge interactive protocol. Specif-
ically, we prove the following theorem:



Theorem 1 (Informal). Let IT be a “stackable” zero-knowledge interactive
protocol for a NP relation R with associated simulator S. Then, there exists a
zero-knowledge interactive protocol IT' for the NP relation R'((x1,...,%X¢), W) ==
3, Ri(x4,w) = 1 with communication complexity proportional to C(IT) +
O(log(¢)) and prover computational complexity Time(IT) + (¢ — 1) - Time(S).

This theorem covers true disjunctions when R is sufficiently expressive, e.g.
R = circuit-SAT : R'(((C1,x1), ..., (Ce,x¢)), w) = Ji, Ci(x;, w) = 1.

Note that while the above is a “universal” relation, our approach does not make
use of universal circuits. As we discuss in the technical overview, while univer-
sal circuits are conceptually elegant (and sometimes achieve good asymptotic
efficiency), the associated overhead makes them impractical.

Next, we study the speed-stackability of two protocols from each of two fam-
ilies of sublinear-sized zero-knowledge proof systems: interactive oracle proofs
and folding arguments. Interestingly, we find that the concrete savings offered
by each of the four protocols we consider differ dramatically, offering anything
from significant, asymptotic speed-ups to concrete savings without asymptotic
gains to minimal speedups. In addition to the new protocols we design, these
results offer a new lens through which to study zero-knowledge proofs.

Speed Stacking Interactive Oracle Proofs. We adapt our stackability
framework to interactive oracle proofs (IOPs) [11], a generalization of interac-
tive proofs that underlies various efficient succinct argument constructions. We
show how to adapt the [11,20] transformations to convert stackable IOPs (resp.
holographic IOPs) into stackable succinct arguments (resp. with preprocessing).

We then consider the stackability of two existing IOP protocols for the rank-
one constraint satisfaction (R1CS) language. Let £ be the number of clauses and
N be the maximum circuit size of a clause.

— Aurora [10] can be easily seen to be efficiently stackable by carefully ex-
amining the zero-knowledge simulator. By applying our compiler, we obtain
a stackable succinct argument where the prover runs in time Op(N (log N +
Clog? Mog log A)). By comparison, the cost of directly proving a disjunction
using Aurora is Op(¢N log(¢N)).

— Fractal [20] is not itself efficiently stackable: the verifier runs in polylog-
arithmic time after preprocessing, whereas any simulator for the original
Fractal protocol involves a linear-time statement-dependent computation. To
address this, we modify Fractal into a protocol we call Stactal, a stack-
able IOP for R1CS with polylogarithmic simulation. By applying our com-
piler, we obtain a stackable succinct argument where the prover runs in time
Opr(N log N + £ -polylog(N)). In particular, proving a disjunction on ¢ clauses
for £ < N is asymptotically as efficient as proving a single clause.

Speed Stacking Folding Arguments. Finally, we show how to apply our
framework to “folding arguments” [17,19,3,5,4]. This class of protocols, best

5 Or indicates that time complexity is measured in field operations.



represented by Compressed X-protocols [4] and Bulletproofs [19], in which the
prover replaces a linear-sized protocol message in a zero-knowledge interactive
proof with a multi-round, privacy-free, interactive protocol with logarithmic
communication complexity.

— Compressed Y-Protocols [3,4] is a stackable ZK-IP for openings of linear
forms (after very minor modifications). By applying our compiler, we obtain
a ZK-IP for the disjunction of linear form openings in which simulating each
additional clause only requires computing one exponentiation and one group
multiplication, in addition to a linear number of field operations. We also
show that our ideas extend to the circuit-satisfiability variant of compressed
X )-protocols. We note that our results are stronger than the set membership
version of Compressed X-protocols presented by Attema et al. [4] in that our
approach supports true disjunctions as well.

— Bulletproofs [19] We observe that Bulletproofs (both for range proofs and
circuit satisfiability) are stackable. However, we note that the runtime of
the simulator for bulletproofs is roughly the same as that of the prover. As
such, speed-stacking bulletproofs provides only marginal benefits over more
direct techniques. The only exception we note is proving set-membership range
proofs; because the range proof version of bulletproofs is not sufficiently ex-
pressive to directly capture set-membership, speed-stacking is preferable to
rephrasing the statement to circuit satisfiability. This presents an interesting
contrast between Compressed X-protocols and Bulletproofs, which otherwise
seem to rely on very similar techniques.

2 Technical Overview

2.1 Disjunctive Templates for Zero-Knowledge

Given a sequence of statements (xi, . ..,xX/), we wish to prove in zero-knowledge
that either x; € Ly, xo € Lo, ..., or x¢y € Ly. While we might have access
to appropriate and efficient zero-knowledge proof systems for each individual
language L1, ..., Ly, it is not clear how to apply these to the disjunction, while
ensuring zero-knowledge. Let a denote the clause for which the prover has a
witness (the active clause). We will refer to the other clauses as inactive.
There are two main templates for disjunctive zero-knowledge in the literature:
(1) Statement Combination: Combine the statements to define a new £ with
the relation R((x1,...,%X¢),w) = Rq(x1,w) V ... V Ry(x¢,w). and use any
existing zero-knowledge proof protocol IT that supports general NP statements.
(2) Simulation of Inactive Clauses: Initially suggested by Cramer, Damgard, and
Schoenmakers [22], this approach has been explored primarily in the context of
X-protocols. In this template, the prover uses the honest prover algorithm for
the active clause, and “cheats” by using the zero-knowledge simulator for each

5 We expand on the distinction between set membership and true disjunctions in the
next section.



of the inactive clauses. The protocol guarantees that the prover can cheat for all
but one of the clauses.

The best choice of template depends heavily on the underlying zero-
knowledge protocol and the structure of the clauses. If the protocol is not for
an NP-complete language (e.g. Schnorr’s protocol [46]), it may be impossible to
combine the statements without protocol modifications, making the simulation
template more attractive. When statement combination is possible, the efficiency
of the combination often depends on the homogeneity of the clauses, i.e if it is
more like set membership or a true disjunctions.

Of course, this difference is qualitative, rather than quantitative. Notably,
a proof system for set membership can be used to construct a true disjunction
by using universal circuits and a set membership over the programming of the
circuit. However, transformations with universal circuits are notoriously expen-
sive: for example, an implementation [42] of Valiant’s UC [47] shows that for a
circuit implementing AES in 33,616 gates the universal circuit capable of sim-
ulating it has 11,794,323 gates (with 3,135,833 multiplications)—an increase of
~ 300x. Although there have been recent improvements on Valiant’s initial con-
stants [43], boolean UCs remain orders of magnitude larger than the circuits
they can simulate, and arithmetic UCs would incur even higher constants [42].

Disjunctive Templates for Succinct Proofs. We now turn our attention
to the disjunctive composition of succinct proofs for NP. We first observe that
succinctness by itself implies communication-efficient disjunctive composition via
statement combination. Specifically, if the size of the relation circuit is increased
by a multiplicative factor of ¢, a logarithmic-sized proof will only increase in size
by an additive factor of log(¢), resulting in a proof that is only marginally larger.

While communication efficient, this approach, however, increases the run-
ning time of the prover by at least a multiplicative factor £ (potentially more,
depending on the complexity of the proof system). This is of special concern
for succinct proof systems where the running time of the prover is often a bot-
tleneck. In addition, many succinct proof systems have space complexity which
grows linearly in the size of the circuit; in this case, the space requirements also
increase by a factor £.7

The use of the simulation template in the sublinear setting has not yet been
explored. We make the following initial observations:

— Faster Simulators Means Faster Prover Time: The key feature of the simu-
lation template is the use of the simulator for each of the inactive clauses.
While the runtime of a simulator is typically proportional to the runtime of
the prover in linear-sized zero-knowledge protocols, in sublinear-sized proofs
it is common to have simulators that are more efficient—either asymptoti-
cally or concretely—than the prover.® This observation means that applying

7 We note that there do exist techniques generic techniques to minimize space com-
plexity of provers, e.g. [14,15]

8 A similar observation was recently used in a concurrent and independent work of
Kim et al. [40] for designing efficient non-malleable zero-knowledge proofs.



the simulation template to sublinear-sized zero-knowledge proofs could pro-
duce disjunctive composition techniques that do not require the prover to
pay—from a computational perspective—for the inactive clauses, resulting in
significantly faster (and more space-efficient) provers than those produced by
applying the statement combination template.

— Communication Overhead Can Be Avoided: The seminal construction of [22]
yields a protocol whose communication complexity is linear in ¢. In a recent
work, Goel et al. [26] proposed a new instantiation of the simulation template
for X-protocols that can achieve the same results while only introducing an
additive term in log(¢) to the proof size. At a high level, they observe that it
is possible to simulate the inactive clauses such that they share a third round
message with the active clause. When simulation is carried out in this way,
there is no need for the prover to send transcripts for each clause, removing
the communication overhead of [22].

Taken together, these observations facilitate the “the best of both worlds:” con-
crete computational savings for the prover without incurring any meaningful
communication overhead. However, it is not immediately clear how to mobilize
these observations into a concrete protocol proposal. In the paragraphs that fol-
low, we summarize the approach of Goel et al. [26] and then proceed to discuss
sublinear-sized proofs.

2.2 Stacking Sigmas for Sublinear-sized Proofs

The Approach of Stacking Sigmas [26]. Goel et al. [26] propose a new
instantiation of the simulation template. Their compiler applies to X-protocols
(three-round public coin zero-knowledge protocols) that have the following two
properties (such X-protocols are called stackable X-protocols in their work):

1. Recyclable Third Round Messages: The distribution of the third round mes-
sage (not conditioned on the first round message) across all instances must
be the same. That is, there exists an efficient randomized algorithm that can
produce a third round message from the correct distribution. Critically, this
algorithm must be independent of the statement.

2. Deterministic Transcript Completion: The protocol supports a deterministic
simulator Sper that can produce an accepting first round message when sup-
plied with a challenge and an arbitrary third round message (from the third
round message distribution). Importantly this simulator must be determinis-
tic, as it will be run locally by both the prover and the verifier.

Their compiler is based on a 1-out-of-¢ partially binding commitment scheme,
a vector commitment scheme that is only binding in a single (pre-selected) in-
dex. First the prover generates the first round message for the active clause aq
honestly. Instead of directly sending this message, the prover instead commits
to a vector containing a, in the a*® position and zeros in all other positions
such that the binding position is a. The verifier then sends a challenge ¢ to the
prover as normal. Next, the prover generates the third round message for the



active clause z,. Rather than generate a separate third round message for the
inactive clauses, the prover instead reuses z, as the third round message for all
clauses. To do this, the prover uses the special deterministic simulator Spgr to
produce a; such that a;, ¢, zq is an accepting transcript for the statement x;. The
prover’s final message consists of z4 along with the randomness used to open the
1-out-of-¢ partially binding commitment scheme to the vector (aq,...,a;). The
verifier is then able to recompute the values a; independently, checks that each
transcript is accepting, and makes sure that the commitment matches.”

Stackable Zero-Knowledge Interactive Protocols. In order to apply the
simulation template to multi-round protocols, we must first extend Goel et al.’s
notion of stackability to the multi-round setting (i.e., more than three-round set-
ting). We extend the notion of recyclable messages so that it naturally applies
to multi-round protocols. Goel et al. consider the distribution of third round
messages with respect to the statement, we define a more fine-grained notion
that considers the joint distribution of parts of multiple prover messages (i.e.,
messages sent across different rounds) with respect to the statement. That is,
we let a part of each prover message be considered recyclable, in that it can be
re-used across multiple statements. In order to be considered recyclable, it must
be possible to design a randomized simulator Sg,np that can produce these mes-
sages independently of the statement. The deterministic simulator Spgr can then
“complete the transcript,” by computing the remaining, statement-dependent
parts of each message. We note that identifying the recyclable component of
each prover message is up to the protocol designer and it may be possible to
produce multiple recyclable message sets for any given protocol.

Stacking Multi-round Protocols. To stack multi-round zero-knowledge in-
teractive protocols, we begin by partitioning each prover message of the protocol
into two parts: a recyclable part mganp,; and a deterministic completion mpgr ;.
The prover then runs a modified version of the original prover for the active
clause. When the prover would send a recyclable part of a message, it sim-
ply sends the message directly. When the prover would send a non-recyclable
message, it instead uses a l-out-of-¢ binding commitment scheme to commit
to a vector containing the message in the active clause’s index. In the final
round of the protocol, the prover uses the deterministic simulator to compute
the “missing” non-recyclable messages for the inactive clauses and opens all of
the commitments.

2.3 Speed-Stacking Interactive Oracle Proofs

A key technique for obtaining sublinear-sized interactive arguments is the cryp-
tographic “compilation” of interactive oracle proofs (IOPs) [38,44,11,45]. An
interactive oracle proof is an interactive proof system where the verifier, rather
than reading the messages it receives in their entirety, has oracle access to each

9 Note that to compile the resulting protocol with Fiat-Shamir, the prover passes
the partially-binding commitment into the random oracle, as the challenge cannot
depend on first-round messages that have not yet been computed.



message and can query the messages at any index. IOPs can be viewed as a nat-
ural multi-round generalization of the notion of probabilistically checkable proof
(PCP) [6]. AIl IOPs discussed in this paper will be public-coin. A zero-knowledge
IOP additionally has an efficient simulator: given the verifier’s random tape, the
simulator computes oracle responses to the verifier’s queries which have the
same distribution as in the real interaction. Given a succinct vector commit-
ment scheme (e.g. a Merkle tree), an IOP can be transformed into a succinct
interactive argument as follows [11]: in each round, the prover simply computes
a commitment to the message and sends the commitment to the verifier; the ver-
ifier then responds with the set of query points and the prover provides opening
proofs for the responses.

In this section we give an overview of our results on the stackability of IOP-
based succinct arguments. We provide a two-part framework: we first define
a notion of stackability for IOPs, and then show how a stackable IOP can be
“compiled” into a stackable interactive argument — with some minor tweaks the
existing compiler outlined above preserves “stackability”. We show that several
interactive oracle proofs (IOPs) are stackable, specifically Aurora [10] and a
variant of Fractal [20] that we call Stactal. Finally, we outline why it is possible
to achieve prover computational savings when compiling these protocols. What
follows is an informal description of the definitions and techniques described
formally in Section 4. The central definition is the notion of a “stackable IOP”:

Stackable IOPs. A stackable IOP is a zero-knowledge IOP with a particular
simulation strategy: there exists a partition of the k oracles (rounds) into Ryec
and [k] \ Ryec, such (1) responses to queries for oracles in Ry can be sampled
independently from the relation/statement. (2) while responses to queries for
oracles in [k]\ Rrec can be computed deterministically from the relation/statement
and other query answers.

Intuitively a stackable IOP enables reusing the same oracles in Ryec to sim-
ulate multiple IOPs for distinct relations/statement, while communicating the
responses for the remaining (distinct) oracles in [k] \ Ryec requires no additional
communication — since the expected responses can be deterministically computed
by the verifier (by running the simulator).

Stackable IOPs to Stackable IPs. Analogously to the way that IOPs can be
compiled into arguments in the plain model, stackable IOPs can be compiled into
stackable arguments in the plain model. We show that the existing IOP to IP
compiler (outlined above) from vector commitments, can be adapted to preserve
the efficient “stackability” of the underlying IOP. In order to preserve efficient
simulation for the inactive clauses we need the vector commitment scheme to
allow committing to and opening a subvector in time that depends only on the
size of the subvector. We show that specific instantiations of Merkle trees satisfy
this requirement.

Efficiency. One of the advantages of IOPs over other sublinear-sized proofs is
that the running time of the IOP verifier can be polylogarithmic in the size of



the statement. To maintain this property when applying our stacking compiler,
we also require that the (instance-dependent component of the) simulator be
similarly efficient. This is typically not a design goal for simulators, since poly-
nomial (rather than polylogarithmic) efficiency suffices for zero-knowledge. As
such, the security proofs of many existing protocols construct simulators which
are not efficient enough for us. In some cases, all that is required is a more
careful simulator construction. In others, to achieve efficient simulation we must
substantially modify the protocol itself.

Showing Stackability. Many IOP constructions share a similar basic structure,
consisting of two main parts: an encoded protocol, where soundness holds as-
suming that the prover’s messages are close to words in an error-correcting code,
and a proximity test, which guarantees that this condition holds. The code of
choice for most constructions is the Reed—Solomon code, the code of evaluations
of low-degree univariate polynomials over finite field F on some domain L C F.
Achieving zero-knowledge for protocols constructed in this way typically involves
only two techniques:

(1) Bounded independence: when the prover sends an encoding of a secret
vector v € F¥, rather than directly encoding v, it chooses a random vector
r € F® and encodes v||r € F¥*%. The properties of the Reed—Solomon code
guarantee that, under a mild condition on the evaluation domain L, the
answers to any set of b queries to a codeword are distributed uniformly
at random in F (that is, the code is b-wise independent). To simulate, the
simulator simply answers any verifier query uniformly at random.

(2) Masking: often the verifier needs to check some linear property P with

respect to the prover’s messages (a property P C F¢ is linear if it is an
F-linear subspace of F?). Examples of such properties include the Reed—
Solomon code itself (low-degree testing), or the subcode of the Reed—Solomon
code consisting of polynomials whose evaluations over a set S C F sum to
zero (univariate sumcheck).
Linear properties allow for zero-knowledge via random self-reduction: to
show that f € P, the prover sends a uniformly random word r € P (the
“mask”), the verifier chooses a challenge a € F uniformly at random, and
the prover and verifier then engage in a protocol to show that af +r € P. To
simulate, the simulator first generates a transcript showing that ¢ € P for
uniformly random ¢ € P; it then answers queries to r by “querying” ¢—a- f.
Note that this simulation strategy requires that the simulator can simulate
some number of queries to f, which is typically achieved through bounded
independence as described above.

These two techniques lend themselves to the [26] stacking approach, as follows.
Simulation for (1) is trivially instance-independent (recyclable), since the simu-
lator simply answers queries uniformly at random. For (2), observe that provided
P is an instance-independent property, and the process of sampling a protocol
transcript showing that ¢ € P is also instance-independent. Given ¢, queries
to the mask r can then be answered deterministically. Hence for essentially all

10



zero-knowledge IOP constructions, every message is fully recyclable except for
those in which the prover sends a random mask.

To demonstrate the above approach, we consider two key IOP constructions
from the literature: Aurora [10] and Fractal [20]. We start with the more com-
plicated case of Fractal:

Fractal/Stactal. Fractal is a Holographic IOP, which means it can be compiled
to a preprocessing zkSNARK in which the verifier’s running time is polyloga-
rithmic. Unfortunately Fractal is not an efficiently stackable IOP. The challenge
originates in the Fractal “holographic lincheck” which proves, for encodings of
(secret) vectors z,y, that Mxz = y for a public matrix M that is “holograph-
ically” encoded. The central problem with this lincheck is that it reduces to
opening a bivariate polynomial ups (8, «) at a random S, € F. Since this eval-
uation depends (deterministically) on every nonzero entry of M, simulation re-
quires reading all of M to compute the correct us(a, 8). As a result, the stacked
verifier becomes inefficient. To alleviate this we introduce “Stactal”, a variant
of “Fractal” which does admit very efficient stacking. “Stactal” modifies the
lincheck protocol to allow the prover to extend the matrix M to a larger matrix
M’ that is “padded” with random values. This introduces sufficient bounded
independence that uys (8, «) is uniformly random (and so independent of M).

Aurora. Aurora is naturally a stackable IOP: since the verifier in Aurora is
quasi-linear, the stacking simulator has enough “computational budget” to read
all of M. Hence, the (simpler, non-holographic) lincheck of Aurora can easily be
simulated with the same time complexity as the verifier.

2.4 Speed-Stacking Folding Arguments

The next class of sublinear-sized zero-knowledge proofs are ones based on “fold-
ing arguments”. These are interactive zero-knowledge protocols with logarithmic
round complexity. The two most prominent examples of such protocols are Com-
pressed X-protocols [3,5,4] and Bulletproofs [17,19].

Folding Technique. The central object in all folding argument based zero-
knowledge protocols is a sub-linear, interactive, logarithmic-round non zero-
knowledge protocol to demonstrate that the prover has knowledge of a witness.
The key idea used in the design of these logarithmic-round non zero-knowledge
protocols is to enable the prover (using randomness from the verifier) to “fold”
the witness in on itself, thereby reduce the size of the witness by half in each
round. This step is repeated for a logarithmic number of rounds, until the witness
is reduced to a constant size.

In order to build a sub-linear zero-knowledge protocol using the above non
zero-knowledge protocol, most existing constructions rely on the same rough
template—these constructions begin with a constant round “base” protocol con-
taining a large final round message (i.e., linear in the size of the original witness)
that achieves zero-knowledge. Finally, instead of actually sending this large final
round message, the prover uses the above (non zero-knowledge) recursive fold-
ing approach to prove knowledge of this large message over logarithmic rounds.
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The key observation used here is that since the “base” protocol achieves zero-
knowledge even if the large final round message is sent to the verifier in the clear,
it suffices for the prover to use the above non zero-knowledge sublinear protocol
to prove knowledge of this message.

Folding Argument Based ZK-IPs are Stackable. Most folding argument
based zero-knowledge protocols including Compressed X-protocols and Bullet-
proofs fall into the category of sublinear-sized proofs, with verifier runtime
roughly equivalent to the prover runtime. We observe that the folding argu-
ments we study are stackable such that the prover’s entire last round message
is recyclable.!? To see this, note that if the last round message could instead
be computed deterministically using the rest of the transcript, without access
to the witness (which is the case for non-recyclable messages), then this last
round message could also be computed by the verifier independently and there
would be no need to send this message.!! Specifically, this holds for the final
round message in the “base” protocol in both Bulletproofs [17,19] and Com-
pressed X-protocols [3,5,4]. Because this last round message is recyclable, we
observe that the entire folding argument—a proof of knowledge of a recyclable
message—is itself recyclable and can be reused across clauses. We note, how-
ever, that the mere fact that these protocols are stackable doesn’t immediately
imply that there are vast computational savings available when stacking folding
arguments. Interestingly, we find that stacking Compressed X-protocols offers
significant computational savings, while stacking Bulletproofs does not.

Computational Savings via Stacking. As discussed earlier, our hope to get
computational savings when stacking sublinear zero-knowledge proof systems
for disjunctions, stems from the observation that the simulator in such proofs is
typically much faster than the prover algorithm. This is because, the verifier in
most such protocols runs in sublinear time and since the job of the simulator is to
essentially “fool” the verifier into accepting a simulated proof, the work required
from a simulator is somewhat proportional to the work done by the verifier. As
a result, being able to replace the prover algorithm with the simulator for all
inactive clauses in the disjunction, can yield significant computational savings.

Folding argument based sublinear proof systems we consider, however, do
not have a sublinear-time verifier. In fact, the work done by the verifier in these
protocols is asymptotically equivalent to the work done by the prover. Hence, the
overall simulator is not asymptotically more efficient than the prover algorithm.
For computational savings, here we rely on our second observation about simula-
tors: the simulator can often be split into two parts Sganp and Spir, where Sganp
is responsible to simulating the statement independent part of the transcript,
while Sppr simulates messages that are dependent on the statement/relation.
Since the messages simulated by Sganp are statement independent, the result-
ing messages can be reused/recycled in all the inactive clauses, while we must
compute the messages simulated by Sppr separately for each clause. If Sppr is

19 We formalize this claim in the full version [28].
11 We do note, however, that some protocols include deterministic messages in the final
round in order to minimize verifier computation.
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significantly faster than Sg,np, We can still hope to get significant concrete com-
putational savings for the prover when stacking such protocols (even if there are
no asymptotic savings). This is where the crucial difference between Bulletproofs
and Compressed X-protocols appears.

In Compressed Y-protocols, the statement/relation-dependent verifier com-
putation only consists of simple field operations, while the statement indepen-
dent verification consists of expensive group multiexponentiations. As a result
Sper is significantly more efficient than Sganp, yielding concrete computational
savings for the prover upon stacking. Unfortunately, Bulletproofs lies on the
other end of the spectrum, where the runtimes of Sppr and Sganp are approx-
imately the same (ie. up to a small constant factor). This suggests to an in-
teresting distinction between these two folding argument based protocols and
motivates the design of sublinear-sized zero-knowledge protocols in which the
verifier’s statement-dependent computation is much faster than the verifier’s
statement-independent verifier computation—in other words, protocols that are
more amenable to speed-stacking. We now give a brief technical overview of
Compressed X-protocols and Bulletproofs to further highlight this distinction
and demonstrate stackability.

Compressed X-Protocol. Compressed X-protocols [3,5,4] provide zero-
knowledge interactive protocols for proving knowledge of openings of linear
forms, i.e., proving that the output of a linear function f applied to a vector x
contained in a commitment P equals some publicly known value y. The “base”
protocol in Compressed X-protocols, performs a randomized self-reduction, in
which the problem is reduced to the task of proving a different (related) state-
ment for the same relation in a privacy-free way. To prove this related statement,
they provide a log-sized privacy-free argument.

We observe that the entire folding argument transcript can be reused during
stacking (after making very minor modifications to the protocol), but not all of
the computation can be reused. That is, the randomized simulator Sg,ynp creates
the folding argument transcript and then deterministic simulator Sy completes
the transcript, but runs in time linear in the size of the vector x (Spgr recursively
folds the linear form to facilitate the final check). However, we observe that the
linear number of operations in Spgr are all field arithmetic, and Spgr contains only
a single group exponentiation and a single group multiplication, with no multi-
exponentations. As a result, simulating each additional inactive clause remains
significantly faster than the prover algorithm.

We note that we are able to handle disjunctions where each clause ¢ € [¢] could
have a different homomorphic linear function f; and a different commitment P;.
This is a stronger notion of disjunctions than the ones considered in [4], which
give proofs where either the homomorphism or commitment is fixed across a
disjunction of multiple clauses.

Bulletproofs. The main task in the initial “base” protocol in Bulletproofs [19]
is reduced to transforming any given relation into a privacy-free inner-product
relation. This is followed by an efficient folding argument for Rinnerprod. This
approach is used to achieve efficient zero-knowledge for range proofs and circuit
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Aurora  Theorem 5
(Ben-Sasson et al. [10])

Theorem 4

Stackable RS-IOP| Lemma 1 Stackable IOP
(Definition 2 Ext.)

Stackable IP
(Definition 1)

Theorem 2

(Definition 2)

Stactal ~ Theorem 6
(Section 4.6)

Bulletproofs(Range Proofs) Full Version [28]

(Full Version [28]) Stackable Prover-Efficient

Disjunctive Proofs

Compressed X-Protocols Theorem 8

(Section 5)

Fig. 1. A roadmap for the results in our paper. Several Theorems are contained in the
full version of the paper.

satisfiability. Because the last message of the “base” protocol is recyclable, the
folding argument transcript can be reused, and we find that only two of the
messages in the “base” protocol are non-recyclable. However, simulating these
two non-recyclable messages requires performing multi-exponentiations depen-
dent on the relation function. As a result, any savings obtained from being able
to recycle the entire non zero-knowledge sublinear-sized folding argument at the
end across all inactive clauses are more-or-less eclipsed by the computation in-
volved in individually simulating the above two non-recyclable messages for each
inactive clause.

As such, stacking Bulletproofs for “true” disjunctions does not seem to offer
considerable savings. We do note, however, one might consider set-membership
for range proofs (ie. dx; € {x1,..., 2z} st. x; € Range), where appealing to NP
completeness is expensive. Because the statement dependent computation (that
must be run separately for each clause) is remarkably inexpensive (involving only
one group exponentiation and a constant number of group multiplications), ap-
plying the compiler in this case may be valuable. While set membership for range
proofs is not particularly valuable, studying Bulletproofs illuminates fundamen-
tal differences between Compressed Y-protocols and Bulletproofs, despite their
superficial similarities. Moreover, this highlights the key parameters to keep in
mind when stacking a protocol and points to new considerations when designing
new—potentially stackable—zero-knowledge proof systems.

Roadmap to Our Results. We give an overview of how we reach our technical
results in Figure 1.

2.5 Notation

When discussing interactive protocols in this work, we will use both interactive
Turing Machine notation, ie. (P,V)(x), and algorithmic notation, je. the i*®
message is computed with algorithm P;. More formally, we assume that for zero-
knowledge interactive proofs, the interaction (P,V)(x) contains an ordered list
of algorithms P;, such that the prover computes their i*" message using P;.
We use CC(IT) to denote the communication complexity of IT, and let Time(IT)
denote the runtime of the algorithm I7. Finally, we note that our work spans

different lines of research that commonly leverage different notation for the same
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concepts. Wherever possible we have made notation internally consistent, at the
cost of being inconsistent with prior work.

For an NP relation R, we denote the instance as x and the witness as w.
Let the number of clauses in the disjunction ¢ and the index of the active clause
as a. Where applicable, we use N to denote the relevant size of x. We use
multiplicative notation for groups and group operations.

3 Stacking Zero-Knowledge Interactive-Proofs

In this section, we extend the notion of “stackability” introduced in Goel et
al. [26] to the multi-round setting proceed to give a generic compiler that can
transform a stackable ZK-IP into a ZK-IP for disjunctive statements. We for-
mally define Stackable ZK-IP in Section 3.1, present our stacking compiler in
Section 3.2, and provide a heuristic mechanism for preparing ZK-IP protocols
for stacking in the full version of our paper [28].

3.1 Defining Stackable ZK-IP

Recently, Goel et al. [26] introduced the notion of “stackability” for X-protocols
(i.e., three-round ZK-IPs), and showed most natural X-protocols are stackable.
At the heart of their approach is the observation that the simulators for com-
mon X-protocols can be divided into two components: a randomized, statement
independent part, which we will denote Spaxp, 2 and a deterministic, statement
dependent part, which we denote Spgr.

We extend their intuition to the multi-round setting. Intuitively, we require
that each message in the protocol can be subdivided into two (potentially empty)
parts: a recyclable part that can be reused across multiple statements, and a de-
terministically computable part. More formally, we assume that each prover mes-
sage 1 of a ZK-IP is a concatenation of two parts—mpanp,; and mpgr ;. To satisfy
stackability, we require that it is possible to generate the messages {mraxp,i }ic[k]
using a randomized, statement independent algorithm Sgnp. Additionally, we
require that there exists a deterministic simulator Spyr that can simulate the
remaining parts of the messages {mpgr,i}icx] such that the resulting transcript
matches an “honest” execution of the protocol.

Definition 1 (Stackable ZK-IP). Let IT be a ZK-IP consisting of k prover
messages and k — 1 verifier messages for a relation R. For each i € [k], let
m; = (mRAND,ivaET,i) and let Myanp = (mRAND,’L)'LG[k] and Mpgr = (mDET,i)ie[k]~
We say that II is Stackable, if there exists a PPT simulator Sganp and a
polynomial-time computable, well-behaved, deterministic simulator Spgr, such

12 We depart from the notation introduced by Goel et al. [26], in which this first part
is instead discussed as an efficiently samplable distribution, rather than a simulator.
We note that these notions are clearly equivalent: the output of Sianp defines a
distribution from which elements can be efficiently sampled (namely, by running
SRAND)
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that for each C' = (¢;)ie—1) € ({0,1}%)*~* and for all instance-witness pairs
(x,w) st. R(x,w) =1, it holds that:

8 .
{6,0) |17 & {0,116 € (K], (muaso,illmoer,s) < Pilx, w, (¢))jeii—1i7") }

{((mRAND,i ||mDET,i)ie[k] ) C) | Mganp < SRAND(l)\, C); Mpgr = Sper (Xa C, MRAND)}

The natural variants (perfect/statistical/computational) are defined depending
on the class of distinguishers with respect to which indistinguishability holds.

3.2 Compiler for Stacking ZK-IPs

We now present our compiler that can transform any stackable ZK-IP into a
ZK-IP for disjunctions. As discussed earlier, similar to Goel et al. [26], the main
idea behind this construction is to honestly compute the transcript of the active
clause and reuse its recyclable messages for all the inactive clauses.

Concretely, the prover starts by generating a (ck, ek) pair for the index asso-
ciated with the active clause. Subsequently, in each round it computes messages
for the active clause honestly and commits to the non-recyclable messages along
with a bunch of 0s for the inactive clause using the partially-binding vector com-
mitment scheme and commitment key ck. It sends this commitment along with
the honestly computed recyclable message to the verifier. In the last round, upon
receiving all the challenge messages from the verifier, it simulates to “complete”
the transcript of the inactive clauses and equivocates all of the previously com-
puted commitments to a commitment of these messages and sends the associated
commitment opening/randomness to the verifier. Based on the recyclable mes-
sages, the verifier also simulates the non-recyclable messages for each clause, and
checks if they were honestly committed inside the commitment. It also checks if
the resulting transcript for each clause is accepting.

Theorem 2. Let IT be a stackable ZK-IP (see Definition 1) consisting of k
prover messages and k — 1 verifier messages for the NP relation R : X x W —
{0,1} and let (Setup, Gen, EquivCom, Equiv, BindCom) be a 1-out-of-¢ binding vec-
tor commitment scheme (as defined in [26]). For any pp < Setup(1*), the com-
piled protocol II' described in Figure 2 is a stackable ZK-IP for the relation
R X x ([f) x W) — {0,1}, where R ((x1, - - -,x¢), (a,w)) 1= R(Xq, W).

The proof for Theorem 2 can be found in the full version [28].

Complexity Discussion. Let CC(II) be the communication complexity of II.
Then, the communication complexity of the II’ obtained from Theorem 2 is
(CC(II) + |ck| + |com| + |7’|), where the sizes of ck,com and 7’ depend on the
choice of partially-binding vector commitment scheme and are independent of
CC(II). In the construction of partially-binding vector commitments from DLOG
due to Goel et al. [26, Corollary 1], |ck|, || = Ox(log¥), and |com| = Ox(1).
Hence the communication cost of proving a disjunction of ¢ clauses is O(log /).

Finding recyclable messages requires manual effort. We discuss intuition for
finding these messages, along with an informal procedure, in the full-version of
our paper [28].
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Stacking Compiler
Statement: x = x1,...,x¢
Witness: w = (a, wq)
For each i € [k — 1], the Prover and Verifier take turns sending messages:

— Prover in Round i: Prover computes Pj(x, w;r?) — m; as follows:

Parse 7 = (r¥|[{r;};cix])-

ComPUte (mlu\ND,i,m mum,i,u) — Pi(xm Was Tg)'

Set vi = (vi,1,--.,vi¢), Where v; o = Mper,ia and Vj € [€] \ a, v;,; = 0.

If i = 1, compute (ck, ek) < Gen(pp, B = {a}).

Compute (com;, aux;) < EquivCom(pp, ek, vi; 7).

If i = 1, send m; = (ck,com;, Mgann,i,a) to the verifier, otherwise send m; =
(com;, Mrann,i,a) to the verifier.

— Verifier in Round i: Verifier samples ¢; & {0, 1}A and sends it to the prover.
Round k: Prover computes P} (x,w, {¢;}jepr—1];77) — # as follows:

— Parse r” = (rg[|{r; }jemr)-

- ComPUte (mlu\ND,k,m mm-:"r,k,a) — Py (Xay Wa, {Cj }jE[kflﬁ Tg)'

— For j € [(]\ a, compute {moeri,;}icm = Sver (x5, {¢; }jem—1) {mraxn.i.aticim)-

— For each i € [k], set vi = (Moeri1,...,Moerse) and compute 7 <
Equiv(pp, ek, vi, v, aux;) (where aux; can be regenerated with r;).

— Send mi = (Mraxo,k,a, {7 }ic[k]) to the verifier.

Verification: Verifier computes ¢’ (x, {m, ¢i}icip—1), mx) — b as follows:

— For each i € [k], if ¢ = 1, parse m; = (ck’,com;, masn,i,a), €lse parse m; =
(Comi7 mRANn,i,u)~ Parse my = (mmm),k,a, Ckiy mg,a, {T;}ie[k])

— For j € [{], compute {muper,i,j ik = Sver(xi, {Ci Fiek—1], {Mranp,i,a bicx])-

— For each i € [k], set vi = (Mowr,i,1;- - s Mosr,i )

— Compute and return:

7
b= /\ (comi = BindCom(pp, ck,vé;ré)) /\ (65, { (Muanviva, Moer,ig) e, {i Yiep—17))
i€[k] JEL]

Fig. 2. A compiler for stacking multiple instances of a stackable ZK-IP

4 Speed-Stacking Interactive Oracle Proofs

Interactive oracle proofs, originally proposed by [11,45], form the basis of a
widely-used framework for building succinct arguments. In this section we de-
scribe how to adapt this framework to build stackable succinct arguments.

We begin this section by recalling the preliminary definition of holographic
IOPs (hIOPs), a generalization of IOPs introduced by [20] that allows for part
of the input to be preprocessed, in Section 4.1. We then proceed to outline
the technical machinery necessary to speed-stack two IOPs, Aurora IOP [10]
Fractal hIOP [20]. Specifically, we use a series of compilers that speed-stacks
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these IOPs via several intermediary definitions. First, we define the notion of a
stackable (holographic) IOP in Section 4.3. Next, we describe how to transform
a stackable IOP into a stackable (succinct) interactive argument, which can in-
turn be speed-stacked using the compiler in Section 3. Finally, in Section 4.5, we
describe our two constructions of stackable hIOPs, based on the Aurora IOP [10]
and Fractal hIOP [20] constructions respectively.

4.1 Holographic IOPs

Holographic IOPs were originally defined in [20]. Here we describe special prop-
erties of holographic IOPs that we will make use of in this work; for a full
definition of the model, see [28].

Public coins and oblivious queries. In this work we will consider a certain
subclass of IOPs: public-coin IOPs with oblivious queries. An IOP is public coin
if each verifier message to the prover is a random string. This means that the
verifier’s randomness C' consists of its messages ¢, ...,cx—1 € {0,1}* and possi-
bly additional randomness ¢, € {0,1}* used after the interaction (in particular,
for choosing the query set). An IOP has oblivious queries if the verifier can be
partitioned into a query algorithm Vg and a decision algorithm Vp as follows.
Vo takes as input C' (and nothing else) and outputs query sets (Q1,...,Q%)- Vb
takes as input (x,C,IT1|q,,. .., Hx|g,) and outputs a bit b.

Zero-knowledge. A public-coin holographic IOP HOL has (perfect) spe-
cial honest verifier zero-knowledge if there exists a probabilistic polynomial-
time simulator S such that for every (i,x,w) € R the random variables
View(P (i, x, w), VIO (x; C)) and (C,S(i,x, C, Vgo(C))) are identical, where:
- C=(c1,...,Ck—1,ck) is the verifier’s (public) randomness, chosen uniformly
at random, and
— View(P(i,x, w), VI® (x; C)) is the view of V when interacting with P, i.e.,
it is the random variable (C, IT1|q,, - - - , x|Q,)-

4.2 Reed—Solomon encoded holographic IOPs

Reed—Solomon encoded IOPs (RS-IOPs) were introduced in [10] and adapted to
the holographic setting in [20, Section 4.1]. We refer the reader to [28]for a full
definition of RS-IOPs; here we give an adapted definition of zero-knowledge for
RS-IOPs that we will use later.

Zero-knowledge. Honest-verifier zero-knowledge for RS-IOPs is trivial, since
the honest RS-IOP verifier makes no queries, and so learns nothing from the
interaction. Instead, we introduce a notion of special semi-honest verifier zero-
knowledge (SSHVZK), which guarantees zero-knowledge against verifiers that
behave honestly during the interaction, and then make a bounded number b
of arbitrary queries. Formally, an RS-IOP is SSHVZK with query bound b if
there exists a PPT simulator S such that for every (i,x,w) € R, every large
enough ¢ € N and every function Q: {0,1} — (ﬁ), the random variables

Vier(C)(P(ﬁ,x,w),VI(ﬂ)(x)) and (C,S(1,x,C,Q(C))) are identical, where
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— C=(e1,...,Ck—1,c*), chosen uniformly at random, is the verifier’s (public)
randomness, (possibly) augmented to ¢ bits with additional randomness ¢*,
and

- Vier(C) (P(ﬁ,x, W), Vl(i) (X)) = (07 H1|Q(0)7 ceey Hk‘Q(C)) is the view of
the verifier in the protocol (which consists only of its own messages), aug-
mented with the restriction of each prover message to the set Q(C) C L.

4.3 Defining a Stackable IOP and Stackable RS-IOP

In this section we give definitions for a stackable RS-IOP and a stackable I0OP,
before showing how to compile from the former to the later in Section 4.4. Look-
ing ahead, we will give modifications of Aurora IOP [10] and Fractal hIOP [20]
that are stackable RS-IOPs. The two definitions are defined in largely the same
way; the differences are analogous to the differences between an RS-IOP and
IOP. As such, we only explicitly give the definition of a stackable IOP, as the
generalization is trivial.

Recall that the simulator for a ZKIOP is required to sample answers for
exactly the points that the honest verifier queries in each round; these points
are provided to the simulator as a vector Q = (Q1,...,Qk), where Q; is the set
of points that the verifier queries in round i. Hence we can write the simulator’s
output as a sequence of functions II;: (); — X, where X' is the alphabet of the
IOP. Given this template, stackability for IOPs is defined similarly to stackability
for IPs (Definition 1), as follows.

Definition 2 (Stackable hIOP). We say that an k-round holographic I0P
HOL = (I, P, V) is stackable if there exists a subset of “recyclable” rounds Ryec C
[k] and a pair of algorithms (Spanp, Sper) where Sppr is deterministic, such that
for all (i,x,w) € R, the following algorithm is a special honest-verifier zero-
knowledge simulator for HOL:

S(I.l) x’ C? Q):

* $

1. sample (11} : Q; = X)icR.. SRAND(Ca Q);

2. compute (IT} : Qi = X)iei\ R = St (<, (I} )ic R, C, Q)

3. output (II7 )icr);

7

and for all A € N and (i',x',w’) (whether in R or not), S(1*,i’,x') outputs an
accepting view with certainty.

The definition extends in the natural way to Reed—Solomon encoded I0Ps
(RS-IOPs), except that we require that S be an SSHVZK simulator.

4.4 Compiling RS-IOP to Stackable IP via Stackable IOP

In this section we show how to “compile” a stackable RS-IOP into a stackable
IOP, and a stackable IOP into a stackable IP using a key-value commitment
schemes. In the full version [28], we give a formal definition for the key-value
commitment schemes that we require. In this section we provide both compilers
(in Lemma 1 and Theorem 4 respectively).
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Hiding Key-Value Commitments. Key-value commitments, described by
Boneh, Biinz and Fisch [16] and Agrawal and Raghuraman [2] primarily in
blockchain-related applications are a generalization of vector commitments: al-
lowing the committer to efficiently commit to a (potentially) exponentially large
but sparse vector in time that is polynomial in the security parameter and the
number of entries in the sparse vector. Unlike the primary motivation for these
works, we are not concerned with updateability of the map; however, we ad-
ditionally require the commitments to hide the unopened entries. The exact
definition and constructions can be found in the full-version of our paper [28].

Compiling RS-IOP to Stackable IOP. We now show that, by slightly tweak-
ing the RS-IOP to IOP transformation presented in [10, Section 8.1], we can
preserve stackability. The compiler of [10, Section 8.1] converts an RS-IOP
into an IOP using a (IOP) proximity test for Reed-Solomon codes [8] [13]
(also called a Low-Degree Test (LDT)). Since the concrete cost of the prox-
imity test is large, by exploiting the linearity of the code, all the oracles are
combined using a random linear combination into a single claimed codeword;
rather than repeating the proximity for every individual oracle. This incurs a
soundness-error of 1/|F|'3. This works for codewords in the same code, to account
for multiple RS codes of different rate note that component-wise products of
Reed-Solomon codes is a Reed-Solomon code, i.e. for a fixed C; € RS[L,d4]:
Cy0Cy € RS[L,dy + dy] < (5 € RS[L,ds]. This allows homogenizing all
the rates: for the verifier to query (Cy o C3)(%) simply query Cs (i) and compute
C1 (i) - Ca(i), hence we can assume that the rate of all codewords is the same.
Note that C; can be an arbitrary codeword, in particular it can be chosen such
that computing C (4) is very efficient. Lastly, since the proximity test is not zero-
knowledge the prover samples a random codeword which is added to the linear
combination: such that the distribution of the codeword on which the proximity
test is run is uniform. In summary, the verifier samples z € F* and the proximity
test is run on the oracle:
g=2z"I +r

for codewords IT € RS[L,d]* and r € RS|[L,d]. Note that g(i) can be accessed
by simply querying IT and r at i, hence in [10, Protocol 8.6] there is no need for
the prover to send the oracle ¢ explicitly'#, however we need this to efficiently
stack.

Lemma 1 (From Stackable RS-IOP to Stackable IOP). There is a trans-
formation (an adaptation of [10, Protocol 8.6]) which composes a stackable RS-
IOP and any IOPP for the Reed—Solomon code (i.e., a low-degree test) to produce
a stackable IOP for the same relation. Moreover, the cost of Sppr for the resulting
IOP is the same as the cost of Sppr for the RS-IOP. The construction follows
easily from the discussion above, see full version [28] for details.

13 For fields where 1/|r| is not negligible, parallel repetition is used: requiring repetitions
of the proximity test as well.
4 Which would also require an additional proximity test between ¢ and z” IT 4 r
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Compiling Stackable IOP to Stackable IP. Next we show how to com-
pile stackable IOPs into stackable interactive arguments using hiding key-value
commitments. The construction is an adaptation of the natural construction of
a succinct argument from an IOP using vector commitments; the security and
efficiency guarantees of hiding key-value commitments are necessary to preserve
stackability and stacking efficiency of the underlying IOP.

Construction 3 (Stackable IOP to Stackable IP Compiler). Assume wlog. that
the (public coin) VI (x) only makes queries to the oracles after the k’th round
and transform an k-round holographic IOP into a k 4 1 stackable IP follows: In
round i, when P(i,x, w) outputs II;, compute the commitment to the oracle:

(Ci7oi> «— KV.Com(pp, {(]7 Hl(]))}jG[leH)

And sends C; to V. After round k, V outputs the set of queries Q = {Q; }icx) to
each oracle IT;. The prover P responds by opening the key-value commitments at
the requested positions: for all i € [k] defining M; = {(j, II;(j))};eq., followed
by sending M; and o; < KV.Open(pp, 0;, M) to V. The transformation above
is essentially the one by Ben-Sasson et al. [11, Section 6] (from IOPs to IPs) but
replacing Merkle trees with the related notion of a key-value commitment.

Theorem 4 (Correctness of Construction 3). Given a key-value commit-
ment scheme: a stackable holographic IOP HOL = (I,P,V) can be compiled
into an efficient stackable interactive argument (P,V). Furthermore, the running
time of the compiled Spgr is that of S;ST) from the IOP, plus that of computing
(Ci,...,Cx), which is O3, |[IT}| - poly(\,log(|11;]))) (where |IT;| is the length of
the i-th oracle in the real execution). See full version [28] for the proof.

4.5 Stackable RS-IOPs

In this section we show that two key IOP protocols from the literature, Au-
rora [10] and Fractal [20] can be made stackable. These protocols are proof
systems for the R1CS relation, defined formally below.

Definition 3. Rank-one constraint satisfiability (R1CS) is an indexed NP re-
lation consisting of all index-instance-witness tuples ((F, A, B,C),z,w) for
A, B,C € Tz € F¥, w € F*=F, such that for z = (z|w), Az o Bz = Oz,
where o is the element-wise product.

Before proceeding to discuss how to make these protocols stackable, we pro-
vide a brief overview of the Aurora and Fractal RS-IOPs. These descriptions
are not comprehensive, but rather aim to give context for the stackable variants
presented later. Both protocols start from the same basic template:

1. On input ((F, A, B,C),z,w), the prover sends to the verifier a (Reed—
Solomon) encoding f,, of w, from which the verifier can deterministically
compute an encoding f, of z = (z||lw). The prover also computes vectors

Az, Bz,Cz and sends their corresponding encodings fa, fg, fc to the veri-
fier.
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2. For each M € {A, B,C}, the prover and verifier engage in the “lincheck”
protocol to show that fj; is an encoding of Mz. This involves one or two
rounds of interaction for Aurora and Fractal respectively, after which the
verifier will output some rational constraints.

3. Lastly the verifier outputs the constraint “f4(i) - fg(i) — fc(i) = 0 for all
i€n]”.

To achieve zero-knowledge, the encodings f.,, fa, fB, fc are randomized so that
any “view” consisting of b locations in the encoding is distributed as a uniformly
random vector in F®; hence the messages sent in Step 1 are recyclable. Because
the prover does not send any information in Step 3, it is not relevant for zero-
knowledge or stackability. As such, we need only focus on Step 2. Indeed, the
difference between Aurora and Fractal lies in this step: Aurora’s lincheck has
verification time linear in the number of nonzero entries in A, B, C, whereas
Fractal’s lincheck is exponentially faster after preprocessing. As a result, they
behave quite differently when stacked.

Aurora is Stackable. We show that a small modification to Aurora yields a
stackable RS-IOP. We first outline the lincheck protocol used in Aurora. Both
the prover and verifier take as input a matrix M, and have access to Reed—
Solomon codewords f, far, which purportedly satisfy the relation fa|g = M f|g
for specified H C F. For o € T, denote by u, the vector (1,a,a?,...,alfl=1)
FH.

1. The verifier sends a challenge point a € F.

2. The prover and verifier both compute the vector u,M € F along with its
low-degree extension g.

3. The prover and verifier then engage in the zero-knowledge sumcheck protocol
to show that

(WM, flu) = (o, farle) = fiani(a) f(a) = §(a) far(a) = 0 .

a€H

This protocol is complete because if fyr|g = M f|g then for all vectors u,
(u, farle) = (u, M flg) = (uM, f|g). For soundness, observe that if fy/|g #
M f|g then (uoM, flg) — (Uq, far|g) is & nonzero low-degree polynomial in «;
soundness follows by elementary algebra and the soundness of the zero-knowledge
sumcheck protocol.

Observe that the only prover-to-verifier communication in this lincheck proto-
col is within Step 3; specifically, in the execution of zero-knowledge sumcheck. We
now recall (and slightly modify) the zero-knowledge sumcheck protocol, which
relies on the following lemma.

Lemma 2 (By Ben-Sasson et al. [10]). Let H be a coset of an additive or
multiplicative subgroup of F. Then there is a polynomial Xy v (X), which can be

evaluated in time polylog(|[H|), such that the following holds: let f € F[X] be
such that deg(f) < |H|. Then ) .y f(a) = o if and only if there exists § with
deg(g) < |H| — 1 such that f(X) = T (§(X)).
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The protocol proceeds as follows: The prover and verifier have access to a
summand codeword f of degree d, which purportedly satisfies . x f (a) = 0.
1. The prover chooses a random polynomial 7 of degree d, computes ( =
> acp T(a), and sends 7, ¢ to the verifier.
2. The verifier sends a challenge .
3. The prover divides ¢ =7+ f by vy to obtain g, h satisfying the identity
G = Zu.c(§) +h- vy with deg(§) < |H| — 1, and sends h to the verifier.
4. The verifier outputs the rational constraint “deg(é) < |H| — 17, where é :=
She(@—h-vg).
The zero-knowledge simulator given by [10] operates by first choosing a random
polynomial §, and sending ¢ = »_ . ¢(a) in the first round. g, h are obtained
from this ¢ in the same way as the honest prover. Queries to r are answered
using ¢ — B f.
We are now ready to show that the above protocol is stackable, after a small
modification.

Theorem 5. The Aurora zero-knowledge RS-IOP for R1CS [10, Protocol 7.5] is
stackable (after a small modification) with Sper running in time O(|| Al + || B +
|C|| + nlog® bloglogb) (measured in field operations).

Proof. The only modification necessary is to the zero-knowledge sumcheck pro-
tocol. Specifically, in Step 3, the prover will also send g; this is purely for the
purposes of simulation and does not affect soundness.

Note that in a real execution, g, h are (marginally) uniformly random code-
words, and so can be generated by Spanp (i.€., they are recyclable). Hence the
only oracle in the protocol that is not recyclable is r. The inclusion of ¢ in the
protocol allows Sper to compute r as X ¢(g9) + h - vy — Bf.

As aresult, the time complexity of Spir is dominated by the evaluation of f at
b points. This requires computing rA,rB,rC € F" for some r € F'™, which takes
O(||A|| + ||B|| + ||C|) field operations, and evaluating the low-degree extensions
of these vectors at b points, which takes O(n log? bloglog b) operations using the
algorithm of [18]. O

4.6 Stactal

Next we describe “stackable Fractal”, or Stactal, a variant of the Fractal pro-
tocol [20] which can be efficiently stacked. The verifier in Fractal runs in time
quasilinear in the length of the input vector = and polylogarithmic in the dimen-
sions of A, B,C. This is achieved via a sparse holographic encoding of A, B,C
using the Reed—Solomon code.

First, we discuss why directly stacking Fractal leads to an inefficient proto-
col. Recall that in the stacked protocol, the prover and verifier run the instance-
dependent part of the simulator Sy on each clause j € [¢]. Therefore, to achieve
the desired computational savings for the prover while maintaining the complex-
ity of the verifier, we want Spgr to run in polylogarithmic time. Unfortunately,
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this is not possible for the original Fractal protocol (in the true disjunction
setting), as we explain next.

The verifier’s running time in the Aurora protocol is dominated by the
lincheck subprotocol: specifically, the cost of evaluating, for each input matrix
M € {A, B,C}, the low-degree extension @, s of the vector uy, M. To eliminate
this cost, Fractal replaces Aurora’s lincheck protocol with a holographic variant.
In particular, [20] shows that, given an appropriate encoding of the input ma-
trices, there is a protocol that allows the verifier to check an evaluation of this
low-degree extension in time polylog(||M]|).

Since the verifier cannot compute this evaluation itself, the prover sends
Qo (B) for the desired evaluation point 8. In the standard setting of zero-
knowledge, since the input matrices are public, this is not a problem: the sim-
ulator can simply compute this evaluation as the honest prover would, in time
linear in ||M|]. In the stacking setting, however, this computation would be part
of Sper, more than negating the computation savings obtained via holography.

Worse, it is not possible to simply design a better simulator: for most choices
of @, B, e, v (B) depends on every nonzero entry of M. Thus Sper must run in at
least linear time. To resolve this, we must instead significantly modify the Fractal
protocol. In more detail, we allow the prover to “pad” the input matrices with
randomness, in a way that does not affect the satisfiability of the statement, so
that @iq,a(8) becomes uniformly random. The simulator for this protocol runs
in time polylog(||}/]|) and makes a small number of queries to the encoding of
M .We prove the following theorem in the full version of the paper [28]:

Theorem 6 (Stactal). The protocol obtained from Fractal by replacing the
holographic lincheck protocol with a stackable holographic lincheck (as described
in the full version of our paper [28]) is stackable, with Spsr Tunning in time
O(b - (Jz| + polylog(||All + || BI| + |ICI))) (measured in field operations).

5 Speed-Stacking Compressed Y-Protocols

We now turn our attention to stacking sublinear proofs based on folding ar-
guments. “Folding arguments” refers to a class of proof systems that relies on
algebraic structure and interaction to iteratively reduce the size of (or “fold”)
the statement of interest. The two most notable instantiations of this class are
Bulletproofs [19], which give a folding argument for inner products, and Com-
pressed X-Protocols [3,4,5], which give folding arguments for linear forms. In
this section, we show how to stack Compressed Y-Protocols and demonstrate
the computational savings that our techniques offer when applied to them. In the
full-version [28], we demonstrate how to stack Bulletproofs, which as discussed
earlier are less amenable to computational savings from our stacking approach.

Compressed Y-protocols were proposed in a series of recent works by At-
tema, Cramer, Fehr and Kohl [3,4,5]. In this section, we focus on the specific
instantiation of this approach proposed by Attema, Cramer, and Fehr [4], as it
has a clean presentation.
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Notation. We slightly modify some of the notation presented by Attema,
Cramer, and Fehr in [4] for clarity of presentation, but endeavor to make it
sufficiently consistent that an interested reader can easily refer back to their
work for additional details. Let G be a cyclic group of prime order p. Let f be a
homomorphism from (additive) Zév to some group Gr.'> We denote the set of
such homomorphisms as £V.

Let gi = (gi,1:9i,2,---,9i,n) be vectors of generators in G, where the size
of the vector will either be stated explicitly or, when clear from context,
left implicit. All other lower-case letters, e.g. c,a, refer to elements in Z,,
and bold lower-case letters, e.g. xj,z refer to vector of elements in Z,. Let
x = {xy,...,op} € ZY, and f : Zév — Gp. We denote x, = {z1,...,2n/2}

q’
and xgr = {Tn/241,---,2n}. We denote fr : Zévﬂ — G as the function

f(x£,0,...,0) and fg : Zév/z — Gr as the function f(0,...,0,xg). Upper-
case letters refer to elements of G. For a vector g; of length IV, we denote the
first N/2 elements of g; as gi; and the remaining N/2 elements of g; as gip.
We denote the element-wise group operation of two vectors of group elements as
g*g = (16},---,9n9), where N is an arbitrary size parameter. Finally we
denote multi-exponentation by g* =[], ¢;".

Compressed X-Protocols. Attema et al. [4] consider the relation
Reompressed = {(& € GNP € G,y € Gp,f € LN;x € L)) : P = g¥,
y=1Ff (X)},Where x is a vector of length N and f is a homomorphism from
Zé\’ to Gr. Intuitively, their protocol is a “standard” (Schnorr-type) X-protocol,

where the prover computes r & Zflv, T =g" and t = f(r) and sends ¢, T to the
verifier. Upon receiving a challenge ¢, it computes and sends z = ¢x + r to the

verifier. The verifier then verifies if: g2 < TP¢ and f(z) < cy + t (later in this
section, we will denote the value T'P¢ as Q). Note that, the third round message
VS Zév that the prover sends in this protocol contains O(N) elements, which is
undesirable.

To compress the communication complexity of this last round message, this
line of work makes the observation that the message z is itself a trivial proof of
knowledge for an instance of Recompressed- Specifically,

{(geGN, TP €G,cy+t Gy, feLN;zeZ)): P=g"y=f(2)}.

Importantly, however, sending z reveals nothing about x. As such, for reducing
the communication complexity of the base protocol, it suffices to design a proof of
knowledge for Reompressed that need not be zero-knowledge. The various versions
of Compressed X-Protocols design slightly different variants of this compressive
“folding” proof of knowledge. In this work, we focus on the one presented in [4].

Folding Argument. They start by enabling the prover and the verifier to split
the statement in half and fold it in on itself, resulting in a transcript that is

15 Although Gr is often used to indicate a target group in a pairing, in this context it
simply refers to the target group of the homomorphism; there are no pairings here.
Additionally, we encourage the reader to think of G simply as Z4, as this is the clear
motivation for the proof system.
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half the size. This is done as follows: the verifier generates a random challenge
¢ € Zq, and the task of proving the original instance is reduced to the problem of
proving another instance of Reompressed for a new linear form [’ = cfr + fr with
bases g’ = g$ * gr. Note the dimension of each of these is half the dimension
of the original. All that remains now is to generate a new commitment P’ and
find a new target value 3’ for this reduced-dimension instance. The prover and
verifier compute this as follows:

(1) Before ¢ is sent by the verifier, the prover computes A = gp’,a =
fr(x1),B=g7" b= fr(xg) and sends (A, a, B,b) to the verifier.

(2) The verifier then samples and sends c.

(3) The prover and verifier compute P’ = AP°B¢ and ¢/ = a + cy + cb.

The new instance is now of the form:

{(g’ € GN2 AP°B® € G,y € Gr, ' € L% x € 7)) APB = g¥' yf = f’(x’)}

Note that a trivial proof of knowledge for this new instance is just x' = xy +
cxpr, which is already half the length of the initial x. The same process can
be repeated again for computing a proof of knowledge of x’, to further reduce
the communication complexity. This process is recursively applied until the final
trivial witness is of a constant size.

We note that Attema et al. have demonstrated how to use their protocol(s) to
prove generic circuit satisfiability, by arithmetizing the circuit into a compatible
format. We focus on the simpler base case where the prover only wishes to prove
a linear form, and discuss the generalization in the full version of our paper [28].
We now state the main Theorem from [4].

Theorem 7 ([4]). Let N > 2. There exists a (2u+3)-move protocol Il .ompressed
for relation Rcompressed, Where p = [loge(N)] — 2. It is a perfectly complete,
special honest-verifier zero-knowledge and unconditionally (2,3,3, ..., 8)-special
sound.

5.1 Compressed Y-Protocols are Stackable

We consider statements of the form: Rais.compressed = 1(8 € GV, {P; € G,y; €
G%«,fi}ie[g];a € [f,xq € Zév) i Py = g% ,yqs = fa(Xq)}. Notice that this
statement allows for different homomorphisms and commitments for each clause
i € [¢]. This is a stronger notion of disjunctions than considered in [4], which
give proofs where either the homomorphism or commitment is fixed across a
disjunction of multiple clauses. Our goal in stacking will be concrete speed;
specifically, we aim to minimize the number of expensive group operations and
multi-exponentiations the prover is required to do for each clause.

Intuition. A first order intuition for speed-stacking Compressed X-Protocols is
as discussed in the technical overview: first stack the communication inefficient
base protocol, and then apply the recursive folding “after” stacking the pro-
tocols together. The base X' protocol in Compressed Y-Protocols can trivially
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be stacked using the stacking compiler given from Goel et al. [26], reusing the
entirety of z as a recyclable message and allowing ¢,7" to be deterministically re-
computed. As such, it is natural to expect that this multi-round protocol should
contain all recyclable messages besides ¢, T, and indeed it does.

We note, however, that Attema et al.’s choice of compression mechanism re-
quires a more careful analysis of this stacking approach. Not all the messages
in the tail are recyclable. Observe that the messages in the tail are of the form
A;, By, a;,b;. While A;, B; are clearly recyclable, a;, b; are outputs of some com-
bination of parts of the linear form f and hence depend on f. Moreover, the
computation required to verify the tail is also not reusable. Specifically, the lin-
ear form f is itself incorporated into the compression mechanism, and f is never
blinded, i.e. the computations relying on f cannot be “recycled” (to slightly
abuse our terminology). As such, directly stacking the protocol will run into
both efficiency problems and difficulty in proving zero-knowledge (i.e., in ensur-
ing that the index of the active branch remains hidden).

We propose two minor modifications to this protocol to maximize stacking:

(1) Sending @;: In the original protocol described in [4], the prover and ver-
ifier independently compute the value @ (i.e., TP¢ from the base proto-
col). The first modification that we propose is to have the prover send @
during the first folding. This modification is simply for efficiency reasons
(and therefore does not impact soundness or zero-knowledge) as @)1 can be
deterministically computed by the verifier and the deterministic simulator.
However, computing Q1 directly from the transcript (and, looking ahead, the
recyclable messages) for simulating other messages is expensive — involving
many exponentiations — and therefore we would like to avoid computing it
as part of our deterministic simulator Spgy. This modification is similar to
the one used to make Aurora efficiently stackable in the previous Section.

(2) Randomizing a; and b;: In each round i of the folding argument, the
prover sends a; = fir(x;r) and b, = f; (x;r). As such, as discussed
above, a; and b; are not recyclable. Note that there are cases when the
verifier already knows the values of a; and b; that it should expect to receive
based on the functions f; 1, fi r; for example, if either is the zero function.
More generally, the verifier might be able to predict the value of a;, b; given
f, a;—1, bi—la Ci—1,Q;—2, bi_g, Ci—2.... As such, a;, bi are not generally recy-
clable. However, since f is a linear form, we observe that the possible values
of a;,b; correspond to the solutions of a linear system in the coefficients of
f and the challenges so far. As such, they are either marginally uniform, or
there is an efficient algorithm determining their unique assignment. Hence,
we propose to modify the protocol to have the prover send uniform elements
a; or b; when their “correct” value can already be determined by the veri-
fier. The verifier can simply ignore these elements when the “correct” value
is already determined. It is easy to see that this does not affect soundness
or zero-knowledge of Compressed X-protocols.

We give a complete description of the protocol, including these modifica-
tions in the full version [28]. To capture our second modification, we define
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a function UniqueOrRand that is used to determine values a; and b; in each
folding. In particular, for each folding (to compute a;,b;), it takes the follow-
ing inputs: the function f, evaluation y = f(x), previously computed values and
challenges a;_1,b;—1,¢;—1,0;—2,bi_2,¢;—2 ... and fi r(xiy) (when computing a;)
or f1,1(xig) (when computing b;). UniqueOrRand checks if the values a; and b;
are already determined based on previous computed values and challenges — in
which case it outputs a random value — else, it outputs fi r(xiz) for a; and
fi,o(xig) for b;. We are now ready to describe how to speed-stack Compressed
Y-Protocols and prove the following theorem, setting MSXF = (Q1, 41, By, a1,
bi,...,Au_1,Bu—1,a,-1,b,_1,2) for notational convenience.

Theorem 8. Compressed X-protocols [4], denoted as Il ompressed, i stackable.

We give a proof for Theorem 8 in the full version of the paper. Combining
Theorems 8 and 2, we get the following Corollary.

Corollary 1. Let Ispecd-compressed be output of the compiler in Figure 2 re-
cursively applied to I compressed Using Sieny and SSov™ as defined in the proof
of Theorem 8. Then Ilspeed-compressed 5 @ stackable ZK-IP for Rgis-compressed
with logarithmic communication complezity, and prover computational complex-
ity O(Time(H compressed) + £ - Time(SSor'™)).

Efficiency of Speed-Stacked Compressed Y-Protocols. Our goal in stack-
ing Compressed X-Protocols is to minimize the number of group operations that
the prover must perform when proving a disjunctive statement, as group opera-
tions are typically significantly more expensive than field operations. Based on
our compiler, it is easy to see that we get the most savings when the linear form
f is actually a homomorphism from one field to another field. In that case the
vast majority of the group operations are only necessary in the active clause.
Concretely, the prover’s computational cost for running the compiled protocol is
Time(Icompressed ) +¢- Time(Sgor™ )+ Time(Gen) + Time(EquivCom)+Time(Equiv).
In this case, in SSox®, the prover computes only 1 exponentiation and 1 group
operation (T := Q1P °). If we consider the commitment scheme proposed by
Goel et al. [26], both key generation and committing require ¢ exponentiations
and group operations, while equivocation requires only field operations. Thus
the overhead (when counting group operations) introduced from running a dis-
junction with ¢ clauses is only 2¢ exponentiation and 2¢ group operations. Im-
portantly all the multi-exponentiations resulting from folding g and computing
the A;, B; can be completely avoided.

We note that our modifications to the protocol do introduce some overheads.
Namely, the verifier (and thus the deterministic simulator) need to decide when a
message is already uniquely determined. This computation requires attempting
to solve the system of equations for the particular value a;, b;. The verifier can
simply do this using Gauss-Jordan elimination, which will take N log?(N) field
operations.

Extension to Circuit Satisfiability. Due to space constraints, we discuss the
details of speed-stacking the circuit satisfiability in the full paper [28].
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