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Abstract. In this series of work, we aim at improving the bootstrapping
paradigm for fully homomorphic encryption (FHE). Our main goal is
to show that the amortized cost of bootstrapping within a polynomial
modulus only requires Õ(1) FHE multiplications.
To achieve this, we develop substantial algebraic techniques in two pa-
pers. Particularly, the first one (this work) proposes a new mathematical
framework for batch homomorphic computation that is compatible with
the existing bootstrapping methods of AP14/FHEW/TFHE. To show
that our overall method requires only a polynomial modulus, we de-
velop a critical algebraic analysis over noise growth, which might be of
independent interest. Overall, the framework yields an amortized com-
plexity Õ(λ0.75) FHE multiplications, where λ is the security parameter.
This improves the prior methods of AP14/FHEW/TFHE, which required
O(λ) FHE multiplications in amortization.
Developing many substantial new techniques based on the foundation of
this work, the sequel (Bootstrapping II, Eurocrypt 2023) shows how to
further improve the recursive bootstrapping method of MS18 (Micciancio
and Sorrell, ICALP 2018), yielding a substantial theoretical improvement
that can potentially lead to more practical methods.

1 Introduction
Fully homomorphic encryption (FHE) allows arbitrary computation over cipher-
texts without the need to first decrypt it. The concept was first proposed by [35]
back to 1978, and soon numerous applications were noticed, albeit no plausible
scheme was known. Thirty years later, Gentry [18] proposed the first plausi-
ble scheme that supports general homomorphic computation4, inspiring many
follow-up works, (see [37] for a comprehensive listing), with a wide array of
optimizations and as well new applications, such as outsourcing computation,
multiparty computation, and many others.

FHE was initially considered as theoretical only as the homomorphic oper-
ations were prohibitively expensive. During the past years, many exciting new
methods were proposed, e.g., [3,4,12,15,17,21], making substantial steps towards
practical realizations. A particularly important progress is the improvement of

4 Homomorphic computation refers to the ability to compute on ciphertexts (en-
crypted data). A fully homomorphic encryption supports general homomorphic com-
putation, i.e., computation for any arbitrary function.



Gentry’s bootstrapping technique, which is currently the only known method to
achieve fully homomorphic encryption. Originally bootstrapping was extremely
impractical, yet after years of efforts, now we can achieve the task within sub-
seconds (amortized), e.g., [15,21,28] by even a simple personal computing system.
Thus, FHE with bootstrapping can be practical in some applications [21].

Limitations of Current Bootstrapping Techniques. Despite significant
progress, there are some fundamental questions unanswered. Below we summa-
rize the two main approaches in the state of the art, and then their deficiencies.

– Bootstrapping BGV. This line was used (and implemented) by the work [3,
19, 21]. An advantage of this approach is the support of single instruction
multiple data (SIMD) operations, and thus can achieve batch computation
that bootstraps multiple ciphertexts per operation. However, the method
inherently incurs a super-polynomial error, and thus would require a super-
polynomial size modulus (e.g., concretely a 400-bit integer [21]), resulting in
large bootstrapping keys and thus large storage to perform the homomorphic
computation. Moreover, this would require a stronger assumption (i.e., a
super-polynomial modulus-to-noise ratio) of the underlying (Ring)-LWE.

– The AP14/FHEW approach. Bootstrapping within a polynomial size mod-
ulus was first achieved by [9], and later improved by AP14 [4], and the
ring variant FHEW [17] (with other novel optimizations). With further op-
timizations [6, 13, 15, 23, 28], now bootstrapping a single ciphertext can be
computed within 100 milliseconds, with significantly smaller bootstrapping
key and memory (compared with the above approach). The methods in this
line are modular and thus conceptually simpler, and moreover, can be used
to bootstrap all currently known (Ring) LWE-based FHE schemes.
However, all exiting practical methods (in the current libraries) can only
bootstrap one single ciphertext per operation, and thus the amortized ef-
ficiency does not outperform the above. Particularly, the existing meth-
ods [4, 6, 13, 15, 17, 23, 28] require O(λ) FHE multiplications to bootstrap
one single (LWE) ciphertext, where λ is the security parameter. Some later
works [5,29] tried to mitigate this by new designs built on top of the FHEW,
but their techniques have several inherent drawbacks, which limit their po-
tential practicality.
Specifically, the work [5] cannot batch the computation beyond a logarith-
mic number of ciphertexts. The work MS18 [29] can bootstrap λ (LWE) ci-
phertexts using roughly O(31/ϵλ1+ϵ) FHE multiplications, for any arbitrary
constant ϵ > 0, implying an amortized cost O(31/ϵλϵ) FHE multiplications
per ciphertext. Theoretically, ϵ can be set close to 0, e.g., 0.01, at the cost of
a large constant, e.g., 3100, exceeding what can be considered as practical by
a large margin. Thus, it is unclear whether MS18 [29] can lead to a practical
solution that matches their best theoretical indication.

In this series of works, we aim to achieve the best of both by breaking the limi-
tations as above. Our overall goal is to bootstrap λ (LWE) ciphertexts by using
only Õ(λ) FHE multiplications, meaning that the amortized cost of bootstrap-
ping is essentially the same as that of the FHE multiplication, up to a factor of
Õ(1). Our goal is summarized by the following statement.
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Main Goal. Bootstrapping within a polynomial modulus only requires
Õ(1) FHE multiplications in amortization, with a small hidden constant.

Note: the complexity of existing FHE multiplications in the ring settings (set
to the same ring dimension) only differs by a (poly)-logarithmic factor, and thus
it is without loss of generality to use the number of “FHE multiplications” as a
clean measure of efficiency.

The outcome can consequently improve all the bootstrapping-based FHE for
general computation, such as FHEW [17] and TFHE [13], and their applications.
This would substantially advance the state of the art research.

1.1 Our Contributions

To achieve this, we present our new techniques in a series of two works – the
first (Batch Bootstrapping I ) focuses on the foundation, i.e., the establishment
of a new mathematical framework and noise analysis for batch homomorphic
computation. The new framework can improve the FHEW [17] and TFHE [13]
bootstrapping methods by a factor of O(λ0.25−o(1)), implying a new bootstrap-
ping method of amortized cost equal to Õ(λ0.75) FHE multiplications.

By using the framework of the first work as a solid foundation, the sequel
(Batch Bootstrapping II ) [24] further develops new critical methods to improve
main components of the MS18 [29]. Jointly the two works achieve the main goal
as stated above. Below we highlight the significant results of the first work, and
then give a preview of the sequel for curious readers.

Significant Results of Bootstrapping I (This Work).

– First, we propose a new algebraic framework that naturally supports the
batch homomorphic operations of the AP14/FHEW-like frameworks, e.g.,
FHEW and TFHE.

– Our next contribution is a new and refined algebraic analysis of the noise
growth incurred in our new batch framework. We notice that using the ex-
isting existing analysis directly on our framework would result in a super-
polynomial noise growth. Thus, our refined analysis is a necessary key to
achieve batch bootstrapping within a polynomial modulus.

– Quantitatively, our batch framework allows an explicit batch bootstrapping
on FHEW/TFHE with O(λ1/4−o(1)) slots, where λ denotes the security
parameter. This means that we can bootstrap λ (LWE) ciphertexts using
Õ(λ1.75) FHE multiplications, resulting in the following informal theorem.

Theorem 1.1 (Main Result of this Work, Informal) Bootstrapping within
a polynomial modulus requires Õ(λ0.75) FHE multiplications in amortization.

This result can improve the prior methods of AP14, FHEW and TFHE, which
required O(λ) FHE multiplications in amortization. We notice that in this series
of work (i.e., AP14/FHEW/TFHE), the bootstrapping algorithm only requires
workspace for computation (excluding the input and bootstrapping key) roughly
O(1) FHE ciphertexts. Thus, our framework yields the first non-trivial batch
bootstrapping method that only requires workspace O(1) FHE ciphertexts.
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If we allow more workspace (e.g., O(λ) FHE ciphertexts) for computation,
then the MS18 [29] method provides a more asymptotically efficient bootstrap-
ping, with amortized cost O(31/ϵλϵ) FHE multiplications. As argued however,
there is an inherent barrier for a practical realization that matches the best theo-
retical indication, as it would require to set ϵ close to 0, implying a prohibitively
large constant. It is our next target to get rid of the dependency of ϵ in MS18.

A Preview of Bootstrapping II. In our next work [24], we show how to
use our batch framework as a key ingredient to improve the MS18 method [29].
Particularly, we apply the technical foundation in this work (along with many
new ideas) to the homomorphic Discrete Fourier Transform (DFT) paradigm
developed by MS18. The foundation of this work is the crux to achieve our main
goal. More details can be found in the sequel [24].

We believe that the new algebraic framework and noise analysis in this work
are both important and might find further optimizations and applications. Thus,
the foundation can be valuable and deserve its independent merits.

1.2 Technical Overview

Now we present an overview of our new techniques. We first recall the task
of bootstrapping and the framework of AP14/FHEW [4, 17] and later work
TFHE [13,15], who designed an explicit bootstrapping method within a polyno-
mial modulus. Then we discuss why it is inherently incompatible with existing
batch computation. Finally, we present our new insights to break the barriers.

Backgrounds and Challenges

Bootstrapping. When we perform homomorphic operations from existing FHE
schemes, the noise in the resulting ciphertext would grow with the number of
operation, eventually becoming too big for correct decryption. To proceed ho-
momorphic computation, Gentry [18] invented the bootstrapping technique that
refreshes the noise. Currently, this is the only way to achieve fully homomorphic
encryption which supports an arbitrary (polynomial) number of operations.

Briefly speaking, the task can be achieved as follow. Given an input cipher-
text that encrypts m (i.e., ct, which might contain a large noise) and some eval-
uation key evk (i.e., some FHE encryption of the secret key Enc(sk)), the goal
is to homomorphically compute the decryption function, i.e., Enc(Dec(sk, ct))5,
which by correctness would yield an encryption of m. Suppose the homomorphic
decryption only incurs a small noise, then we have achieved the task.

Bootstrapping within a polynomial modulus was first achieved by [9]. How-
ever, the method requires to use the Barrington Theorem to convert an NC1
circuit into a polynomial length branching program, and thus does not give an
efficient explicit construction. A subsequent work [4] presented the first explicit
construction by using the idea of symmetric group, and FHEW [17] showed how
to optimize the approach in the ring setting, extending the prior idea to a group

5 More precisely, the computation should be denoted as Eval(Dec(ct, ·),Enc(sk)). By
correctness, the output ciphertext should belong to Enc(m), though perhaps dis-
tributed differently from a fresh ciphertext.
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of roots of unity. Later on, TFHE [13,15] followed this idea and provided further
optimizations, e.g., CMUX, external products, and computation over torus.

As mentioned in [28] that FHEW and TFHE are conceptually the same in
the core bootstrapping procedure (with different optimizations and implemen-
tation techniques), we refer this approach as the name of the earlier work, i.e.,
AP14/FHEW framework. This framework in our view, gives a conceptually sim-
ple and modular approach. Below we present the high level idea.

The AP14/FHEW Framework. The framework takes input an LWE cipher-
text ct = (b, a) that encrypts m and an evaluation key evk = {BKi} where each
BKi is a Ring-GSW ciphertext that encrypts the i-th bit of the secret. Let n, q
be the LWE dimension and modulus, N,Q be the Ring-GSW dimension and
modulus. Without loss of generality, n, q can be set to small quantities, e.g.,
n = O(λ) and q = Õ(

√
n), via the dimension reduction and modulus switch [4].6

We emphasize that q = Õ(
√
n) is an important setting of parameter. The reader

should keep this in mind, and we will further elaborate. Moreover, we notice
that the LWE ciphertext has the following structure: b = sa+ e+ q/2 ·m, where
m ∈ {0, 1} is the message, s is the secret key, and e is some perhaps non-small er-
ror. Here we do not need to worry about their actual space, and this presentation
is sufficient to illustrate the core idea.

The decryption function can be done in two steps: (1) compute m′ = b− sa
mod q, and (2) output Round(m′) for some appropriate rounding function. This
function can be computed by a low-depth function, i.e., NC1, but the question is
how to compute it efficiently with an explicit procedure. And this is the insight
of the AP14/FHEW framework as we present next.

Briefly, the approach identifies that the homomorphic decryption should use
computation over the root of unity of cyclotomic rings. More specifically, let
us consider a commonly used cyclotomic ring R of degree N of a power of 2.
In this case, we can think of R as the polynomial ring R = Z[X]/(XN + 1),
satisfying X2N = 1. Suppose q|N , Y = X2N/q, and one can homomorphically
compute on the exponent for the first step of linear operation of the decryption,
i.e., obtain Enc(Y m′

) where m′ = b−as. Then we will have Y m′
= Y m′ mod q, as

{1, Y, Y 2, . . . , Y q−1} forms a multiplicative (sub)-group of {1, X,X2, . . . , X2N−1}.
Then a very simple and efficient extraction procedure can be derived from
the work [1, 13], computing Enc(f(m′)) given input Enc(Y m′

) for any arbitrary
f : Zq → {0, 1}, which includes the non-linear Round function of the decryption
procedure. These two insights yield a very efficient bootstrapping that outputs
a ciphertext encrypting a single-bit.

Challenge for Batch Computation. As we discuss next, the AP14/FHEW
framework is however not compatible with existing batch computation tech-
niques, which heavily rely on the Chinese Remainder Theorem (CRT) decompo-
sition. Roughly speaking, the CRT-based batch method supports computation
over some ring Rt that is isomorphic to Zt × Zt × · · · × Zt for properly chosen

6 The work [4] sets q = Õ(λ). If we use a randomized rounding for the modulus switch,
q can be further reduced to Õ(

√
n) = Õ(

√
λ).
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modulus t. In this way, we can pack N bits into these N slots, and multiplications
and additions over Rt correspond to the component-wise operations over the N
slots. This can be used to batch bootstrapping by expressing the decryption
function as a boolean circuit as used in prior work [3, 21], though the method
would incur a super-polynomial noise growth. On the other hand, the CRT slots
are intrinsically different from the cyclotomic structure and thus cannot support
the AP14/FHEW framework. This is the current major technical barrier.

Our New Techniques. As discussed, to support batch computation over the
AP14/FHEW framework, the scheme must support batch homomorphic compu-
tation over the subgroup {1, Y, Y 2, . . . , Y q−1}. As a high level, we need a math
structure that allows the following packing mechanism: let x = (x1, . . . , xr) and
y = (y1, . . . , yr) where each vector component resides in a space containing
the cyclotomic subgroup. The packing mechanism can pack x,y into some x, y
(in some appropriately designed space) such that x + y corresponds to x + y,
and x • y (for some operation •) corresponds to x ⊙ y, where ⊙ denotes the
component-wise multiplication. This mechanism can then be used to perform
the AP14/FHEW bootstrapping in a batch way.

To achieve this, this work proposes a new algebraic framework and refined
homomorphic methods/analyses for efficient implementations. Particularly, we
first describe our new design of for batch computation over the plaintexts, and
then show how to do homomorphic computation with a small noise growth. We
will point out multiple technical subtleties and challenges, so a straight-forward
adoption of the existing noise analysis would not give a satisfactory solution.
Our new analytical insights serve as the critical key.

New Batch Plaintext Computation. So now we present our new insights of
a new math structure that supports the above property, by using tensor rings
in a novel way. To illustrate our ideas, we first present some insightful yet failed
attempts that gradually lead to our final construction.

Attempt 1. Let R1 = Zq[X]/(Xq + 1) be the cyclotomic ring7, which clearly
contains the required subgroup, and R2 be some linearly disjoint ring with basis
B = (v1, v2, . . . , vρ). Then we consider the tensor ring R = R1 ⊗R2. Intuitively
for r ≤ ρ, we can pack x = (x1, . . . , xr) ∈ Rr

1 as x =
∑

xivi, i.e., each element
is put on one basis, and similarly, y = (y1, . . . , yr) ∈ Rr

1 to y =
∑

yivi. Clearly,
x+y corresponds x+y, but the ring multiplication, i.e., x·y ∈ R1⊗R2, does not
correspond to the component-wise multiplication x ⊙ y. This is because there
are a lot of uncanceled cross terms vi · vj when we compute x · y.
Attempt 2. To cancel the cross terms, we can use the dual basis with the
trace function in the following way. Let R∨

2 be the dual ring with basis B∨ =
(v∨1 , v

∨
2 , . . . , v

∨
ρ ), i.e., the dual basis of B. Now we can pack x the same way, i.e.,

x =
∑

xivi, but pack y in the dual space, i.e., y =
∑

yiv
∨
i . Even though x · y

has a lot of cross terms, we notice that TrR/Q(x · y) =
∑

xiyi, as TrR/Q(viv
∨
j )

7 The cyclotomic polynomial would be of a different form if q is not a power of two.
Here we use this setting for simplicity of exposition, but note that our framework
works for general cyclotomic rings.
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acts as the Kronecker delta δij , which is equal to 1 if i = j or otherwise 08. This
method does cancel the cross terms, but it also mixes up the xiyi’s like the inner
product. Thus, this attempt still does not achieve the goal.

Attempt 3. To further separate xiyi’s, we propose to use a third ring R3 with
basis W = (w1,w2, . . . ,wτ ) for τ > r. Then we consider the tensor ring R =
R1 ⊗R2 ⊗R3. In this setting, we still pack x in the same way, i.e., x =

∑
xivi,

but y in the space R1 ⊗R∨
2 ⊗R3 as y =

∑
yiv

∨
i wi. Interestingly, now we have

w′ = TrR/R1⊗R3
(xy) =

∑
xiyiwi, as the trace function (over R/R1⊗R3) would

act as δij on the term viv
∨
j and as a constant function on elements in R1 ⊗R3.

Thus, the resulting w′ can be viewed as a packed plaintext of x⊙y in R1⊗R3.
Here a natural question raises – how do we proceed with the computation?

A naive way to achieve this is to introduce a fourth ring R4, and then pack
the next vector, e.g., say z = (z1, . . . , zr) as z in the space R∨

3 ⊗R4, and then
compute w′′ = TrR/R3⊗R4

(zw′). However, this way would require to blow up
the ring dimension linearly to the number of multiplications. This is clearly un-
satisfactory and impractical even in theory.

Final Idea. To tackle the above drawback, we observe that the space can be
reused so that the tensor product of three rings, e.g., R = R1⊗R2⊗R3, is suf-
ficient. Particularly, consider this example where we want to compute x⊗y⊗z.
We can pack x as

∑
xivi and y =

∑
yiv

∨
i wi. Then by using the trace computa-

tion, we obtain the intermediate result w′ =
∑

xiyiwi. Then we can pack z as
z =

∑
ziw

∨
i vi, and then compute w′′ = TrR/R1⊗R2

(w′z) =
∑

xiyizivi. Now, w′′

is the packed element of x⊙ y ⊙ z in the space R1 ⊗R2. Thus, by alternating
between the spaces R1 ⊗R2 and R1 ⊗R3, we can batch plaintext computation
for any arbitrary number of steps, without further blowing up the ring dimension.

Instantiation. There can be various ways to instantiate the framework. The most
intuitive one is to use the decomposability of cyclotomic rings. Particularly, let
ξm be the m-th root of unity for m = qpt for co-prime factors q, p, t. Then the
cyclotomic ring Z[ξm] is isomorphic to the tensor of the three smaller and linearly
disjoint cyclotomic rings, i.e., Z[ξm] ∼= Z[ξq]⊗ Z[ξp]⊗ Z[ξt]. In this case, we can
define sub-rings R1,R2,R3 as Z[ξq],Z[ξp],Z[ξt], respectively. We notice that the
dimension of R would be N = ϕ(m), and the dimensions of the sub-rings would
be ϕ(q), ϕ(p), ϕ(t), respectively, where ϕ is the Euler’s phi function.

Homomorphic Computation over Batch Plaintexts. Next we present how
to perform homomorphic computation over ciphertexts that encrypt the batch
plaintexts as above. First we observe that the RGSW supports the computation
naturally if we instantiate the scheme in the cyclotomic ring Z[ξm] as above.
While the prior analyses of RGSW (e.g., noise growth) focused on the case when
m is power-of-two, this work shows that similar analyses would also work in the
general cyclotomic rings, by using the toolkits of [26]. However, as we elaborate

8 We abuse the notation in the subscribe by using the rings for simplicity. Precisely,
this should be TrK/Q where K is the number field for which R is its ring of integers.
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below, a direct adoption of the analyses would hit several technical challenges,
and thus cannot derive a polynomial bound for the noise growth.

Notice that RGSW can be packed the same way as packing the plaintexts.
Particularly, given C1, . . . ,Cr that encrypt (x1, . . . , xr) ∈ Rr

1, C
′ =

∑
Civi is

an encryption of x =
∑

xivi. And similarly, we can pack the ciphertexts in the
other modes, e.g., C′ =

∑
Civ

∨
i wi. As the batch multiplication (for plaintexts)

consists of a multiplication followed by a trace computation, homomorphic mul-
tiplication would involve a RGSW multiplication followed by a homomorphic
trace evaluation. Thus, the task is reduced to how to homomorphically compute
the trace function.

Subtle Issue 1. We notice that TrR/R1⊗R3
(x) =

∑
σ∈Gal(R/R1⊗R3)

(x), i.e., sum-
mation over all the automorphisms in the Galois group. Furthermore, homomor-
phic computation of the automorphism σ() can be achieved by the BV key-switch
technique [8], roughly of the same complexity of a RGSW homomorphic multipli-
cation. Thus, a naive application of this idea would require τ = |Gal(R/R1⊗R3)|
calls to the key-switch methods, meaning roughly τ RGSW homomorphic mul-
tiplications. However, this would require complexity as much as computing the
individual unpacked homomorphic multiplications separately, meaning that the
batch computation does not provide any advantage. Thus, to instantiate a mean-
ingful batch homomorphic multiplication, we must be able to compute the trace
homomorphically within o(τ) RGSW homomorphic multiplications.

While this task is in general difficult, we observe that if R2 has a tower
structure, e.g., Z[ξτ ] for τ = 3d, then we can compute the homomorphic eval-
uation by making O(log τ) calls to the key-switch algorithm, which is roughly
O(log τ) RGSW multiplications. Thus under this structure, to compute x⊙ y of
size r ≲ τ , we need roughly O(log τ) RGSW multiplications to compute in batch,
which is significantly better than computing separately (which would require r
RGSW multiplications). We notice that this more efficient trace (homomorphic)
computation has been explored for cyclotomic rings of two’s power [3, 11], and
this work further extends the result to general cyclotomic rings.

Subtle Issue 2. Another perhaps even more subtle issue is the noise analysis.
Consider messages (plaintexts) x := (x1, . . . , xr) and y := (y1, . . . , yr) are packed
into x, y ∈ R, and Cx = Enc(x),Cy = Enc(y) (in the RGSW form). Then by the
asymmetry noise growth property [4], the error of Cx � Cy (where � denotes

RGSW homomorphic multiplication) would roughly be ex
√
N + xey, where N is

the dimension of the ring R, ex and ey are the noise terms inside Cx and Cy,
respectively. Then the homomorphic trace evaluation would incur a blowup of
some multiplicative factor W , which is some fixed polynomial. Thus, the overall
noise behavior would be roughly expoly(λ) + xWey.

However, to bootstrap within a polynomial modulus, the AP14/FHEW frame-
work crucially requires that ∥xW∥ ≤ 1. In the case of unpacked bit computation,
this is true as x ∈ {0, 1} and there is no need to do trace evaluation (so W can be
thought as 1). However, in the packed computation of our framework, ∥xW∥ is
inherently greater to 1. Thus, a direct analysis would result in a super-polynomial
blow up on noise, implying a super-polynomial modulus.
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Even though the general analysis does not work, for our particular batch
framework computation, we do identify a beautiful noise characterization if we
alternate the multiplications between R1 ⊗ R2 and R1 ⊗ R3, under a careful
algebraic analysis. Below we describe the core insight at a high level and refer
curious readers to the proof of Theorem 6.2 for the details.

As we discussed, the W term comes from the trace evaluation, i.e., Tr(·).
If we perform homomorphic multiplications on multiple ciphertexts, then the
following term will appear in the noise – Tr(x1 ·Tr(x2 ·Tr(. . .Tr(xke)), where e is
some fresh error, and xi’s are the packed messages. This term will approach W k

for the general case, resulting in an exponential blowup in the noise. However,
under the following two conditions: (1) we alternate the trace functions between
R1⊗R2 and R1⊗R3; (2) each xi is a packing of (xi1, . . . , xir) where ∥xij∥ = 1,
e.g., a power of some root of unity ξzq , then we can derive a simple and small
polynomial upper bound for this term.

This insight can be used to prove that the batch AP14/FHEW bootstrap
algorithm only incurs a polynomial error growth under our framework.

Overall – How Many Slots can the Framework Batch. Now we determine
how many slots our framework can batch when applying to the AP14/FHEW
framework. We can set the tensor ring Z[ξq]⊗R2⊗R3 to perform batch compu-
tation of the explicit framework of AP14/FHEW. Let N denote the dimension
of the ring R. By setting n = O(λ), q ≈ Õ(

√
n) and R2 roughly of a similar

dimension to R3, we can batch r = O(
√
N/q) slots. Asymptotically, we can set

N = O(n), resulting in r = O(λ1/4−o(1)).
Thus, we can bootstrap λ LWE ciphertexts, using O(λ/r) = Õ(λ1.75) FHE

multiplications. This proves Theorem 1.1.

Comparison with a Recent Progress. Recently, the work [16] considered
batch homomorphic computation, yet only achieved a weaker version of the task.
Briefly speaking, [16] is able to bootstrap one LWE input ciphertext, e.g., Enc(µ)
to ℓ LWE ciphertexts Enc(f1(µ)), Enc(f2(µ)), . . . ,Enc(fℓ(µ)), for ℓ different func-
tions. However the message space of µ is small, e.g., a bit or Zt for some small t,
so one cannot squeeze a long string x ∈ {0, 1}n into µ. Moreover, their method
does not support batch computing on multiple LWE inputs, whereas our frame-
work does. Thus, our framework has non-trivial advantages.

2 Preliminary

Notations. Denote the set of integers by Z, the set of rational numbers by Q,
real numbers by R, and complex numbers by C. Notation log refers to the base-2
logarithm. For a positive k ∈ Z, let [k] be the set of integers {1, ..., k}. We denote
[a, b] as the set [a, b] ∩ Z for any integers a ≤ b.

In this work, a vector is always a column vector by default and is denoted by
a bold lower-case letter, e.g., x. We use xi to denote the i-th element of x. We
use ∥x∥2 denotes the l2-norm, i.e., ∥x∥2 =

√∑
i ∥xi∥2 and ∥x∥∞ denotes the l∞-

norm of x, i.e., ∥x∥ = max
i
{∥xi∥}. We use bold capital letters to denote matrices.

For a matrix X, xi denotes its i-th column vector without extra instructions,
X⊤ denotes the transpose of X, ∥X∥2 := maxi{∥xi∥2}, ∥X∥∞ := maxi{∥xi∥∞}.
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Given some set S, Sm×n denotes the set of all m×n matrices with entries in S.
For matricesX ∈ Sm×n1 andY ∈ Sm×n2 over some set S, [X∥Y](∈ Sm×(n1+n2))
denotes the concatenation of X with Y.

For a set A and a probability distribution P, we use a← A to denote that a
is uniformly chosen from A and a ← P to denote that a is chosen according to
the distribution P.

2.1 Lattices and sub-Gaussian Random Variables.

Lattices. An n-dimension (full-rank) lattice Λ ⊆ Rn is the set of all integer
linear combinations of some set of independent basis vectors B = {b1, . . . , bn} ⊆
Rn, Λ = L(B) = {

∑n
i=1 zibi : zi ∈ Z}.

Sub-Gaussian. As discussed in [4,17], it is convenient to use the notion of sub-
Gaussian to analyze the error growth in the FHE constructions. A sub-gaussian
variable X with parameter α > 0 satisfies E[e2πtX ] ≤ eπα

2/t2 , for all t ∈ R.
– Boundedness: If X is a sub-Gaussian variable with parameter r > 0, then

Pr[|X| ≥ t] ≤ 2 exp(−πt2/r2).
– Homogeneity: If X is a sub-Gaussian variable with parameter r > 0, then

cX is sub-gaussian with parameter c · r for any constant c ≥ 0.
– Pythagorean additivity: If X1 and X2 are two sub-Gaussian variables with

parameter r1 and r2 respectively, then X1+X2 is sub-Gaussian with param-
eter r1 + r2, or

√
r21 + r22 if the two random variables are independent.

g−1 algorithm. This algorithm is used heavily in the research of FHE as we
summarize in the following lemma.

Lemma 2.1 For a given integer q, let ℓ = ⌈log q⌉ and g = (1, 2, .., 2ℓ−1). Then
there is a randomized, efficiently computable algorithm denoted as g−1 : Zq → Zℓ

such that the output of the function, x← g−1(a) is sub-gaussian with parameter
O(1), satisfying ⟨g,x⟩ = a mod q.

We can extend g−1 to the matrix case (using the notation G−1(·)) by applying
g−1(·) to each entry of the matrix.

2.2 Algebraic Number Theory Background
We present some necessary background of algebraic number theory. This work
heavily uses number fields and their rings of integers, and particularly, we rep-
resent a ring element as an algebraic number, instead of a polynomial. This
representation gives more algebraic insights for our designs and analyses. Due
to space limit, we defer some basic concepts to the full version of this work, and
note that more details can be found in the work [26].
Number Fields. This work focuses on number fields as field extension that
can be expressed as K = Q(α), by adjoining some α to Q where α is a root of
some irreducible polynomial f(x) ∈ Z[x]. Let ξm be the m-th root of unity, and
Q(ξm) is known as the m-th cyclotomic field. We also use the concept of tensor
fields, whose preliminaries are presented in the full version of this paper. Below
we present a useful decomposition property of cyclotomic fields.

Lemma 2.2 [26] Let m =
∏

ℓ mℓ be the prime-power factorization. Then K =
Q(ξm) is isomorphic to the tensor product ⊗ℓQ(ξmℓ

), via the bijection
∏

ℓ aℓ 7→
⊗ℓ(aℓ), where each aℓ in Kℓ can be naturally embedded in the field K.
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Geometry of Number Fields. Throughout this work, we use the canonical
embedding to define norms for algebraic numbers. As argued in [26], this defini-
tion is independent of the representation of the algebraic number and can give
us better bounds in the setting of general cyclotomic fields. Due to space limit,
we present the details in the full version of this work.

Trace. We notice that the cyclotomic field K = Q(ξm) is a Galois extension
over Q, and thus the homomorphisms {σi} are automorphisms that form the
Galois group, denoted by Gal(K/Q). The trace Tr = TrK/Q : K → Q of an
element a ∈ K can be defined as the sum of the embeddings: Tr(a) =

∑
i σi(a) =∑

σi∈Gal(K/Q) σi(a). Clearly, the trace is Q-linear, and also notice that Tr(a · b) =
⟨σ(a), σ(b)⟩, so Tr(a · b) is a symmetric bilinear form akin to the inner product
of the embeddings of a and b.

By the Galois theory, there is a bijection between the set of subfields E
of K containing Q and the set of subgroups G of Gal(K/Q). Thus, for any
intermediate subfield E, the Galois group of Gal(K/E) is also well-defined. Fur-
thermore, we can define the trace function for the intermediate subfields as:
TrK/E(a) =

∑
σ∈Gal(K/E) σ(a) for a ∈ K and TrE/Q(b) =

∑
σ∈Gal(E/Q) σ(b) for

b ∈ E. The trace functions behave well in towers, i.e. for a ∈ K,

TrK/Q(a) = TrE/Q(TrK/E(a)).

Ring of Integers and Ideals. An algebraic integer is an algebraic number
whose minimal polynomial over the rationals has integer coefficients. For a num-
ber field K, denote its subset of algebraic integers by OK , which forms a ring,
called the ring of integers of K. The norm of any algebraic integer is in Z.

An (integer) ideal I ⊂ OK is an additive subgroup and for any x ∈ K,
xI ⊂ I. Every ideal in OK is a set of all Z-linear combinations of some basis.

The sum of two ideals I,J is the set of all x+ y for x ∈ I, y ∈ J , and the
product ideal IJ is the ideal generated by terms of xy. A fractional ideal I ⊂ K
is a set such that dI ⊂ OK is an integral ideal for some d ∈ OK . A fractional
ideal I is invertible if there exists a fractional ideal J such that OK = I · J ,
which is unique and denoted as I−1.

Duality. For any lattice L ⊂ K(i.e. the Z-span of any Q-basis of K), its dual
is defined as L∨ = {x ∈ K|Tr(xL) ⊂ Z}. Then L∨ embeds as the complex
conjugate of the dual lattice, which means σ(L∨) = σ(L)∗ due to the fact that
Tr(xy) =

∑
i σi(x)σi(y) = ⟨σ(x), σ(y)⟩. It is easy to check that L = (L∨)∨, and

that if L is a fractional ideal, so is the L∨.
For any Q-basisB = {bj} ofK, we denote its dual basis byB∨ = {b∨j }, which

is characterized by Tr(bi ·b∨j ) =
{
1, i = j
0, i ̸= j

. It is immediate that (B∨)∨ = B, and

if B is a Z-basis of some fractional ideal I, then B∨ is a Z-basis of its dual ideal
I∨. If a =

∑
aj · bj for aj ∈ R is the unique presentation of a ∈ KR in basis B,

then aj = Tr(ab∨j ). For a fixed Zq-basis {b1, ..., bn} of OK/qOK , the randomized

algorithm g−1(·) can be extended to the subring of K modulo q, OK/qOK .
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Lemma 2.3 For a given integer q, let ℓ = ⌈log q⌉, g⊤ = (1, 2, .., 2ℓ−1) and
a fixed Zq-basis {b1, ..., bn} of OK/qOK , then there is a randomized, efficiently
computable function g−1 : OK/qOK → Oℓ

K , such that the output of the function,
x← g−1(a), always satisfies ⟨g,x⟩ = a mod q.

In details, if a = a1b1+ ...+anbn where ai ∈ Zq and xi ← g−1(ai) where the
function g−1(·) is defined in Lemma 2.1, then x = x1b1 + ... + xnbn and each
vector xi ∈ Zℓ

q is sub-gaussian with parameter O(1).

2.3 Learning with Errors Assumption

The learning with errors (LWE) problem was introduced by Regev [34], which is
as hard as several worst-case lattice problems. For the definition of LWE, we need
the following distribution As,χ. If χ is a distribution over Z and s ∈ Zn

q , a sample
from the distribution As,χ is of the form (b,a) ∈ Zq × Zn

q with b = ⟨a, s⟩ + e
mod q, where a is chosen from Zn

q uniformly and e is chosen from the distribution
χ. Now we propose the problem formally in the following definitions.

Definition 2.4 (LWE) Let χ be a distribution over Z, an integer modulus q ≥
2. The decision version of LWE, denoted as LWEn,q,χ, is given m pairs of (b′,a′) ∈
Zq × Zn

q and decide these pairs are from the uniform distribution or As,χ.

The ring variant of LWE is the foundation of this work. In the rest of the paper,
the special ring R = OK is used by default. We present the definition of RLWE
by defining the distribution As,χ as follow. Let χ be a distribution over KR and
s ∈ Rq, and then a sample from As,χ is of the form

(b = s · a+ e mod qR, a) ∈ KR/q ×Rq,

where a← Rq and e← χ. Then, the definition of RLWE is presented as follows.

Definition 2.5 (RLWE) For security parameter λ, let n = n(λ) be the dimen-
sion, q = q(λ) ≥ 2 be an integer modulus, and χ = χ(λ) be a distribution over
KR. The task of decision RLWEn,q,χ is, given m pairs of (b′, a′) ∈ KR/q × Rq,
decide whether the pairs are from the uniform distribution or As,χ.

There is strong evidence showing hardness of LWE e.g., [7, 34] and RLWE,
e.g., [25,26,33]. These problems have been extensively studied in the NIST’s post-
quantum standardization process in recent years. Particularly, many plausible
candidates are LWE or RLWE-based designs.

Remark 2.6 In this work, we present the primal version of the RLWE where the
secret s lies in the primal ring Rq, where the original RLWE [25] is defined in
the dual. Nevertheless, the dual and primal versions are equivalent up to a tweak
factor [31], and thus the primal variant is also plausibly as hard. For simplicity
of presentation, this work uses secrets in the primal ring by default.
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3 RGSW in General Cyclotomic Rings

In this section, we first revisit the basic RLWE encryption scheme and the FHE
scheme GSW [4,20] in the ring settings, denoted as RGSW. The RGSW has been
analyzed in power-of-two cyclotomic rings, e.g., [13,17], yet the prior analyses on
noise growth crucially relies on the cyclotomic polynomial Φm(X) = Xm/2 + 1,
due to some nice properties of the coefficient embedding in such type of rings.
However, this work requires to work with RGSW in general cyclotomic rings,
where the prior analyses do not carry over directly. To handle this, we re-analyze
the noise growth of RGSW by using the techniques of canonical embedding as de-
scribed in [26], showing that RGSW in general cyclotomic rings behaves basically
the same as that in the power-of-two setting.
Important Note. Throughout this work, we use the algebraic representation
for ring elements for better mathematical insights.

Below we describe the parameters of the RLWE and RGSW schemes.

– λ: the security parameter.
– R: the m-th cyclotomic ring with degree N = ϕ(m).
– Q: the modulus.
– RQ: the quotient ring R/QR.
– D: some error distribution over R.
– ℓ: set ℓ = ⌈logQ⌉.

3.1 RLWE Scheme

We start from the basic symmetric RLWE encryption scheme (in the primal form
for simplicity). The scheme contains the following algorithms.

– KeyGen(1λ): Choose randomly s← RQ and output sk := (1,−s)⊤ ∈ R2
Q.

– Enc(sk, µ ∈ Rt): Sample a uniform ring element a← RQ and a noise e← D.

The output ciphertext is set as c :=

(
sa+ e

a

)
+

(⌊
Q
t

⌉
µ

0

)
∈ R2

Q.

We call
⌊
Q
t

⌉
µ the encoded message of c and µ the encrypted message of c.

– Dec(c, sk): The algorithm outputs an element µ in Rt as follow:

µ = ⌊⟨(1,−s), c⟩⌉t := ⌊t⟨(1,−s), c⟩/Q⌉ mod t.

We use RLWEt/Q
s (µ) to denote the set of all RLWE ciphertexts of encoded message

µ under secret s with ciphertext modulus Q and plaintext modulus t. Sometimes,

we use RLWEQ
s (

⌊
Q
t

⌉
µ) to denote the same set. The latter notion drops the t in

the super-script, but presents the whole encoded message in the parentheses.

3.2 RGSW Scheme

Now we present the RGSW scheme, which is basically the same as the work [4]
by moving the algebraic structure to the setting of general cyclotomic rings. We
notice that it suffices to develop our further results by using the symmetric-key
version of RGSW, and thus we just present this version for convenience. The
public-key version works analogously.
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We denote the fixed gadget vector as g⊤ = (1, 2, ..., 2ℓ−1), and the gadget
matrix is defined as G = g⊤ ⊗ I2. As demonstrated by [4, 27], the gadget vec-
tor/matrix play a vital role in the homomorphic computation methods. Similar
to the RLWE scheme, we present the primal version of RGSW.

– KeyGen(1λ): Choose randomly s← RQ and set sk := (1,−s)⊤ ∈ R2
Q.

– Enc(sk, µ ∈ R ): Sample a uniform vector a ← R2ℓ
Q and a noise vector

e← D2ℓ. The ciphertext is set as C :=

(
sa⊤ + e⊤

a⊤

)
+ µG ∈ R2×2ℓ

Q .

– Dec(C, sk): The algorithm outputs an element µ in R/2R as follow9:

µ =
⌊
⟨(1,−s)⊤, c(ℓ−1)⟩

⌉
mod 2,

where c(ℓ−1) is the (ℓ− 1)-th column of C.

– Homomorphic Addition C1 ⊞C2: It takes as inputs two RGSW cipher-
texts C1, C2 under the same secret key sk and outputs C1⊞C2 := C1+C2.

– Homomorphic Multiplication C1 � C2: It takes as inputs two RGSW
ciphertexts C1, C2 under the same secret key sk and outputs the following
as the result of homomorphic multiplication: C1 � C2 ← C1 ·G−1(C2).

Here G−1(·) can be either deterministic or randomized. As argued by [4], a
randomized instantiation can yield tighter parameters of the noise growth
than those derived from the deterministic version. We notice that in the ring
setting, a basis needs to be specified when computing G−1.

– External Product C1⊠ c2: It takes as inputs a RGSW ciphertexts C1 and
a RLWE ciphertext c2 under the same secret key sk and outputs the following
RLWE ciphertext as the result of external product: C1 ⊠ c2 ← C1 · g−1(c2).

The IND-CPA security of the above RGSW scheme (for general cyclotomic rings)
follows from the RLWE assumption, using the same argument of [4,20]. Therefore,
this work focuses on the noise analyses, which are not trivial when porting the
results to general cyclotomic rings.

Definition 3.1 Adapt the notations from the above. Given a ciphertext C that
encrypts message µ under a secret key sk = (1,−s)⊤, we can express as the
following relation sk⊤ ·C = µ · sk⊤ ·G+e⊤ ∈ Rm

Q , for some error vector e. Then

define Errµ(C) := e⊤ = sk⊤ ·C− µ · sk⊤ ·G. When the context is clear, we may
drop the index µ.

We use RGSWQ
s (µ) to denote the set of all the RGSW ciphertexts that encrypt

µ under secret s in the modulo Q space. If the parameters Q are clear from the
context, we would use the abbreviation RGSWs(µ) for simplicity.

9 We notice that R2 is used to denote a second ring in our framework. To avoid
notation overloading, we use R/2R to denote R modulo 2.
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Note. The above error function can be defined for RLWE ciphertexts analo-
gously. We do not present another definition to avoid repetition.

Below we present a lemma that summarizes the error behavior of the homo-
morphic operations. The error behavior in the general cyclotomic rings is similar
to that in the case of power-of-two as in the prior work [13, 17], yet requires a
more refined analysis. Due to the space limit, we describe the statement and
defer the proof to the full version of this work.

Lemma 3.2 For any RGSW ciphertexts C1,C2 that encrypt µ1, µ2 with the
error terms e1, e2 respectively, then we have the following.

– Err(C1 ⊞C2) = e⊤1 + e⊤2 .
– Err(C1 � C2) = e⊤1 ·G−1(C2) + µ1 · e⊤2 .

Furthermore, suppose G−1 is sampled with respect to some Z-basis of R, i.e.,
B = {b1, ..., bn}, such that maxi∈[n]{∥σ(bi)∥∞} ≤ 1 as Lemma 2.3. Then the
following facts hold.

– Denote e⊤1 ·G−1(C2) as e⊤ = (e1, ..., e2ℓ). Then each entry of e is an inde-
pendent random variable.

– ||σ(e)||∞ is upper bounded by a sub-Gaussian variable with parameter O(r),
for some real positive r ≤

√
N · logQ · ∥σ(e1)∥∞.

4 New Batch Homomorphic Methods via Tensor Rings

We present our framework for batch (or SIMD) homomorphic computation by
using the tensor of linearly disjoint fields (and their rings of integers). Our frame-
work is naturally compatible with the AP14/FHEW/TFHE bootstrapping meth-
ods, resulting in more efficient batch bootstrapping mechanisms. We present our
new framework for batch plaintext computation, and then show how to per-
form homomorphically with the framework. In this section, we present in a more
abstract and algebraic way, and in Section 5 we show instantiations.

4.1 Framework of Batch Plaintext Computation

We first present some math background and then our new framework.

Math Background and Notations. Let K = K1 ⊗ K2 ⊗ K3 be a tensor
field of three linearly disjoint fields, and R1, R2, R3 be their rings of integers,
respectively. It follows that the ring of integers ofK (denoted asR) is isomorphic
to R1 ⊗R2 ⊗R3. Furthermore, we present some useful facts and notations.

– K12 and K13 denote K1 ⊗K2 and K1 ⊗K3, respectively.
– R,R12 andR13 denote the rings of integers ofK,K12, andK13, respectively.

It is known that R ≡ R1 ⊗R2 ⊗R3, R12 ≡ R1 ⊗R2, and R13 ≡ R1 ⊗R3.
– Let (v1, v2, . . . , vρ) and (w1,w2, . . . ,wτ ) be some Z-bases of R2 and R3, re-

spectively, where ρ and τ are the degrees of the rings R2 and R3.
– Denote (v∨1 , v

∨
2 , . . . , v

∨
ρ ) and (w∨

1 ,w
∨
2 , . . . ,w

∨
τ ) as the corresponding Z-bases

of the dual spaces R∨
2 and R∨

3 , respectively.

15



– Let r = min(ρ, τ), the maximal number of slots our method can pack.
– Denote the trace functions (with respect to different underlying subfields) as

TrK/K12
: K → K12 and TrK/K13

: K → K13

Construction. Now we present our plaintext encoding/computation methods.

– Plaintext Packing. The algorithm takes input (x1, . . . , xr) ∈ Rr
1, and an

index to one of the four modes: (1) “R12”, (2) “R13”, (3) “R12 → R13”,
and (4) “R13 → R12”, and outputs an encoding of the input. The packing
algorithm does one of the following, selected by the mode.

• Mode “R12”: output
∑r

i=1 xi · vi ∈ R12.
• Mode “R13”: output

∑r
i=1 xi · wi ∈ R13.

• Mode “R12 → R13”: output
∑r

i=1 xi · v∨i wi ∈ R1 ⊗R∨
2 ⊗R3.

• Mode “R13 → R12”: output
∑r

i=1 xi · viw∨
i ∈ R1 ⊗R2 ⊗R∨

3 .

We assume that the packing algorithm will attach an index to its mode.
– Addition. The algorithm takes as input two encodings, namely (x,mode1),

(y,mode2), outputs (x+ y,mode1) if mode1 = mode2, otherwise ⊥.
– Multiplication. The algorithm takes input two encodings, namely (x,mode1)

and (y,mode2), and does one of the following, selected by the modes.

• mode1 = “R12” and mode2 = “R12 → R13”: output TrK/K13
(xy) ∈ R13.

• mode1 = “R13” and mode2 = “R13 → R12”: output TrK/K12
(xy) ∈ R12.

• mode1 = “R12 → R13” and mode2 = “R12”: output TrK/K13
(xy) ∈ R13.

• mode1 = “R13 → R12” and mode2 = “R13”: output TrK/K12
(xy) ∈ R12.

• Otherwise, output ⊥.
Correctness of these operations can be easily checked as we summarize in the
following theorems. We present the proof in the full version of this work.

Theorem 4.1 (Correctness of Addition) For any x = (x1, . . . , xr) ∈ Rr
1

and y = (y1, . . . , yr) ∈ Rr
1, let x, y be encodings of x and y respectively of the

same mode under the plaintext packing. Then x + y is an encoding of x + y of
the same mode under the plaintext packing.

Theorem 4.2 (Correctness of Multiplication) For any x = (x1, . . . , xr) ∈
Rr

1 and y = (y1, . . . , yr) ∈ Rr
1, let x, y be encodings of x and y respectively of

modes “R1b” and “R1b → R1f(b)” under the plaintext packing for b ∈ {2, 3}
and mapping f(2) = 3, f(3) = 2, and let c be the output of the multiplication
algorithm on inputs x, y. Then c is an encoding of (x1y1, x2y2, . . . , xryr) ∈ Rr

1,
with the mode “R1f(b)” under the plaintext encoding.

4.2 Homomorphic Encoding and Computation

We now present how to homomorphically perform the batch plaintext compu-
tation in the prior section. Here we assume two homomorphic evaluation algo-
rithms, Eval-TrK/K12

(·) and Eval-TrK/K13
(·), as black-boxes, and will instantiate

these algorithms in the next section (i.e., Section 4.3). We first describe the
syntax of these two algorithms and some other necessary backgrounds.

16



Homomorphic Eval of Trace. Let Eval-TrK/K12
(·) be a homomorphic eval-

uation algorithm that takes input either a RGSW ciphertext C ∈ RGSWs(µ)
or a RLWE ciphertext c ∈ RLWEs(µ), and outputs a RGSW ciphertext C′ ∈
RGSWs(TrK/K12

(µ)), or respectively a RLWE ciphertext c′ ∈ RLWEs(TrK/K12
(µ)).

Importantly, here each entry of the input ciphertext, e.g., C or c, and the mes-
sage µ may be in a slightly larger (tensor) ring, i.e., (R1⊗R∨

2 ⊗R3). The output
C′ or c′, and the underlying message go back to the original ring (R1⊗R2⊗R3).

The syntax of Eval-TrK/K13
(·) can be defined analogously, so here we omit

the statement to avoid repetition.

G−1 for the dual spaces. Our homomorphic computation uses G−1(C) for
C ∈ (R1 ⊗ R∨

2 ⊗ R3)
2×2ℓ or (R1 ⊗ R2 ⊗ R∨

3 )
2×2ℓ when computing the homo-

morphic multiplications, and analogously uses g−1(c) for c ∈ (R1 ⊗R∨
2 ⊗R3)

2

or ∈ (R1 ⊗ R2 ⊗ R∨
3 )

2 when computing the homomorphic external products.
We recall that in the ring/module settings, the function G−1 or g−1 is defined
with respect to some Z-basis, i.e., express the ring element as integer coefficients
with respect to the basis, and then do some (randomized) bit-decomposition.
(Ref. Lemma 2.3).

Now we present the homomorphic computation methods corresponding to
the plaintext packing/computation in Section 4.1.
– RGSW-Pack. The algorithm takes input r RGSW ciphertextsC1,C2, . . . ,Cr ∈
R2×2ℓ, where each Ci ∈ RGSWs(µi) for µi ∈ R1, and an index to one of the
four modes: (1) “R12”, (2) “R13”, (3) “R12 → R13”, and (4) “R13 → R12”.
The algorithm outputs a packed RGSW ciphertext, by doing one of the fol-
lowing four according to the mode.
• Mode “R12”: output

∑r
i=1 Ci · vi ∈ R2×2ℓ.

• Mode “R13”: output
∑r

i=1 Ci · wi ∈ R2×2ℓ.
• Mode “R12 → R13”: output

∑r
i=1 Ci · v∨i wi ∈ (R1 ⊗R∨

2 ⊗R3)
2×2ℓ.

• Mode “R13 → R12”: output
∑r

i=1 Ci · viw∨
i ∈ (R1 ⊗R2 ⊗R∨

3 )
2×2ℓ.

The packing algorithm attaches the index of its mode in the clear.
– RLWE-Pack. The algorithm takes input r RLWE ciphertexts c1, c2, . . . , cr,

where each ci ∈ RLWEs(µi) for µi ∈ R1, and an index to one of the four
modes the same as RGSW-packing. The algorithm outputs an encoding of
the RLWE ciphertexts.
• Mode “R12”: output

∑r
i=1 ci · vi ∈ R2.

• Mode “R13”: output
∑r

i=1 ci · wi ∈ R2.
• Mode “R12 → R13”: output

∑r
i=1 ci · v∨i wi ∈ (R1 ⊗R∨

2 ⊗R3)
2.

• Mode “R13 → R12”: output
∑r

i=1 ci · viw∨
i ∈ (R1 ⊗R2 ⊗R∨

3 )
2.

We assume that the mode is included in the clear.
– Add, (Addition for RGSW-encodings). The algorithm takes as input two

RGSW-encodings, namely (C1,mode1), (C2,mode2), outputs (C1+C2,mode1)
if mode1 = mode2, otherwise ⊥.

– Add10, (Addition for RLWE-encodings). The algorithm takes as input two
RLWE-encodings, namely (c1,mode1), (c2,mode2), outputs (c1 + c2,mode1)
if mode1 = mode2, otherwise ⊥.

10 Here we use the same function name as the above, where the input type specifies
which function the call refers to.
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– Mult, (Homomorphic Product for RGSW-RGSW). The algorithm takes
input two (packed) RGSW ciphertexts, namely (C1,mode1) and (C2,mode2),
and then computes C = C1 ·G−1(C2). Then it outputs as:
• mode1 = “R12” andmode2 = “R12 → R13”: output (Eval-TrK/K13

(C),R13).
• mode1 = “R13” andmode2 = “R13 → R12”: output (Eval-TrK/K12

(C),R12).
• mode1 = “R12 → R13” andmode2 = “R12”: output (Eval-TrK/K13

(C),R13).
• mode1 = “R13 → R12” andmode2 = “R13”: output (Eval-TrK/K12

(C),R12).
• Otherwise, output ⊥.

– Ext-Prod, (External Product for RGSW-RLWE). The algorithm takes in-
puts a RGSW encoding (C1,mode1) and a RLWE encoding (c2,mode2), and
then computes c = C1 ⊠ c2 = C1 · g−1(c2). Then it outputs according as:
• mode1 = “R12” and mode2 = “R12 → R13”: output Eval-TrK/K13

(c).
• mode1 = “R13” and mode2 = “R13 → R12”: output Eval-TrK/K12

(c).
• mode1 = “R12 → R13” and mode2 = “R12”: output Eval-TrK/K13

(c).
• mode1 = “R13 → R12” and mode2 = “R13”: output Eval-TrK/K12

(c).
• Otherwise, output ⊥.

The readers should keep it in mind that the above operations are in RQ,
where the modulo Q is taken implicitly. Next we describe theorems to summarize
the correctness and error growth. Detailed proofs appear in the full version.

Theorem 4.3 Let C1, . . . ,Cr be RGSW ciphertexts with error terms e1, . . . , er,
messages µ1, . . . , µr ∈ R1 and C′

1, . . . ,C
′
r be RGSW ciphertexts with error terms

e′1, . . . , e
′
r, messages µ′

1, . . . , µ
′
r ∈ R1. Denote

– RGSW-Pack(C1, . . . ,Cr, “R12”) as D,
– RGSW-Pack(C′

1, . . . ,C
′
r, “R12 → R13”) as D′,

– Mult(D′,D) as F,
– the encrypted messages of the packed ciphertexts D as µD,
– the encrypted messages of the packed ciphertexts D′ as µD′ .

Then, µD =
∑r

i=1 µi · vi, µD′ =
∑r

i=1 µ
′
i · v∨i wi and F is a packed RGSW cipher-

text encrypting TrK/K13
(µD · µD′) with mode R13.

Theorem 4.4 Let c1, . . . , cr be RLWE ciphertexts with error terms e1, . . . , er,
messages µ1, . . . , µr ∈ R1 and C′

1, . . . ,C
′
r be RGSW ciphertexts with error terms

e′1, . . . , e
′
r, messages µ′

1, . . . , µ
′
r ∈ R1. Denote

– RLWE-Pack(c1, . . . , cr, “R12”) as d,
– RGSW-Pack(C′

1, . . . ,C
′
r, “R12 → R13”) as D′,

– Ext-Prod(D′,d) as f ,
– the encrypted messages of the packed ciphertexts d as µd,
– the encrypted messages of the packed ciphertexts D′ as µD′ .

Then, µd =
∑r

i=1 µi · vi, µD′ =
∑r

i=1 µ
′
i · v∨i wi and f is a packed RLWE cipher-

text encrypting TrK/K13
(µd · µD′) with mode R13.

Assuming that for any x (in the input domain), Err(Eval-TrK/K13
(x)) =

TrK/K13
(Err(x)) + e′ for some e′, whose norm upper bound can be independent

of x, then we have Err(f) = TrK/K13

(∑
i e

′
iv

∨
i wig

−1(d) + µD′(eivi)
)
+ e′.

We notice the above two theorems can be easily adapted to the setting of the
modes R13 and R13 → R12. We omit the statement to avoid repetition.
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4.3 Homomorphic Evaluation of the Trace Function

In this section, we present an efficient method for homomorphic evaluation of
the trace function, which was used as a black-box in the homomorphic multipli-
cation in the prior subsection. There have been efficient methods studied in the
literature, e.g., [3, 11, 22], in the cyclotomic rings of powers of two, and here we
generalize the prior methods to the setting of general cyclotomic rings.

General Method over RLWE Ciphertexts. Suppose E/F is an algebraic
extension and the degree [E : F ] = d, then the function TrE/F is the sum of d
automorphisms on E that fix every element in F . These d automorphisms form
a group, namely the Galois group denoted as Gal(E/F ). Then we can express
TrE/F (·) =

∑
σ∈Gal(E/F ) σ(·).

The general way to compute homomorphic evaluation of TrE/F is to compute
homomorphic evaluation of all the σ’s in the Galois group, and then sum them
up. We notice that homomorphic evaluation of any automorphism σ can be
achieved using the classic key-switch technique [8] as follows. We first present
the syntax of the key-switch algorithm.

Key-Switch Algorithm. Let KS be the key-switch algorithm (the ring variant
of [8]) that takes input a RLWE ciphertext (b, a) ∈ RLWEs(µ) ∈ R2

Q and an

evaluation key evk(σ) and outputs a RLWE ciphertext (b′, a′) ∈ RLWEσ(s)(µ) ∈
R2

Q. We present the details of KS in the full version of this work.

Given the evaluation algorithm KS, homomorphic evaluation of Tr can be
achieved by the following. Given input (b, a) ∈ RLWEs(µ) and evaluation keys
{evkσ}σ∈Gal(E/F ), the algorithm does:

1. For each σ ∈ Gal(E/F ), compute cσ = (σ(b), σ(a)) and set c′σ = KS(cσ, evk
(σ−1)).

2. Output
∑

σ∈Gal(E/F ) c
′
σ as the resulting ciphertext.

It is not hard to check that for each σ, cσ ∈ RLWEσ(s)(σ(µ)), and by correctness
of KS, c′σ ∈ RLWEs(σ(µ)). Thus, the above is a correct algorithm. Moreover, it
requires d calls11 to the underlying KS algorithm.

More Efficient Evaluation with Algebraic Structures. If there is an
intermediate field K between E and F , then we can (homomorphically) compute
the trace function more efficiently via the composition property of the trace
function. Let F ⊂ K ⊂ E be algebraic extensions, [E : K] = d1 and [K : F ] = d2,
then we have d = d1 · d2 and TrE/F = TrK/F ◦ TrE/K . By definition, we have
TrE/K(·) =

∑
σ∈Gal(E/K) σ(·), and TrK/F (·) =

∑
σ∈Gal(K/F ) σ(·). To compute

TrE/F (x), we can first compute x′ = TrE/K(x), and then output TrK/F (x
′). The

homomorphic evaluation just computes the basic trace evaluation twice of the
cases E/K and K/F . In this way, the algorithm would require only d1+d2 calls
to the underlying KS. This is more efficient than the basic algorithm applied to
the case E/F directly, which would require d = d1 · d2 calls to the KS.
11 For small d’s, the Hoistng technique [22] can be used to improve efficiency.
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The Tower Case. The above idea works best in the tower case, where there are
many intermediate fields between E and F . In the rest, we present an optimized
homomorphic evaluation algorithm for TrK/K13

: R1 ⊗ R∨
2 ⊗ R3 7→ R1 ⊗ R3,

assuming there are many intermediate fields. We discuss how to instantiate this
later in Section 5. Note that a homomorphic algorithm for the other case TrK/K12

can be derived similarly.

Assume the following tower structure: K13 = Et ⊂ Et−1 ⊂ · · · ⊂ E1 = K.
Then we can express TrK/K13

= TrEt−1/Et
◦ TrEt−2/Et−1

◦ · · · ◦ TrE1/E2
. We

will present how to instantiate this tower structure in the cyclotomic fields in
Section 5. By using the basic homomorphic evaluation on the cases Ei/Ei+1, we
can derive a more efficient algorithm.

Before presenting formally the procedure, we notice that there is a technical
subtlety – the input RLWE ciphertext is in the dual module, e.g., (R1⊗R∨

2⊗R3)
2,

so that we cannot directly apply the above procedure. To tackle this, we first
observe that there is an integer P that is invertible under modulo Q, and can
map an element in the dual module to a ring element by the multiplication, i.e.,
(1) P−1 mod Q exists, and (2) for every x ∈ R1⊗R∨

2 ⊗R3, P ·x ∈ R1⊗R2⊗R3.
In Section 5, we show how to set P concretely with detailed instantiations of the
required tensor rings. By using this number P , we present a tweaked method in
Algorithm 4.1 below.

Algorithm 4.1: (RLWE)-Eval-TrK/K13
with the tower structure

Input :
– A RLWE ciphertext (b, a) ∈ (R1 ⊗R∨

2 ⊗R3)
2 that encrypts a message

µ ∈ R1 ⊗R∨
2 ⊗R3 under a secret s ∈ R.

– Evaluation Key: {evk(σ)}σ∈
⋃

i∈[t−1] Gal(Ei/Ei+1), and

evk ∈ RGSWs(P
−1 · s) ∈ R2.

Output : A RLWE ciphertext c ∈ RLWEs(TrK/K13
(µ)).

1 Initialize c = (b, a), and set ā = P · a (interpreted as an element in R) ;
2 Set c′ = (0, ā) and compute d = evk⊠ c′; �d ∈ RLWEs(P

−1s · ā) ∈ R2 ;
3 for i = 1 to t− 1 do
4 Let (d1, d2) = d;

5 Compute d′ =
∑

σ∈Gal(Ei/Ei+1)
KS((σ(d1), σ(d2)), evk

(σ−1));

6 Set d = d′ and d′ = (0, 0)

7 Return (TrK/K13
(b), 0)− d. �d ∈ RLWEs(TrK/K13

(sa)) ∈ R2

Remark 4.5 Here we slightly abuse the notation of the automorphism σ ∈
Gal(Ei/Ei+1) for simplicity of presentation.

As the input domain of such σ is Ei, we should not give (d1, d2) ∈ R ⊂ K
(elements of the full ring) as the input to the automorphism. Nevertheless, by
the Galois theorem, for any σ ∈ Gal(Ei/Ei+1), there exists at least one σ′ ∈
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Gal(K/Ei+1) such that σ′|Ei
= σ. In this paper, σ refers to (an arbitrary) of

such σ′ who acts identically as σ for all inputs in Ei.

To verify correctness, we first notice that TrK/K13
(b) = TrK/K13

(sa)+TrK/K13
(e)+

TrK/K13
(µ) ∈ R. Next, at the end of the for loop (line 6), we can easily check

that d ∈ RLWEs(TrK/K13
(P−1sā)). Then we have

TrK/K13
(P−1sā) = P−1TrK/K13

(sā) = P−1TrK/K13
(sPa) = TrK/K13

(sa).

Crucially the last equality holds because TrK/K13
(sa) ∈ R1 ⊗ R3, and P−1 ·

TrK/K13
(sPa) = P−1 · P · TrK/K13

(sa) = TrK/K13
(sa) in modulo Q. Then cor-

rectness simply follows. As the modulus does not change in the whole procedure,
we omit the modulo Q description in the algorithm.

To analyze efficiency, we first denote the degrees as di = [Ei : Ei+1] for
i ∈ [t − 1]. Then the above algorithm makes

∑
i∈[t−1] di calls to the underlying

KS algorithm, which is again way more efficient than the basic algorithm applied
to the case K/K13, which would require d =

∏
i∈[t−1] di calls to KS. Moreover,

if each di = O(1), then the efficient algorithm as above would require O(log d)
calls to the KS, which is significantly better than d calls by the basic approach.

Below we present the noise analysis and defer the proof to the full version.

Theorem 4.6 Adapt the notations of Algorithm 4.1. Assume that for every d ∈
RLWEs(µ), Err(KS(d)) = Err(d)+e′ where ∥e′∥∞ is a sub-Gaussian with param-
eter B, and for the initial d, ∥Err(d)∥∞ is also a sub-Gaussian with parameter
B. Let c be the output ciphertext of the algorithm. Then Err(c) = TrK/K13

(e)+e′′

where e is the noise of the input ciphertext, and ∥e′′∥∞ is a sub-Gaussian with
parameter upper bounded by 3dB.

Eval-Tr for RGSW. The Eval-TrK/K13
algorithm for RLWE ciphertexts can be

extended to RGSW ciphertexts. Details are in the full version.

5 Instantiations

In this section, we present how to instantiate all the components used in the
abstraction in Section 4, so that the parameters can be analyzed concretely.
Particularly, we need to instantiate: (1) tensor ring R = R1 ⊗R2 ⊗R3, and (2)
good bases of these rings and their duals. Then we can further determine pa-
rameters for the noise growth in Theorems 4.3 and 4.4, under the instantiations.

Tensor Fields/Rings. We notice that any cyclotomic field has some nice
properties of decomposability, i.e., for m = qρ′τ ′ where q, ρ′, τ ′ are co-prime
integers, then Q(ξm) ∼= Q(ξq) ⊗ Q(ξρ′) ⊗ Q(ξτ ′). Thus, we can use their rings
of integers to instantiate our framework. Particularly, we set R1 = Z[ξq], R2 =
Z[ξρ′ ], and R3 = Z[ξτ ′ ]. We notice that the tensor ring R = R1 ⊗ R2 ⊗ R3

has dimension N = ϕ(m), R2 has dimension ρ = ϕ(ρ′), and R3 has dimension
τ = ϕ(τ ′). Moreover, we have N = ϕ(q)ρτ . We notice that the hardness of RLWE
scales with N [2, 25,32].
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To apply the fast trace evaluation as Section 4.3, we choose ρ′ and τ ′ as
powers of primes, i.e., ρ′ = pd1

1 and τ ′ = pd2
2 , for some small primes p1, p2 of

constant sizes, e.g., 3, 5. We notice that for any element x ∈ R∨
2 , ρ

′x ∈ R2, and
therefore we can set P = ρ′ in Algorithm 4.1. Similarly, we can set P = τ ′ for
computing (RLWE)-Eval-TrK/K12

. As argued before, the homomorphic evaluation
of the trace function would need O(log ρ′) or O(log τ ′) calls to the key-switch
function (for the RLWE case). To maximize the space utility, we would set ρ ≈ τ .
For the batch bootstrapping of the AP14/FHEW framework, we set q to be the
input LWE modulus, which can be Õ(

√
n) where n is the LWE dimension.

Bases. We next determine concrete bases for R1,R2,R3 (and their dual rings),
denoted as B1,B2, B3(and B∨1 ,B∨2 , B∨3 , respectively).

Particularly, we set B∨i to be the decoding basis of the work [26] for each
i = 1, 2, 3. As argued in [26], the primal bases B1,B2, B3 are defined as the
conjugate of the powerful bases. These bases are “short”, and thus would give
tighter bounds for our analyses. Below we briefly summarize some nice properties
about the decoding bases and their duals from [26].

Lemma 5.1 ( [26]) Let z = we be some prime power, d be the decoding basis
of Z∨[ξz], and b be the dual of d. Then for any element d ∈ d, b ∈ b, we have
∥b∥∞ = 1 and ∥d∥∞ ≤ 2(w − 1)/z.

By using our notation in Section 4.1, we denote the conjugate of the powerful
basis as B2 = {vi}i∈[ρ], B3 = {wi}i∈[τ ], and the decoding bases (their dual) as
B∨2 = {v∨i }i∈[ρ], B∨3 = {w∨

i }i∈[τ ]. Then by the above lemma, we have (1) ∥vi∥∞ =
1 and ∥wi∥∞ = 1, and (2) ∥v∨i ∥∞ ≤ 2(p1 − 1)/ρ′ and ∥w∨

i ∥∞ ≤ 2(p2 − 1)/τ ′.
As we choose q, ρ′, τ ′ to be relatively prime, we can use the individual bases

to determine a basis of the tensor ring, i.e., Bi ⊗ Bj is the powerful basis of
Ri ⊗Rj . Also, we set parameter r = min(ρ, τ) as the batch parameter, i.e., the

maximal number of slots our method can pack. If we set ρ ≈ τ , then r ≈
√

N/q.

Examples. We give some examples of concrete numbers to illustrate the above
ideas. LetQ be the RLWEmodulus, and σ be the noise parameter (in the absolute
value). The RLWE hardness can be estimated by N (the ring dimension) and
noise-to-modulus ratio σ/Q (also known as α) from the estimator [2].

m-cyclotomic Dim N = ϕ(m) Batch param Modulus Noise Hardness Input Dim
= q × ρ′ × τ ′ = ϕ(q)× ρ× τ r Q (approx) σ (in bit) n

Set 1 251 ∗ 23 ∗ 32 250 ∗ 4 ∗ 6 = 6000 4 2128 3.2 129.9 500

Set 2 211 ∗ 32 ∗ 7 210 ∗ 6 ∗ 6 = 7560 6 2128 3.2 178.4 500

Table 1. Some examples of parameters

Note: These examples demonstrate some ideas to set concrete parameters. How
to optimize the concrete performance is an interesting future work. The moduli
Q’s here are approximated at this order. There can be other constraints, e.g., Q
and m are co-prime for NTT accelerations.
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Key-Switch Instantiation. Our trace evaluation algorithms (both the RLWE
and RGSW settings) require to use the key-switch procedure. This can be achieved
with existing techniques, e.g., [22]. Details are presented in the full version.

Particularly, by the parameters of the key-switch (in the full version) and
Lemma 3.2, we can set B =

√
N · logQ · E in Theorem 4.6, where E is the

noise bound in the key-switch keys. By using these instantiations applied to
Theorem 4.4, we can achieve the following corollary for the external product:

Corollary 5.2 Adapt the notations of Theorems 4.4. If the errors of the key-
switch keys is upper bounded by E, and g−1 is with respect to the basis B1⊗B2⊗
B3. Then ∥Err(f)∥∞ is upper bounded by

2ρ(p1 − 1)
√
N logQ

ρ′

∑
∥e′i∥∞ + ρ∥µD′∥

∑
∥ei∥∞ + ∥e′′∥∞,

where ∥e′′∥∞ is a sub-Gaussian with parameter upper bounded by 3ρ′
√
N logQE.

A similar bound can be derived for the RGSW multiplication of Theorem 4.3
under the instantiation in this section. Details are in the full version.

6 Batch Bootstrapping via Our New Framework

Now we present how to batch the AP14/FHEW bootstrapping [4,13,17] within a
polynomial modulus. We first present some background and notations, and then
describe how to apply our new batch framework to the bootstrapping procedure.

6.1 Bootstrapping Background

Input. The general bootstrapping algorithm takes an LWE ciphertext (b,a) ∈
Z1+n
q as input, where n and q are small, i.e., n = Õ(λ), q = Õ(

√
λ)12. Also

it is without loss of generality to assume the input ciphertexts are encrypted
under binary secret vectors. These can be achieved without loss of generality
by applying the dimension reduction, modulus switch (the randomized version),
and bit-decomposition/power-of-two13 as described in [4]. We know for any GSW,
RLWE, or RGSW ciphertext, we can always publicly extract an LWE ciphertext
that encrypts the same message [4]. Therefore, assuming the input to be the
LWE form is without loss of generality.

The Batch Setting. Let r be the batch parameter as we instantiate in Sec-
tion 5. Our bootstrapping algorithm takes input r LWE ciphertexts, i.e., {(bi,ai)}i∈[r],
encrypting perhaps different messages under the same secret key s.
12 In the full version of this work, we present how to achieve such a q.
13 For any (s,a) ∈ Zn

q × Zn
q , ⟨s,a⟩ = ⟨s′,a′⟩ where a′ ∈ Zn log q

q is the power-of-two of
a and s′ ∈ Zn log q

q is the bit-decomposition of s. Using this insight, it is without loss
of generality to just consider binary secret vectors in the bootstrapping task. Some
practical optimizations, e.g., [6, 13, 17, 28] use binary or ternary LWE, so that the
secret vector s is set directly to binary or ternary. In this case, there is no need to
blow up the dimension of a.

23



Output. The output of bootstrapping algorithm is a ciphertext encrypting the
same as the input ciphertexts. In the batch setting, the output can be either a
packed ciphertext, or r different ciphertexts, encrypting the same message vector.
Let N,Q denote the dimension and modulus used by the output ciphertext.

6.2 Batch Bootstrapping
Notations. We use the instantiation in Section 5 for the batch framework and
present the required parameters in our batch algorithm.
– n: the dimension of the input LWE scheme.
– q: the modulus of the input LWE scheme, set as a prime of size Õ(

√
λ).

– r: the number of slots we can pack, where r = min{ρ, τ}.
– s: the secret key of the input LWE ciphertexts.
– R: the underlying ring of the RGSW scheme. We use the instantiation in

Section 5, i.e., the tensor ring R = R1 ⊗R2 ⊗R3.
– R1: the first ring is set as Q(ξq).
– R2: the second ring with dimension ρ = ϕ(ρ′), ρ′ = pd1

1
– R3: the third ring with dimension τ = ϕ(τ ′), τ ′ = pd2

2
– Q: the modulus of the RGSW scheme.
– s′: the secret of the RGSW scheme.

Auxiliary algorithm. In Algorithm 6.1 below, we describe a batch blind-
rotate (BR) algorithm, which is an SIMD version of FHEW/TFHE blind-rotate
of [14,17], under our framework.

Algorithm 6.1: Batch-BR (i.e., Batch Blind Rotate)

Input :
– A packed RLWE ciphertext ACC0.
– (Partial) Bootstrapping key: {BK ∈ RGSWQ

s′(s)} where s ∈ {0, 1}.
– Integers {ai}i∈[r].

Output : A packed RLWE ciphertext.

1 if the mode of ACC0 is “R12” then
2 Set ACC = Ext-Prod((BK · (

∑
i ξ

ai
q v∨i wi) + (G− BK) ·

∑
i v

∨
i wi, “R12 →

R13”), (ACC0, “R12”))

3 else if the mode of ACC0 is “R13” then
4 Set ACC = Ext-Prod((BK · (

∑
i ξ

ai
q viw

∨
i ) + (G− BK) ·

∑
i viw

∨
i , “R13 →

R12”), (ACC0, “R13”))

5 Return: ACC

We next present a high level description of what the batch BR algorithm
is computing. Suppose the input ACC0 is a packed ciphertext that encrypts
(ξx1

q , . . . , ξxr
q ) under mode “R′′

12. Then the result of the algorithm will produce a
packed ciphertext that encrypts (ξx1+a1s

q , . . . , ξxr+ars
q ), under mode “R′′

13. The
formal analysis is captured by the following theorem.

Theorem 6.1 Adapt the notations in Algorithm 6.1. Let the input ACC0 be a
packed RLWE encrypting µ of mode“R′′

1b for b ∈ {2, 3}. If b = 2, then the output
is a packed RLWE ciphertext encrypting TrK/K13

(µ ·
∑

i∈[r] ξ
ais
q v∨i wi) of mode

“R13”, or TrK/K12
(µ ·

∑
i∈[r] ξ

ais
q viw

∨
i ) of mode “R12” if b = 3.
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Proof. By symmetry, it suffices to prove the case b = 2, and the other case
follows analogously. Since s ∈ {0, 1}, we have BK · (

∑
i ξ

ai
q v∨i wi) + (G − BK) ·∑

i v
∨
i wi ∈ RGSW(

∑
i∈[r] ξ

ais
q v∨i wi). Then by the Theorem 4.4, ACC belongs to

RLWE(TrK/K13
(µ ·

∑
i∈[r] ξ

ais
q v∨i wi)).

⊓⊔Batch Bootstrapping. In Algorithm 6.2, we present our final batch bootstrap-
ping algorithm, using the batch BR (Algorithm 6.1) as a subroutine. To analyze
the concrete bounds, we use the instantiation in Section 5. We recall some basic
facts: let {vi}i∈[ρ], {wi}i∈[τ ] be the bases of R2 and R3. Then we have

1. ∥vi∥∞ = 1 and ∥wi∥∞ = 1,
2. ∥v∨i ∥∞ ≤ 2(p1 − 1)/ρ′ and ∥w∨

i ∥∞ ≤ 2(p2 − 1)/τ ′.

The analysis of Algorithm 6.2 is summarized by the theorem.

Theorem 6.2 Let µ = (µ1, . . . , µr) be binary messages encrypted in the input
LWE ciphertexts, {(bi,ai)}i∈[r]. Then the algorithm outputs a fresh packed RLWE

ciphertext c, either in RLWEQ
s′(

∑
µivi) or RLWEQ

s′(
∑

µiwi).
Moreover, ∥Err(c)∥∞ is bounded by a sub-Gaussian variable with parameter

O(γ) such that γ ≤ nrqN
√
N logQE, where E is the upper bound (infinity norm

of the canonical embedding) of errors in all bootstrapping/evaluation keys.

Algorithm 6.2: Batch-BTS

Input :
– r LWE ciphertexts (bi,ai) = (bi, ai1, ..., ain) ∈ LWEs(µi) for i ∈ [r].

– Bootstrapping key: {BKi ∈ RGSWQ′

s′ (si)}i∈[n], where si is the i-th entry of the
common secret s of the LWE ciphertexts, and evk is the evaluation key for the
homomorphic trace algorithms.

Output : A packed RLWE ciphertext.

1 Set ACC0 = RLWE-Pack((q−1ξb1q , 0), ..., (q−1ξbrq , 0)), “R12”), where q−1 ∈ RQ;
2 for k = 1 to n do
3 ACCk = Batch-BR

(
ACCk−1,BKk ∈ RGSW(sk), {aik}i∈[r]

)
;

4 Set test =
(∑

y∈Zq&⌊y⌉2=1 ξ
−y
q

)
, d = (

∑
i∈[r] q

−1vi, 0);

�d ∈ RLWEs′(q
−1 ∑

i∈[r] vi) ;

5 Return c = d+ Eval-TrK/K23
(test · ACCn).

Proof. We first analyze the correctness. By applying Theorem 6.1 to the for loop

in Step 2, we can obtain that ACCn encrypts
∑

i∈[r] q
−1ξ

bi−⟨ai,s⟩
q vi, (assuming

n is even, which is without loss of generality). Next we use an important fact
observed by the work [1] – For any y = ξzq , the following equation holds.

1 + y + y2 + · · ·+ yq−1 =

{
q if z = 0 mod q
0 otherwise

.

As y is a power of ξq, we can further express the equation as
∑

0≤i<q y
i =

1+TrK/K23
(y), when q is a prime (which follows by our parameter choice). This

corresponds to what step 5 does.
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By using this fact, it is easy to verify the following: for any ξzq , z ∈ Zq, let

x = test · (q−1ξzq ). Then we have q−1 + TrK/K23
(x) =

{
1 if ⌊z⌉2 = 1
0 otherwise.

= ⌊z⌉2 .

By the above equation with our batch computation, the final output of the
algorithm would be encrypting

∑
i∈[r] ⌊bi − ⟨ai, s⟩⌉2 · vi. By the correctness of

decryption for LWE, the resulting ciphertext belongs to RLWEQ
s′(

∑
µivi). The

same analysis works for the case if n is odd, i.e., the resulting ciphertext belongs
to RLWEQ

s′(
∑

µiwi). Thus, the correctness is proved.
Next we analyze the noise growth. We first analyze the noise of the ACCn

in the for loop and then that of the next stage. By our batch computation
framework, we have for k ∈ [n], Err(ACCk) = Err (Eval-Tr(BKk ⊠ ACCk−1)) .
We denote ek as the Err(ACCk), mk as the message of BKk, e

′
k as the additive

error from the key-switching algorithm in Eval-Tr. Without loss of generality,
we consider that ACCk−1 is of the mode “R12”, and then identify the recursive
relation as following:

ek =e′k + TrK/K13
(Err(BKk)G

−1(ACCk−1)) + TrK/K13
(mk · ek−1)

=e′′k + TrK/K13
(mk · ek−1),

where e′′k = e′k + TrK/K13
(Err(BKk)G

−1(ACCk−1)). We notice that e′k is fresh

noise from KS and Err(BKk)G
−1(ACCk−1) is also independent of the recursion

index k. Thus, e′′k can also be viewed as non-accumulating noise that does not
increase over the recursion. Next we further expand the equation and obtain:

ek =e′′k + TrK/K13
(mk · ek−1)

=e′′k + TrK/K13

(
mk ·

(
e′′k−1 + TrK/K12

(mk−1 · ek−2)
))

=e′′k + TrK/K13

(
mk · e′′k−1

)
+ TrK/K13

(
mk · TrK/K12

(mk−1 · ek−2)
)

=ẽk + TrK/K13

(
mk · TrK/K12

(mk−1 · ek−2)
)
,

where ẽk = e′′k + TrK/K13

(
mk · e′′k−1

)
. A similar argument as above shows that

ẽk is independent of the recursion index k and thus non-accumulating.
To proceed with the analysis, we first define the following notation. Without

loss of generality, we only consider the case where n and k are both even.

Definition 6.3 Let mk, . . . ,m1 be the packed messages as used in the algorithm,
and let e ∈ R be some input. Define

T 2j(e) =

{
TrK/K13

(
mkTrK/K12

(mk−1 · e)
)

for j = 1
T 2j−2

(
TrK/K13

(
mk−2j+1TrK/K12

(mk−2j · e)
))

for j ∈ [2, k/2]
.

Then we can unfold the recursive formula and obtain the following expression.

ek = ẽk + T 2(ẽk−2) + T 4(ẽk−4) + · · ·+ T k(e0).

To derive an upper bound for the above, we first prove the following claim:

Claim 6.4 For j ≤ k/2 and any e ∈ R such that ∥e∥∞ is B bounded, then
∥T 2j(e)∥∞ ≤ 4p1p2r

2B.
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Proof. We start from the base case j = 1. First we can express e =
∑

i∈[ρ] eivi
where each ei ∈ R13. From our design, we notice that mk−1 =

∑
i∈[r] ξ

sk−1
q v∨i wi,

andmk =
∑

i∈[r] ξ
sk
q w∨

i vi. Therefore, E := TrK/K13
(mk−1 · e) =

∑
i∈[r] ξ

sk−1
q eiwi

as the cross terms v∨i vj are all cancelled out by the trace for i ̸= j. According to
our choice of the basis, we have ∥E∥∞ ≤ ρ·∥mk−1∥·∥e∥∞ ≤ ρ·r·2(p1−1)/ρ′ ·B ≤
2p1rB. We can further express E =

∑
i∈[r] ξ

sk−1
q ziwi, where each zi ∈ R1. We

then use the fact ∥zi∥∞ ≤ τ · ∥E∥∞ · ∥w∨
i ∥∞ as implicitly analyzed in [26]. By

plugging the bound of the basis and ∥E∥∞, we have ∥zi∥∞ ≤ 4p1p2rB, for ev-

ery i ∈ [r]. Then TrK/K12
(mk ·

∑
i∈[r] ξ

sk−1
q ziwi) =

∑
i∈[r] ξ

sk+sk−1
q zivi. Thus,

∥T 2(e)∥∞ ≤
∑

i∈[r] ∥zi∥∞ ≤ 4p1p2r
2B.

For j ≥ 2, let s′j =
∑

t≤j(sk−t+1 + sk−t). Then we can use the same calcu-

lation to obtain T 2j(e) =
∑

i∈[r] ξ
s′ij
q zivi. This means that the coefficient with

respect to vi remains the same but with different phase, i.e., and only the ex-
ponent on ξq changes but zi does not. Therefore, ∥T 2j(e)∥∞ ≤ 4p1p2r

2B under
the same analysis as above. ⊓⊔

Next, we can check that each coefficient of ẽk is bounded by a subgaussian
with parameter less than O(r

√
N logQ · E). Therefore, by setting B as this

quantity, the above claim proves that ∥ek∥∞ is bounded by a subgaussian with
parameter less than O(kr3

√
N logQE) (as p1, p2 are constants according to our

parameter selection). By plugging k = n, we conclude that ∥en∥∞ is bounded
by a subgaussian with parameter less than O(nr3

√
N logQE). In Step 4, we

further multiply the ACC by the test vector, which at most increase the error
by a factor of q. In step 5, we apply another homomorphic trace function
Eval-TrK/K23

(), which increases the error by at most q. So the final error is
bounded by a subgaussian with parameter less than O(nr3q2

√
N logQE) =

O(nrqN
√
N logQE) and we prove this theorem. ⊓⊔

Remark 6.5 We can easily unpack the output RLWE ciphertext. If the output
c ∈ RLWEQ

s′(
∑

µivi), then by applying (RLWE)-Eval-TrK/K13
to v∨i c, the result

is a RLWE ciphertext in RLWEQ
s′(µi). The other case can be achieved similarly.

Remark 6.6 We notice that the techniques in the analysis of Theorem 6.2
(specifically Claim 6.4) can be used to analyze batch homomorphic computa-
tion of branching programs (e.g., [9]) under our framework. In the same way,
we can show that our batch framework only incurs a polynomial error growth for
computing any constant-width polynomial-depth branching program.

6.3 Efficiency

Finally, we compare the efficiency of the batch bootstrapping with the sequential
non-batch bootstrapping (that can be achieved within a polynomial modulus).
We first notice that one call to the non-batch AP14/FHEW framework would
require at least O(n) external products, even just counting the step of blind
rotate. Thus, to bootstrap r input ciphertexts sequentially, it would require
O(rn) external products.
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On the other hand, our batch blind-rotate for bootstrapping r input cipher-
texts would require O(n) external products and O(n) calls to the homomorphic
trace evaluation. We notice that each homomorphic trace evaluation would make
O(log r) calls to the key-switch algorithm, which is roughly equal to O(log r) ex-
ternal products. The final step of equality test take q queries to the underlying
key-switches. Thus, the overall algorithm would require O(n log r + q) external
products to bootstrap r input ciphertexts.

Asymptotic Setting. Now we determine all the parameters in λ as follow. We
can set n = O(λ), q = Õ(

√
n), N = O(n), and r ≈ O(

√
N/q) = O(λ1/4−o(1))

as the AP14/FHEW framework [4, 13,17]. By plugging these parameters to the
above analysis, our batch algorithm can therefore bootstrap O(λ1/4−o(1)) input
ciphertexts by using Õ(λ) external products, implying the amortized complexity
Õ(λ0.75) external products per input ciphertext. On the other hand, the non-
batch method would require the amortized complexity O(λ) external products
per input ciphertext.

Our theoretical advances can potentially lead to noticeable practical improve-
ments, as all the components are explicit and have been implemented in the
power-of-two’s settings. By using the insights of [26], it is possible to port the
existing implementations to the general cyclotomic rings, with the same asymp-
totic computational efficiency. We leave it as an interesting open direction to
determine the concrete practical performances of our framework.
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