A Theory of Composition for Differential
Obliviousness

Mingxun Zhou', Elaine Shi', T-H. Hubert Chan?, and Shir Maimon? *

1 Carnegie Mellon University
2 The University of Hong Kong
3 Cornell University

Abstract. Differential obliviousness (DO) is a privacy notion which
guarantees that the access patterns of a program satisfies differential
privacy. Differential obliviousness was studied in a sequence of recent
works as a relaxation of full obliviousness. Earlier works showed that
DO not only allows us to circumvent the logarithmic-overhead barrier
of fully oblivious algorithms, in many cases, it also allows us to achieve
polynomial speedup over full obliviousness, since it avoids “padding to
the worst-case” behavior of fully oblivious algorithms.

Despite the promises of differential obliviousness (DO), a significant bar-
rier that hinders its broad application is the lack of composability. In
particular, when we apply one DO algorithm to the output of another
DO algorithm, the composed algorithm may no longer be DO (with rea-
sonable parameters). Specifically, the outputs of the first DO algorithm
on two neighboring inputs may no longer be neighboring, and thus we
cannot directly benefit from the DO guarantee of the second algorithm.
In this work, we are the first to explore a theory of composition for differ-
entially oblivious algorithms. We propose a refinement of the DO notion
called (e, §)-neighbor-preserving-DO, or (¢,d)-NPDO for short, and we
prove that our new notion indeed provides nice compositional guaran-
tees. In this way, the algorithm designer can easily track the privacy loss
when composing multiple DO algorithms.

We give several example applications to showcase the power and expres-
siveness of our new NPDO notion. One of these examples is a result
of independent interest: we use the compositional framework to prove
an optimal privacy amplification theorem for the differentially oblivious
shuffle model. In other words, we show that for a class of distributed
differentially private mechanisms in the shuffle-model, one can replace
the perfectly secure shuffler with a DO shuffler, and nonetheless enjoy
almost the same privacy amplification enabled by a shuffler.

1 Introduction

It is well-known that access patterns to even encrypted or secret-shared data can
leak sensitive information [15,46,47,50,52,60]. Initiated by Goldreich and Ostro-
vsky [42,43], oblivious algorithms is a line of work that aims to provably obfuscate

* Randomized order. This paper subsumes part of the results in an unpublished
manuscript [[73] written by a subset of the authors. Full version of this paper: [4].

a program’s access patterns without incurring too much slowdown. In particular,
obliviousness (also referred to as full obliviousness) requires that a program’s
access patterns be indistinguishable for any two inputs. It is well-known that
oblivious algorithms have broad applications, including in multi-party compu-
tation [44, b5]. secure processors [b4, 57, b9, 63, 69], secure outsourcing [67,[72],
databases [6,28,385], blockchains [[16], and so on. In the past decade, our commu-
nity have significantly improved the efficiency of oblivious algorithms [65,68,70],
leading to large-scale real-world adoption such as Signal’s private contact dis-
covery [25]. However, as we discuss below, in some applications, the overhead of
full obliviousness may still be unacceptable.

Differential Obliviousness (DO), defined by Chan, Chung, Maggs, and Shi [L7],
is relaxed notion of access pattern privacy. DO requires that the program’s access
patterns satisfy only differential privacy (DP) [30], as opposed to a simulation-
based notion like in full obliviousness [42, 13, 65]. Recent works [[10,[12, 17,24, 45]
explored DO and showed how DO can allow us to circumvent fundamental per-
formance barriers pertaining to full obliviousness:

— Chan et al. [17] showed a fundamental separation in terms of efficiency be-
tween DO and full obliviousness. Specifically, for a class of common tasks
such as compaction, merging, and range query data structures, while full
obliviousness is inherently subject to at least £2(log N) multiplicative over-
head [B,36,51,p3] (in comparison with the insecure baseline), using DO allows
us to reduce the overhead to only O(loglog N) where N denotes the data size.

— Not only does DO allow us to overcome the logarithmic barrier for fully
oblivious algorithms, another important aspect that is sometime overlooked
is that DO allows us to overcome the “worst-case barrier” of fully oblivious
algorithms [24], which leads to polynomial speedup over full obliviousness in
many applications. Specifically, to achieve full obliviousness, we must pad the
running time and output length to the worst case over all possible inputs (of
some fixed length), whereas DO algorithms may reveal the noisy running time
or output length. In many real-world scenarios such as database joins [24], the
common case enjoys much shorter runtime and output length than the worst
case. For exactly this reason, there is an entire line of work that focuses
on designing algorithms optimized for the common rather than the worst
case [64]. In such cases, prior works showed that DO can achieve polynomial
speedup over any fully oblivious algorithm [[L7,24]!

Basic DO does NOT lend to composition. Given the promises of DO, we
would like to apply DO to more applications. Unfortunately, the status quo
of DO hinders its broad applicability due to the lack of compositional guaran-
tees. When designing algorithms, it is customary to compose several algorithmic
building blocks together. In such cases, it would be nice to say that the composed
algorithm also satisfies DO with reasonable parameters as long as the underlying
algorithmic building blocks also satisfy DO. Similarly, in some applications, we
may need to apply a DO algorithm to the outcome of another (e.g., the SQL
database application below). In such cases, we also want to be able to track the

privacy loss over time. While the original full obliviousness notion indeed allows
such composition, unfortunately, the standard DO notion [17] does not!

As an explicit example of composition, imagine that we want to build a
differentially oblivious database supporting SQL queries. Consider the following
natural SQL query where we want to select_entries from a table which in itself
is the result of a previous Select operationt:

Select (id, position) from
(Select (id, dept, position) from Employees where salary > 200K)
where dept = "CS"

To support this query in a differentially oblivious manner, the most natural
idea is to use the DO stable compaction algorithm of Chan et al. [[17] to realize
each Select operator. In stable compaction, we obtain an input array where
each element is either a real element or a filler, and we want to output an array
containing all the real elements of the input and preserving the order they appear
in the input. Unfortunately, this approach completely fails since Chan et al. [17]’s
DO compaction algorithm does NOT compose.

To understand why, we will introduce some basic notation. Let M : X —)
denote an algorithm, which takes in an input = € X', and produces an output y €
Y. Consider some neighboring notion ~y defined over the input domain X. For
example, let x, 2’ € X be two input arrays/tables where each entry corresponds
to an individual user. One example is Hamming-distance neighboring: we say
that z ~y 2’ iff the Hamming distance of z and z’ is at most 1 — this is also
the neighboring notion adopted by the DO compaction algorithm of Chan et
al. [17]. The standard DO notion requires the following.

Definition 1.1 (Basic differential obliviousness [17]). We say that an al-
gorithm M satisfies (¢,0)-DO w.r.t. some symmetric relation ~x iff for any
z,x' € X such that x ~x x’, for any subset S,

Pr[ViewM(z) € S] < e° - Pr[ViewM(2') € S] + 6, (1)

where View" () is a random wvariable denoting the the memory access patterns
observed when running the algorithm M over the input x.

Now, imagine that we have two DO mechanisms M; : X7 — X5 and My :
Xy — Y (e.g., think of My and My as Chan et al’s DO compaction algorithm). We
want to apply Mg to the output of My, and hope that the composed mechanism
M3 o My (+) satisfies DO. By the DO definition, we know that My offers indistin-
guishability for two meighboring inputs from X5. Now, consider two neighboring
inputs x ~x, ¢’ from X;, and consider running the mechanism M; over = and
a’, respectively. Unfortunately, the basic DO notion (of My) does not guarantee

4 Here we write the two Select statements in a single query for convenience, In prac-
tice, it could be that the first Select query is interactively issued and its result stored
as a temporary table, and then the second Select query is interactively issued.

that the outputs My (z) and My (2') are also neighboring. Therefore, we may not
be able to benefit from the DO property of Ms!

We stress that this is not just a deficiency of the basic DO definition. Natural
designs of DO algorithms often do not guarantee that the outputs obtained
from two neighboring inputs must be neighboring too. For example, consider
the stable compaction algorithm of Chan et al. [17]. Given two input arrays z =
(1,2,1,3,4) and 2’ = (1,2, 1,3,4) with Hamming distance 1 where | denotes
a filler, the compacted outputs will be (1,2,3,4) and (2, 3,4), respectively. The
outputs have Hamming distance more than 1. While the outputs have large
Hamming distance, the edit distance is only one — unfortunately, Chan et al.s
compaction algorithm provides privacy only for Hamming-distance neighboring
and the guarantees do not generalize to edit-distance neighboring.

DP composition theorems do not work for DO. Since DO is essentially DP
applied to the memory access patterns, a natural question is: can we simply use
DP composition theorems to reason about the composition DO mechanisms? The
answer is no because DP composition and composition of DO mechanisms are of
different nature. In DP composition, we have multiple mechanisms My, ..., Mg
where M; satisfies (¢;, d;)-DP. The basic DP composition theorem says that the
composed mechanism M(z) := (My(z),..., M(z)) satisfies (Zle €, Zle i)-
DP. Here, all these mechanisms are applied to the same input x. In DO compo-
sition, we want to apply Ms to the output of of My instead. More generally, if
there are £ DO mechanisms My, ..., Mg, we want to know whether the composed
mechanism Mg o Mg_j o...,0oM;(2) = Mg(Mg_1(...M1(z))) is also DO.
Given the status quo, we ask the following natural question:

Can we have suitable and useful refinements of differential obliviousness (DO)
that lend to composition?

1.1 Main Contribution: A Theory of Composition for Differential
Obliviousness

We are the first to initiate a formal exploration of the composability of differential
obliviousness. In this sense, we make an important conceptual contribution: by
laying the groundwork for the composition of DO algorithms. we hope that our
work can allow DO to have wider applicability.

A new, composable DO notion. Our first contribution is to introduce a
new, composable DO notion called Neighbor-Preserving Differential Oblivious-
ness (NPDO) that can be viewed as a strengthening of the basic DO by Chan
et al. [L7]. Our NPDO notion is composition friendly in the following senses:

Cl. If M; satisfies (€1,01)-NPDO, and M satisfies (e3,02)-DO (the basic ver-
sion), then the composed mechanism My oM satisfies (€1 + €3, 41 + d2)-DO.

C2. If M, satisfies (e1,d1)-NPDO, and My satisfies (e, d2)-NPDO, then the
composed mechanism My o My satisfies (€1 + €2, 1 + d2)-NPDO.

In the above, the first property allows us to apply any basic-DO algorithm M,
to the output of an NPDO algorithm My, and the composed algorithm Ms o My

would satisfy basic DO. The second property allows us to perform composition
repeatedly. In particular, if both M; and My are NPDO, then the composed
algorithm My o M; also satisfies NPDO, i.e., it can be further composed with
other DO or NPDO algorithms.

Finding the right notion turned out to be non-trivial. We want to capture
the intuition that “the algorithm should produce neighboring outputs for neigh-
boring inputs”. However, it is not obvious how to formally capture this idea of
“neighbor-preserving” especially when the outputs of the DO algorithm may be
randomized. Indeed, naive ways to define “neighbor-preserving” turned out to
be too stringent and preclude many natural and interesting algorithms (see Sec-
tion B.1|). We instead suggest a more general version that allows us to capture a
probabilistic notion of neighbor-preserving. More specifically, our NPDO notion
requires that when one applies the algorithm M on two neighboring inputs x
and z’, the joint distribution of the adversary’s view and the output must be
distributionally close in some technical sense, where closeness is parametrized by
some output neighboring relation. The formal definition is presented below:

Definition 1.2 ((¢,6)-NPDO). We say that an algorithm M : X — Y with
view space V satisfies (€,8)-NPDO w.r.t. input relation ~x and output relation
~y, if for any xz,x’ € X such that x ~x &', for any subset S CV x Y,

Pr[Exec™(z) € S] < €€ - Pr[Exec™ (') € N(S)] + 6.

In the above, Exec™ (x) samples a random execution of M on the input x, and
returns the view (i.e., access patterns) as well as the algorithm’s output. Further,
the notation N'(S), i.e., the neighboring set of S, is defined as follows:

N(S) = {(v,y)Bv,y) € S s.t. y ~y y'}

Expressiveness of our notion. We give various natural examples to demon-
strate the expressiveness and power of our notion. We believe that our NPDO
notion is indeed the right notion, given the simplicity in form and its broad ap-
plicability. Besides the motivating SQL database example mentioned earlier in
this section, other notable examples include the design of a differentially obliv-
ious subsampling algorithm, a stable compaction algorithm that is DO w.r.t.
edit distance, and finally, proving an optimal privacy amplification theorem in
the differentially oblivious shuffle model. Since the last application is of inde-
pendent interest even as a standalone result, we will discuss the context and the
implifications of this result separately in Section [1.9.

Proof of composition theorem. Our second contribution is to prove the
composition theorem:

Theorem 1.3 (Composition theorem). The aforementioned compositional
properties C1 and C2 hold, as long as the algorithm My ’s view space and output
space are finite or countably infinite.

The proof of the composition theorem is rather non-trivial. A key step in
the proof is to show the following equivalence (see Lemma Y.1l). An algorithm
M: X — Y (with at most countably infinite view space V and output space
V) satisfies (¢,0)-NPDO w.r.t. ~y and ~y, if and only if for any neighbor-
ing inputs x ~x 2/, there exists an (e, d)-matching between the the probability
spaces of the random variables Exec™(z) € V x Y and Exec™(z/) € V x Y. In
an (¢, 0)-matching, imagine that we have a (possibly countably infinitely large)
bipartite graph where one side has the sources, and the other side has the des-
tinations. Both sources and destinations come from the space V x). If there
is an edge of weight w between some source and some destination, we may
imagine that the source wants to send w amount of commodity to the desti-
nation. Now, each source (v,y) € V x) produces an amount of commodity

equal to Pr {ExecM(x) = (v, y)}, and each destination (v,y’) can receive at most

e Pr {ExecM (') = (v,y’)} amount of commodity. Furthermore, a source (v, y)

can be matched with a desitination (v’,y’) only if they are neighboring, i.e.,
v =12"and y ~y y'. We want to find a matching such that all but § amount
of commodity is delivered to the destinations. To prove this key equivalence
lemma, we are inspired by techniques used to prove the Hall’s marriage theo-
rem [U& 49]. Once we prove the key equivalence lemma, we then rely on it to
prove the composition theorem.

In the main body, we primarily focus on proving the composition theorem
for statistical notions of DO. In Appendix |A| of the full version [f4], we further
extend our composition theorem to support suitable, computational notions of
differential obliviousness as well.

Finally, in our composition theorem, we assume that the view and output
spaces of M are at most countably infinitely large. This assumption is reasonable
given that we primarily focus on the standard word-RAM model of execution.
It is indeed an interesting open question whether we can remove this restriction
and prove the composition theorem for uncountably large view and output spaces
— this is useful if we consider RAM machines that can handle real arithmetic.
In Appendix ({ of the full version [74], we discuss the additional technicalities
that one might encounter if we wish to remove the countable restriction.

1.2 Additional Result: Optimal Privacy Amplification in the
DO-Shuffle Model

As an application of our composition framework, we use it to prove an optimal
privacy amplification theorem in the differentially oblivious shuffle (DO-shuffle)
model. Since this result can be of independent interest on its own, we explain
the motivation and context below.

Background: privacy amplification in the shuffle model. To understand
the DO-shuffle model, let us first review some background on the so-called shuffle
model. Imagine that a set of clients each hold some private data, and an untrusted
server wants to perform some analytics over the union of the clients’ data, while

preserving each individual client’s privacy. Specifically, we want to guarantee
that for two neighboring input configurations of the clients denoted x and x’
respectively, the distributions of the server’s view are “close”.

The shuffle model, first proposed by Bittau et al. [11] in an empirical work,
has become a popular model for implementing distributed differentially private
mechanisms. The model assumes the existence of a trusted shuffler that takes
the union of all clients’ messages, randomly permutes them, and presents the
shuffled result to the server. The server then performs some computation and
outputs the analytics result. The trusted shuffler guarantees that the server can
only see the union of all messages, without knowing the source of an individual
message. Numerous earlier works [§, 22, 23, 89, 0] have shown that the shuffle
model often enables differentially private mechanisms whose utility approximates
the best known algorithms in the central model (where the server is trusted and
we only need privacy on the outcome of the analytics). Moreover, several works
have shown that the trusted shuffler can be efficiently implemented either using
trusted hardware [[L1] or using cryptographic protocols [, 2,9,14,20, 21, 26, 27,
29,84,88,61,62,66,75]. This makes the shuffle model a compelling approach not
just in theory, but also in practical applications such as federated learning [41].

A particular useful type of theorem in the shuffle model is called a privacy
amplification theorem, which we explain below. Henceforth, let R(z;) be some
differentially private mechanism each client 7 applies to randomize its own private
input z; (often called a locally differentially private (LDP) randomizer). Roughly
speaking, a privacy amplification theorem makes a statement of the following
nature where S(-) denotes the shuffler that outputs a random permutation of
the inputs: if each client’s LDP mechanism R consumes ¢, privacy budget, then
shuffler’s outcome S(R(x1),...,R(zy)) satisfies (¢,0)-DP for € = €(ep,d) <
€0, i.e., privacy is amplified for the overall shuffle-model mechanism. A line of
work [8,23,83] focused on proving privacy amplification theorems for the shuffle
model, culminating in the recent work by Feldman et al. [B7], who proved a
privacy amplification theorem for any LDP mechanism with optimal parameters.

Connection between the shuffle model and our DO composition frame-
work. We realize that the shuffle model can be expressed with our DO compo-
sition framework. Consider a composed mechanism S o M;. My : X™ — Y™ is
a local randomization mechanism that takes n clients’ inputs (z1,...,2,) and
outputs the message sequence (yi,...,Yn) where y; = R(z;). S: V" — Y™ is
a shuffling mechanism that takes a message sequence (yi,...,Yy,) and outputs
a random permutation of the sequence. All computation in My are done by the
clients locally, so we define View™ := (). We define the view in S as exactly
its output: the random permutation. Then, the view of the server in the shuffle
model is exactly the same as the view of the adversary in S o My. Thus, (e, J)-
shuffle-DP guarantee can be expressed by SoMj being (e, §)-DO w.r.t the input
neighboring notion ~x where x ~x x’ iff the Hamming distance is at most 1.

Can we replace the shuffler with a DO-shuffler? A couple very recent
works [B,[13,45] have suggested a relaxed shuffler model called the differentially
oblivious shuffle model (or DO-shuffle model for short). Unlike the traditional

shuffle model which provides full anonymity on the clients’ messages, the DO-
shuffle model permutes the clients’ messages but possibly allowing some differ-
entially private leakage. More concretely, a DO-shuffle protocol guarantees that
for two neighboring input vectors xy and x; corresponding to the set of honest
parties, the adversary’s views in the protocol execution are computationally or
statistically close. The recent works by Gordon et al. [45] and Biinz et al. [13]
both show that the relaxed DO-shuffle can be asymptotically more efficient to
cryptographically realize than a fully anonymous shuffle. It would therefore be
desirable to use a DO-shuffler as a drop-in replacement of the perfectly secure
shuffle. This raises a couple very natural questions:

— If we were to replace the shuffier in shuffle-model differentially private mecha-
nisms with a DO-shuffler, can we still get comparable privacy-utility tradeoff?

— More specifically, can we prove an optimal privacy amplification theorem for
the DO-shuffle model, matching the parameters of Feldman et al. [37]%

The pioneering work of Gordon et al. [45] was the first to explore how to use
a DO shuffler to design distributed differentially private mechanisms. Gordon et
al. [45] showed two novel results. First, they prove an optimal privacy amplifica-
tion theorem for the randomized response mechanism in the DO-shuffle model,
with parameters that tightly match the shuffle-model counterpart. Next, they
generalize their first result, and prove a privacy amplification theorem for any lo-
cal differentially private (LDP) mechanism — however, this more general result
is non-optimal, since they rely on the non-optimal shuffle-model amplification
theorem from Balle et al. [§].

Our results. We prove a privacy amplification theorem for any LDP mechanism
that achieves optimal parameters, tightly matching Feldman et al. [37)’s privacy
amplification parameters for the shuffle model. This result improves work of
Gordon et al. [45] in the following senses: 1) we asymptotically improve their
privacy amplification theorem for any general LDP mechanism; and 2) their
privacy amplification theorem for the specific randomized response mechanism
can be viewed as a special case of our general theorem. More interestingly, we
can prove our result fully under our DO composition framework. The curx of the
proof is to show that the local randomization mechanism M is (¢,0)-NPDO w.r.t
the output neighboring notion being exactly the DO-shuffler’s input neighboring
notion. Then, when M; composes with an (e1,d1)-DO shuffler, the composed
mechanism will be (e + €1, + d1)-DO.

Below, we give a more formal statement of our result. Let @ denote a DO-
shuffling protocol. Given an LDP-randomizer R(:), we use the notation IT(x1, ..., z,) :=
P(R(x1),...,R(zy)) to denote the composed protocol where each of the n par-
ties first applies the local randomizer R(-) to its own private data, and then
invokes an instance of the DO-shuffling protocol ¢ on the outcome R(z;).

Theorem 1.4 (Optimal privacy amplification for any LDP mechanism
in the DO-shuffle model). Suppose ¢y < log (W@/@)' Given n copies of
an €o-LDP randomizer R and an (e1,91)-DO shuffler @ resilient to t corrupted

parties, the composed protocol II(xy,...,2,) := P(R(x1),...,R(xy)) is (e +
€1,0 + 61)-DO against up to t corrupted parties where

0 ((1 - eeo)eeo/%/logu/&)
vn—t '

Furthermore, if the DO-shuffler satisfies computational (or statistical, resp.) DO,
then the composed protocol satisfies computation (or statistical, resp.) DO.

Further, if the underlying DO-shuffle protocol satisfies semi-honest secu-
rity [B,45], then the composed protocol is also secure in a semi-honest corrup-
tion model. Similarly, if the underlying DO-shuffle satisfies malicious security
(e.g., [B,13]), then the composed protocol is also secure in a malicious model.

2 Model and Preliminaries

2.1 Model of Computation

We consider a standard Random Access Machine (RAM) model of computation.
We use the standard word-RAM model where the word size is logarithmic in the
space. We assume that addition, multiplication, and boolean operations on words
can be done in constant time. We also assume that sampling from truncated
geometric distributions can be done in constant timeH. We assume that the
adversary can observe the memory access patterns of the algorithm, including
which locations are read or written and in which time steps. The adversary
cannot see the contents of the memory tape themselves, which also means that
the adversary cannot see the contents of the input and output.

Format of input and output tape. We explain the format of the input and
output tape — the modeling technicalities are without loss of generality, and
matter if we want to mask the true input and output lengths.

In the most general model, the algorithm may or may not be able to observe
the input and output length, depending on the algorithm. More specifically, we
may assume that the input is written on an input tape — the input tape itself
has unbounded length and the actual length of the input is written on some
dedicated location, e.g., address 0, of the input tape. The algorithm can read
address 0 to learn the actual input length. During the execution, the algorithm
may read a random number of extraneous locations on the input tape, such that
the adversary may not be able to observe the exact input length. We assume
that every extraneous location on the input tape stores a filler symbol L.

5 Based on Appendix B of [24], we can obliviously sample a truncated geometric vari-
able in expected time of O(% log). Further, we can sample M truncated geometric
variables in time O((M/e€)log(1/6)) with probability 1 — negl(M). Our algorithms
described in Section E only need to sample W + O(1) truncated geomet-
rics. Therefore, all our runtime bounds(i.e., Theorem and Theorem p.€) hold in
expectation and with high probability without assuming sampling in constant time.

The algorithm must write the output on an output tape. Again, the algo-
rithm, may write a random number of extraneous locations on the output tape.
For example, if the actual output length is m, the algorithm may actually write
m’ > m locations on the output tape where m’ is a random variable, to mask
the true output length. To indicate the actual output length, the algorithm can
write the actual output length m on some dedicated location of the output tape.
By doing so, the adversary may not be able to observe the exact output length.

2.2 Preliminaries

Mathematical tools. We introduce some basic mathematical tools.

Definition 2.1 (Symmetric geometric distribution). Let o > 1. The sym-
metric geometric distribution Geom(«) takes integer values such that the proba-
bility mass function at k is =% - o~ Ikl

a+1

In designing DO algorithms, we often pad the true output length with random
fillers such that the adversary observes a randomized output length. Below, we
define a shifted and truncated geometric distribution which is often used to
sample the number of fillers used for padding. In particular, this distribution
always gives non-negative and bounded random variables.

Definition 2.2 (Shifted and truncated geometric distribution). Let¢ >
0 and § € (0,1) and A > 1. Let ko be the smallest positive integer such that
Pr[|Geom(e%)| > ko] < 6, where ko = 2 In2 + O(1). The shifted and truncated

€

geometric distribution G(e,d, A) has support [0,2(ko + A —1)], and is defined as:
min{max{0, ko + A — 1 + Geom(e)},2(ko + A — 1)}
For the special case A =1, we write G(¢,6) := G(e,0,1).

Common distance notions. We will also use a couple common distance no-
tions in our examples, including Hamming distance and edit distance.

Definition 2.3 (Hamming distance neighboring ~g). We say that two
arrays x,x’ are neighboring by the Hamming distance iff 1) they have the same
length; and 2) they differ in at most one position.

Definition 2.4 (Edit distance neighboring ~pg). We say that two arrays
z,x’ are neighboring by the edit distance iff ' can be obtained from x through
either one insertion, one deletion, or one substitution. Note that x and x' need
not have the same length.

Notations for randomized execution. Given randomized mechanisms M; :
X — Y and My : Y x Z, the composed mechanism Mg o My : X — Z works as
follows: for input « € X, we first apply M (z) to produce an intermediate y €),
and then we apply Ma(y).

Henceforth, given an algorithm M : X —), and an input z € X, we often
use the following random variables:

10

— The random variable View™(z) : X — V denotes the memory access patterns
(also called the view) observed by the adversary when M receives the input
x, where V is the view space for M.

— The notation Exec™(z) : X =V x) is a random variable that outputs the
view and the output over a random execution of M(z).

3 A Composition Framework for DO

In this section, we explore what kind of DO notions are composition-friendly. As
a warmup, we first suggest a simple notion called strongly neighbor-preserving
(or strongly NP for short), and show that any DO algorithm that is strongly
NP lends to composition. The strong NP notion, however, is too stringent. We
then propose a more general notion called (¢, §)-neighbor-preserving differential
obliviousness or (¢,4)-NPDO for short, which captures a probabilistically ap-
proximate notion of neighbor-preserving. We then present our main composition
theorem which states that any algorithm that satisfies NPDO lends to composi-
tion. Along the way, we give several simple motivating examples to demonstrate
the usefulness our compositional framework.

3.1 Strongly Neighbor-Preserving

Definition and Composition Theorem FEarlier, in Section E, we argued why
basic DO algorithms do not lend to composition, because neighboring inputs
may lead to very dissimilar outputs. One (somewhat imprecise) intuition is the
following: if a DO mechanism is additionally neighbor-preserving, i.e., neighbor-
ing inputs lead to neighboring outputs, then it should lend to composition.

We first define strongly neighbor-preserving that running the algorithm over
two neighboring inputs produces neighboring outputs with probability 1.

Definition 3.1 (Strongly neighbor-preserving). We say that a randomized
algorithm M : X — Y is strongly neighbor-preserving w.r.t. ~x and ~y, iff for
any two inputs x,r’ € X such that x ~x 2/,

Prly < M(z),y + M(2') 1y ~y '] = 1.
We can prove that if an algorithm satisfies both DO and strongly neighbor-
preserving, then it is composable, formally stated below.

Theorem 3.2 (Strongly neighbor-preserving 4+ DO gives composition).
Suppose that My : X — Y is (e1,01)-DO w.r.t. ~x and strongly neighbor-
preserving w.r.t. ~x and ~y, and moreover, suppose that My : Y — Z is
(€2,02)-DO w.r.t. ~y, then Mg o My satisfies (€1 + €2,01 + 02)-DO w.r.t. ~x.

Furthermore, if Mo is additionally strongly neighbor-preserving w.r.t. ~y and
~z, then My o My is also strongly neighbor-preserving w.r.t. ~x and ~z.

Proof. Later in Lemma @ of Section @, we will prove that (e1,d71)-DO plus
strongly neighbor-preserving is a special case of our more general notion (ey, d1)-
NPDO. In this sense, this composition theorem can be viewed as a special case
of our main composition theorem for NPDO (Theorem @)

11

Composition Examples

Example 1. Recall that in Section m, we gave a natural SQL database exam-
ple that required applying one compaction algorithm on the output of another
compaction algorithm. We pointed out that two sequential instances of Chan et
al’s DO compaction algorithm [[17] do not give (tight) composable guarantees.
In Example 1, we will see that if we replace the second instance with a modi-
fication of the compaction algorithm such that it is DO w.r.t. edit distance (as
opposed to Hamming distance), the two instances would compose nicely.

Specifically, let M; be Chan et al’s DO compaction algorithm [[7]. Recall that
the algorithm receives an input array where each element is either a real element
or a filler, and outputs an array containing all the real elements in the input
and preserving the order they appear in the input. My is (e1,61)-DO w.r.t. ~g
(i.e., Hamming distance). Now, suppose we can construct another compaction
algorithm denoted My that is (e3,02)-DO w.r.t. to ~g (i.e., edit distance). How
to construct such an My while preserving efficiency turns out to be non-trivial,
and we defer the construction to Section fjj — interestingly, designing My itself
demonstrates the usefulness of our composition framework, too.

Observe that given a fixed input array z, the output of My (z) must be an
ordered list of real elements contained in x plus an appropriate number of fillers,
and the total length of the outputH is the same as the input x. Thus, for any
neighboring inputs @ ~pg 2, it must be that My(z) ~g Ma(z’). Therefore,
we conclude that M is strongly neighbor-preserving w.r.t. the input relation
~p and the output relation ~g. Applying Theorem B.2, we conclude that the
composed mechanism Mg o My satisfies (e1 + €2, d1 + d2)-DO.

Example 2. Let M; be an algorithm that merges two sorted input arrays
(o, 1), where each element in the input array has a payload besides the sort-

key. Suppose that M; satisfies (e1,07) differential obliviousness w.r.t. EJE, ie.,
two inputs (zg,z1) and (z(,x}) are considered neighboring iff for b € {0,1},
|zp| = |a}], and z and zj have edit distance at most 2 (i.e., zp g x;). Such
an DO merge algorithm was proposed by Chan et al. [17], and moreover, their
algorithm always outputs an array whose length is the sum of the input arrays.
Notice that for neighboring inputs, M; always produces outputs that have edit
distance at most 4.

Let My be a stable tight compaction algorithm that selects elements from
the input array whose payload string satisfies a certain predicate (e.g., entries
corresponding to students in the computer science department). Suppose that
M, satisfies (ez, d2)-DO w.r.t. ilq;, i.e., where neighboring inputs are those with
edit distance at most 4 — such an My is described in Section f.

By Theorem @, we conclude that the composed mechanism My oM satisfies

(61 + €9,01 + 52)—DO w.r.t. f%E'

5 Even though the algorithm M; itself is randomized, the output of M; is deterministic
and unique given the input.

12

Remark 3.3 (Capturing k-neighboring relations). Recall that our strongly neighbor-
preserving definition (i.e., Definition B.l) is parametrized with the input and
output relations. Example 2 is used to illustrate the case when the these in-
put/output relations are parametrized with a k-neighboring notion (rather than
1-neighboring) — this shows the generality of the approach. For example, later
in Section f , we will construct an efficient stable compaction algorithm that is

(6,6)-DO w.r.t. to NIE neighboring. Applying the standard group privacy the-
orem of differential privacy [B2], we can get a a compaction algorithm that is

(4e,4€*<6)-DO w.r.t. to ~'p neighboring.

Limitations The strong neighbor-preserving requirement (i.e., Definition @)
is natural and directly captures our intuition that if a DO mechanism maps
neighboring inputs to neighboring outputs, then it is composable. The strongly
neighbor-preserving requirement is often suitable when the output computed by
the algorithm is deterministic (i.e., uniquely determined by the inputs), even
though the algorithm itself may be randomized, like Examples 1 and 2.

However, the strongly neighbor-preserving requirement may be too stringent
especially when the output of the algorithm may be randomized. For example,
consider the following DO subsampling algorithm.

Example 3. We consider the task of subsampling, which is widely used in private
data analytics [[7,[71]: given an input array z, we want to sample each entry with
probability p, and generate a new array with only the sampled elements. Consider
a subsampling algorithm where n denotes the length of the input array x:

1. Call My (z) := InPlaceSample(z) which is defined as follows: Scan the input
array x. For each real element encountered, append it to the output tape with
probability p and append a filler element otherwise. For each filler element
encountered, just append a filler to the output tape.

2. Apply My, a compaction algorithm that is (¢/,6")-DO w.r.t. ~p to the output
of the above step.

We want to prove that the above algorithm satisfies DO w.r.t. ~g through
composition — intuitively, this should be true. In particular, the first subrou-
tine My := InPlaceSample has deterministic access patterns. We explicitly denote
My (-; p) to fix the random tape p consumed by M;. For any fixed random tape
p, and any neighboring inputs ~g 2’, M{(x; p) and My (2'; p) output two ar-
rays with Hamming distance 1. Therefore, intuitively, as long as the compaction
algorithm in the second step is (¢’,d’)-DO w.r.t. Hamming distance, the entire
subsampling algorithm should be (€¢/,§")-DO as well. Unfortunately, we cannot
directly use strong neighbor-preserving to prove this composition here, since a
random execution of M;(z) and a random execution of My (z’) are not guaran-
teed to always output Hamming-distance-neighboring outputs — it depends on
which subset of elements are selected.

This motivates us to relax the strongly neighbor-preserving to make it more
general, such that our compositional framework can be more expressive. How-
ever, before we do so, we introduce another more general example, Example 4,

13

which is a variation of Example 3. Specifically, in Example 3, although the out-
put of M; := InPlaceSample is randomized, the view of M; is deterministic. In
Example 4, both the view and the output of the first algorithm are randomized.

Example 4. The main difference between Examples 3 and 4 is that Example 4
aims to have a subsampling algorithm that is DO w.r.t. edit distance, whereas
Example 3 aims to be DO w.r.t. Hamming distance. To achieve this, in Example
4, we need to mask the true length of the input and output by reading/writing
a random number of extraneous locations on the input tape, Further, the com-
paction algorithm we call must now be DO w.r.t. edit distance too. The detailed
algorithm is described below. The key differences are highlighted by underlining.

1. Call My(z) := InPlaceSample, 5(x) which is defined as follows:

— Sample r(ig(e, 5, A =1),let n’ =n+r be the noisy input length.

— Scan n/ locations on the input tape. For each real element encountered,
append it to the output tape with probability p and append a filler element
otherwise. For each filler encountered, append a filler to the output tape.

— The output array is defined to be the first n elements of the output tape.

Write down its length n at a fixed dedicated location on the output tape.

2. Apply My, a compaction algorithm that is (¢/,")-DO w.r.t. ~g to the output
of the above step, i.e., the compaction algorithm treats the output tape of
M; as its own input tape.

We later prove that Examples 3 and 4 satisfy DO with our new framework.

3.2 (e,0)-Neighbor-Preserving Differential Obliviousness (NPDO)

Recognizing the limitations of strongly neighbor-preserving (Definition @), we
would like to make the compositional framework more general. In particular, the
above Examples 3 and 4 can serve as simple motivating examples.

Given a mechanism M whose view space is V and output space is), given
some symmetric relation ~y over the output space, and given a set S CV x Y,
we define the following notation for denoting neighbor sets:

N(S) = {(v,)3(v,y) € Ss.t. ¥ ~y y}

Definition 3.4 ((¢,0)-NPDO). Given a mechanism M : X — Y with view
space V, we say that it satisfies (e, d)-neighbor-preserving differential oblivious-
ness, or (€,0)-NPDO for short, w.r.t. symmetric relations ~x and ~vy, respec-
tively, iff for all x ~x x’, for every S CV x Y,

Pr[Exec™(z) € S] < e - Pr[Exec™ (') € N(S)] + 6. (2)

Our NPDO definition looks similar in form as the standard differential pri-
vacy notion, with some important observations: 1) the notion is defined over

14

the Cartesian product of the view and the output of the mechanism, which_is
important for composition to hold; 2) on the right-hand-side of Equation (),
we consider the probability of M(z’) landing in the neighboring set N'(S) on a
neighboring input z’ ~y x — this is important for capturing a probabilistic
notion of neighbor-preserving.

It is not hard to see that if an algorithm satisfies (¢, §)-NPDO, it must satisfy
(6,0)-DO, as stated in the following theorem.

Theorem 3.5. Suppose that M : X — Y satisfies (¢,6)-NPDO w.r.t. X and Y.
Then, M satisfies (¢,6)-DO w.r.t. X .

The proof is deferred to Appendix @ of the full version [[74].

3.3 Main Composition Theorem

One main technical contribution of our paper is to prove a composition theorem
for our NPDO notion, as stated below.

Theorem 3.6 (Main composition theorem). Suppose that an algorithm
My : X — Y satisfies (e1,01)-NPDO w.r.t. ~x and ~y. Further, suppose that
the algorithm My ’s view space V and the output space Y are finite or countably
infinite. Then, the following composition statements hold:

1. Suppose that Ms : Y — Z satisfies (€2,02)-DO w.r.t. ~y. Then, the composed
mechanism Mg o My : X — Z satisfies (€1 + €2,01 + 02)-DO.

2. Suppose that Mgy : Y — Z satisfies (€a,02)-NPDO w.r.t. ~y and ~z. Then,
the composed mechanism MyoM; : X — Z satisfies (€1 + €2, 61 + d2)-NPDO.

The proof of Theorem @ is presented in Section @ We can use Theorem @
to prove that the algorithms in the earlier Examples 1 to 4 satisfy DO. Before
doing so, let us first introduce some helpful tools for proving an algorithm NPDO.

3.4 Helpful Tools for Proving NPDO

To use our main composition theorem, we need to prove that some algorithm
satisfies NPDO. The following lemmas provide helpful tools for this purpose.

Strongly NP + DO = NPDO. First, it is not hard to see that if an algo-
rithm satisfies the earlier strongly neighbor-preserving notion (Definition B.1|) as
well as DO, then it also satisfies NPDO as stated below:

Lemma 3.7 (Strongly NP and DO imply NPDO). Suppose that an algo-
rithm M : X — Y is strongly neighbor-preserving w.r.t. ~x and ~vy, as well as
(6,0)-DO w.r.t. ~x. Then, M satisfies (¢,6)-NPDO.

The proof is deferred to Appendix @ of the full version [74].

(e,0)-NP. Next, we define another notion that captures the idea of “proba-
bilistically approximate neighbor-preserving” called (¢, d)-neighbor-preserving,
or (¢,9)-NP for short. We show that if an algorithm satisfies (€, §)-NP as well as
(¢/,8")-DO, then it also satisfies (¢ 4+ €', + ¢')-NPDO.

15

Definition 3.8 ((¢,0)-NP). Given a mechanism M : X — Y whose view space
is V, we say that it satisfies (e, d)-neighbor-preserving, or (€,0)-NP for short,
w.r.t. ~x and ~y, iff for all x ~x &', for every view v* € V that happens with
non-zero probability in ExecM(m) as well as Exec™ ('), for every Y C Y,

Pr(v,y) + Exec™(z) 1y € Y |v = v*]
e -

< e Pr[(v,y) « Exec"(z') : o/ e N(Y) ' =0*] +6 (3)

where N(Y) contains all y' such that y' ~y y for ally €Y.

Intuitively, (e, d)-NP requires that conditioned on any view, the algorithm, on
neighboring inputs, must output probabilistically approximately close outputs.

Lemma 3.9 ((¢,0)-NP and DO imply NPDO). Suppose that an algorithm
M: X — Y is (e1,01)-DO and (ea, d2)-neighbor-preserving w.r.t. ~x and ~y.
Then, M satisfies (€1 + €2,01 + 02)-NPDO w.r.t ~x and ~y.

The proof is deferred to Appendix @ of the full version [74].

3.5 Our Composition Theorem in Action

Using the simple motivating examples introduced so far, we can see our compo-
sition theorems in action.

Examples 1 and 2. As mentioned earlier, the first algorithm M; in either
Example 1 or Example 2 satisfies strongly neighbor-preserving as well as (€1, d1)-
DO. Therefore, they can be viewed as a special case of (¢,)-NPDO. Since My
in Example 1 or 2 satisfies (e3,02)-DO, by our main composition theorem, we
immediately reach the conclusion that the composed algorithm Mgy o My satisfies
(61 + €2,01 + 52)—DO.

Example 3. We can use Theorem @ to prove that the subsampling algorithm
of Example 3 satisfies (¢/,')-DO w.r.t. ~g. To accomplish this, it suffices to
show that the first algorithm, M; := InPlaceSample, satisfies (0,0)-NPDO w.r.t.
~pg and ~pg. Observe that in Example 3, two inputs are neighboring if their
Hamming distance is at most 1, which implies that neighboring inputs must have
the same length. Also, M; always generates a deterministic view that depends
only on the length of the input. Therefore, to prove that M;(x) satisfies (0, 0)-
NPDO, it suffices to show that for any pair of neighboring inputs z ~g 2/, for
any subset of outputs Y C) where) is the output space of My,

Pr[My(z) € Y] < Pr[My(z') € N(Y)], (4)

where N(Y) denotes the set of all output arrays that are neighboring to some
array in Y. Observe also that for any possible output y of My (z), let p be the
random coins used for subsampling that led to the result y, then, if the same
random coins p is encountered in an execution of M;(z’) on some neighboring
z' ~p x, the outcome must be neighboring to y. Therefore, Equation (@) holds.

16

Example 4. Similarly, we can use Theorem @ to prove that the subsampling
algorithm of Example 4 satisfies (e +¢€’,d+9)-DO w.r.t. ~g. By Theorem @, it
suffices to show that the My := InPlaceSample, 5 algorithm in Example 4 satisfies
(¢,0)-NPDO w.r.t. ~g being both of the input and output neighboring notion.
Recall that M pads the input array with a random number of elements, such
that the noisy length is n’. Then, it simply scans through the n’ elements and
either writes down the element if it is a real element and has been sampled, or
writes down L. To show that M; satisfies (e,d)-NPDO, we will prove that M
satisfies (0,0)-NP and (¢,)-DO, respectively, and then the conclusion follows
from Lemma B.9. It is easy to prove that M satisfies (€,9)-DO. To see this,
observe that the view depends only on the noisy input length where the noise is
sampled according to a truncated geometric distribution.

Therefore, we focus on showing that M; satisfies (0,0)-NP. Observe that in
M;, the random coins that determine the view and those that determine the
output are independent. Therefore, it suffices to show that for any x ~g 2/, for
any Y C) where) is the output space of My,

PI‘[Ml(J?) S Y] < PI‘[Ml(J?/) S N(Y)]

Since z ~p ', there can be at most one element in z that is not in z’ (e.g.,
the element that is added or modified in z), and vice versa. Henceforth, we use
Common(z, 2’) to denote the list of common elements that appear both in z and
z’. Let G(Y') be the event that there exists some y € Y, such that the elements
in Common(z, z’) receive the same sampling decision as in y. We also say that
G(Y) represents the event that Common(z, z’) receive coins compatible with Y.
Therefore, we have that

Pr[Mi(z) € Y] < Pr[My(z) : G(Y)] < Pr[My(z') € N(Y)).

In the above, the second inequality holds since conditioned on Common(x,z’)
receiving coins compatible with Y in a random execution of My (z’), the outcome
must be neighboring to some element in Y with probability 1.

Additional applications. Later in Section a , we use our composition frame-
work to design a differentially oblivious stable compaction algorithm w.r.t. the
edit distance — this building block was needed in Examples 1, 2, 4. Last but not
the least, in Section fj , we use our composition framework to prove an optimal
privacy amplification theorem for the DO-shuffle model.

4 Proof of Main Composition Theorem

In this section, we shall prove our main composition theorem, that is, Theo-
rem B.G. A key stepping stone is the following equivalence lemma.

Lemma 4.1 (Equivalence of (¢,d)-NPDO and existence of an (¢, §)-matching).
Assume the axiom of choice. Given a finite or countable infinite sample space

2 and a symmetric relation ~ on §2, consider two random variables A, B € (2.

The following statements are equivalent:

17

1. For every S C 2, Pr[A € S] < e°-Pr[B € N(S)] + 8, where the neighbor set
N(S) is defined as N (S) :={b € 2|3a € S,a ~ b}.

2. There exists an (€,d)-matching w : 2 x 2 — [0,1] satisfying the following
conditions:
(a) For all a,b € 2, w(a,b) >0 only if a ~ b;
(b) Foralla € 2, Y gy w(a,b) < Pr[A=al;
(c) Forallbe 2,3 o, pwlab) <e - Pr[B=b];
(d) > apenw(ab) >1-4.

Graph interpretation. Lemma @ has a similar flavor as the Hall’s theorem
for bipartite graphs. The Hall’s theorem says that if for each subset S of one
component of a bipartitie graph, the size of its neighbor set satisfies [N (S)| > |5/,
then we can find a perfect matching in the graph. The proof of Lemma is
also inspired by the proof of the Hall’s theorem.

We think of a bipartite graph where vertices on the left and right both
come from the set 2, and w(a, b) defines the weight on edge (a, b). Imagine that
each vertex a € (2 on the left is factory that produces Pr[A = a] amount of
produce, and each vertex b € {2 on the right is a warehouse that can store up to
ec-Pr[B = b] amount of produce. Condition (a) says that a factory is only allowed
to route its produce to neighboring warehouses. The function w effectively defines
a fractional flow such that almost all, i.e., 1 — § amount of produce is routed to
some warehouse, and moreover, none of the warehouses exceed their capacity.
For this reason, we also call w an (e, §)-matching. The full proof of Lemma ﬁ
is deferred to Appendix of the full version [74]. Below, we prove our main
composition theorem assuming that Lemma holds.

Proof (Proof of Theorem @) We directly prove the more general case when
My is (eg2,d2)-NPDO. When My is only (eq,d2)-DO, we can prove My o My is
(€1 + €2,81 + 92)-DO with nearly the same argument.

Fix any neighboring input z,z’. By Lemma W.I|, there exists an (ey,d1)-
matching w : (V1 x Y) x (V1 x Y) — [0,1] w.r.t the natural neighbor notion
~ in the product space V; x V: (v1,y) ~ (v},y’) when vy = v] and y ~y y’. We
want to prove that, for any subset S C V; X Vy X Z,

Pr[Exec™°Mi () €] < e“1F2 Pr[Exec™°M! (2') € N(9)] + 61 + do.
Define the partial set S, := {(vz, 2)|3(v1, v2, z) € S} for any v1 € V;. Then,

Pr[Exec™™i () € 9]

= Z Pr[Exec™ () = (v1,y)] - Pr[Exec™?(y) € S,,]
(’Ul,y)evl xYy
(Use condition (a), (b) and (d) of the matching)

< Y w(ny), (wny) - PrlExec™(y) € S,] + 6

(v1,9)EVI XY,y ~yy

18

< Y w(onw) ey (e PrBxec™ () € M(S,)] +) 4+
(v1,Y)EVI XY,y ~yy
(Use condition (b) of the matching)

< Y w(wnw) ey (e PrBxec™ (W) € M(S.,)]) + 6 4
(vi,y)EVI XY,y ~yy
(Use condition (c) of the matching)

< Z et Pr[Exec™ (z) = (v1,9/)] - (662 Pr[Exec™(y/) € N(Svl)D + 02 + 61
(v1,y")EVI XY
=12 Pr[Exec™°Mi (1) € N(S)] + 65 + 6y

5 Application: DO Compaction w.r.t. Edit Distance

Earlier in our Examples 1, 2, and 4, we assumed a stable compaction algorithm
that is differentially oblivious w.r.t. the edit distance. Chan et al. [L7] showed
how to construct a stable compaction algorithm that is (€, §)-DO w.r.t. the Ham-
ming distance [17], taking O(n(loglog n+loglog §)) time to compact an array of
size n (assuming that € is a constant). However, we are not aware of any straight-
forward way to modify their algorithm to work for edit distance. Another naive
approach is to use oblivious sorting directly but this would incur ©(nlogn) run-
time which is asymptotically worse. In this section, we fill in this missing piece
that is needed by Examples 1, 2, and 4. We will describe a stable compaction
algorithm that works for edit distance and it preserves the runtime of Chan et
al. [17]. Intriguingly, the design of our new compaction algorithm turns out to be
a great example that demonstrates the power of our compositional framework.

5.1 Additional Preliminaries

Stable compaction. Recall that in stable compaction, we are given an input
array which is written on an input tape. Some elements in the input array are
real elements, and others are fillers. We want to output an array that contains
only the real elements, and they must appear in the same order as the input
array. We assume that the input array is written on the input tape, and its true
length is written on some designated location on the input tape. The algorithm
should write the output array to an output tape, and the true length of the
output array should be written to some dedicated location on the output array.

Stable Oblivious Sorting. Suppose we are given an input array I containing
a list of m elements with a key attached to each element. Earlier works [18,53]
showed how to oblivious sort the array according to the keys in O(mlogm)
runtime while maintaining the stable property: the elements will be ordered by
their relative order in the original array when their keys are the same.

19

Differentially private prefix sum. Given an input array I containing a list
of m integers, we want to its prefix sums. We say that two inputs I, and I’ are
neighboring iff 1) they have the same length and 2) they differ in at most one
position j, and |I[j] — I'[j]| < 1. Earlier works [19,381] showed how to construct a
prefix sum mechanism that satisfies (e, §)-differential privacy, and moreover, the
mechanism satisfies the following properties: 1) The access patterns (i.e., view)
of the algorithm depend only on the input length; 2) The additive error is upper
bounded by O (%(log |T))+° log %) with probability 1.

5.2 Roadmap and Intuition

Our algorithm Compact is the composition of the following two algorithms, i.e.,
Compact(-) = CompactBin o RandBin(-). Suppose we can prove that RandBin is
(e1,01)-NPDO and prove that CompactBin is (g, d2)-NPDO, we have Compact
is (€1 + €2,01 + 02)-NPDO due to our main composition theorem B.§.

1. RandBin: Given an input array I containing real elements and fillers, and
whose true length is stored in a dedicated location on the input tape, RandBin
outputs a list of B bins denoted (Bingz) : 4 € [B]), each of capacity Z.
Each bin contains a random number of real elements and the rest are fillers.
Furthermore, the ordered list of all real elements in all bins is the same as
the ordered list of real elements in the input. The algorithm should output
the parameters B and Z to some dedicated location on the output tape.

2. CompactBin: Given a list of B bins denoted (Binz(-Z) : 1 € [B]) each of capacity
Z, where the parameters B and Z are stored in some dedicated location on the
input tape, the CompactBin algorithm outputs a compacted array containing
only the real elements in the input bins, and preserving the same order they
appear in the input bins. The algorithm outputs the true output length to
some dedicated location on the output tape.

In short, RandBin is a pre-processing step that takes the input array and
converts it into bin format, and CompactBin takes the bin representation, and
performs the actual compaction. The informal intuition is as follows. From earlier
work [[17], we know how to construct an efficient DO stable compaction algorithm
for Hamming distance. However, in our case, we have two inputs I and I’ that
have edit distance 1. The difficulty with edit distance is when I is obtained by
inserting an extra element into I’ at position j, the two inputs I and I’ will differ
in every position after j. Our idea is to leverage RandBin to “probabilistically
localize” this difference caused by a single insertion operation. In particular, if
some bin representation occurs for input I with some probability p, we want that
under the neighboring input I’, with probability close to p, we should encounter
a similar bin representation where the difference is localized to only one or two
bins. If we can accomplish this, then hopefully we can adapt ideas that worked
for Hamming distaince [[L7] to compact the resulting bin representation.

Below, we will define an appropriate neighboring notion ~ g on the bin repre-
sentation. We want to show that the RandBin pre-processing step satisfies NPDO

20

w.r.t. the input relation ~g and output relation ~pg for the bin representation.
Further, we want to show that CompactBin satisfies NPDO w.r.t. ~p and ~p.
Then, the composed algorithm should be NPDO by our composition theorem.

Neighboring relation for bin representation ~pg. Specifically, the neigh-
boring relation ~p is defined as below. Two lists of bins (Binl(.Z) : 4 € [B]) and

(Bin;(zl) 24 € [B']) are said to be neighboring, iff the following all hold:

— they have compatible dimensions, i.e., B = B’ and Z = Z/;

— After removing all fillers and concatenating the real elements in the list of
bins, the resulting outcomes have edit distance at most one;

— There are at most two bins that have different bin loads (defined to be the
number of real elements in the bin), further, for both of them, the difference
in load is at most one.

5.3 RandBin Algorithm

We now describe the RandBin algorithm, which preprocesses the input array into
a bin representation.

RandBinE’é(I): /] Let &1 = €2 = e3 = §, and 0y = 6y = 03 = %.

Sample Gﬁg(el,&). Let L = |I| + G be the noisy input length. Let
s = 1—65 log? Llog% be an upper bound on the support of G(eq,d2) and
also the additive error of PrefixSum®°* on at most L integers. Let the

maximum bin load be Z = 2s and B = [2£] + 1 be the number of bins.

— Fori =1to B, let pi<£5+g(62,52) €£...Z].Let p:=(p1,p2,....pB)
Let cnt := PrefixSum®% (p) € ZB. Let Buf := () be a working buffer.
For i =1 to B:

o fetch the unvisited elements in the input array up to indexd cntfi] + s
and add them to Buf; mark them as visited.

e if the current length of Buf is less than Z, append enough fillers such
that its length is at least Z;

e perform stable oblivious sorting on Buf such that the first Z posi-
tions contains only the real elements coming from the first > j<i Pi
positions in the input and fillers; all remaining elements are moved
to the end of Buf.

e pop the first Z elements of Buf to Bin,.

e perform stable oblivious sorting on Buf to move all the fillers to the
end, if necessary, truncate Buf such that its length is at most 2s.

— Output the bin representation (Binz(-Z) .1 € [B]), and store the parame-
ters B and Z in some dedicated location on the output tape.

21

¢ We may assume that any location in the input array beyond the original length
|1| is occupied by a filler.

Roughly speaking, the RandBin algorithm generates a list of random counts
p = (p1,...,pB). Then, all real elements contained in the first p; positions of the
input are moved into Biny, all real elements contained in the next ps positions of
the input are moved into Bins, and so on. To guarantee differential obliviousness,
the algorithm cannot directly reveal the vector p — instead, it reveals only the
noisy prefix sum of p. Specifically, we apply an (es,ds)-differentially private
prefix sum algorithm to the vector y, i.e., cnt := PrefixSum®:% (Y). In other
words, cnt[i] stores a noisy version of »:._; p;, and it is guaranteed that the
estimation error is at most s. Now, in each step ¢ of the algorithm, we want
to populate Bin;. To do so, we simply fetch the next batch of elements in the
input array up to position cnt[i] into a poly-logarithmically sized working buffer
Buf. Buf also contains previously fetched elements that have not been placed
into any bin yet. We can now obliviously sort Buf to create the next Bin;. At
the end of each step i, it is guaranteed that there are at most 2s real elements
remaining in Buf. Therefore, we can obliviously sort Buf and compact its length
to 2s. This makes sure that Buf is always poly-logarithmic in size. Finally, to
make the algorithm secure, we also need to mask the true input length, and we
can accomplish this by adding a truncated geometric random noise to the true
length, and revealing only the noisy length. Note that the number of bins B is
a random variable that depends only on the noisy input length.

Theorem 5.1. The RandBin algorithm always outputs the correct bin represen-
tation: For all i € [B], all real elements from I {Zjdpj + 1} to {qupj} are

moved to Bin;. Also, all real elements in the input array are moved to the bins.

Theorem 5.2. Assuming |I| > flog% for any fix constant ¢, RandBin has a
. 1 1
worst-case runtime of O (\I\ (log log |I| + log = + log log 3)) .

Theorem 5.3. RandBin is (¢,0)-NPDO w.r.t. the input neighboring notion ~g
and the output neighboring notion ~p.

The above theorems’ proofs are in Appendix @ of the full version [[74].

5.4 CompactBin Algorithm

We now describe the CompactBin algorithm which takes in a bin representation,
outputs a compacted array, and writes the true length of the output to some
dedicated location on the output tape.

CompactBin®? ((Bingz) 11 € [B])) /] Lete; = £, 61 = m,

€
27

22

— Let s = élonglog %, be an upper bound of the additive error of
(€1, 01)-differentially private prefix sums on at most B integers.

— Let R:= (R; : i € [B]), where R; is the number of real elements in Bin,.
Call cnt := PrefixSum“ %! (R).

— Let Buf and the output array be initially empty. For ¢ = 1 to B:

e Read the i-th bin and append it to the end of Buf.

e Perform stable oblivious sorting on Buf such that all real elements
are moved to the front.

e Let L be the current length of the output array. Remove an appropri-
ate number of elements from the beginning of Buf and append them
to the output array, such that the output array has length exactly
max(cnt[i] — s, L).

e Truncate Buf if necessary such that its length is at most 2s.

— Append Buf to the end of the output array. Write the true output length
ZiE[B] R; to some dedicated location on the output tape.

To gain some intuition, basically in each step i, the CompactBin algorithm
reads the next bin ¢, and tries to copy the real elements in bin ¢ to the end
of the output array. To achieve differential obliviousness, the algorithm cannot
reveal the true number of real elements inside each bin. Therefore, it calls a
differentially private prefix sum mechanism to compute an array cnt[1 : B] where
cntfi] is an estimate of the number of real elements contained in the first ¢ bins.
The prefix sum algorithm guarantees that the estimation error is upper bounded
by s. Therefore, at the end of the i-th step, the algorithm should have written
exactly cnt[i] — s number of real elements to the output array. To accomplish
this, the algorithm makes use of a temporary working buffer Buf that is used to
store the real elements that have been fetched from the input bins but have not
been appended to the output array. It guarantees that at the end of each step,
there are at most 2s real elements leftover in Buf.

Theorem 5.4. With probability 1, the output of CompactBin includes all the
real elements from the B input bins with their order preserved and the filler
elements in the output array only appear after the last real element.

Theorem 5.5. CompactBin®’ is (¢,0)-NPDO w.r.t. the input neighboring rela-
tion ~p and output neighboring relation ~g.

Theorem 5.6. CompactBin has a worst-case runtime of O(B(Z+s)log(Z+3s)).

The theorems’ proofs are deferred to Appendix @ of the full version [[74].
From the RandBin algorithm. BZ = O(|1|), Z = 6(s), and s = O(% log? |I|log 3).
By Theorem and Theorem p.6, the following corollary holds:

Corollary 5.7. Assuming |I| > glog% for any fiz constant c, then the full
compaction algorithm Compact®? := CompactBinE/Q"s/2 o RandBin“/?%/2 has a
worst-case runtime of O (|I| (loglog || 4 log * + loglog %)) .

23

6 Application: Optimal Privacy Amplification in the
Differentially Oblivious Shuffle Model

In this section, we use our composition framework to prove a privacy amplifica-
tion theorem for the differentially oblivious shuffle (DO-shuffle) model.

Background. Consider a distributed setting with n clients and an untrusted
server who wants to learn some statistics of the clients’ private data. To achieve
this, the differential privacy literature proposed two models for achieving this.
In the local model, each client adds some noise to its own data by running an
eo-locally differentially private (LDP) mechanism, and sends the noisy result the
server. The server then computes the desired statistics using each client’s noisy
input. In the local model, the server’s view satisfies €;-DP.

Some more recent works [22, 23,89, 40] considered a new model called the
shuffle model. In this model, we assume that a trusted shuffler can shuffle all
of the clients’ messages, and the server only sees the permuted messages (with-
out learning the permutation). Interestingly, earlier works [22,23,39,40] showed
that the shuffle model can amplify privacy. In particular, suppose each client
still runs an €p-locally differentially private (LDP) mechanism before sending
the noisy outcomes to the shuffler, then the server’s view would satisfy (e,d)-
DP where € can be much smaller than e3. Notably, the recent work of Feld-
man et al. [37] proved optimal parameters for privacy amplification in a per-
fectly secure shuffle model, that is, it can achieve (e, d)-DP with any § > 0 and

e=0 (1 —e €0)e0/? logg/‘s)) In this section, our goal is to show that the

perfectly secure shuffle in privacy amplification can be replaced with a much
weaker, (e, d)-differentially oblivious shuffle, without degrading the amplifica-
tion guarantees (except for extra e and ¢ additive factors that arise from the
differentially oblivious shuffler itself).

To benefit from the shuffle model, we need to realize the shuffle either using
trusted hardware or through a cryptographic protocol. Some recent works [5,
13, 45] showed that it may be asymptotically more efficient to realize a relaxed
shuffler that satisfies differential obliviousness than a perfectly secure shuffler.
Therefore, a natural question is whether we can also enjoy the same degree
of privacy amplification with a differentially oblivious shuffler rather than a
perfectly secure shuffler. We explore this question in the remainder of this section.

6.1 Definitions

Suppose that the server and the clients jointly execute a protocol to realize a
shuffler. The syntax of a shuffle protocol is defined below.

Definition 6.1 (Syntax of a shuffle protocol). A protocol between a server
and n clients each with some input from X is said to be a shuffle protocol,
iff under an honest execution, the server outputs a random permutation of the
clients’ inputs.

24

Before defining security, we need to define the adversary’s capabilities and the
view of the adversary. We assume that an adversary A may control up to ¢ clients
as well as the server, we define the random variable ViewA(x #) to mean the view
of the adversary during an execution where the honest clients’ inputs are xp €
X"t The view of the adversary A should include whatever the adversary can
observe during the execution. Specifically, the view include the server’s output,
all messages sent and received by the corrupted clients and the server. Further,
the view may include any additional information the adversary can observe. For
example, if the adversary can observe honest-to-honest communication (e.g.,
a network adversary), then, the view should also include the honest-to-honest
communication. For a protocol secure in the semi-honest model, we assume that
the corrupt players will honestly follow the protocol. For the protocol secure
in the malicious model, we assume that the corrupt players can send arbitrary
messages and the adversary A controls the messages sent by corrupt players.

Remark 6.2. Different DO-shuffle protocols may provide security guarantees un-
der differing adversarial power. For example, of Gordon et al. [45] assumes a
semi-honest adversary cannot observe honest-to-honest communication, whereas
Biinz et al. [13] assumes a malicious adversary who can observe the entire net-
work communication. OQur privacy amplification theorem does not care about the
exact modeling choice made by the underlying DO-shuffle protocol, and the com-
posed DO-shuffle-model mechanism essentially inherits the same assumptions as
the underlying DO-shuffle.

Next, we define the notion of differential obliviousness for a shuffle protocol.
We first need to define what neighboring means.

Neighboring by swapping. Given some set D and two vectors y,y’ € D™, we
say that y ~g y’, iff either y = y’, or y’ can be obtained from y by swapping
the values of two coordinates.

Definition 6.3 (Differential obliviousness of a shuffle protocol). A shuf-
fle protocol is said to satisfy statistical (e,0)-differential obliviousness in the
presence of t < n corruptions, iff the following holds: for any adversary A con-
trolling the server and at most t clients, for any two honest input configurations
v, Yy € V" such that yg ~s ¥y, for any subset S CV where V denotes the
view space, it holds that

Pr [ViewA(yH) € S} <e - Pr {ViewA(y}I) €S| +9

If we set ¢ = 0 and § = 0, the above notion becomes equivalent to the security
of a perfectly secure shuffle.

We next define a computational variant of the DO notion, since some known
DO shuffler instantiations enjoy computational security [B,[13,45].

Definition 6.4 (Computational DO for a shuffle protocol). A shuffle pro-
tocol @ is said to satisfy computational (e,d)-differential obliviousness in the

25

presence of t < n corruptions, iff for any non-uniform probabilistic polynomial-
time (p.p.t.) adversary A controlling the server and at most t clients, for any
two neighboring honest input configurations yg ~gs Yy, it holds that

Pr [EXPtA(1>\7YH) = 1} < e Pr [EXPtA(lA,yiq) =1[+9

where ExptA(l)‘,y) is the randomized experiment where we execute the protocol
using security parameter \ and interacting with the adversary A, and at the end
we output whatever A outputs.

Next, we define the notion of a locally differentially private (LDP) mecha-
nism. The main privacy amplification theorem we want to prove in this section
asks the following question: if each client computes its message by applying
an €g-LDP mechanism to its private input, and then a DO shuffler shuffles all
clients’ messages before revealing the shuffled result to the server, can we prove
that the server’s view satisfies (¢, §)-DP where € is much smaller than eg?

Definition 6.5 (¢op-LDP mechanism). R : X — Y is an eg-LDP mechanism
if for any x,2’ € X and any subset S C Y, Pr[R(x) € S] < e Pr[R(2') € S].

6.2 Privacy Amplification in the DO-Shuffle Model

We formally restate Theorem @ when the DO-shuffler @ statisfies statistical
DO as the following theorem. In Appendix @ of the full version [74], we will
extend our composition framework to support the case when the DO-shuffler
satisfies computational differential obliviousness (Definition §.4).

Theorem 6.6. Let R : X — Y be an €g-LDP mechanism to be run by each
client over its private input. Suppose A is an adversary controlling the server
and at most t clients. Let @ be a statistical (€1,81)-DO shuffling protocol. Define
the random experiment ExptA(xl, ..., &y) as the following where each x; € X
denotes the private input of client i € [n]:

1. Each honest client i treats the output of R(x;) as the input in the next step;

2. Execute the DO-shuffling protocol ® with the presence of the adversary A
and let A also observe the outcome of the shuffling.

8. Output whatever A outputs.

Let x = (21,...,2,) € X" and X' = (2f,...,2]) € X™ be any two neighbor-
ing input configurations that differ in at most one client’s input. For any § > 0
that eg < log (W_(;/é))’ we have that

Pr [ExptA(x) = 1} <e . Pr {ExptA(X’) = 1] +d+01

fore=0 ((1 - e—eo)eeo/z\/W)'

26

Since we want to use our composition framework to prove optimal privacy
amplification in the DO-shuffle model, we can define the first and second mech-
anism M; and My as follows:

— The first mechanism M; : X — V" is where the n clients each apply the
€0-LDP mechanism R : & — Y to their private data, respectively. The
mechanism generates no view observable by the adversary, and moreover, its
output is the concatenation of all clients’ outputs.

— The second mechanism My : Y* — V" is the DO-shuffler itself. Here, the
view of the adversary is its view in the DO-shuffle protocol, and the output
is the shuffled outcome. In the main body, we shall first assume that My
satisfies statistical differential obliviousness (Definition .3).

It is easy to see that the adversary has the same view in the composed
mechanism My oM and in the random experiment described in Theorem p.§. So
we only need to prove that MaoMy is (e+€1,d+071)-DO. The crux is to show that
M; satisfies (€, §)-NPDO when at most ¢ clients are corrupted, as more formally
stated in the following lemma:

Lemma 6.7. Suppose ¢y < log (3/5)). The above mechanism My satisfies

lﬁlgg_(
(e,0)-NPDO w.r.t. the input relation ~g, (i.e., two vectors are neighboring if
they have the same length and differ in at most one position) and the output

relation ~g (i.e., neighboring by swapping).

We can directly apply our composition theorem (Theorem @)amd Lemma @
to get the desired result. The proof is in Appendix @ of the full version [[74].

Acknowledgments

This work is in part supported by a grant from ONR, a gift from Cisco, NSF
awards under grant numbers 2128519 and 2044679, and a Packard Fellowship.
T-H. Hubert Chan was partially supported by the Hong Kong RGC under the
grants 17201220, 17202121 and 17203122.

References

1. Abe, M.: Mix-networks on permutation networks. In: Lam, K.Y., Okamoto, E.,
Xing, C. (eds.) ASTACRYPT’99. LNCS, vol. 1716, pp. 258-273. Springer, Heidel-
berg (Nov 1999). https://doi.org/10.1007/978-3-540-48000-6_21

2. Abraham, I., Pinkas, B., Yanai, A.: Blinder - scalable, robust anonymous commit-
ted broadcast. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020. pp.
1233-1252. ACM Press (Nov 2020). https://doi.org/10.1145/3372297.3417261

3. Afshani, P., Freksen, C.B., Kamma, L., Larsen, K.G.: Lower bounds for multiplica-
tion via network coding. In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi,
S. (eds.) ICALP 2019. LIPIcs, vol. 132, pp. 10:1-10:12. Schloss Dagstuhl (Jul 2019).
https://doi.org/10.4230/LIPIcs.ICALP.2019.10

27

https://doi.org/10.1007/978-3-540-48000-6_21
https://doi.org/10.1145/3372297.3417261
https://doi.org/10.4230/LIPIcs.ICALP.2019.10

10.

11.

12.

13.

14.

15.

16.

17.

Aharoni, R., Berger, E., Georgakopoulos, A., Perlstein, A., Spriissel, P.: The max-
flow min-cut theorem for countable networks. Journal of Combinatorial Theory,
Series B 101(1), 1-17 (2011). https://doi.org/10.1016/7.jctb.2010.08.002
Ando, M., Lysyanskaya, A., Upfal, E.: Practical and provably secure onion routing.
In: Chatzigiannakis, I., Kaklamanis, C., Marx, D., Sannella, D. (eds.) ICALP 2018.
LIPIcs, vol. 107, pp. 144:1-144:14. Schloss Dagstuhl (Jul 2018). https://doi.org/
10.4230/LIPIcs.ICALP.2018.144

Arasu, A., Kaushik, R.: Oblivious query processing. In: Proc. 17th International
Conference on Database Theory (ICDT), Athens, Greece, March 24-28, 2014. pp.
26-37. OpenProceedings.org (2014). https://doi.org/10.5441/002/icdt.2014.
0./

Balle, B., Barthe, G., Gaboardi, M.: Privacy amplification by subsampling: Tight
analyses via couplings and divergences. NeurIPS (2018). https://doi.org/10.
5555/3327345.3327525

Balle, B., Bell, J., Gascon, A., Nissim, K.: The privacy blanket of the shuffle
model. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS,
vol. 11693, pp. 638-667. Springer, Heidelberg (Aug 2019). https://doi.org/10.
1007/978-3-030-26951-7 22

Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a
shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 263-280. Springer, Heidelberg (Apr 2012). https://doi.org/10.
1007/978-3-642-29011-4 17

Beimel, A., Nissim, K., Zaheri, M.: Exploring differential obliviousness.
In: Approx/Random. LIPIcs, vol. 145, pp. 65:1-65:20 (2019). https://
doi.org/10.4230/LIPIcs.APPRUOX-RANDOM.2019.65, https://doi.org/10.4230/
LIPTes APPROX=HANDIM 2019 65 ’ ’

Bittau, A., Erlingsson, U., Maniatis, P., Mironov, I., Raghunathan, A., Lie, D.,
Rudominer, M., Kode, U., Tinnes, J., Seefeld, B.: Prochlo: Strong privacy for an-
alytics in the crowd. In: SOSP. p. 441-459. Association for Computing Machin-
ery, New York, NY, USA (2017). https://doi.org/10.1145/3132747.3132769,
https://doi.org/10.1145/3132747.3132769

Bogatov, D., Kellaris, G., Kollios, G., Nissim, K., O’Neill, A.: epsolute: Efficiently
querying databases while providing differential privacy. In: Vigna, G., Shi, E. (eds.)
ACM CCS 2021. pp. 2262-2276. ACM Press (Nov 2021). https://doi.org/10.
1145/3460120.3484786

Biinz, B., Hu, Y., Matsuo, S., Shi, E.: Non-interactive differentially anonymous
router. Cryptology ePrint Archive, Report 2021/1242 (2021), https://eprint.
iacr.org/2021/1242

Camenisch, J., Lysyanskaya, A.: A formal treatment of onion routing. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 169-187. Springer, Heidelberg (Aug
2005). https://doi.org/10.1007/11535218_11

Cash, D., Grubbs, P.; Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: Ray, L., Li, N., Kruegel, C. (eds.) ACM CCS 2015. pp.
668—679. ACM Press (Oct 2015). https://doi.org/10.1145/2810103.2813700
Cecchetti, E., Zhang, F., Ji, Y., Kosba, A.E., Juels, A., Shi, E.: Solidus: Confidential
distributed ledger transactions via PVORM. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 701-717. ACM Press (Oct / Nov
2017). https://doi.org/10.1145/3133956.3134010

Chan, T.H.H., Chung, K.M., Maggs, B.M., Shi, E.: Foundations of differentially
oblivious algorithms. In: Chan, T.M. (ed.) 30th SODA. pp. 2448-2467. ACM-SIAM
(Jan 2019). https://doi.org/10.1137/1.9781611975482. 150

28

https://doi.org/10.1016/j.jctb.2010.08.002
https://doi.org/10.4230/LIPIcs.ICALP.2018.144
https://doi.org/10.4230/LIPIcs.ICALP.2018.144
https://doi.org/10.5441/002/icdt.2014.07
https://doi.org/10.5441/002/icdt.2014.07
https://doi.org/10.5555/3327345.3327525
https://doi.org/10.5555/3327345.3327525
https://doi.org/10.1007/978-3-030-26951-7_22
https://doi.org/10.1007/978-3-030-26951-7_22
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.65
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.65
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.65
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.65
https://doi.org/10.1145/3132747.3132769
https://doi.org/10.1145/3132747.3132769
https://doi.org/10.1145/3460120.3484786
https://doi.org/10.1145/3460120.3484786
https://eprint.iacr.org/2021/1242
https://eprint.iacr.org/2021/1242
https://doi.org/10.1007/11535218_11
https://doi.org/10.1145/2810103.2813700
https://doi.org/10.1145/3133956.3134010
https://doi.org/10.1137/1.9781611975482.150

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Chan, T.H.H., Guo, Y., Lin, W.K., Shi, E.: Cache-oblivious and data-oblivious
sorting and applications. In: Czumaj, A. (ed.) 29th SODA. pp. 2201-2220. ACM-
SIAB&(Jan 2018) https://doi.org/10.1137/1.9781611975031.143

Chan, T.H.H., Shi, E.,; Song, D.: Private and continual release of statistics. In:
Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G.
(eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 405-417. Springer, Heidelberg
(Jul 2010). https://doi.org/10.1007/978-3-642-14162-1_34

Chaum, D.: The dining cryptographers problem: Unconditional sender and re-
cipient untraceability. Journal of Cryptology 1(1), 65-75 (Jan 1988). https:
//doi.org/10.1007/BF00206326

Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM 24(2), 84-90 (Feb 1981). https:
//doi.org/10.1145/358549.358563

Cheu, A.: Differential privacy in the shuffle model: A survey of separations. arXiv
preprint arXiv:2107.11839 (2021). https://doi.org/10.48550/arXiv.2107.11839
Cheu, A., Smith, A.D., Ullman, J., Zeber, D., Zhilyaev, M.: Distributed differential
privacy via shuffling. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I.
LNCS, vol. 11476, pp. 375-403. Springer, Heidelberg (May 2019). https://doi.
org/10.1007/978-3-030-17653-2_13

Chu, S., Zhuo, D., Shi, E., Chan, T.H.: Differentially oblivious database joins:
Overcoming the worst-case curse of fully oblivious algorithms. In: Tessaro, S. (ed.)
ITC (2021). https://doi.org/10.4230/LIPIcs. ITC.2021.19

Connell, G.: Technology deep dive: Building a faster oram layer for enclaves. https:
//signal.org/blog/building-faster—oram/

Corrigan-Gibbs, H., Boneh, D., Maziéres, D.: Riposte: An anonymous messaging
system handling millions of users. In: 2015 IEEE Symposium on Security and
Privacy. pp. 321-338. IEEE Computer Society Press (May 2015). https://doi.
org/10.1109/5P.2015.27

Corrigan-Gibbs, H., Ford, B.: Dissent: accountable anonymous group messaging.
In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 2010. pp. 340—
350. ACM Press (Oct 2010). https://doi.org/10.1145/1866307.1866346
Crooks, N., Burke, M., Cecchetti, E., Harel, S., Agarwal, R., Alvisi, L.: Obladi:
Oblivious serializable transactions in the cloud. In: 13th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA,
October 8-10, 2018. pp. 727-743. USENIX Association (2018). https://doi.org/
10.5555/3291168.3291222

Degabriele, J.P., Stam, M.: Untagging Tor: A formal treatment of onion encryption.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822,
pp. 259-293. Springer, Heidelberg (Apr / May 2018). https://doi.org/10.1007/
978-3-319-(8372-7_9

Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitiv-
ity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 265-284. Springer, Heidelberg (Mar 2006). https://doi.org/10.
1007/11681878 14

Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N.: Differential privacy under con-
tinual observation. In: Schulman, L.J. (ed.) 42nd ACM STOC. pp. 715-724. ACM
Press (Jun 2010). https://doi.org/10.1145/1806689.1806787

Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci. 9(3—4), 211-407 (2014). https://doi.org/10.1561/

29

https://doi.org/10.1137/1.9781611975031.143
https://doi.org/10.1007/978-3-642-14162-1_34
https://doi.org/10.1007/BF00206326
https://doi.org/10.1007/BF00206326
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://doi.org/10.48550/arXiv.2107.11839
https://doi.org/10.1007/978-3-030-17653-2_13
https://doi.org/10.1007/978-3-030-17653-2_13
https://doi.org/10.4230/LIPIcs.ITC.2021.19
https://signal.org/blog/building-faster-oram/
https://signal.org/blog/building-faster-oram/
https://doi.org/10.1109/SP.2015.27
https://doi.org/10.1109/SP.2015.27
https://doi.org/10.1145/1866307.1866346
https://doi.org/10.5555/3291168.3291222
https://doi.org/10.5555/3291168.3291222
https://doi.org/10.1007/978-3-319-78372-7_9
https://doi.org/10.1007/978-3-319-78372-7_9
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/11681878_14
https://doi.org/10.1145/1806689.1806787
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Erlingsson, U., Feldman, V., Mironov, 1., Raghunathan, A., Talwar, K., Thakurta,
A.: Amplification by shuffling: From local to central differential privacy via
anonymity. In: Chan, T.M. (ed.) 30th SODA. pp. 2468-2479. ACM-SIAM (Jan
2019) https://doi.org/10.1137/1.9781611975482.151

Eskandarian, S., Boneh, D.: Clarion: Anonymous communication from multiparty
shuffling protocols. Cryptology ePrint Archive, Report 2021/1514 (2021), https:
//eprint.iacr.org/2021/1514

Eskandarian, S., Zaharia, M.: Oblidb: Oblivious query processing for secure
databases. Proc. VLDB Endow. 13(2), 169-183 (2019). https://doi.org/10.
14778/3364324 .3364331

Farhadi, A., Hajiaghayi, M., Larsen, K.G., Shi, E.: Lower bounds for external
memory integer sorting via network coding. In: Charikar, M., Cohen, E. (eds.)
51st ACM STOC. pp. 997-1008. ACM Press (Jun 2019). https://doi.org/10.
1145/3313276.3316337

Feldman, V., McMillan, A., Talwar, K.: Hiding among the clones: A simple and
nearly optimal analysis of privacy amplification by shuffling. In: FOCS (2021).
https://doi.org/10.1109/F0CS52979.2021.00096

Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. JCSS (2000). https://doi.org/10.1145/
DT66YR 276723

Ghazi, B., Golowich, N., Kumar, R., Pagh, R., Velingker, A.: On the power of
multiple anonymous messages: Frequency estimation and selection in the shuf-
fle model of differential privacy. In: Canteaut, A., Standaert, F.X. (eds.) EURO-
CRYPT 2021, Part III. LNCS, vol. 12698, pp. 463-488. Springer, Heidelberg (Oct
2021). https://doi.org/10.1007/978-3-030-77883-5_16

Ghazi, B., Kumar, R., Manurangsi, P., Pagh, R.: Private counting from anonymous
messages: Near-optimal accuracy with vanishing communication overhead (2021).
https://doi.org/10.48550/ARXIV.2106.04247

Girgis, A.M., Data, D., Diggavi, S., Kairouz, P., Suresh, A.T.: Shuffled model of
federated learning: Privacy, accuracy and communication trade-offs. IEEE Journal
on Selected Areas in Information Theory 2(1), 464-478 (2021). https://doi.org/
10.1109/JSAIT.2021.3056102

Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: Aho, A. (ed.) 19th ACM STOC. pp. 182-194. ACM Press (May 1987).
https://doi.org/10.1145/28395.28416

Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431-473 (may 1996). https://doi.org/10.1145/233551.233553,
https://doi.org/10.1145/233551.233553

Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis,
Y.: Secure two-party computation in sublinear (amortized) time. In: Yu, T.,
Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012. pp. 513-524. ACM Press (Oct
2012), https://doi.org/10.1145/2382196.2382251

Gordon, S.D., Katz, J., Liang, M., Xu, J.: Spreading the privacy blanket: - dif-
ferentially oblivious shuffling for differential privacy. In: Ateniese, G., Venturi, D.
(eds.) ACNS 22. LNCS, vol. 13269, pp. 501-520. Springer, Heidelberg (Jun 2022).
https://doi.org/10.1007/978-3-031-09234-3_25

Grubbs, P., Lacharité, M.S., Minaud, B., Paterson, K.G.: Learning to reconstruct:
Statistical learning theory and encrypted database attacks. In: 2019 IEEE Sympo-
sium on Security and Privacy. pp. 1067-1083. IEEE Computer Society Press (May
2019). https://doi.org/10.1109/SP.2019.00030

30

https://doi.org/10.1137/1.9781611975482.151
https://eprint.iacr.org/2021/1514
https://eprint.iacr.org/2021/1514
https://doi.org/10.14778/3364324.3364331
https://doi.org/10.14778/3364324.3364331
https://doi.org/10.1145/3313276.3316337
https://doi.org/10.1145/3313276.3316337
https://doi.org/10.1109/FOCS52979.2021.00096
https://doi.org/10.1145/276698.276723
https://doi.org/10.1145/276698.276723
https://doi.org/10.1007/978-3-030-77883-5_16
https://doi.org/10.48550/ARXIV.2106.04247
https://doi.org/10.1109/JSAIT.2021.3056102
https://doi.org/10.1109/JSAIT.2021.3056102
https://doi.org/10.1145/28395.28416
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/2382196.2382251
https://doi.org/10.1007/978-3-031-09234-3_25
https://doi.org/10.1109/SP.2019.00030

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Grubbs, P., McPherson, R., Naveed, M., Ristenpart, T., Shmatikov, V.: Breaking
web applications built on top of encrypted data. In: Weippl, E.R., Katzenbeisser,
S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 1353-1364.
ACM Press (Oct 2016). https://doi.org/10.1145/2976749.2978351

Hall, P.: On representatives of subsets. Journal of the London Mathematical Society
1(1), 26-30 (1935). https://doi.org/10.1112/i1ms/s1-10.37.26

Hall Jr, M.: Distinct representatives of subsets. Bulletin of the Ameri-
can Mathematical Society 54(10), 922-926 (1948). https://doi.org/10.1090/
Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: Ramification, attack and mitigation. In: NDSS 2012. The Internet
Society (Feb 2012)

Jacob, R., Larsen, K.G., Nielsen, J.B.: Lower bounds for oblivious data structures.
In: Chan, T.M. (ed.) 30th SODA. pp. 2439-2447. ACM-SIAM (Jan 2019). https:
//doi.org/10.1137/1.9781611975482.14¢

Kellaris, G., Kollios, G., Nissim, K., O’Neill, A.: Generic attacks on secure
outsourced databases. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 1329-1340. ACM Press (Oct 2016).
https://doi.org/10.1145/2976749.2978386

Lin, W.K., Shi, E., Xie, T.: Can we overcome the n log n barrier for oblivious
sorting? In: Chan, T.M. (ed.) 30th SODA. pp. 2419-2438. ACM-SIAM (Jan 2019).
https://doi.org/10.1137/1.9781611975482.148

Liu, C., Hicks, M., Harris, A., Tiwari, M., Maas, M., Shi, E.: Ghostrider: A
hardware-software system for memory trace oblivious computation. In: ASPLOS
(2015). https://doi.org/10.1145/2694344.2694385

Liu, C., Wang, X.S., Nayak, K., Huang, Y., Shi, E.: ObliVM: A programming
framework for secure computation. In: 2015 IEEE Symposium on Security and
Privacy. pp. 359-376. IEEE Computer Society Press (May 2015). https://doi.
org/10.1109/5P.2015.28

Lochbihler, A.: A mechanized proof of the max-flow min-cut theorem for countable
networks with applications to probability theory. Journal of Automated Reasoning
pp- 1-26 (2022). https://doi.org/10.1007/s10817-022-09616-4

Maas, M., Love, E., Stefanov, E., Tiwari, M., Shi, E., Asanovic, K., Kubiatowicz,
J., Song, D.: PHANTOM: practical oblivious computation in a secure processor.
In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013. pp. 311-324.
ACM Press (Nov 2013). https://doi.org/10.1145/2508859.2516692

Mironov, I., Pandey, O., Reingold, O., Vadhan, S.P.: Computational differential
privacy. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 126-142. Springer,
Heidelberg (Aug 2009). https://doi.org/10.1007/978-3-642-03356-8_8
Mishra, P., Poddar, R., Chen, J., Chiesa, A., Popa, R.A.: Oblix: An efficient oblivi-
ous search index. In: 2018 IEEE Symposium on Security and Privacy. pp. 279-296.
IEEE Computer Society Press (May 2018). https://doi.org/10.1109/SP.2018.
00045

Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving
encrypted databases. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015. pp.
644-655. ACM Press (Oct 2015). https://doi.org/10.1145/2810103.2813651
Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In: 29th
ACM STOC. pp. 294-303. ACM Press (May 1997). https://doi.org/10.1145/

31

https://doi.org/10.1145/2976749.2978351
https://doi.org/10.1112/jlms/s1-10.37.26
https://doi.org/10.1090/S0002-9904-1948-09098-X
https://doi.org/10.1090/S0002-9904-1948-09098-X
https://doi.org/10.1137/1.9781611975482.149
https://doi.org/10.1137/1.9781611975482.149
https://doi.org/10.1145/2976749.2978386
https://doi.org/10.1137/1.9781611975482.148
https://doi.org/10.1145/2694344.2694385
https://doi.org/10.1109/SP.2015.29
https://doi.org/10.1109/SP.2015.29
https://doi.org/10.1007/s10817-022-09616-4
https://doi.org/10.1145/2508859.2516692
https://doi.org/10.1007/978-3-642-03356-8_8
https://doi.org/10.1109/SP.2018.00045
https://doi.org/10.1109/SP.2018.00045
https://doi.org/10.1145/2810103.2813651
https://doi.org/10.1145/258533.258606
https://doi.org/10.1145/258533.258606

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

Reed, M., Syverson, P., Goldschlag, D.: Anonymous connections and onion routing.
IEEE Journal on Selected Areas in Communications 16(4), 482-494 (1998). https:
//doi.org/10.1109/49.668972

Ren, L., Yu, X., Fletcher, C.W., van Dijk, M., Devadas, S.: Design space exploration
and optimization of path oblivious RAM in secure processors. In: ISCA. pp. 571—
582 (2013). https://doi.org/10.1145/2485922.2485971

Roughgarden, T.: Beyond the Worst-Case Analysis of Algorithms. Cambridge Uni-
versity Press (2020). https://doi.org/10.1017/9781108637435

Shi, E., Chan, T.H.H., Stefanov, E., Li, M.: Oblivious RAM with O((log N)?)
worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS,
vol. 7073, pp. 197-214. Springer, Heidelberg (Dec 2011). https://doi.org/10.
1007/978-3-642-25385-0_11

Shi, E., Wu, K.: Non-interactive anonymous router. In: Canteaut, A., Standaert,
F.X. (eds.) EUROCRYPT 2021, Part III. LNCS, vol. 12698, pp. 489-520. Springer,
Heidelberg (OCt 2021). https://doi.org/10.1007/978-3-030-77883-5_17
Stefanov, E., Shi, E.: ObliviStore: High performance oblivious cloud storage. In:
2013 IEEE Symposium on Security and Privacy. pp. 253-267. IEEE Computer
Society Press (May 2013). https://doi.org/10.1109/SP.2013.25

Stefanov, E., van Dijk, M., Shi, E., Fletcher, C.W., Ren, L., Yu, X., Devadas,
S.: Path ORAM: an extremely simple oblivious RAM protocol. In: Sadeghi, A.R.,
Gligor, V.D., Yung, M. (eds.) ACM CCS 2013. pp. 299-310. ACM Press (Nov
2013). https://doi.org/10.1145/2508859.2516660

Tinoco, A., Gao, S., Shi, E.: EnigMap: Signal should use oblivious algorithms for
private contact discovery. Cryptology ePrint Archive, Report 2022/1083 (2022),
https://eprint.iacr.org/2022/1083

Wang, X., Chan, T.H.H., Shi, E.: Circuit ORAM: On tightness of the Goldreich-
Ostrovsky lower bound. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015. pp.
850-861. ACM Press (Oct 2015). https://doi.org/10.1145/2810103.2813634
Wang, Y.X., Balle, B., Kasiviswanathan, S.: Subsampled rényi differential privacy
and analytical moments accountant. Journal of Privacy and Confidentiality 10(2)
(Feb 2021). https://doi.org/10.29012/jpc.723

Williams, P., Sion, R., Tomescu, A.: PrivateFS: a parallel oblivious file system. In:
Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012. pp. 977-988. ACM Press
(Oct 2012). https://doi.org/10.1145/2382196 . 2382299

Zhou, M., Shi, E.: The power of the differentially oblivious shuffle in distributed
privacy mechanisms. Cryptology ePrint Archive, Report 2022/177 (2022), https:
//eprint.iacr.org/2022/177

Zhou, M., Shi, E., Chan, T.H.H., Maimon, S.: A theory of composition for
differential obliviousness. Cryptology ePrint Archive, Report 2022/1357 (2022),
https://eprint.iacr.org/2022/1357

Zhuang, L., Zhou, F., Zhao, B.Y., Rowstron, A.: Cashmere: Resilient anonymous
routing. In: NSDI (2005). https://doi.org/10.5555/1251203.1251225

32

https://doi.org/10.1109/49.668972
https://doi.org/10.1109/49.668972
https://doi.org/10.1145/2485922.2485971
https://doi.org/10.1017/9781108637435
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-030-77883-5_17
https://doi.org/10.1109/SP.2013.25
https://doi.org/10.1145/2508859.2516660
https://eprint.iacr.org/2022/1083
https://doi.org/10.1145/2810103.2813634
https://doi.org/10.29012/jpc.723
https://doi.org/10.1145/2382196.2382299
https://eprint.iacr.org/2022/177
https://eprint.iacr.org/2022/177
https://eprint.iacr.org/2022/1357
https://doi.org/10.5555/1251203.1251225

	A Theory of Composition for Differential Obliviousness

