
Generic Attack on Duplex-Based AEAD Modes
using Random Function Statistics

Henri Gilbert1,2, Rachelle Heim Boissier2, Louiza Khati1, Yann Rotella2

1ANSSI, France
2Université Paris-Saclay, UVSQ, CNRS, Laboratoire de mathématiques de Versailles,

78000, Versailles, France

Abstract. Duplex-based authenticated encryption modes with a suffi-
ciently large key length are proven to be secure up to the birthday bound
2

c
2 , where c is the capacity. However this bound is not known to be tight

and the complexity of the best known generic attack, which is based on
multicollisions, is much larger: it reaches 2c

α
where α represents a small

security loss factor. There is thus an uncertainty on the true extent of
security beyond the bound 2

c
2 provided by such constructions. In this

paper, we describe a new generic attack against several duplex-based
AEAD modes. Our attack leverages random functions statistics and pro-
duces a forgery in time complexity O(2

3c
4) using negligible memory and

no encryption queries. Furthermore, for some duplex-based modes, our
attack recovers the secret key with a negligible amount of additional com-
putations. Most notably, our attack breaks a security claim made by the
designers of the NIST lightweight competition candidate Xoodyak. This
attack is a step further towards determining the exact security provided
by duplex-based constructions.

Keywords: Cryptanalysis · Symmetric cryptography · AEAD · Duplex-
based constructions · NIST lightweight competition · Xoodyak · Ran-
dom functions

1 Introduction

Authenticated Encryption (AE), which allows to encrypt and authenticate a
plaintext message in a combined way, is one of the main workhorses of symmet-
ric cryptography. AE often offers the option to authenticate, in addition to the
plaintext message, some extra data which, unlike the plaintext, are transmit-
ted unencrypted. AE is then renamed Authenticated Encryption with Associ-
ated Data (AEAD). A considerable research effort was devoted during the last
years to the design and analysis of efficient and secure AEAD algorithms. Ex-
amples of AEAD mechanisms largely deployed over the Internet are AES-GCM
and Chacha20-Poly1305. In 2014-2019, the three-round process of the CAESAR
competition for authenticated encryption resulted in the selection of a portfolio
of six AEAD mechanisms chosen to address the needs of the three following
use cases: lightweight applications, high-performance applications and provision

of defense-in-depth features, e.g. nonce misuse resistance. Another symmetric
algorithms selection initiative, the ongoing NIST lightweight cryptography stan-
dardization process, aims at selecting (families of) algorithms suitable for use in
constrained environment that comprise at least an AEAD mechanism and op-
tionally a cryptographic hashing mechanism. The process was launched in 2018
and has now reached its third round, where ten finalists are still being evaluated.

Most existing AEAD algorithms are either block cipher-based or permutation-
based. In the first case, they result from the application of a suitable mode of
operation to a block cipher or a tweakable block cipher. In the second case,
they consist in the instantiation of a keyed mode of operation with a public
permutation. In this paper, we focus on so-called duplex-based keyed modes.
Seminal examples of such modes are SpongeWrap and MonkeyDuplex, both
introduced by Bertoni, Daemen, Peeters and Van Assche [7,10]. Duplex-based
modes can be viewed as an adaptation to the AEAD context of the Sponge
construction for hash functions introduced by the same authors in [8,6]. After
an initialization phase allowing to derive a b-bit state from a key and an IV
value, they essentially iterate calls to a key-less public permutation P of the
state space {0, 1}b in alternance with an injection and/or extraction of data
blocks on/from a dedicated r-bit part (r < b) of the current state value in order
to absorb additional data, encrypt and absorb the plaintext, and produce an
authentication tag.1 The sizes r and c = b − r bits of the state parts affected
(resp. unaffected) by data injections or extractions are named the rate and the
capacity. The corresponding state parts are referred to as the outer and the inner
state.

The security of duplex-based constructions has been extensively studied
during the last decade. Let us denote the total time complexity of an attack by
T = σe+σd+qP + textra−op, where σe and σd respectively represent the number
of online calls to P caused by the adversary’s encryption requests and forgery
attempts and qP represents the number of offline queries to P or its inverse. The
last term textra−op represents the extra computations not taken into account
in σe + σd + qP , e.g. computations of primitives involved in the initialization
and finalization, basic read/write operations in memory, random samplings. It
is measured as an equivalent number of P computations.2 Let us further denote
by qd the number of forgery attempts of the adversary. The initial security ar-
guments for duplex constructions, which leveraged the indifferentiability of the
sponge construction for hash functions, only allowed to guarantee the security
of the duplex constructions as long as T ≪ min{2 c

2 , 2κ} and qd ≪ 2τ , where κ
and τ represent the key length and the tag length. In [27,28], Jovanovic et al.

1The name “duplex”, that conveys the idea of a bidirectional process, reflects the
fact that in such constructions both a data block injection and a data block extraction
to/from the current state can potentially take place between two consecutive invoca-
tions of P .

2Note that in the attack considered in the sequel, textra−op will in practice be
negligible compared to σe + σd + qP .

2

showed that in the nonce-respecting setting, the security of a series of duplex
constructions can be ensured beyond the birthday bound 2

c
2 , namely as long as

T ≪ min{2 b
2 ,

2c

α
, 2κ} and qd ≪ 2τ , (1)

where α represents a small constant upper bounded by r in [27] and a tighter,
substantially smaller constant in [28]. The detail of the security proofs sections
of [27,28] indicates however that the bounds (1) are only valid under the as-
sumption that σd is strongly limited: if one wants to avoid implicit assumptions
about σd, the bounding conditions (1) must be replaced by the more complete
(though still simplified) conditions:

T ≪ min{2 b
2 ,

2c

α
,
2c

σd
, 2κ} and qd ≪ 2τ . (2)

Unlike the conditions (1), the complete bounding conditions (2) can hardly
be considered as ‘beyond-birthday bounds’. For σd ≥ 2

c
2 , the condition T ≪ 2c

σd

of (2) indeed implies T ≪ 2
c
2 . Thus, the security of the considered duplex-based

constructions without assumptions on σd can only be guaranteed as long as the
birthday condition T ≪ 2

c
2 is met.

The bounding conditions (1) were used for dimensioning the family of duplex
AEADs NORX, and led since 2014 to several other AEAD design proposals based
on duplex-like constructions with a claimed security level strictly larger than
c
2 . Similar bounds were shown to still hold when instead of limiting the size of
injected and extracted data blocks to r bits, one only limits the size of extracted
data blocks to r bits but full-state data injections are permitted [30]. This leads
to AEAD proposals where the efficiency of the associated data absorption phase
is increased. A generalisation of the full-state keyed duplex of [30] with multi-user
support, accompanied by a refined security analysis, was published in [20].

Generic attacks on duplex-based constructions. The best currently known
generic attacks on duplex-based constructions are based on multicollisions. These
attacks match the security bound 2c

α where α represents a small security loss
factor as stated before. They are presented in detail in [28] and can be roughly
outlined as follows. First, the adversary submits sufficiently many calls to an
encryption oracle in order to find a multicollision among the outer state values
of a number ρ of states. Once this has been achieved, an exhaustive search for
a c-bit value matching the inner state value of one of these ρ states is likely to
succeed after about 2c

ρ trials.

Our contribution. The end of the former discussion on the security of duplex-
based constructions showed that in situations where the possibility of forgery
attempts of non-negligible data complexity σd is not precluded, the complete
bounding conditions (2) only prevent the existence of generic attacks of total
complexity T ≪ 2

c
2 . It is therefore an open question whether there exists a

3

generic attack of total complexity T strictly comprised between 2
c
2 and the com-

plexity 2c

α of multicollision-based attacks.3 In this paper, we provide a positive
answer to the former open question by exhibiting a generic attack against a large
family of duplex-based constructions of total time complexity T in O(2 3c

4). We
rely on the analysis of random function statistics to design a two-phase forgery
attack with a precomputation phase of time complexity O(2 3c

4) essentially equal
to qP and an actual forgery phase of time complexity O(2 3c

4) essentially equal
to σd. The value σd can also be viewed as the data complexity of the attack
measured in ciphertext blocks. The attack requires no encryption queries, i.e.
σe = 0, and textra−op is negligible compared to qP and σd. For some of these
constructions, our attack recovers the secret key.

Our attack takes advantage of the following property shared by several au-
thenticated encryption modes based on the duplex construction: for a ciphertext
built by concatenating a fixed block multiple times, the decryption of a message
consists in the iteration of a public function with domain and co-domain Fc

2.
This public function is fully determined by the value of the ciphertext block. We
are therefore able to precompute some of its parameters offline. Forgery strate-
gies that just assume a “near to average” behaviour of the iterated function, e.g
a cycle length of the path generated by a random point of {0, 1}c close to the
expected value

√
π2c/8, do not seem to lead to forgery attack complexities bet-

ter than O(2c). We show that however, the following two-phase attack strategy
allows an adversary to produce an existential forgery with a success probability
close to 1 and a total (online and offline) computation time T = O(2 3c

4).
1) In an offline phase, a significant amount O(2 3c

4) of precomputation is ded-
icated to the detection of a c-bit to c-bit function that possesses exceptional
characteristics that exponentially deviate from an average behaviour, thus ren-
dering its use in a forgery attack more efficient.
2) In an online phase, the iteration of the function identified in the offline phase
is used to produce forgery attempts whose success probability is exceptionally
high.

In slightly more detail, the offline phase aims at selecting a ciphertext block
that determines a function whose graph possesses a large component in which all
paths are terminated by the same exceptionally small cycle, of length at most a
small predefined multiple of 2

c
4 . This is shown to imply that for long ciphertexts

obtained by repeating the selected ciphertext block, the tag is the image of one
of the values of the former small cycle by a known function with a probability
close to 1. This in turn allows to mount a forgery attack of offline, online and
total time complexity O(2 3c

4).
The precomputation phase needs to be run only once to break the same

construction with as many different keys as desired. Further, we can adjust the
trade-off between the precomputation phase and the online phase in order to

3In other words, the questions whether the “birthday term” 2c

σd
is an artifact of the

proofs and whether the capacity value c can be safely dimensioned well below 2s, where
s denotes the targeted security level remain open.

4

bring the complexity of the latter closer to O(2 c
2) at the expense of significantly

increasing the complexity of the former.
Previously published generic attacks against hash-based MACs or hash func-

tions also rely on the statistics of random functions [32,29,33,4]. Such attacks also
model, as the AEAD attack introduced here, one function that the considered
construction allows to iterate as a random function. Yet, while previous attacks
generally assume and exploit a “near to average” behaviour of a function selected
at random, an essential feature of the attack presented here is that it selects and
leverages instances of a function whose behaviour exceptionally deviates from
average.

Our attack is applicable to several duplex-based modes such as monkeyWrap,
monkeyDuplex or Motorist. Most notably, our attack is applicable to Cyclist, the
mode of the Lightweight Cryptography NIST competition finalist Xoodyak [18].
With a key recovery attack of complexity 2148 applications of the state update
function Xoodoo, we break the claim of achieving 184-bit security against plain-
text recovery and forgery attacks made by the designers in [18, Corollary 2, p.
72]. Note that this does not threaten the 112-bit security level required by the
NIST. Our results are detailed in Section 5 and displayed in Table 5.

Organization. The rest of this paper is organized as follows. Section 2 intro-
duces definitions and results related to the statistics of random functions that
are relevant for our attack and defines a ‘vanilla’ duplex-based AEAD mode that
only captures those features of duplex-based constructions that are essential to
understand our attack. Section 3 presents our attack and analyses its perfor-
mance using the vanilla mode of Section 2 as the target in order to simplify
its presentation. Section 4 presents experimental validations of essential features
of the attack based on small scale implementations. Section 5 shows that the
attack of Section 3 is applicable to several real-life duplex modes with minor
adaptations. Section 5 also discusses variations encountered in AEADs such as
Beetle [16] or Ascon [22] that, on the other hand, prevent the attack.

2 Preliminaries

In this section, we start by introducing key definitions and results related to
the statistics of random functions. Next, we describe a simplified duplex-based
authenticated encryption mode on which we will rely to describe our attack.
This is followed by a short subsection on the security model on which we rely.

2.1 Preliminaries on random functions

Let Fn be the set of all functions which map a finite set of size n ∈ N∗ to itself.
Without loss of generality, we consider the set {1, . . . , n}. Each function f in Fn

determines a directed graph G(f) in which a vertex goes from node i to node j,
i, j ∈ {1, . . . , n}, if and only if f(i) = j [31,24]. In the following, for simplicity
reasons, we say that a node belongs to the graph of a function when it belongs

5

to the set of nodes of this graph. We use the term “random function in Fn” to
refer to a function selected uniformly at random in the set Fn.

For any f in Fn and any node x in G(f), we can iterate f and consider the
set of successors of x

S(x) = {f i(x) | 0 ≤ i ≤ n− 1} .

We denote by s(x) the size of this set. Since the graph has a finite number
of nodes, the sequence {f i(x)}i≥0 is eventually periodic. Graphically, it thus
corresponds to a path linked to a cycle defined as

C(x) = {f i(x) | ∃j > 0, f i(x) = f i+j(x)} .

We denote by µ(x) = #C(x) the length of this cycle or cycle length and by
λ(x) = s(x)−#C(x) the length of this path or tail length. The tail length λ(x)
is the smallest integer i such that f i(x) ∈ C(x). The set of all nodes y ∈ G(f)
such that C(y) = C(x) forms a connected component. Since all nodes in the
same connected component have the same cycle, the cycle of a component is
well-defined.

Our cryptanalysis relies on the attacker’s ability to find functions which have
a large component with a small cycle. We formally characterize what should be
understood by “large component with a small cycle” later on. To do so, we will
need the two following definitions.

Definition 1 (ν-component). Let 0 < ν < 1
2 . A ν-component is a component

that has a cycle of size at most n
1
2−ν .

Definition 2 ((s,ν)-component). Let 0 < ν < 1
2 , 0 < s < 1. A (s, ν)-

component is a ν-component whose size is greater or equal to ns.

In order to estimate the complexity and success probability of our attack, we
rely on the statistical analysis of random functions. Such an analysis has been
extensively conducted in combinatorics [25,31,21,23,24]. In this paper, we will
need the three following results.

Expectancy of cycle length and tail length for a random point [23]. For
a random node x in the graph of a random function f ∈ Fn, Flajolet and Odlyzko
have computed the asymptotic form of the expectancy of the cycle length µ(x)
and tail length λ(x) using generating functions. They obtained an expectancy
of
√

πn
8 for both.

Probability for a random point to belong to a ν-component [25]. For
a random node x belonging to the graph of a random function f ∈ Fn, Harris
shows that the probability that µ(x) is smaller than n

1
2−ν is asymptotically

pν = 1− e−
1

2n2ν +

√
2π

nν

[
1− ϕ(n−ν)

]
=

√
2π

2nν
+O

(
1

n2ν

)

6

where ϕ(y) =
∫ y

−∞(2π)−
1
2 e−

1
2x

2

dx. This corresponds to the probability for a
random node x of the graph of a random function to belong to a ν-component.
For example, for ν = 1

4 and c a positive integer such that n = 2c, pν =
√
2π
2 ×2

− c
4 .

Probability for a random function to have a (s, ν)-component [21].
For a random f ∈ Fn, the probability ps,ν that G(f) has a (s, ν)-component has
been estimated by DeLaurentis in a paper published at Crypto 1987 [21]. It is
shown to be

ps,ν =

√
2(1− s)

πs
n−ν [1 +O (rn(s))]

where rn(s) = s−2n− 1
2−3ν + s

−1
2 n−ν + n− 1

3 . Thus, ps,ν ≈
√

2(1−s)
πs n−ν . For

example, if we take ν = 1
4 , s = 0.65 as in Section 3.6, and c a positive integer

such that n = 2c, ps,ν ≃ 0.6× 2−
c
4 .

Probability for a random point to belong to its component’s cycle
after l− 1 applications of f . Let x be a random point of a random function.
Harris [25] gives the asymptotic density function of the number of successors
s(x). More precisely, he provides the asymptotic density function f1 of s√

n
for

x > 0

f1(x) = xe−
x2

2 .

For l a positive integer, let pl be the probability that f l−1(x) is in the cycle, that
is, the probability that λ(x) ≤ l − 1. Since the number of successors is greater
than the tail length, pl is greater or equal to the probability for x to have strictly
less than l successors. Thus, we have

pl ≥ 1− e−
l2

2n .

Notational conventions. For simplicity and readability reasons, when it comes
to estimates resulting from statistics on random functions, we will use the sign
“≤” where it would be more rigorous to use the smaller or equivalent sign “⪅”
in the rest of the paper.

2.2 Description of a vanilla duplex-based AEAD mode

The duplex construction was designed by the Keccak team as a tool to build
authenticated encryption modes [7,9]. The first proposal of such a mode is
SpongeWrap [7], published in 2011. Today, many modes are based on this
construction. In this paper, we define the simplified authenticated encryption
mode DuplexAEAD. DuplexAEAD shares its structure with the modes of
several duplex-based AEAD schemes. This mode is not meant to be used in

7

practice. It is defined for readability reasons: its sole purpose is to make the
description of our attack simpler. We show in Section 5 how our attack can be
adapted to several real-life duplex-based modes.

DuplexAEAD is instantiated with a permutation P which operates on a
b-bit state S divided into two parts. The first r bits of the state form the outer
state S, whilst the next c = b− r bits form the inner state Ŝ. The state can thus
be written as S = S||Ŝ. As stated in Section 1, the parameter r is called the
rate and the parameter c is called the capacity. DuplexAEAD also involves two
other public functions, namely, an initialisation function Pinit and a finalisation
function Pfinal. The encryption algorithm E takes as input a κ-bit key K, a η-bit
nonce N , a plaintext M and associated data A of variable length and returns
a ciphertext C and a τ -bit tag T . The decryption algorithm D takes as input
(K,N,A,C, T) and returns the plaintext M if the tag is valid. Otherwise, it
returns ⊥.

We assume for simplicity reasons that the length in bits of the plaintexts
processed by DuplexAEAD is always divisible by r.4 Thus, any plaintext M
can be split into r-bit blocks, M = M0|| · · · ||Ml−1, where l is the plaintext length
in number of r-bit blocks. The ciphertext’s length is equal to the plaintext’s
length, and can thus also be written C = C0|| · · · ||Cl−1.

The mode works as follows (see Figure 1):

initial phase

(K,N)

A

Pinit

r

c

plaintext processing

P

M0 C0

P

M1 C1

. . .

. . .

final phase

Pfinal

Ml−1 Cl−1
T

Fig. 1. DuplexAEAD in encryption mode.

4In practice, our cryptanalysis can be easily adapted to attack modes which can
process plaintexts of arbitrary length, but this requires a short case-by-case analysis
which we provide in Section 5. Note that the resulting adjustments have a negligible
impact on the complexity of our attack and do not impact its success probability.

8

Initial phase. The encryption and decryption algorithms start by an initial
phase. The key, the nonce and the associated data are processed by the initiali-
sation function Pinit. The state is set to the output of Pinit.

Plaintext processing. In encryption mode, DuplexAEAD then processes the
plaintext and generates the ciphertext block by block as follows:

1. The ciphertext block Ci is generated by XORing the outer state to the
plaintext block Mi. That is, Ci ← S ⊕Mi.

2. The outer state is set to the just computed ciphertext block. That is, S ← Ci.
3. The permutation P is applied to the state. That is, S ← P (S).

Ciphertext processing. In decryption mode, DuplexAEAD then processes
the ciphertext. The plaintext M is constructed as the ciphertext is processed
but will only be outputted at the end of the final phase if the tag is valid. This
phase works as follows:

1. A plaintext block Mi is generated by XORing the outer state to the cipher-
text block Ci. That is, Mi ← S ⊕ Ci.

2. The outer state is set to the value of the ciphertext block. That is, S ← Ci.
3. The permutation P is applied to the state. That is, S ← P (S).

Final phase. During encryption (resp. decryption), plaintext (resp. ciphertext)
processing is followed by a final phase in which the finalisation function Pfinal

takes as input the state and computes a τ -bit tag. The encryption algorithm
returns a ciphertext and the corresponding tag. The decryption algorithm checks
whether the tag is valid. If so, it returns the plaintext M . Otherwise, it returns
⊥.

Domain separation. Actual duplex-based AE modes generally rely on domain
separation for their security. In the case of DuplexAEAD, we assume that the
way Pinit and Pfinal are constructed from P ensures domain separation between
the processing of (K,N), the processing of A, the processing of M and the
computation of T . This can be done for example by XORing distinct constants
to the inner state before P invocations in each phase.

2.3 Security model

For authenticated encryption, two security notions are involved, namely privacy
and integrity. Since our attack aims at breaking integrity, we leave privacy aside.
We do not fully formalise the security model but give some simplified reminders
to the reader.5 In the integrity setting, we have an adversary A who has access
to the following oracles:

5For more details see for example [27].

9

- A primitive oracle OP that allows to call the public permutation P or its
inverse P−1. It takes as input a value v ∈ Fb

2 and outputs P (v) ∈ Fb
2 (resp.

P−1(v) ∈ Fb
2) for a call made to P (resp. P−1).

- An encryption oracle Oenc that takes as inputs a nonce N , associated data
A and a plaintext M and returns a ciphertext C and a tag T computed with
a secret key K which is randomly sampled once for all (the same key is used
by the decryption oracle).6 It implements the encryption algorithm of the
analysed AEAD scheme based on P .

- A decryption oracle Odec that takes as input a nonce N , associated data A,
a ciphertext C and a tag T and, using the key K, returns the corresponding
plaintext if the verification is correct, ⊥ otherwise. Similarly to the previ-
ous oracle, it implements the decryption algorithm of the analysed AEAD
scheme.

We assume that the adversary A is nonce-respecting. Her goal is to provide
a forgery, that is, an input (N,A,C, T) such that Odec(N,A,C, T) ̸=⊥ where
(C, T) was not outputted by the encryption oracle Oenc on an input (N,A, ·)
(for any plaintext). The probability to provide a forgery has to be negligible.

As already mentioned in Section 1, we denote by qe, qd and qP the number
of queries done to respectively the encryption oracle, the decryption oracle and
the primitive oracle. We denote by σe the total number of plaintext blocks pro-
cessed by the encryption oracle and by σd the total number of ciphertext blocks
processed by the decryption oracle.

In this paper, we construct a generic forgery attack against several duplex-
based authenticated encryption modes. Our attack is generic in the sense that
we do not exploit the properties of the permutation P but only properties of
the mode itself [9]. It does not rely on nonce misuse or the release of unveri-
fied plaintext. For some modes, our attack also recovers the secret key with a
negligible amount of extra computation.

3 Description of the attack

In this section, we present a generic forgery attack against duplex-based authen-
ticated encryption modes. For the sake of clarity, we first describe how the attack
works on the simplified mode DuplexAEAD defined in Section 2.2. We show
how to apply our attack to other authenticated encryption modes in Section 5.

3.1 Observation on duplex-based AEAD modes

We describe a simple property of DuplexAEAD that is shared with many other
duplex-based AE modes: for a ciphertext built by concatenating a fixed block
multiple times, the decryption of a plaintext consists in the iteration of a known
function with domain and co-domain Fc

2. This property is at the core of our
attack. It is depicted in Figure 2.

6Each parameter space is well defined according to the analysed AEAD scheme.

10

Let ℓ ∈ N∗ and β ∈ Fr
2. Let βℓ be the ciphertext equal to the concatenation

of ℓ r-bit blocks of constant value β, that is

βℓ = β|| · · · ||β︸ ︷︷ ︸
ℓ

.

During the ciphertext decryption, the value of the outer state at the input of
the state update function P is equal to the current ciphertext block. Thus, the
decryption of βℓ corresponds to the iteration of the function Pβ defined as

Pβ : Fc
2 −→ Fc

2

x 7−→ P̂ (β||x) .

Indeed, let x0 ∈ Fc
2 be the value of the inner state obtained at the end of the

initial phase from the key, the nonce and the associated data. After processing the
first plaintext block, the value of the outer state is equal to the first ciphertext
block β. Thus, the input of the state update function is exactly β||x0. As a
consequence, the value of the inner state going into the second application of P
is β||x1 where x1 = Pβ(x0). In turn, the third one is β||x2 where x2 = Pβ(x1) =
P 2
β (x0). When the last plaintext block is constructed, right before the final phase,

the state is thus of the form

β||P ℓ−1
β (x0) = β||xℓ−1 .

Since the outer part of the state is equal to β, it is known to the attacker. In
particular, to recover the value of the state before the final phase, an attacker
only needs to determine the value of xℓ−1. Since T = Pfinal (β||xℓ−1), it is suffi-
cient for the attacker to recover the value of xℓ−1 to find a forgery (N,A,C, T).
As we will show more rigorously later on, our cryptanalysis relies on the fact
that without knowing x0, an attacker is able to select β and ℓ such that she is
able to both restrict and predict the space of all possible xℓ−1 = P ℓ−1

β (x0) with
good probability.

3.2 High level description of the attack

Our attack aims at recovering the value of xℓ−1. It was devised relying on the
random functions statistics introduced in Section 2.1. Indeed, let n = 2c. P is a
random permutation on Fb

2 and c = b−r is significantly smaller than b. Thus, for
any β randomly drawn from Fr

2, we expect Pβ to behave as a function randomly
drawn from Fn.

The attack consists of two phases.

Precomputation phase. First, in a precomputation phase, an offline algorithm
finds a value β such that G(Pβ) has a large component with a small cycle, that
is, a (s, ν)-component with great s and ν.

11

initial phase

(K,N)

A

Pinit

ciphertext processing

β

x0

P

β

x1

P

. . .

. . .

final phase

β

xℓ−1

Pfinal

T

Fig. 2. Decrypting βℓ.

Online phase. Second, in an online phase, (N,A,C, T) queries are submitted to
a decryption oracle, where the ciphertext is C = βℓ with ℓ sufficiently large and
β is the output of the precomputation algorithm. Recall that β is chosen such
that G(Pβ) has a large component with a small cycle. Since this component is
large, it contains the unknown node x0 with good probability. In that case, for
a great enough value of ℓ, xℓ−1 belongs to the cycle of this component, which
is small. Thus, the number of all possible values for xℓ−1 is reduced and can be
efficiently exhausted by submitting (N,A, βℓ, T) queries to the decryption oracle
where

1. tags are produced by applying Pfinal to a state such that S = β and such
that the inner state Ŝ belongs to the small cycle of Pβ ’s large component;

2. nonces are either randomly sampled or arbitrary distinct values;7
3. the associated data is set to the empty string ε.8

Our final attack, which balances the computational cost of the offline and
online phases, provides a forgery in time O(2 3c

4) with a negligible amount of
memory. In the rest of this section, we provide a detailed description together
with an analysis of the complexity and success probability of our full attack.

In our complexity and success probability analysis, significant efforts were put
towards limiting the use of heuristic assumptions. This is illustrated for example
by the use of the probability ps,ν [21] that a random function has a (s, ν)-
component rather than a heuristic estimation of this value from the probability

7In decryption queries, nonces can be repeated even in a nonce-respecting setting.
For the purpose of our attack, x0 needs to behave as a point randomly sampled in
the graph of Pβ . Thus, we can either require nonces to be randomly sampled or to be
arbitrary distinct values.

8For modes other than the full-state duplex, we could set the associated data to any
value. In the case of the full-state duplex, the associated data must be chosen carefully
(typically, the attack applies when the AD is set to the empty string).

12

pν that it has a ν-component. Although we did not manage to get entirely rid
of all heuristic assumptions, we intended to back each assumption with heuristic
reasoning and/or small scale experiments.

3.3 Precomputation phase

In this section, we show how to construct an offline algorithm which outputs β
such that G(Pβ) has a large component with a small cycle. By ‘having a large
component with a small cycle’, we mean having a (s, ν)-component as defined in
Section 2.1. We will set the parameters s and ν to their final values later in the
paper. The offline algorithm also outputs the length µ of the (s, ν)-component’s
cycle, as well as an element e of this cycle.

Our algorithm samples random values β from Fr
2 and random values x in

Fc
2 and investigates whether or not the component on which x is located is a

(s, ν)-component of G(Pβ).
When a random β and a random x are generated, we start by investigating

the cycle length of the component on which x is located, that is, whether or
not it is a ν-component. Cycle-finding algorithms such as Floyd’s or Brent’s
algorithm provide a straightforward way to determine the component’s cycle
length. These algorithms are typically used to find collisions on functions with
a negligible amount of memory. In fact, the collisions found by these algorithms
are located within the functions’ cycles. Thus, given a random β ∈ Fr

2, which
selects a random Pβ ∈ Fn, and a random x ∈ Fc

2, cycle-finding algorithms can
be used to construct an algorithm which outputs both µ(x), the cycle length of
the connected component on which x is located, and the value of a node in the
cycle [26]. We call such an algorithm cycle. The algorithm cycle allows the
attacker to determine whether or not the component on which x is located is a
ν-component, i.e. a component with a cycle of the desired length µ(x) ≤ n

1
2−ν .

To construct our final precomputation algorithm, two main issues remain to
be solved.

Issue 1. If the random β and the random x investigated are such that the
component on which x is located is not a (s, ν)-component, it does not necessarily
mean that G(Pβ) does not have a (s, ν)-component. There could be an x′ ̸= x
such that x′ belongs to a different component that has the desired cycle length
and size. In particular, we must determine whether or not it is worth trying a
different x′ ̸= x when cycle returns a cycle length value that is greater than
n

1
2−ν (x’s component is not a ν-component). There are two imaginable strategies.

The first strategy consists in trying a single random x for each β, and, whenever
x has a component with a cycle size smaller than n

1
2−ν , investigate whether or

not the component has size greater or equal than sn. The second strategy would
be to try several x’s for each β. We stick to the first strategy. The following
argument indeed suggests that the second strategy would be more costly. When
conditioned by the failure of the first drawn x, the probability that a second x′

succeeds with the same β is at most ps,ν(1−s)
1−ps,ν

whilst for a new random (β′, x′), the

13

probability of success is at least ps,νs. Thus, the first strategy is better whenever
s > 1

2−ps,ν
which is always true for our values of s (which are always greater

than 0.5) and ν.

Issue 2. Although cycle allows to detect ν-components, it does not provide
a way to detect (s, ν)-components. Being fully certain that a ν-component has
the desired size would be prohibitingly costly. A strategy allowing to estimate
that a ν-component is a (s, ν)-component with a sufficiently large probability
has to be devised.9 The algorithm is_big implements this strategy. Note that
in this algorithm, the notation ‘(., z)’ in Step 4 means that the first output
(corresponding to the cycle length) is ignored. Each time the algorithm detects
a small cycle, it checks whether or not ω other random nodes belong to the same
component. It then computes the proportion sobs of these new randomly chosen
points which belong to the desired component. If this number is above a threshold
value s+ δ strictly larger than s, it decides that x is likely to belong to a (s, ν)-
component and returns β and the values of the cycle. We show that for δ = 2.33

2
√
ω
,

a selected component has size greater than s with great probability. Suppose that
we have drawn a value β such that β has a ν-component of unknown size sβn.
In that case, the random variable sobs is the mean of ω Bernoulli variables which
are equal to 1 with probability sβ and 0 with probability 1− sβ . By the Central
Limit Theorem (CLT), we have that for all ϵ ∈ R,

p

[
sobs − sβ ≤ ϵ

√
sβ(1− sβ)

ω

]
= p (Y ≤ ϵ)

where Y ⇝ N (0, 1). Thus, since δ = 2.33
√

1
4ω and since for sβ < 1, sβ(1−sβ) ≤

1
4 , we have that

sobs − sβ ≤ δ

with probability pδ ≥ p
(
Y ≤ 2.33

)
> 0.99. Suppose that for a random β with a

ν-component, we obtain a proportion sobs of random x’s in this component such
that sobs ≥ s+ δ as required in Step 10 of the algorithm is_big. We know that
with probability pδ ≥ 0.99:

sβ ≥ sobs − δ ≥ s+ δ − δ = s .

As a conclusion, when our final offline algorithm offline_search returns a
β, then it is such that G(Pβ) has a ν-component with probability 1, and the
component considered has at least the desired size with probability pδ ≥ 0.99.

9Given a point of the graph x, the introduction of an algorithm which estimates x’s
component’s size is going to significantly complicate our attack’s complexity analysis.
We believe that we could have designed an attack without this extra algorithm by
relying on the fact that a random component is large with great probability. However,
unless increasing the complexity of the online phase, we would have then obtained
lower success probabilities (roughly around 0.5 rather than close to 1).

14

Algo. offline_search(ω, s, ν)

1 : while true do

2 : β
$←− Fr

2; x
$←− Fc

2

3 : (µ, e)← cycle(β, x)

4 : if µ ≤ n
1
2
−ν then

5 : if is_big(ω, s, β, µ, e)

6 : return (β, µ, e)

Algo. is_big(ω, s, β, µ, e)

1 : δ ← 2.33

2
√
ω
; j ← 0

2 : for i = 1..ω do

3 : k ← 0; inside_big ← false; y
$←− Fc

2

4 : (., z)← cycle(β, y)

5 : while inside_big = false and k < µ do

6 : if z = e then inside_big ← true

7 : z ← Pβ(z)

8 : k ← k + 1

9 : if inside_big then j ← j + 1

10 : if
j

ω
≥ s+ δ return true

11 : return false

3.4 Analysis of the offline algorithm

In this section, we analyse the success probability and complexity of the offline
algorithm. As stated in Section 2.3, the complexity is expressed as a number
of calls to P . This algorithm is at the core of our attack. It only needs to be
executed once. Indeed, once it has succeeded in finding β such that G(Pβ) has a
(s, ν)-component, a duplex-based mode with any key using the permutation P
can be attacked.

Complexity of the cycle-finding algorithm. We start by investigating the
average complexity of the algorithm cycle. To construct this algorithm, we use
Brent’s cycle-detection algorithm as a tool [14]. For a random β ∈ Fr

2 and a
random x ∈ Fc

2, Brent’s algorithm recovers the cycle length µ(x) and a node
of the cycle e ∈ C(x) after at most 2max(µ(x), λ(x)) + µ(x) applications of
Pβ . For a random x, the cycle length µ(x) and the tail length λ(x) have the
same expectation of

√
πn
8 [24] (See Section 2.1). Thus, we estimate the average

complexity of cycle in number of calls to P to be upper bounded by

Tcycle = 3

√
πn

8
.

Complexity of the offline algorithm. We wish to compute the complexity of
the offline algorithm offline_search. First, the memory complexity is negligi-
ble. As for the time complexity, we compute the average number of applications
of P after which the algorithm returns a block β ∈ Fr

2.
First, we upper bound the average complexity of is_big. This algorithm is

executed when a pair (β, x) such that x is located on a ν-component of G(Pβ)

15

has been selected. It takes as input β, µ = µ(x) ≤ n
1
2−ν , an element e of the

cycle of x’s component, s and an integer ω. It performs ω times a computation
that essentially consists in the generation of a random point of G(Pβ), one com-
putation of the cycle algorithm, and at most µ point comparisons and µ− 1 Pβ

invocations. The average complexity of is_big is thus upper bounded by(
Tcycle + n

1
2−ν

)
ω .

The following estimation is heuristic, and implicitly relies on the assumption that
the average complexity of cycle for a random point of a random function does
not significantly differ from the average complexity of cycle for a random point
of a fixed random function that has a ν-component. We provide a reasoning
to justify why it seems very unlikely that this assumption would significantly
distort the complexity at the end of the section.

We now compute the complexity of offline_search. First, we compute the
complexity of one single iteration of a Step 1 loop of offline_search. Recall
that pν is the probability for a random node x ∈ Fc

2 of a random function to
belong to a ν-component. Each time a pair (β, x) is generated, the algorithm
cycle is executed. Then, the algorithm executes is_big when a pair is such
that x belongs to a ν-component of G(Pβ), which happens with probability pν .
Finally, we need to compute after how many Step 1 iterations the algorithm
returns a block β on average. At each iteration, the probability to generate a
random β ∈ Fr

2 such that G(Pβ) has a (s, ν)-component is ps,ν . Given such β,
the probability that the randomly drawn x ∈ Fc

2 also belongs to this component
is greater than s. Thus, on average, we select a node x in a (s, ν)-component
after less than 1

ps,νs
iterations. Heuristically, one can thus expect the overall

complexity of our algorithm to be of the following form:

1

ps,νs

[
Tcycle + pν

(
Tcycle + n

1
2−ν

)
ω
]
.

Yet, we need to adjust this expression. Recall that a (s, ν)-component is a ν-
component of size greater or equal to sn. However, drawing a node in a ν-
component of size exactly sn10 is not enough to make the algorithm stop. Indeed,
if a randomly drawn β ∈ Fr

2 is such that G(Pβ) has a ν-component of size exactly
sn, the probability that sobs is greater than s + δ is smaller than 1% (here, we
use the central limit theorem again). We thus need to adjust our computation.
To do so, we lower bound the probability that a random pair (β, x) is selected
by the probability that it satisfies the two following conditions:

(a) G(Pβ) has a (s+, ν)-component with s+ ≥ s+ 2δ (recall that δ = 2.33
2
√
ω
).

(b) x belongs to the (s+, ν)-component, so that the algorithm offline_search
randomly draws ω other values in Fc

2 and computes sobs.

Indeed, we show that satisfying these two conditions implies that sobs ≥ s + δ
with great probability, which is exactly the condition that needs to be satisfied
for the algorithm to return β.

10or greater than sn, but too close to sn to make the algorithm stop.

16

Assume that the algorithm randomly draws β ∈ Fr
2 and x ∈ Fc

2 such that
conditions (a) and (b) are satisfied. Then by the central limit theorem, we have
that for any ϵ ∈ R,

p

[
sobs − s+ ≥ ϵ

√
s+(1− s+)

ω

]
= p (Y ≥ ϵ)

where Y ⇝ N (0, 1). For ϵ = −2.33, we thus have that with probability pδ ≥ 0.99,

sobs ≥ s+ − δ ≥ s+ δ .

Thus, the probability that a randomly chosen β is selected is lower bounded by
ps+,νs

+pδ. It comes that the average complexity of the offline phase satisfies

Toffline ≤
1

ps+,νs+pδ

[
Tcycle + pν

(
Tcycle + n

1
2−ν

)
ω
]

=
Tcycle
0.99

[√
π

2(1− s+)s+
nν

][
1 + pνω

(
1 +

n
1
2−ν

Tcycle

)]

≤ n
1
2+ν

√
2π

(1− s+)s+
[
1 + pνω

(
1 +O(n−ν

)]
= n

1
2+ν

√
2π

(1− s+)s+

[
1 +

√
2πω

2nν
+O

(
1

n2ν

)]

=

[
1√

(1− s+)s+

] [
n

1
2+ν
√
2π + n

1
2ωπ +O

(
n

1
2−ν

)]
.

For s+ = 0.73, ν = 1
4 , the last expression is equivalent to

√
2π

(1−s+)s+n
3
4 < 6n

3
4 .

The previously mentioned heuristic assumption on the similarity of the aver-
age tail length of a random point of a random function that has a ν-component
and the average tail length of a random point of a random function only under-
lies the second appearance of Tcycle in the first bound on Toffline above. Even
if these two statistics differed non-negligibly, this would not significantly distort
the complexity. Since is_big is executed only when a ν-component is detected,
Tcycle in its second occurence is multiplied by pνω ≪ 1 whilst it appears other-
wise on its own.

Success probability of the offline algorithm. We consider that the algo-
rithm is successful if the value β outputted by the offline algorithm is such that
Pβ has a (s, ν)-component. We have seen in Section 3.3 that when a β is selected
(that is, sobs ≥ s+ δ), the central limit theorem guarantees that the real size of
the ν-component investigated is greater than sn with probability pδ. It comes
that the success probability of the offline algorithm poffline is equal to pδ ≥ 0.99.

17

3.5 Online phase

In this section, we describe and analyse the online algorithm online_algo. The
online phase consists in submitting (N,A,C, T) queries to the decryption oracle
Odec with C = βℓ where β has been outputted by the offline algorithm. In the
following, we describe how the tags are constructed and how we choose the value
of ℓ.

Algo. online_algo(β, e, µ, ℓ,m)

1 : for i = 1..m do

2 : N
$←− Fη

2 ; y ← e

3 : for j = 1..µ do

4 : T ← Pfinal(β||y)
5 : if Odec(N, ε, βℓ, T) ̸= ⊥
6 : return (N, ε, βℓ, T)

7 : else y ← Pβ(y)

8 : return false

Recall that we denote by x0 the inner state at the end of the decryption’s
initial phase, and that when the ciphertext C is equal to βℓ, the state before
the final phase is equal to β||P ℓ−1

β (x0). Recall that β, which has been outputted
by the offline algorithm, is such that G(Pβ) has a large component with a small
cycle of this large component’s cycle. Since this component is large, x0 belongs to
it with great probability. In that case, one can choose ℓ large enough for P ℓ

β(x0)
to be likely to reach the small cycle of G(Pβ)’s large component. The number of
candidates for the state before the final phase, and thus for the possible tags, is
thereby reduced.

More formally, assume that the offline algorithm has been successful, that is,
it has outputted β, µ and e such that G(Pβ) has a (s, ν)-component with a cycle
of length µ and such that e is an element of this cycle. If G(Pβ) has a (s, ν)-
component, x0 belongs to this component with probability greater than or equal
to s. If x0 belongs to the (s, ν)-component, P ℓ−1

β (x0) reaches the cycle with the
probability pℓ introduced in Section 2.1. It comes that with probability at least
pℓs, P ℓ−1

β (x0) belongs to the cycle. Here, we implicitly rely on the assumption
that the random variable tail length of a random point of a random function such
that this random point belongs to a (s, ν)-component has the same distribution
as the tail length of a random point of a random function. Although we do not
believe this assumption to be true in the sense that the distributions are not
strictly equal, we believe that they are close enough for it not to impact our
attack significantly. Small scale experiments described in Section 4 corroborate
this assumption.

18

We now analyse Algorithm online_algo. For a nonce N ∈ Fη
2 , this online

phase consists in submitting the following (N,A,C, T) queries to the decryption
oracle: (

N, ε, βℓ, Pfinal(β||P i
β(e))

)
for i = 0, . . . , µ− 1 .

Time complexity. For each nonce, the attacker submits µ decryption queries
with a ciphertext of ℓ blocks, and for each decryption query, she must also apply
Pfinal to the current state β||y where y is the current cycle element and apply
Pβ to y in order to try exhaustively all the cycle elements. Since ℓ = O(n 1

2),
the time complexity incurred by the above invocations of Pβ and Pfinal at each
decryption query is negligible compared to the time complexity of a decryption
query with C = βℓ, that can be approximated by ℓ applications of P . The
time complexity for each nonce is thus well approximated by µℓ and thus upper
bounded by

n
1
2−νℓ .

Thus, for m nonces, the average complexity of the online phase in number of
calls to P verifies

Tonline ≤ n
1
2−νmℓ .

Probability of success. For each nonce, the probability of success is exactly the
probability that P ℓ−1

β (x0) belongs to the cycle which we showed to be at least
pℓs. If we repeat this experiment with m nonces, the probability of success is
thus at least

ponline = 1− (1− pℓs)
m .

3.6 Complexity and success probability of the attack

The complexity of the attack is the sum of the complexities of the online algo-
rithm and the offline algorithm. Note that in practice, the attacker only needs
to run the precomputation offline algorithm once in order to be able to execute
the online phase to attack the same duplex-based mode with any secret key. The
average complexity Tonline + Toffline of the attack can be upper bounded by

n
1
2−νmℓ+

[
1√

(1− s+)s+

] [
n

1
2+ν
√
2π + n

1
2ωπ

]
+O

(
n

1
2−ν

)
.

Similarly, the overall success probability of the attack is of the form

psuccess = pofflineponline ≥ pδ [1− (1− pℓs)
m]

≥ 0.99(1− e−mpℓs) (since ∀x ∈ R, e−x > 1− x) .

In order to have an overall probability of success psuccess greater than 0.95, we
want 1 − e−mpℓs to be greater than 0.96. Recall from Section 2.1 that pℓ ≥
1− e

−l2

2n . We set ℓ = 3
√
n so that pℓ ≥ 0.988. We also set the following values:

19

• ω = 210; thus 2δ = 2.33√
ω

< 0.08;
• s+ = 0.73; thus s = s+ − 2δ = 0.65.

Since pℓ ≥ 0.988 and s = 0.65, ponline is greater than 0.96 for m ≥ 5. We thus
set m = 5. Thus, the complexity has the form

15n1−ν + 6n
1
2+ν +

4π210√
3

n
1
2 +O

(
n

1
2−ν

)
.

To balance the above expression, we set ν = 1
4 , we get an attack of complexity

at most 21n
3
4 +O(

√
n) = 21× 2

3c
4 +O(

√
n) in number of calls to P .11

Note that the complexity of the online phase is at most 15n1−ν . In particular,
given β such that G(Pβ) has a component of size greater than ns with a cycle
length close to 1, the online complexity can be brought close to 2

c
2+4.

3.7 Key-recovery

For modes such that Pinit is reversible for known nonce and associated data, our
forgery attack also recovers the secret key with ℓ = O(

√
n) extra applications of

P , which is negligible compared to the complexity of the forgery. Indeed, if the
decryption oracle receives a forgery (N,A,C, T), it returns the corresponding
plaintext. This allows the attacker to recover the state at the end of the initial
phase with ℓ = O(

√
n) extra applications of P−1.12 As a consequence, if the

function Pinit is reversible for known nonce and associated data, the attacker
recovers the secret key.

4 Small scale experiments

Our attack relies on the assumption that the Pβ ’s derived from a public per-
mutation P defined on Fb

2 behave as random functions on Fc
2. To statistically

verify this assumption, we implemented some experiments using the permuta-
tion Xoodoo[12] as P . The main reason behind this choice is its use in the
finalist of the NIST lightweight cryptography competition Xoodyak, but an-
other permutation used in practice with a reasonably large value of b would
have done just as well. We took toy values compared to Xoodyak for the capac-
ity (c ≤ 40) in order for computer experiments to remain easy to achieve. Since
our attack relies mainly on the random function statistics results introduced in
Section 2.1, we designed a test for each of these results. We also implemented
the algorithm offline_search for small values of c.

11Note that ν = 1
4

is not the fully optimal choice in general. Rather, the optimal

choice for ν is ν = 1
2

(
1
2
− logn

(√
2π/(

√
s+(1− s+)15)

))
. For example, for n = 2128,

the optimal choice is approximately 0.256.
12The plaintext also allows to verify that the recovered state before the final phase

is correct, making the key recovery possible with only a negligible amount of extra
computations regardless of the tag length.

20

Algo. cycle_expectancy(Ω)

1 : tot← 0

2 : for i = 1..Ω do

3 : β
$←− Fr

2; x
$←− Fc

2

4 : (µ, e)← cycle(β, x)

5 : tot← tot+ µ

6 : return tot/Ω

Algo. nu_components(Ω, ν)

1 : ctr ← 0

2 : for i = 1..Ω do

3 : β
$←− Fr

2; x
$←− Fc

2

4 : (µ, e)← cycle(β, x)

5 : if µ ≤ n
1
2
−ν then ctr ← ctr + 1

6 : return ctr/Ω

Expectancy of cycle/tail length. We wish to verify that for a random β ∈ Fr
2

and for a random node x ∈ G(Pβ), the expectancy of the cycle length µ(x) and
tail length λ(x) are both equal to

√
πn
8 , with n = 2c. Note that the variance

of the cycle length and tail length for a random node of a random function
is equal to σ2

µ = n
[
2
3 −

2π
16

]
[25]. Regarding the cycle length, we use the algo-

rithm cycle_expectancy. After Ω tries, by the Central Limit Theorem, the ob-
served average cycle length mean outputted by the algorithm cycle_expectancy
is such that with probability about 0.99:

mean ∈
[√

πn

8
− 2.58σµ√

Ω
;

√
πn

8
+

2.58σµ√
Ω

]
.

Setting Ω = 14000, we verify whether mean is in this interval in our tests (see
Table 1). We use a similar algorithm and reasoning for the tail length.13 As
shown in Table 1, all our experimental results match the theory.

c 28 32 36 40

Expectancy 10267 41068 164274 657098

Confidence interval [10080, 10454] [40321, 41817] [161283, 167266] [645130, 669065]

tail mean 10323 40971 163732 654775

cycle mean 10255 41620 164445 650156

Table 1. Expectancy of cycle length and tail length

Probability for a random point to belong to a ν-component. We wish
to verify that for a random β ∈ Fr

2 and for a random node x ∈ G(Pβ), the

13Here, we make the assumption that the standard deviation for the tail length is the
same as the cycle length’s. This assumption does not affect our attack, it only affects
how to interpret our test results.

21

probability that x belongs to a ν-component is pν . To do so, we use the algo-
rithm nu_components and focus in practice on experiments where ν = 1

4 as it is
the value used in our attack. Drawing Ω random (x, β) pairs and computing the
proportion of such pairs such that x belongs to a ν-component of Pβ amounts
to computing the mean of Ω Bernoulli variables equal to 1 with probability pν
and 0 with probability 1−pν . By the Central Limit Theorem, since the standard
variation of the above variables is σν =

√
pν(1− pν), we have that

proportion ∈
[
pν −

2.58σν√
Ω

; pν +
2.58σν√

Ω

]
with probability ≥ 0.99. We verify in our experiments that proportion is indeed
in this confidence interval for various values of c and Ω. Our results, which match
the theory, are displayed in Table 2.

c 28 32 36 40

Ω 71344 142688 285376 570752

ν-component

Expectancy 0.009792 0.004896 0.002448 0.0012

Conf. interval [0.0088, 0.0110] [0.0044, 0.0054] [0.0022, 0.0027] [0.0011, 0.0013]

proportion 0.010162 0.004787 0.002400 0.001242

(s, ν)-component

ps+,νs
+pδ 0.002740 0.001370 0.000685 0.000342

ps,νs 0.002973 0.001487 0.000743 0.000372

frequency 0.003714 0.001647 0.000880 0.000517

Table 2. Probability for a random node in the graph of a random function to belong
to a ν-component and experimental verification of (the detection of) the occurence of
(s, ν)-components.

Probability for a random function to have a (s, ν)-component. Verifying
that for a random β ∈ Fr

2, the probability that G(Pβ) has a (s, ν)-component is
ps,ν is hard in practice as it is too costly to determine with probability 1 whether
or not G(Pβ) has a (s, ν)-component. Instead, we make an indirect verification.
We draw Ω random (x, β) pairs and compute the proportion frequency of such
pairs such that:

– Pβ has a ν-component (the component to which x belongs);
– the estimated size sobs of this component (given by the proportion, among

ω = 1000, of newly chosen random points that belong to this component) is

22

at least s+ δ with δ = 2.33
2
√
ω
, so that the actual size of the component is very

likely to be at least sn.14

We compare the found frequency values with two values:

– the lower bound ps,νs on the probability that Pβ has a (s, ν)-component and
x belongs to it;

– the conservative lower bound ps+,νs
+pδ on the average value of frequency

used in the complexity estimate of the offline algorithm of Section 3.4, where
s+ = s+ 2δ.

This algorithm is easy to derive from the algorithm offline_search introduced
in Section 3.3. We make this experiment for various values of Ω and c and with
s = 0.65, s+ = 0.73, as they are the values used in our attack. Our results
match the theory and are displayed in Table 2. The difference (in favour of the
adversary) between theoretical bounds and experimental values for frequency
in Table 2 can be at least partially explained as follows. The value ps,ν is the
probability that a component is a ν-component of size greater or equal to s. The
probability that a random point belongs to a (s, ν)-component is thus strictly
greater than ps,νs as the proportion of the points belonging to a component of
size greater than s is greater than s.

c β (b− c bits) µ

28
1473b86a 2607d6e5 5234df22 4c111c51 122e188f 37586e28

10
5b74f306 40ac1d69 2bb9c59f 6e8479b7 3d6ec314 7

32
67b9632a 032ec1a3 1f3b4f8c 7c641f59 39e3cab6 3aaa4444

4
73bf377d 7f1f6b35 6412ffb2 523d5180 54465a4f

36
59189691 3e3769f2 293b1b6f 0cc0af85 7d96b0a4 0e1c201b

122
137523e8 11f61a60 6c06c85f 762716b7 276c730

40
7b2fb641 7874c3d6 171abbc2 231ebf22 4e6e1ad3 2d6df079

18
7e6457aa 7816dd2a 011fe0f3 1de6ee24 56f1ed

Table 3. We provide a few examples of obtained β values such that Pβ has a (s, ν)-
component with µ≪ 2

c
4 . Although we only provide one for each c, several values of β

are available for each c.

14To reduce the execution time of the implementation, to detect whether or not two
points x, x′ are in the same component, we checked whether µ(x) = µ(x′) instead of
doing the exhaustive verification made in is_big.

23

Some values of β. Lastly, we implemented the algorithm offline_search for
small values of c and for s = 0.65. A few examples of obtained β values are
displayed in Table 3.

Probability for a random point to belong to its component’s cycle
after ℓ − 1 applications of the random function. In order to verify the
applicability of Harris’ result on the number of successors provided in Section 2.1
to points randomly drawn in a (s, ν)-component, a fortiori when the function is
randomly sampled from the set of all Pβ ’s rather than randomly sampled in Fn,
we also conducted the following experiment. For all β values displayed in Table 3,
we checked whether the points that were found to be in the (s, ν)-component
had a tail length smaller than ℓ = 3

√
n. For all these β, 100% of the points found

to be in the (s, ν)-component have a tail length smaller than ℓ. This gives us
reasonable confidence in the fact that this assumption is realistic and does not
lead to a significant overestimation of the success probability of the attack.

5 Application to concrete duplex-based modes

In this section, we apply the attack previously described on the simplified Du-
plexAEAD mode to concrete AEAD duplex-based modes. Whilst our attack
can be easily adapted to many of them as summarized in Table 5, others frus-
trate our attack. For all the modes presented in Table 5, our attack enables key
recovery.

5.1 Highlights

For the attack to succeed, we identify two requirements:

1. In decryption mode, the ciphertext blocks must overwrite the outer state at
least in part;

2. The tag must be determined by the state before the final phase, in such a
way that a correct guess on this state gives us the correct tag.

As a consequence, we will show that in all modes for which the attack is
applicable, the padding rule applied to the message does not matter, even though
when the padding rule is made block by block the complexity of our attack can
be slightly greater.

As a main concrete implication, we provide an attack on Xoodyak that
breaks the claim of achieving 184-bit security against plaintext recovery and
forgery attacks made by the designers in [18, Corollary 2, p. 72] but does not
threaten the 112-bit security level required by NIST for the lightweight compe-
tition. The attack also breaks the penultimate NORX version NORX v2 [1] but not
the more recent version NORX v3 [2].

Secondly we highlight two reasons that prevent our attack from applying to
modes such as Beetle [16], Ascon [22] or NORX v3 [2] in Section 5.3. We mainly
identify two reasons:

24

Mode monkeyWrap/monkeyDuplex Cyclist Motorist

Scheme NORX v2(3) Ketje KNOT Xoodyak Keyak

Instance N-32 N-64 Jr Sr Mi Ma KNOT-AEAD Xoodyak River Lake

b 512 1024 200 400 800 1600 256 384 384 512 384 800 1600

r 384 768 16 32 128 256 64 192 96 128 192 544 1344

r′ (1) 382 766 14 30 126 254 64 192 96 128 192 544 1344

c 128 256 184 368 672 1344 192 192 288 384 192 256 256

Sec. level(2) 128 256 96 128 128 128 125 128 189 253 184 128 128

T 2102 2198 2144 2282 2506 21014 2148 2148 2220 2292 2148 2196 2196

Table 4. Summary of our results. Our attack is the best known generic attack against
the modes displayed in blue;(1)r′ is the length of the outer state part that is overwritten
by ciphertext blocks taking into a account a potential block by block padding such
as in monkeyDuplex;(2)Claimed plaintext integrity security level for a key and tag
of sufficient, potentially maximal, length;(3)Note that a more efficient (although not
generic) attack has been devised in [15].

– the use of a linear application that prevents outer state overwriting such as
the feedback function proposed in the Beetle mode [16] (requirement 1 is not
fulfilled);15

– the use of the secret key in the final phase to produce the tag such as in Ascon
and NORX v3 [22,2]. Indeed, in that case, a correct guess on the state before
the final phase does not determine the tag (requirement 2 is not fulfilled).

5.2 Schemes to which the attack can be applied

The attack is applicable to the following duplex-based constructions: the Cy-
clist, monkeyDuplex and Motorist modes. Therefore, the attack is applicable to
Xoodyak, Ketje, KNOT, NORX v2 and Keyak. This section is made to help
the reader check attack details for all AEAD algorithms on which the attack is
applicable.

15Although the first mode that uses a feedback function is COFB [17], this mode is
out of scope as it is not duplex-based (in fact, it is not even permutation-based but
block-cipher based).

25

Cyclist mode. A well known representative of the family of duplex-based ci-
phers is Xoodyak [18], a finalist of the NIST lightweight cryptography compe-
tition.16 Xoodyak uses the permutation Xoodoo as its state update function.

As explained in Section 3.5, the specification of the initial phase does not
influence the applicability of the attack. Hence, we only focus on the ciphertext
processing and the final phase. After the initial phase, a byte is set to ‘80‘ and
is XORed into the state, but this is only the case for the first block. Thus, we
consider that the processing of the first ciphertext block belongs to the initial
phase. Moreover, each time a ciphertext block overwrites the outer state, a byte
set to ‘01‘ is XORed into the state at the bit positions r + 1, . . . , r + 817, where
r = 24 bytes = 192 bits [18, p. 68]. Thus, the permutation P on which we need
to apply offline_search is

P : F384
2 −→ F384

2

s 7−→ Xoodoo[12](s⊕ 0192||07||1||0184) .

If one considers the padding rule 10∗ together with the interface provided by the
Xoodyak authors, one can notice that all those transformations are determinis-
tic in the value of the inner state just before processing the last ciphertext block.
Hence, we can guess the last state value, and apply the final phase (consider-
ing the padding for the last block inside this transformation) to the last block
and apply the attack. This means that for any tag length, our attack strategy
provides a forgery with a complexity of 2148.4.

When a valid decryption query is provided to the decryption oracle, the
corresponding plaintext is returned. The plaintext allows the attacker to check
that her guess on the state before the final phase is correct as she can invert the
whole process. Doing so, she can also recover the state just after processing the
key. As long as the key is smaller than 44 bytes, it is copied entirely in the state
and then A, N and M are processed. Thus, Pinit is reversible for known N and
A. As described in Section 3.7 the attack can thus be turned into a key recovery
for Xoodyak.

For a t-byte tag and a κ-bit secret key with κ ≤ 192, the authors claim that
Xoodyak has a security strength level in bits of min(184, κ, 8t) in computation
where the data is limited to 96+κ/2. Our attack breaks this claim for κ ≥ 152 and
t ≥ 19. Our attack not only produces a forgery but also recovers the secret key.
Typically, for κ = 192 and t = 24, there should be no attack with a complexity
under 2184 in time and 2192 in data. Yet, our attack has a complexity of 2148.4.

MonkeyDuplex: Ketje, KNOT and NORX v2. Ketje [12], KNOT-AEAD
[34] and NORX v2 [1] use the mode monkeyDuplex defined originally in 2014 for

16For more details on Xoodyak’s specification, we refer to [18] at page 62 for the
keyed mode together with pages 67 and 68 for the full description of what is relevant
for our analysis. https://csrc.nist.gov/Projects/lightweight-cryptography/

17Note that the rate called r in this paper is denoted by n in Xoodyak’s specification.

26

https://csrc.nist.gov/Projects/lightweight-cryptography/

Ketje [11]. However, those algorithms differ in the padding rule applied to the
message.

– In KNOT-AEAD, the padding is made by ‘appending a single 1 and the
smallest number of 0’s to the bit string such that the length of the padded
bit string is a multiple of r bits’. Thus, the technique used for Xoodyak can
be applied.

– In Ketje and in NORX, the padding is made block by block [12, 1.3, p. 4]
and [1, p. 9-10] with the rule pad10∗1[r](|M |) which is the multi-rate padding
as defined in [7]. Both ciphers allow to process bit strings of length smaller
or equal18 to r′ = r − 2. To deal with this padding rule, we consider that
every plaintext block is of length exactly r′, meaning that the padding rule
is just the concatenation of 11 to each block. By doing the same technique
together with the domain separation as for Xoodyak, that is considering
that the position corresponding to those two bits are in fact inside the inner
state and that the XOR of 11 is part of the Ketje inner permutation P (or
part of the NORX inner permutation), we can apply our attack, by considering
the effective rate to be r′ = r − 2 instead of r.

For these three constructions, the final phase is deterministic in the inner
state after processing the plaintext or the ciphertext so our attack can be ap-
plied. Both ciphers come with 4 different instances and our attack leads to the
complexities listed in Table 5. Moreover, when the decryption oracle sends back
the plaintext, a key recovery is possible as the state is directly initialized with
key and nonce without applying any transformation.

Motorist: Keyak. Keyak [13] is a family of authenticated encryption schemes
which is a third-round candidate of the CAESAR competition. The features of
the Motorist mode that are of interest for our attack are:

– Decryption overwrites the outer state with ciphertext blocks values and in
between there are applications of P where P is a Keccak-p permutation.

– An encoding (in byte) of the size of the processed message blocks is XORed
into the state at the Ra +1 byte position, where Ra is the absorbing rate in
bytes (Ra = r

8).
– For the tag generation, given a (public) tag length, the tag is determined by

the state before the final phase.

Thus, the attack can also be applied on Keyak instances by just changing the
function that is iterated and considering the XOR of the bytes that encode the
length of ciphertext and associated data to be part of the decryption function.

However, Keyak comes with instances that can work independently (Pis-
tons), in order to highly parallelize encryption and decryption of large amount
of data. To do so, the authors of Keyak propose to do several initialization in
parallel, process independently 4, 8 or more strings and then mix everything

18This value is called ρmax in [7, p. 335]

27

together at the end. However, if one would like to guess the tag, one would have
to guess independently every inner state in all parallel instances as they are all
initialized differently. So, our attack on Keyak is also applicable on all instances
but make sense only for the non-parallelized instances, that is River Keyak
and Lake Keyak. For these instances, the key can also be recovered.

5.3 Modes that frustrate our attack

In this section, we will look into authenticated encryption modes to which the
attack cannot be applied. Two main features frustrate our cryptanalysis. The
first one consists of a final key addition just at the beginning of the final phase
and the second one is the use of a feedback function as proposed in the mode
Beetle [16].

Key-dependent final phase. Our attack allows to reduce the space of all
possible values of the final state before the final phase. For the modes to which
the attack applies, a correct guess on this state can be transformed into a forgery,
and, under certain conditions, into a key recovery. However, some proposals
such as Ascon [22] or the third version of NORX [2] for the CAESAR competition
slightly change the final phase by making it not only dependent on the state after
processing the plaintext or ciphertext, but also key dependent. As explained at
the beginning of this section, the final tag must be fully determined by the state
just before the final phase. When the key is involved in the final phase, even if
the correct state value is guessed, an attacker does not know a priori the secret
key and so the state recovery does not lead to a forgery attack.

Absence of outer state overwriting. In another line of research, Chakraborti
et al. proposed in 2018 a family of AEAD constructions named Beetle [16]. Beetle
is not strictly speaking a duplex-based construction as the use of a feedback
function between two consecutive invocations of the permutation P avoids, when
both a data injection and a data extraction take place, that the r-bit outer
state value after the data injection be equal to the extracted data block as
in traditional duplexing, and allows to render both values almost independent.
Thus, the use of a feedback function prevents the attack by making the outer
state overwriting impossible. Unlike duplex-based constructions which do not use
a feedback function twist, the Beetle construction is claimed to provide a security
level min{ b2 , c − log(r), r} without any restriction on decryption queries [16,3].
The Beetle construction is used in the Beetle and SPARKLE [5] finalists of the
NIST lightweight cryptography standardization process.

The same effect also occurs in Subterranean 2.0 [19] which is a second round
candidate of the NIST-lightweight competition and a duplex-like proposal. In
order to generate the ciphertext blocks, two bits of the state are XORed to serve
as a keystream. It prevents the attack in the same way that the feedback function
of the Beetle mode does, as the attacker can not predict the value of the outer
state before the next application of the update function.

28

6 Conclusion

In this paper, we provided a generic attack against several duplex-based AEAD
modes. Constructed as a forgery attack, our cryptanalysis can be transformed
into a key recovery for most modes to which it applies. It has a complexity equiv-
alent to O(2 3c

4) applications of the state update function and thus represents an
improvement from previous generic attacks against duplex-based modes. It is
also memory-less. Further, the complexity of the online phase can be brought
close to 2

c
2 at the cost of increasing the time complexity of the pre-computation

phase (which needs to be run only once) above O(2 3c
4).

References

1. Aumasson, J.P., Jovanovic, P., Neves, S.: NORX v2. Submission to the Caesar
competition (2015), https://competitions.cr.yp.to/round2/norxv20.pdf

2. Aumasson, J.P., Jovanovic, P., Neves, S.: NORX v3. Submission to the Caesar
competition (2016), https://competitions.cr.yp.to/round3/norxv30.pdf

3. Banik, S., Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M., Peyrin, T.,
Sasaki, Y., Sim, S.M., Todo, Y.: GIFT-COFB. Cryptology ePrint Archive, Report
2020/738 (2020), https://eprint.iacr.org/2020/738

4. Bao, Z., Guo, J., Wang, L.: Functional graphs and their applications in generic at-
tacks on iterated hash constructions. IACR Transactions on Symmetric Cryptology
2018(1), 201–253 (2018). doi:10.13154/tosc.v2018.i1.201-253

5. Beierle, C., Biryukov, A., Cardoso dos Santos, L., Großschädl, J., Perrin, L.,
Udovenko, A., Velichkov, V., Wang, Q.: Lightweight AEAD and hashing using
the Sparkle permutation family. IACR Transactions on Symmetric Cryptology
2020(S1), 208–261 (2020). doi:10.13154/tosc.v2020.iS1.208-261

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of
the sponge construction. In: Smart, N.P. (ed.) Advances in Cryptology – EURO-
CRYPT 2008. Lecture Notes in Computer Science, vol. 4965, pp. 181–197. Springer,
Heidelberg, Germany, Istanbul, Turkey (Apr 13–17, 2008). doi:10.1007/978-3-540-
78967-3_11

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge:
Single-pass authenticated encryption and other applications. In: Miri, A., Vau-
denay, S. (eds.) SAC 2011: 18th Annual International Workshop on Selected Ar-
eas in Cryptography. Lecture Notes in Computer Science, vol. 7118, pp. 320–
337. Springer, Heidelberg, Germany, Toronto, Ontario, Canada (Aug 11–12, 2012).
doi:10.1007/978-3-642-28496-0_19

8. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge functions (2007),
https://keccak.team/files/SpongeFunctions.pdf

9. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic sponge func-
tions (2011), https://keccak.team/files/CSF-0.1.pdf

10. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Permutation-based en-
cryption, authentication and authenticated encryption (July 2012), http://www.
hyperelliptic.org/djb/diac/record.pdf

11. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Keer, R.V.: Ketje v1. Sub-
mission to Caesar competition (2014), http://competitions.cr.yp.to/round1/
ketjev1.pdf

29

https://competitions.cr.yp.to/round2/norxv20.pdf
https://competitions.cr.yp.to/round3/norxv30.pdf
https://eprint.iacr.org/2020/738
https://doi.org/10.13154/tosc.v2018.i1.201-253
https://doi.org/10.13154/tosc.v2020.iS1.208-261
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-642-28496-0_19
https://keccak.team/files/SpongeFunctions.pdf
https://keccak.team/files/CSF-0.1.pdf
http://www.hyperelliptic.org/djb/diac/record.pdf
http://www.hyperelliptic.org/djb/diac/record.pdf
http://competitions.cr.yp.to/round1/ketjev1.pdf
http://competitions.cr.yp.to/round1/ketjev1.pdf

12. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Keer, R.V.: Ketje v2. Round
3 candidate for the Caesar competition (2016), http://competitions.cr.yp.to/
round3/ketjev2.pdf

13. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Keer, R.V.: Keyak v2. Submis-
sion to the Caesar competition (2016), https://competitions.cr.yp.to/round3/
keyakv22.pdf

14. Brent, R.P.: An improved monte carlo factorization algorithm. In:
BIT Numerical Mathematics. p. 176–184. Berlin, Heidelberg (1980).
doi:https://doi.org/10.1007/BF01933190

15. Chaigneau, C., Fuhr, T., Gilbert, H., Jean, J., Reinhard, J.R.: Cryptanal-
ysis of NORX v2.0. Journal of Cryptology 32(4), 1423–1447 (Oct 2019).
doi:10.1007/s00145-018-9297-9

16. Chakraborti, A., Datta, N., Nandi, M., Yasuda, K.: Beetle family of
lightweight and secure authenticated encryption ciphers. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2018(2), 218–241
(2018). doi:10.13154/tches.v2018.i2.218-241, https://tches.iacr.org/index.
php/TCHES/article/view/881

17. Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M.: Blockcipher-based authen-
ticated encryption: How small can we go? In: Fischer, W., Homma, N. (eds.) Cryp-
tographic Hardware and Embedded Systems – CHES 2017. Lecture Notes in Com-
puter Science, vol. 10529, pp. 277–298. Springer, Heidelberg, Germany, Taipei,
Taiwan (Sep 25–28, 2017). doi:10.1007/978-3-319-66787-4_14

18. Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.: Xoodyak, a
lightweight cryptographic scheme. IACR Transactions on Symmetric Cryptology
2020(S1), 60–87 (2020). doi:10.13154/tosc.v2020.iS1.60-87

19. Daemen, J., Massolino, P.M.C., Mehrdad, A., Rotella, Y.: The subterranean 2.0
cipher suite. IACR Transactions on Symmetric Cryptology 2020(S1), 262–294
(2020). doi:10.13154/tosc.v2020.iS1.262-294

20. Daemen, J., Mennink, B., Assche, G.V.: Full-state keyed duplex with built-in
multi-user support. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology –
ASIACRYPT 2017, Part II. Lecture Notes in Computer Science, vol. 10625, pp.
606–637. Springer, Heidelberg, Germany, Hong Kong, China (Dec 3–7, 2017).
doi:10.1007/978-3-319-70697-9_21

21. DeLaurentis, J.M.: Components and cycles of a random function. In: Pomerance, C.
(ed.) Advances in Cryptology – CRYPTO’87. Lecture Notes in Computer Science,
vol. 293, pp. 231–242. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 16–20, 1988). doi:10.1007/3-540-48184-2_21

22. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2: Lightweight
authenticated encryption and hashing. Journal of Cryptology 34(3), 33 (Jul 2021).
doi:10.1007/s00145-021-09398-9

23. Flajolet, P., Odlyzko, A.M.: Random mapping statistics. In: Quisquater, J.J., Van-
dewalle, J. (eds.) Advances in Cryptology – EUROCRYPT’89. Lecture Notes
in Computer Science, vol. 434, pp. 329–354. Springer, Heidelberg, Germany,
Houthalen, Belgium (Apr 10–13, 1990). doi:10.1007/3-540-46885-4_34

24. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University
Press (2009), http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=
9780521898065

25. Harris, B.: Probability Distributions Related to Random Mappings. The Annals of
Mathematical Statistics 31(4), 1045 – 1062 (1960). doi:10.1214/aoms/1177705677,
https://doi.org/10.1214/aoms/1177705677

30

http://competitions.cr.yp.to/round3/ketjev2.pdf
http://competitions.cr.yp.to/round3/ketjev2.pdf
https://competitions.cr.yp.to/round3/keyakv22.pdf
https://competitions.cr.yp.to/round3/keyakv22.pdf
https://doi.org/https://doi.org/10.1007/BF01933190
https://doi.org/10.1007/s00145-018-9297-9
https://doi.org/10.13154/tches.v2018.i2.218-241
https://tches.iacr.org/index.php/TCHES/article/view/881
https://tches.iacr.org/index.php/TCHES/article/view/881
https://doi.org/10.1007/978-3-319-66787-4_14
https://doi.org/10.13154/tosc.v2020.iS1.60-87
https://doi.org/10.13154/tosc.v2020.iS1.262-294
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/3-540-48184-2_21
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/3-540-46885-4_34
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521898065
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521898065
https://doi.org/10.1214/aoms/1177705677
https://doi.org/10.1214/aoms/1177705677

26. Joux, A.: Algorithmic Cryptanalysis. Chapman and Hall/CRC (2009).
doi:https://doi.org/10.1201/9781420070033

27. Jovanovic, P., Luykx, A., Mennink, B.: Beyond 2c/2 security in sponge-based au-
thenticated encryption modes. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryp-
tology – ASIACRYPT 2014, Part I. Lecture Notes in Computer Science, vol. 8873,
pp. 85–104. Springer, Heidelberg, Germany, Kaoshiung, Taiwan, R.O.C. (Dec 7–11,
2014). doi:10.1007/978-3-662-45611-8_5

28. Jovanovic, P., Luykx, A., Mennink, B., Sasaki, Y., Yasuda, K.: Beyond conventional
security in sponge-based authenticated encryption modes. Journal of Cryptology
32(3), 895–940 (Jul 2019). doi:10.1007/s00145-018-9299-7

29. Leurent, G., Peyrin, T., Wang, L.: New generic attacks against hash-based MACs.
In: Sako, K., Sarkar, P. (eds.) Advances in Cryptology – ASIACRYPT 2013, Part II.
Lecture Notes in Computer Science, vol. 8270, pp. 1–20. Springer, Heidelberg,
Germany, Bengalore, India (Dec 1–5, 2013). doi:10.1007/978-3-642-42045-0_1

30. Mennink, B., Reyhanitabar, R., Vizár, D.: Security of full-state keyed sponge and
duplex: Applications to authenticated encryption. In: Iwata, T., Cheon, J.H. (eds.)
Advances in Cryptology – ASIACRYPT 2015, Part II. Lecture Notes in Computer
Science, vol. 9453, pp. 465–489. Springer, Heidelberg, Germany, Auckland, New
Zealand (Nov 30 – Dec 3, 2015). doi:10.1007/978-3-662-48800-3_19

31. Moon, J.W.: Counting Labelled Trees. Canadian Mathematical Congress 1970,
William Clowes and Sons (1970)

32. Peyrin, T., Sasaki, Y., Wang, L.: Generic related-key attacks for HMAC. In: Wang,
X., Sako, K. (eds.) Advances in Cryptology – ASIACRYPT 2012. Lecture Notes in
Computer Science, vol. 7658, pp. 580–597. Springer, Heidelberg, Germany, Beijing,
China (Dec 2–6, 2012). doi:10.1007/978-3-642-34961-4_35

33. Peyrin, T., Wang, L.: Generic universal forgery attack on iterative hash-based
MACs. In: Nguyen, P.Q., Oswald, E. (eds.) Advances in Cryptology – EURO-
CRYPT 2014. Lecture Notes in Computer Science, vol. 8441, pp. 147–164. Springer,
Heidelberg, Germany, Copenhagen, Denmark (May 11–15, 2014). doi:10.1007/978-
3-642-55220-5_9

34. Zhang, W., Ding, T., Yang, B., Bao, Z., Xiang, Z., Ji, F., Zhao, X.: KNOT.
Round 2 candidate for the NIST Lightweight Cryptography project (2019),
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/knot-spec-round.pdf

31

https://doi.org/https://doi.org/10.1201/9781420070033
https://doi.org/10.1007/978-3-662-45611-8_5
https://doi.org/10.1007/s00145-018-9299-7
https://doi.org/10.1007/978-3-642-42045-0_1
https://doi.org/10.1007/978-3-662-48800-3_19
https://doi.org/10.1007/978-3-642-34961-4_35
https://doi.org/10.1007/978-3-642-55220-5_9
https://doi.org/10.1007/978-3-642-55220-5_9
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/knot-spec-round.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/knot-spec-round.pdf

	Generic Attack on Duplex-Based AEAD Modes using Random Function Statistics

