
Detect, Pack and Batch:
Perfectly-Secure MPC with Linear

Communication and Constant Expected Time

Ittai Abraham1, Gilad Asharov2, Shravani Patil3, and Arpita Patra3

1 VMWare Research
iabraham@vmware.com

2 Department of Computer Science, Bar-Ilan University, Israel
Gilad.Asharov@biu.ac.il

3 Indian Institute of Science, Bangalore, India
{shravanip,arpita}@iisc.ac.in

Abstract. We prove that perfectly-secure optimally-resilient secure
Multi-Party Computation (MPC) for a circuit with C gates and depth
D can be obtained in O((Cn+n4+Dn2) logn) communication complex-
ity and O(D) expected time. For D ≪ n and C ≥ n3, this is the first
perfectly-secure optimal-resilient MPC protocol with linear communi-
cation complexity per gate and constant expected time complexity per
layer.

Compared to state-of-the-art MPC protocols in the player elimina-
tion framework [Beerliova and Hirt TCC’08, and Goyal, Liu, and Song
CRYPTO’19], for C > n3 and D ≪ n, our results significantly improve
the run time from Θ(n+D) to expected O(D) while keeping communi-
cation complexity at O(Cn logn).

Compared to state-of-the-art MPC protocols that obtain an expected
O(D) time complexity [Abraham, Asharov, and Yanai TCC’21], for C >
n3, our results significantly improve the communication complexity from
O(Cn4 logn) to O(Cn logn) while keeping the expected run time at
O(D).

One salient part of our technical contribution is centered around a new
primitive we call detectable secret sharing. It is perfectly-hiding, weakly-
binding, and has the property that either reconstruction succeeds, or
O(n) parties are (privately) detected. On the one hand, we show that
detectable secret sharing is sufficiently powerful to generate multiplica-
tion triplets needed for MPC. On the other hand, we show how to share
p secrets via detectable secret sharing with communication complexity
of just O(n4 logn + p logn). When sharing p ≥ n4 secrets, the commu-
nication cost is amortized to just O(1) per secret.

Our second technical contribution is a new Verifiable Secret Sharing pro-
tocol that can share p secrets at just O(n4 logn+pn logn) word complex-
ity. When sharing p ≥ n3 secrets, the communication cost is amortized
to just O(n) per secret. The best prior required O(n3) communication
per secret.

2 Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra

1 Introduction

In the setting of secure multiparty computation (MPC), n distrustful parties
jointly compute a function on their inputs while keeping their inputs private.
Security should be preserved even in the presence of an external entity that
controls some parties and coordinates their behavior. We consider in this paper
the most demanding setting: perfect security with optimal resilience. Perfect
security means that the adversary is all-powerful and that the protocol has zero
probability of error. Optimal resilience means that the number of corruptions is
at most t < n/3. Such protocols come with desirable properties: They guarantee
adaptive security (with some caveats [17,5]) and remain secure under universal
composition [34].

The seminal protocols of Ben-Or, Goldwasser, and Wigderson [13], and Chaum,
Crépeau and Damg̊ard [19] led the foundations of this setting. Since then, there
are, in general, two families of protocols:

1. Efficient but slow: These protocols [32,12,30] ([12] test-of-time award)
have O(n log n) communication complexity per multiplication gate. Still, the
running time of these protocols is at least Θ(n) rounds, even if the depth of
the circuit is much smaller D ≪ n. Specifically:

Theorem 1.1. For an arithmetic circuit with C multiplication gates
and depth D there exists a perfectly-secure, optimally-resilient MPC
protocol with O(n5 log n + Cn log n) bits communication complexity
and Ω(n + D) expected number of rounds.

The protocol requires O(n3 log n + Cn log n) bits of point-to-point commu-
nication and n sequential invocations of broadcast of O(log n) bits each,
with Ω(n + D) rounds. Using the broadcast implementation of [1], this be-
comes the complexity of Theorem 1.1. Alternatively, using the implemen-
tation of [15,23], the protocol can be more efficient, but even more slower:
O(n3 log n+Cn log n) bits communication complexity and Ω(n2+D) number
of rounds.

2. Fast but not efficient: This line of protocols [13,19,29,24,7,2] run at O(D)
expected number of rounds, but require Ω(n4 log n) communication com-
plexity per multiplication gate.

Theorem 1.2. For an arithmetic circuit with C multiplication gates
and depth D there exists a perfectly-secure, optimally-resilient MPC
protocol with Ω(Cn4 log n) communication complexity and O(D) ex-
pected number of rounds.

In the broadcast hybrid model, the protocol requires O(n3 log n) bits of
communication complexity over point-to-point channels and O(n3 log n) bits
broadcast, in O(D) number of rounds. Theorem 1.2 reports the communica-
tion complexity using the broadcast implementation of [1]. Using [15,23] for
implementing the broadcast, the number of rounds is increased to Ω(n+D).

Detect, Pack and Batch 3

Our Main Result

Our main result is that the best of both families is possible to achieve simultane-
ously. For the first time, we provide a perfectly-secure, optimally-resilient MPC
protocol that has both O(n log n) communication complexity per multiplication
gate and O(D) expected time complexity.

Theorem 1.3 (Main Result). For a circuit with C multiplication gates and
depth D there exists a perfectly-secure, optimally-resilient MPC protocol with
O((Cn+Dn2 +n4) log n) communication complexity and O(D) expected number
of rounds.

In the broadcast-hybrid model, the total communication complexity over
point-to-point is O((Cn + Dn2 + n4) log n), and each party has to broadcast
at most O(n2 log n) bits. Using [1] for implementing the broadcast, we obtain
Theorem 1.3. Compared to [12,30], for D ≪ n, our result provides up to an O(n)
improvement in round complexity while keeping the same linear communication
complexity (and also improving the communication complexity for C ∈ o(n4)).
Compared to [2], for C > n3, our result provides an O(n3) improvement(!) in
the communication complexity while keeping the same O(D) expected round
complexity.

We remark that in many practical settings, a large set of parties may want
to compute a shallow depth circuit in a robust manner. For instance, consider
a network with 200ms latency and channels of 1Gbps, and consider a highly
parallel circuit with 1M gates, depth D = 10, and n = 200 parties. Then, the
round complexity of our protocol is O(D), which results in a delay of 10·200ms =
2 seconds. The delay associated with the communication complexity is smaller:
each party sends or receives (C +Dn+n3) log n bits, which over 1Gbps channel
results in a delay of 0.08 seconds. In [30], the delay due to the round complexity
is O(n + D), which results in a delay of 210 · 200ms = 42 seconds, and each
party sends or receives (C + n4) log n bits which over 1Gbps results in a delay
of ≈ 14 seconds. If we use [15,23] to implement the broadcast, then the round
complexity becomes O(n2 + D) which is ≈ 8000 seconds. The improvement in
the round complexity is significant in this scenario. Of course, these are only
coarse estimations that do not even take into account the hidden constants in
the O notation.

Main Technical Result

Our main result is obtained via several advances in building blocks for perfectly
secure optimally resilient MPC. In our view, the most important and technically
involved contribution is a new primitive called Detectable Secret Sharing. This is
a secret sharing with the following properties: (1) Secrecy: The corrupted parties
cannot learn anything about the secrets after the sharing phase for an honest
dealer; (2) Binding: After the sharing phase (even if the dealer is corrupted),
the secret is well defined by the shares of the honest parties; (3) Reconstruc-
tion or detection: Reconstruction ends up in the well-defined secret, or it might

4 Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra

fail (even if the dealer is honest). However, in the case of failure, there is a
(private) detection of O(n) corrupted parties. Moreover, successful sharing and
reconstruction are guaranteed if the dealer has already detected more than t/2
corrupted parties before the respective phases.

We show that despite the possible failure of the reconstruction, Detectable
Secret Sharing suffices for obtaining our end result for MPC. Most importantly,
we obtain a highly efficient construction for this primitive:

Theorem 1.4 (informal). There exists a detectable secret sharing protocol that
allows sharing p secrets (of log n bits each) with malicious security and opti-
mal resilience with O(n4 log n+ p log n) communication complexity and expected
constant number of rounds.

For p ≥ n4, this is O(1) field elements per secret (which is also a field ele-
ment)! This matches packed semi-honest secret sharing as in [28]. The theorem
holds for a single dealer; for n dealers, each sharing p secrets in parallel, we get
O(1) field elements per secret starting from p ≥ n3.

Stated differently, we show a detectable secret sharing protocol that can pack
O(n2) secrets (of size log n each) at the cost of O(n2 log n) communication com-
plexity for private channels and each party broadcasts at most O(n log n) bits,
with a strictly constant number of rounds. There are at least two striking features
of our new detectable secret sharing: packing, and batching. First, to the best of
our knowledge, this is the first protocol in the malicious setting that can pack
O(n2) secrets at the cost of O(n2) communication complexity – so an amortized
cost of O(1) per secret over point-to-point channels. Second, our scheme allows
batching – m independent instances with the same dealer require O(mn2 log n)
over point-to-point channels but just O(n log n) broadcast per party in all m
instances combined. To the best of our knowledge, this is the first protocol that
requires a fixed broadcast cost independent of the batching parameter m. By
setting m = p/n2 and combining with the recent broadcast implementation of
Abraham, Asharov, Patil, and Patra [1], we obtain Theorem 1.4 in the point-to-
point channel model and no broadcast.

Note that this primitive is formally incomparable with weak-secret sharing
[36] (where reconstruction needs the help of the dealer but is guaranteed to
succeed when the dealer is honest). On the one hand, our notion seems weaker
as there is no guaranteed validity (no guaranteed reconstruction in case of an
honest dealer). On the other hand, it is not strictly weaker since our notion
ensures mass detection in case of a reconstruction failure. For comparison, the
best known weak-secret sharing [2] requires O(n4 log n) for sharing O(n) secrets
(i.e., O(n3) per secret).

Verifiable secret sharing. We also derive (and use) a “strong” secret sharing
(i.e., honest parties always succeed to reconstruct), i.e., in the standard verifiable
secret sharing [20] setting:

Theorem 1.5 (informal). There exists a protocol that allows to secret share p
secrets (of log n bits each) with malicious security and optimal resilience with

Detect, Pack and Batch 5

O(n4 log n+p ·n log n) communication complexity and expected constant number
of rounds.

For p ≥ n3, this is an overhead of O(n) per secret. Previously, the best
known [1] in this setting packs O(n) secrets with O(n4 log n) communication
complexity (an overhead of O(n3) per secret). This is an improvement of O(n2)
over the state-of-the-art. In comparison, the starting point is the VSS of BGW
and Feldman [13,26] requires O(n2 log n) point-to-point and O(n2 log n) broad-
cast, for sharing just a single secret. This results in O(n4 log n) communication
complexity over point-to-point channels and no broadcast, for sharing just a
single secret (an overhead of O(n4)).

Detection. The line of work of [32,12,30] in perfectly-secure MPC is based
on the player elimination framework (introduced by Hirt, Maurer and Przy-
datek [32]). The protocol identifies a set of parties in which it is guaranteed
that one of the players among the set is corrupted, excludes the entire set, and
restarts some part of the protocol. The important aspect here is that all parties
agree on the set, and that honest parties are also “sacrificed” along the way. In
each iteration, the number of parties being excluded is constant. This is a slow
process that leads to the O(n) rounds overhead.

Instead of globally eliminating a set of parties, our approach is to have each
party maintain a local set of conflicted parties, with no global agreement among
parties on who is malicious. Each party can decide which parties to mark as
conflicted while it shares its own secret(s). When an honest party marks enough
corrupt parties as conflicted, its sharing will always be successful. Moreover,
whenever there is a failure in sharing or reconstruction, then there is a mass
detection – O(n) corruptions are identified, either publicly or privately.

To elaborate further, our MPC protocol uses three kinds of detections: (a)
global detection – wherein a set of parties is excluded from the computation.
Unlike [32,12,30], in our case, honest parties are never discarded; (b) public
individual detection – wherein each party has its own conflict set that is publicly
known to all. While a similar mechanism, referred to as ‘dispute control’ has been
used in [11,14,31], these works achieve statistical security in the honest majority
setting with O(n) rounds overhead similar to the player-elimination framework;
(c) private (local) detection – wherein each party has its private conflict set that
it excludes from its local computation. Specifically, an honest party may locally
identify a set conflicts (with corrupted parties) without a mechanism to prove
that it has done so honestly. In our protocol, it can identify O(n) such conflicts
simultaneously in case private reconstruction towards it fails. This allows an
honest party to locally discard the communication from O(n) corrupt parties,
eventually ensuring a successful reconstruction.

1.1 Related Work

Broadcast. Our communication complexity takes into account the cost of broad-
cast. In the setting of perfect security, there are two families of protocols for

6 Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra

implementing the broadcast: once again – efficient and slow, or fast but less effi-
cient. The former [15,23] takes O(n) rounds and O(n2 + pn) for broadcasting a
message of p bits. The latter [1] (built upon Feldman and Micali [25], and Katz
and Koo [33]) takes O(1) expected number of rounds and O(n4 + pn) communi-
cation complexity for broadcasting a message of size p bits, i.e., this is optimal
for p > n3 log n. Note that when broadcasting a message of size p, then since
each party is supposed to receive p bits, the minimal possible communication
complexity is pn. Moreover, n parties broadcasting messages of size p bits each
takes O(n4 +pn2), i.e., optimal for p > n2 log n. We also remark that containing
strict O(1) number of rounds is impossible [27].

Shunning. Our notion of detectable secret sharing can be viewed as a syn-
chronous analog of the notion of shunning, in which parties either succeed in
their asynchronous verifiable secret sharing or some detection event happens.
In the context of asynchronous verifiable secret sharing, shunning was first sug-
gested by Abraham, Dolev, and Halpern [3] and later improved and extended
to shunning O(n) parties by Bangalore, Choudhury, and Patra [8,9]. However,
unlike our detectable secret sharing, none of these works attain O(1) amortized
communication cost per secret.

2 Technical Overview

In this section, we provide a technical overview of our work. We start in Sec-
tion 2.1 with an overview of our main technical result – our detectable and
verifiable secret sharing schemes. In Section 2.2 we overview our MPC result.
Most of the building blocks are based on previous works, and we highlight in
the overview the steps where we made significant improvements. In Section 2.3
we overview another step in the protocol, triplet secret sharing.

2.1 Detectable and Verifiable Secret Sharing

We start this overview with the most basic verifiable secret sharing protocol –
the one by BGW [13]. See also [6,4] for further details. To share a secret s, the
dealer chooses a bivariate polynomial S(x, y) =

∑t
k=0

∑t
ℓ=0 sk,ℓ · xkyℓ of degree

t in both x and y under the constraint that S(0, 0) = s0,0 = s. The share of each
party Pi is the pair of degree-t univariate polynomials S(x, i), S(i, y). The goal
of the verification step is to verify that the shares of all honest parties indeed lie
on a unique bivariate polynomial S(x, y). Let us briefly recall the sharing phase:

1. Sharing: The dealer sends the share (fi(x), gi(y)) = (S(x, i), S(i, y)) to each
party Pi.

2. Pairwise checks: Pi sends to each Pj the two points (fi(j), gi(j)) = (S(j, i),
S(i, j)) = (gj(i), fj(i)). If Pi did not receive from Pj the points it expects to
see (i.e., that agree with fi(x), gi(y)), then it publicly broadcasts a complaint
complaint(i, j, fi(j), gi(j)).

Detect, Pack and Batch 7

3. Publicly resolving the complaints: The dealer checks all complaints; if
some party Pi publicly complains with values that are different than what
the dealer has sent it, then the dealer makes the share of Pi public – i.e., it
broadcasts reveal(i, S(x, i), S(i, y)).

4. If a party Pj sees that (1) all polynomials that the dealer made public agree
with its private shares; (2) its share was not made public; (3) if two parties
Pk and Pℓ both complaint on each other, then the dealer must open one of
them. If all those conditions hold, then Pj is happy with its share, and votes
to accept the dealer. If the shares of Pj were made public, then it re-assigns
fj(x), gj(y) to the publicly revealed ones.

5. If 2t+ 1 parties votes to accept the shares, then each party output its share.
Otherwise, the dealer is discarded.

Observe that if the dealer is honest, then during the verification phase the cor-
rupted parties do not learn anything new. Specifically, a party always broadcasts
a complaint with the values that it received from the dealer, and the dealer makes
a share public only if the public complaint does not contain the values that it has
sent that party. Therefore, an honest dealer never makes the shares of an honest
party public. Moreover, all honest parties are happy, and accept the shares.

If the dealer is corrupted, then 2t+ 1 parties that voted to accept the dealer
implies that we have a set J ⊆ [n] of at least t+ 1 honest parties that are happy
with their shares and that their shares were never made public. The shares of
those t + 1 honest parties fully determine a bivariate polynomial of degree-t in
both variables. If some honest party Pj initially held a share that does not agree
with this bivariate polynomial, i.e., does not agree with some Pk for k ∈ J , then
it must be that Pj and Pk both publicly complained, and that the share of Pj

was made public with some new share that agrees with S (if it does not agree
with S, then at least one party in J would have not voted to accept). Therefore,
at the end, all honest parties hold shares of a well-defined bivariate polynomial.

To reconstruct the bivariate polynomial, each party sends to each other party
its pair of polynomials. Since the underlying polynomial is of degree-t, the ad-
versary controls at most t parties, we must have n− t ≥ 2t+1 correct points and
at most t errors. The Reed-Solomon decoding procedure guarantees that the t
errors can be identified and corrected.

Our improvements. The above scheme for verifiable secret sharing requires
O(n2 log n) communication over the point-to-point channels, and also the broad-
cast of O(n2 log n) bits. This results in total communication complexity of O(n4

log n) over point-to-point for sharing a single secret. The work of [1] has the
same complexity for sharing O(n) secrets.

For the same communication complexity, we show how to do detectable secret
sharing for O(n4) secrets or to do (standard) verifiable secret sharing for O(n3)
secrets. Looking ahead, we improve the basic scheme in the following aspects,
each giving a factor of O(n2) improvement for our detectable secret sharing:

(1) Packing: The bivariate polynomial S(x, y) in the basic construction
contains only a single secret, located at S(0, 0). This is the best possible when
sharing a bivariate polynomial of degree-t in both x and y: The t shares of the

8 Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra

corrupted parties, together with the secret, fully determine the bivariate poly-
nomial. In our detectable secret sharing scheme, the dealer shares a bivariate
polynomial of degrees greater than t in both x and y. This allows planting O(n2)
secrets. The verification that all parties hold shares on the same bivariate poly-
nomial is much more challenging because the degrees of all the univariate poly-
nomials are greater than t. Nevertheless, we obtain binding with asymptotically
the same cost as the basic scheme, therefore we already obtain an improvement
of O(n2) over the basic scheme.

Moreover, once the degree in both dimensions is greater than t, then recon-
struction might fail because the underlying codeword is of degree greater than
t, and the parties cannot necessarily correct the errors if the adversary does not
provide correct shares. Nevertheless, Reed-Solomon decoding guarantees that
the honest parties can (efficiently) identify whether there is a unique decoding
or not. We use this property to also detect sufficiently many corrupted parties.
This suffices for constructing a detectable secret sharing scheme.

For (standard) verifiable secret sharing, we must make the degree in at least
one of the dimensions to be at most t, to allow to always succeed in correcting
errors. This allows us to pack “only” O(n) secrets and not O(n2).

(2) Batching: The verification step of [13] requires broadcasting O(n2) field
elements by the dealer, and O(n) field elements by each party. Hence m inde-
pendent instances (with the same dealer) require broadcasting of O(mn2) field
elements. First, we balance the protocol such that each party broadcasts at most
O(n) field elements, including the dealer. Second, by designing a sharing protocol
that is tailored for achieving cheap batching, the broadcast cost for m indepen-
dent instances remains the same as a single instance, i.e., it requires each party
to broadcast O(n log n) bits in all m executions combined. By setting m = O(n2)
and implementing the broadcast over point-to-point, we get a detectable secret
sharing of O(n4) secrets (each is a field element of size O(log n)) at the cost of
O(n4 log n) communication over the point-to-point channels. This is the second
O(n2) improvement over the basic scheme.

Our batched and packed detectable secret sharing protocol. For our
discussion, assume that the dealer first chooses a polynomial S(x, y) of degree
t + t/4 in x and degree t + t/4 in y. We will use different parameters in the
actual construction later,4 but we choose t + t/4 for simplicity of exposition
in this overview. Like the basic scheme, the view of the adversary consists of
the pair of the univariate polynomials S(x, i), S(i, x), for every i ∈ I, where
I ⊆ [n] is the set of indices of the corrupted parties (of cardinality at most t).
This means that the adversary receives at most 2t(t + t/4 + 1) − t2 values, and
therefore the dealer can still plant (t/4 + 1)2 ∈ O(n2) secrets in S(x, y), which
is fully determined by (t + t/4 + 1)2 values. Concretely, it can plant for every
a ∈ {0, . . . , t/4} and b ∈ {0, . . . , t/4} a secret at location S(−a,−b).

Looking ahead, to allow batching, the dealer will choose m different bivari-
ate polynomials S1(x, y), . . . , Sm(x, y), and all the parties will verify all the m

4 Our actual parameters are further optimized to pack more secrets.

Detect, Pack and Batch 9

instances simultaneously. To accept the shares, all instances must end up suc-
cessfully. We follow the following two design principles:

1. Broadcast is expensive; Each broadcast must be utilized in all m in-
stances, not just in one instance.

2. Detection: Whenever a party is detected as an obstacle for achieving
agreement (a foe), we should make it a “friend”, or more precisely,
we neutralize its capacity to obstruct further, and utilize it to achieve
agreement on a later stage.

We focus on sharing of one instance for now, while keeping these design principles
in mind. Along the way, we also discuss how to keep the broadcasts of the dealer
low for all m instances simultaneously, and we will show how to reduce the
broadcasts of other parties later on. We follow a similar structure to that of the
basic scheme:

1. Sharing: The dealer sends fi(x), gi(y) to each party Pi.

2. Pairwise checks: Each pair of parties exchange sub-shares. In case of a
mismatch, a party broadcasts a complaint complaint(i, j, fi(j), gi(j)).

The dealer now has to resolve the complaints. In the basic protocol, when the
dealer identifies party Pi as corrupted, the dealer simply broadcasts the “cor-
rect” (S(x, i), S(i, y)) so that everyone can verify that the shares are consistent.
However, this leads to O(n2) values being broadcasted, and O(mn2) values in
the batched case. Instead, in our protocol, the dealer just marks Pi as corrupted
and adds it to a set CONFLICTS ⊂ [n] which is initially empty. It broadcasts the
set CONFLICTS. This set should be considered as “parties that had false com-
plaints” from an honest dealer’s perspective. There are three cases to consider:

1. The dealer is discarded: This might happen, e.g., if two parties complained
on each other and none of them is in CONFLICTS. In this case, it is clear
that the dealer is corrupted, and all parties can just discard it.

2. If the dealer is not discarded and |CONFLICTS| > t/4, then we have large
conflict. The dealer identified a large set of conflicts (note that if the dealer
is honest, then CONFLICTS contains only corrupted parties). Instead of pub-
licly announcing the polynomials fi(x), gi(y) of the identified corrupted par-
ties, the dealer simply restarts the protocol. In the new iteration, the shares
of parties in CONFLICTS are publicly set to 0. That is, it chooses a new
random bivariate polynomial S(x, y) that hides the same secrets as before,
this time under the additional constraints that S(x, i) = S(i, y) = 0 for every
i ∈ CONFLICTS.
The dealer does not broadcast the shares of parties in CONFLICTS; all the
parties know that they are 0s. When each party receives its new pair of
shares fj(x), gj(y), it also verifies that fj(i) = gj(i) = 0, and if not, it raises a
complaint. Parties in CONFLICTS cannot raise any complaints. Furthermore,
observe that the outcome of “large conflict” might occur only O(1) times;
if the dealer tries to exclude more than t parties total, then the dealer is
publicly discarded.

10 Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra

When batching over m instances, we choose the shares of the set CONFLICTS
to be 0 in all instances. Thus, the dealer uses a broadcast of O(n log n) bits,
i.e., the set CONFLICTS, and by restarting the protocol it made the shares
of parties in CONFLICTS public in all m executions. Thus, we get the same
effect as broadcasting m|CONFLICTS| pairs of polynomials (i.e., broadcasting
O(m · n2 log n) bits). This follows exactly our first design principle.

3. If |CONFLICTS| ≤ t/4 then the dealer proceeds with the protocol. It has to
reconstruct the f and g polynomials of all parties in CONFLICTS.

Before we proceed, let’s highlight what guarantees we have so far: when the
dealer is honest, then all the parties in CONFLICTS are corrupted. Moreover, if in
some iteration there were more than t/4 identified conflicts by the dealer, those
corrupted parties are eliminated, and they have shares that all parties know (i.e.,
0) and are consistent with the shares of the honest parties. This turns a “foe”
into a “friend”, as our second design principle.

When the dealer is corrupted, then all parties that are not in CONFLICTS
have shares that define a unique bivariate polynomial, and we have binding.
Specifically, if the shares of two honest parties do not agree with each other, then
they both complain on each other, and the dealer must include one of them in
CONFLICTS. Therefore, all honest parties that are not in CONFLICTS (assuming
that the dealer was not publicly discarded) hold shares that are consistent with
each other. Moreover, there is one more important property: Honest parties
that were excluded in previous iterations (and now their shares are 0) also hold
shares that are consistent with the honest parties that are not in CONFLICTS.
In particular, if we indeed proceed, then there are at most t/4 honest parties
who do not hold shares on the polynomial. This means that there are 2t+1−t/4
honest parties that have shares on the bivariate polynomial – not only do we have
binding, but we also have some redundancy! This redundancy will be crucial for
our next step as we show below.

However, there might still be up to t/4 honest parties (in CONFLICTS) that
do not have shares on the correct polynomial. The rest of the protocol is devoted
to reconstructing their shares. We call this phase reconstruction of the shares of
honest parties in CONFLICTS. However, before proceeding to the reconstruction,
we first describe how to batch over m instances.

Batching Complaints. Consider sharing m instances simultaneously with the
same dealer. In the above description, we already described how the dealer’s
broadcast is just the set CONFLICTS, which require O(n log n) bits, independent
of m. However, the broadcast of other parties depends on m. Specifically:

1. A party Pi broadcasts complaint(i, j, fi(j), gi(j)) when it receives a wrong
share from some party Pj .

2. A party Pi broadcast complaint if the share it received do not agree with the
parties that are publicly 0. Recall that in that case, the dealer must include
Pi in CONFLICTS.

It suffices to complain in only one of the instances, say the one with the lexico-
graphically smallest index. This follows our first design principle. If two parties

Detect, Pack and Batch 11

Pi and Pj do not agree in ℓ < m of the instances, they will both file a joint
complaint with the same minimal index. Thus, we have a joint complaint, and
in order to not be discarded, the dealer must include either i or j in CONFLICTS.
Thus, we still have the guarantee that if two honest parties are not in CONFLICTS
then their shares must be consistent, now in all m executions.

Likewise, if some party Pi receives from the dealer private shares where on
points of some parties that were excluded it does not receive 0s, it essentially
requires to be part of CONFLICTS. Thus, there is no need to make m requests,
it suffices to make just one such request.

Reconstruction of the shares of honest parties in CONFLICTS. Going back
to the last step of the sharing process, each party Pj in CONFLICTS wishes to
reconstruct its pair of polynomials (fj(x), gj(y)). Towards that end, each party
Pk that is not in CONFLICTS sends to Pj , privately, the values (fj(k), gj(k)).
Pj therefore is guaranteed to receive 2t + 1 − t/4 correct points. However, the
polynomials are of degree t + t/4, and we need 2t + t/4 + 1 “correct values” to
eliminate t errors. This means that if the adversary introduces more than t/2
incorrect values, Pj does not have unique decoding. In this case, Pj broadcasts
a complaint complaint(j), insisting that its shares be publicly reconstructed. As
we will see, when batching over m executions, it is enough to make one public
complaint in one execution, say the lexicographically smallest one, let’s denote
it as β ∈ [m]. Resolving this instance will help to resolve all other m instances.

Upon receiving complaint(j, β), each party Pk broadcasts reveal(k, j, fk(j),
gk(j)) for the βth instance. Thus, we will have at least 2t+1− t/4 correct values
that are public. Moreover, corrupted parties might now reveal values that are
different than what they have previously sent privately, and we might already
have unique decoding. In any case, with each value that was broadcasted and is
wrong, the dealer adds the identity of the party that broadcasted the wrong value
into a set Bad. It then broadcasts the set Bad, and all parties can check that when
excluding parties in Bad then all other values define a unique polynomial, and
all public points (excluding Bad) lie on this polynomial. Otherwise, the dealer is
publicly discarded. Note that it is enough to broadcast one set Bad for all party
j ∈ CONFLICTS and for all m instances. If |Bad| > t/2, we restart the protocol,
again giving shares 0 to parties in Bad (as long as the total number of parties
that the dealer excluded does not exceed t).

At this point, if we did not restart and the dealer was not discarded, then it
must be that Pj can reconstruct its polynomials fj(x), gj(y) in all m instances.
First, in the βth instance (that was publicly resolved), we know that we have
2t + 1 − t/4 public points that are “correct” and that the dealer could have
excluded at most t/2 parties. Therefore, there are more than t + t/4 + 1 correct
points even if the dealer excludes up to t/2 honest parties (recall that it cannot
exclude more than t/2). Those correct points uniquely determine a polynomial
of degree t+ t/4, and therefore, since all points after excluding parties in Bad lie
on one unique polynomial, it must be that this polynomial is the correct one.

Using the information learned in the resolved instance party Pj can uniquely
decode all other m instances. Specifically, there is no unique decoding in a par-

12 Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra

ticular instance only if Pj received more than t/2 wrong private shares. When
going publicly, some parties might announce different values than what they
first told Pj privately. Pj can compare between the polynomial reconstructed
in the βth instance to the initial values it received privately from the parties,
and identify all parties that sent it wrong shares. Denote this set as localBadj .
It must hold that this set contains more than t/2 corrupted parties. Now, in
each one of the other instances, ignore all parties in localBadj . This implies that
the remaining values are of distance at most t/2 from a correct word, i.e., they
contain at most t/2 errors. Moreover, it is guaranteed that honest parties are
not eliminated, and we still have at least 2t + 1 − t/4 correct points. Therefore,
Pj guarantees to have unique decoding in all m instances.

Detectable and Robust Reconstruction. So far, we described the sharing
procedure. While we do not use the reconstruction of detectable secret shar-
ing directly (we will use private reconstruction, and parties never reconstruct
all secrets), we briefly describe it for completeness. To reconstruct polynomials
S1(x, y), . . . , Sm(x, y) that were shared with the same dealer, we follow a similar
step as reconstruction towards parties in CONFLICTS, but with reconstructing
all polynomials: Each party sends (privately) the f -shares, the parties try to
privately reconstruct gi-polynomials for all i ∈ [n], and interpolate the bivariate
polynomials from the gi-polynomials. If some party does not succeed in uniquely
reconstructing some gi-polynomial, then it asks to go public. For each party Pj ,
it is enough to publicly reconstruct one gi-polynomial that it did not succeed
to reconstruct privately, and from that, Pj can reconstruct all other shares (by
ignoring the new privately detected parties).

However, as before, the adversary can cause the reconstruction to fail. When
it does so, the dealer is guaranteed to detect more than t/2 corruptions. More-
over, if the dealer already detected at least t/2 corruptions during the sharing
phase, then those parties cannot fail the reconstruction, and reconstruction is
guaranteed. Note that the cost of the reconstruction is O(mn2 log n) over point-
to-point channels, plus each party has to broadcast at most O(n log n) bits,
again, independent of m.

Reconstruction for VSS. Recall that for VSS, we set the degree of y in each
bivariate polynomial to t. This implies that all parties can reconstruct all g-
polynomials using Reed-Solomon error correction and we never have to resolve
complaints publicly. Moreover, the adversary can never cause any failure. The
cost is therefore O(mn2 log n) over point-to-point channels, and VSS robust re-
construction is always guaranteed.

We refer the reader to Section 4 for our packed secret sharing scheme for a
single polynomial, and to Section 5 for the batched version.

2.2 Our MPC Protocol

Our MPC protocol follows the following structure: an offline phase in which the
parties generate Beaver triplets [10], and an online phase in which the parties
compute the circuit while consuming those triples.

Detect, Pack and Batch 13

Beaver triplets generation. Our goal is to distribute shares of random secret
values a, b and c, such that c = ab. If the circuit contains C multiplication gates,
then we need C such triplets. Towards that end, we follow the same steps as
in [22], and generate such triplets in two stages:

1. Triplets with a dealer: Each party generates shares of ai, bi, ci such that
ci = ai·bi. We generate all the triplets in parallel using expected O(1) rounds.
We will elaborate on this step below in Section 2.3. Our main contribution is
in improving this step. In our protocol, each party acts as a dealer to generate
mn triplets. This step requires an overall cost of O(n4 log n + mn3 log n)
point-to-point communication for all the parties together. Later, these mn2

triplets will be used for generating O(mn2) triplets overall. Looking ahead,
we will use m = C/n2 and this step costs O(n4 log n + Cn log n).
Previously, the best known [22] used O(n3 log n) point-to-point and O(n3 log n)
broadcast for generating just a single triplet for one dealer. That is, for
O(mn2) triplets this is O(mn5 log n) broadcast which costs at least Ω(mn6 log n)
over point-to-point. We therefore improve in a factor of O(n3).

2. Triplets with no dealer: Using triplet extraction of [22], we can extract
from a total of C triplets with a dealer, O(C) triplets where no party knows
the underlying values. That is, if n parties generate C/n triplets each, then
we have a total of C triplets and we can extract from it O(C) triplets. This
step costs O(n2 log n + Cn log n).

Putting it all together, for generating C triplets we pay a total of O(n4 log n +
Cn log n) and constant expected number of rounds.

The MPC protocol then follows the standard structure where each party
shares its input, and the parties evaluate the circuit gate-by-gate, or more ex-
actly, layer-by-layer. In each multiplication gate, the parties have to consume
one multiplication triple. Using the method of [22], if the ith layer of the circuit
contains Ci multiplications (for i ∈ [D], where D is the depth of the circuit),
the evaluation costs O(n2 log n + Ci · n log n). Summing over all layers, this is∑

i∈[D](n
2 +nCi) log n = (Dn2 +Cn) log n. Together with the generation of the

triplets, we get the claimed O((Cn + Dn2 + n4) log n) cost as in Theorem 1.3.
We refer the readers to the full version for further details on our MPC protocol.

2.3 Multiplication Triplets with a Dealer

As mentioned, a building block which we improve in a factor of O(n3) over the
state-of-the-art is multiplication triplets with a dealer. The goal is that given
a dealer, to distribute shares of secret values a, b, c such that for every i it
holds that ci = aibi. Towards this end, the dealer plants a into some bivariate
polynomial A(x, y) using our verifiable secret sharing scheme. It plants b into
B(x, y) and c into C(x, y) in a similar manner. Note that we use verifiable secret
sharing here, since we want to output the triplets shared via degree-t polynomials
(which is utilized by our MPC protocol). So we can plant only O(n) values
in each one of them. Then, the dealer has to prove, using a distributed zero-
knowledge protocol, that indeed ci = aibi for every i. The zero-knowledge proof

14 Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra

uses sharing and computations on the coefficients of the polynomials used for
sharing a, b, c, i.e., if we shared O(M) triplets, then the zero-knowledge involves
sharing of O(Mn) values. However, since the dealer is involved in the sharing
and the reconstruction of those values, we do not need full-fledged secret sharing
scheme, and we can use the lighter detectable secret sharing. This scheme enables
us to share O(Mn) values at the same cost of “strong” verifiable secret sharing
of O(M) values.

In a more detail, after verifiable sharing A,B and C each of degree t + t/4
in x and t in y, the dealer needs to prove that for every a ∈ {0, . . . , t/4} it holds
that C(−a, 0) = A(−a, 0)·B(−a, 0). Towards that end, for every a ∈ {0, . . . , t/4}
it considers the polynomial

E−a(y) = A(−a, y) ·B(−a, y) − C(−a, y) = e−a,0 + e−a,1y + . . . + e−a,2ty
2t

and its goal is to show that the degree-2t polynomial E−a(y) evaluates to 0
on each y ∈ {0, . . . ,−t/4}. The dealer secret-shares all the coefficients (e−a,k)
for a ∈ {0, . . . , t/4} and k ∈ {0, . . . , 2t} using our detectable secret sharing
scheme, by packing them into several bivariate polynomials E(x, y) with degree
t + t/4 in both x and y. Note that there are O(n2) coefficients to share, and
each polynomial E(x, y) can pack (t/4 + 1)2 secrets.5 Thus, we actually share a
constant number (precisely 8) of polynomials to share all the coefficients.

Using linear combinations over the shares, the reconstruction protocol pri-
vately reconstructs towards Pj (for each j ∈ [n]) the evaluation of E−a(y) on j,
i.e., E−a(j), for each a ∈ {0, . . . , t/4}. This is performed in a similar man-
ner to the reconstruction of shares of honest parties in CONFLICTS in our
detectable secret sharing protocol. Each Pj can then verify that E−a(j) =
A(−a, j) ·B(−a, j)−C(−a, j), and if not, it can raise a public complaint. Parties
can then open the shares of Pj on A,B,C publicly, and also the value E−a(j).
If indeed E−a(j) ̸= A(−a, j) ·B(−a, j) −C(−a, j), then the dealer is discarded.

Moreover, again using linear evaluations over the shares and reconstruction,
the parties can obtain E−a(0) for every a ∈ {0, . . . , t/4} and verify that it equals
0. If indeed E−a(j) = A(−a, j) · B(−a, j) − C(−a, j) for 2t + 1 such js, then
E−a(y) = A(−a, y) ·B(−a, y)−C(−a, y) as those are two polynomials of degree
2t that agree on 2t + 1 points. Moreover, if indeed E−a(0) = 0 for every a ∈
{0, . . . , t/4}, then C(−a, 0) = A(−a, 0) · B(−a, 0) for every a ∈ {0, . . . , t/4}, as
required.

The above description is a bit oversimplified. Recall that the coefficients of
E are shared using only detectable secret sharing. This means that the private
reconstruction towards some Pj might fail. In that case, Pj will ask to perform
public reconstruction, and the adversary learns E−a(j) on a point j ̸∈ I. This
is a leakage because the reconstruction was meant to be private and becomes
public. The good news is that the outcome of each such public reconstruction
is that party Pj identifies at least t/2 corruptions in localBadj , and all the later
reconstructions towards it must succeed.

5 Again, in the actual construction we will use different dimensions, but we keep using
a bivariate polynomial with degree t+ t/4 in both x and y for simplicity.

Detect, Pack and Batch 15

As a result, the adversary may learn up to n−t reconstructions that it was not
supposed to learn. Whenever this occurs, we cannot use the entire polynomials
that are involved (which pack O(n) triplets). If a “pack” of triplets requires a
public reconstruction, we discard the whole “pack”. On the positive side, this
can happen at most once per party. Moreover, since the multiplication triplets
are just random and do not involve secret inputs, we can just sacrifice them.
This means that for generating m “packs” of triplets, we need to start with
batching O(m+ n) “packs” of triplets. This additional overhead does not affect
the overall complexity, but it makes the functionalities and the protocol a bit
more involved. We refer the reader to Section 6 for further details.

Organization. The rest of this paper is organized as follows. After some Pre-
liminaries (Section 3) we focus on our packed (Section 4) and batched (Section 5)
secret sharing. We then discuss our multiplication triplets with a dealer (Sec-
tion 6), and conclude with the MPC protocol in Section 7. Due to lack of space,
the proofs and some constructions are deferred to the full version.

3 Preliminaries

Network model and definitions. We consider a synchronous network model
where the parties in P = {P1, . . . , Pn} are connected via pairwise private and
authenticated channels. Additionally, for some of our protocols we assume the
availability of a broadcast channel, which allows a party to send an identical
message to all the parties. The distrust in the network is modelled as a com-
putationally unbounded active adversary A which can maliciously corrupt up to
t out of the n parties during the protocol execution and make them behave in
an arbitrary manner. We prove security in the stand-alone model for a static
adversary. We provide the definitions (which are standard) in the full version.
Owing to the results of [18], this guarantees adaptive security with inefficient
simulation. We derive universal composability [16] using [34].

Our protocols are defined over a finite field F where |F| > n + t/2 + 1. We
denote the elements by {−t/2,−t/2 + 1, . . . , 0, 1 . . . , n}. We use ⟨v⟩ to denote
the degree-t Shamir-sharing of a value v among parties in P.

Bivariate polynomials and secret embedding. A degree (l,m)-bivariate

polynomial over F is of the form S(x, y) =
∑l

i=0

∑m
j=0 bijx

iyj where bij ∈ F. The
polynomials fi(x) = S(x, i) and gi(y) = S(i, y) are called ith f and g univariate
polynomials of S(x, y) respectively. In our protocol, we use (t+t/2, t+d)-bivariate
polynomials where d ≤ t/4, and the ith f and g univariate polynomials are
associated with party Pi for every Pi ∈ P.

We view a list of (t/2 + 1)(d + 1) secrets SECRETS as a (t/2 + 1) × (d + 1)
matrix. We then say that the set SECRETS is embedded in a bivariate polynomial
S(x, y) of degree (t + t/2) in x and (t + d) in y if for every a ∈ {0, . . . , t/2} and
b ∈ {0, . . . , d} it holds that S(−a,−b) = SECRETS(a, b).

Simultaneous error correction and detection of Reed-Solomon codes.
We require the following coding-theory related results. Let C be an Reed-Solomon

16 Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra

(RS) code word of length N , corresponding to a k-degree polynomial (containing
k + 1 coefficients). Assume that at most t errors can occur in C. Let C̄ be the
word after introducing error in C in at most t positions. Let the distance between
C and C̄ be s where s ≤ t. Then there exists an efficient decoding algorithm
that takes C̄ and a pair of parameters (e, e′) as input, such that e + e′ ≤ t and
N − k − 1 ≥ 2e + e′ hold and gives one of the following as output:

1. Correction: output C if s ≤ e, i.e. the distance between C and C̄ is at most e;

2. Detection: output “more than e errors” otherwise.

Note that detection does not return the error indices, rather it simply indicates
error correction fails due to the presence of more than correctable (i.e. e) errors.
The above property of RS codes is traditionally referred to as simultaneous error
correction and detection. In fact the bounds, e+ e′ ≤ t and N − k− 1 ≥ 2e+ e′,
are known to be necessary. We cite:

Theorem 3.1 ([21,35]). Let C be an Reed-Solomon (RS) code word of length
N , corresponding to a k-degree polynomial (containing k + 1 coefficients). Let
C̄ be a word of length N such that the distance between C and C̄ is at most t.
Then RS decoding can correct up to e errors in C̄ to reconstruct C and detect
the presence of up to e + e′ errors in C̄ if and only if N − k − 1 ≥ 2e + e′ and
e + e′ ≤ t.

A couple of corollaries follows from the above theorem that we will use in
our work, see the full version for details.

Parallel broadcast. In our MPC, we use parallel broadcast that relates to the
case where n parties wish to broadcast a message of size L bits in parallel, as
captured in the following functionality.

Functionality 3.2: Fparallel
BC

The functionality is parameterized with a parameter L.

1. Each Pi ∈ P sends the functionality its message Mi ∈ {0, 1}L.

2. The functionality sends to all parties the message {Mi}i∈[n].

The work of [1] presents an instantiation with the following security and com-
plexity. Also note that, when some party has smaller message than L bits, it can
pad with default values to make an L bit message.

Theorem 3.3 ([1]). There exists a perfectly-secure parallel broadcast with opti-
mal resilience of t < n/3, which allows n parties to broadcast messages of size
L bits each, at the cost of O(n2L) bits communication, plus O(n4 log n) expected
communicating bits. The protocols runs in constant expected number of rounds.

4 Packed Secret Sharing

In this section we present our secret sharing scheme. In the introduction, we
mentioned that we have two variants: regular verifiable secret sharing, and a

Detect, Pack and Batch 17

novel detectable secret sharing. The protocol presented in this section fits the
two primitives, where the difference is obtained by using different parameters in
the bivariate polynomial, as we will see shortly. In this section, we still do not
“batch” over multiple polynomials; the dealer share just a single polynomial. In
Section 5 we provide details on the batched version. The packed secret sharing
protocol consists of the following building blocks:

1. The dealer chooses a bivariate polynomial S(x, y) of degree 3t/2 in x and
degree t+d in y, where its secret are embedded in S. We should think of d as
0 or t/4. Unlike presented in Section 2.1, we have two different parameters
for x and y. Looking ahead, for verifiable secret sharing, we use d = 0.
For detectable secret sharing, we can use d ∈ [1, t/4] (packing O((d + 1)n)
secrets).

2. The dealer tries to share S(x, y) using a functionality called FShareAttempt (see
Functionality 4.1). At the end of this functionality, the sharing attempt might
have the following three outcomes: (a) discard – the dealer is discarded; (b)
(detect,CONFLICTS) - a large set of conflicts was detected and the protocol
will be restarted; (c) proceed, in which case all parties also receive a set
CONFLICTS (of size at most t/2 − d) of parties that still did not receive
shares. All honest parties not in CONFLICTS hold shares that define unique
bivariate polynomial of the appropriate degree. See Section 4.1 for further
details.

3. The goal is now to let parties in CONFLICTS to learn their shares. Since the
degrees of the bivariate polynomial is not symmetric, we first reconstruct the
g-share (of degree t + d < 3t/2), and then the f -share (of degree 3t/2). Re-
construction of g-polynomial is described in Section 4.2. The reconstruction
of f -polynomial is similar, and is discussed in Section 4.3.

We first present the different building blocks, and then in Section 4.4 we
provide the protocol (and functionality) for packed secret sharing, that uses
those building blocks.

4.1 Sharing Attempt

We start with the description of the functionality.

Functionality 4.1: Sharing Attempt– FShareAttempt

The functionality is parameterized with the set of corrupted parties I ⊂ [n].

1. All the honest parties send to FShareAttempt a set ZEROS ⊂ [n]. For an honest
dealer, it holds that ZEROS ⊆ I. FShareAttempt sends the set ZEROS to the
adversary.

2. The dealer sends a polynomial S(x, y) to FShareAttempt. When either the poly-
nomial is not of degree at most 3t/2 in x and at most t+ d in y, or for some
i ∈ ZEROS it holds that S(x, i) ̸= 0 or S(i, y) ̸= 0, FShareAttempt executes
Step 4c to discard the dealer.

18 Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra

3. For every i ∈ I, FShareAttempt sends (S(x, i), S(i, x)) to the adversary. It re-
ceives back a set CONFLICTS such that CONFLICTS ∩ ZEROS = ∅.6 If the
dealer is honest, then CONFLICTS∪ZEROS ⊆ I. If |CONFLICTS∪ZEROS| >
t for a corrupt dealer, then FShareAttempt executes Step 4c to discard the dealer.

4. Output:
(a) Detect: If |CONFLICTS| > t/2 − d, then send (detect,CONFLICTS) to

all parties.

(b) Proceed: Otherwise, send (proceed, S(x, i), S(i, y),CONFLICTS) for ev-
ery i ̸∈ CONFLICTS and (proceed,⊥,⊥,CONFLICTS) to every i ∈
CONFLICTS.

(c) Discard: send discard to all parties.

Protocol 4.2: Sharing Attempt– ΠShareAttempt

Common input: The description of a field F, parameter d < t.
Input: All parties input ZEROS ⊂ [n]. The dealer inputs a polynomial S(x, y)
with degree 3t/2 in x and t+d in y, such that for every i ∈ ZEROS it holds that
S(x, i) = 0 and S(i, y) = 0.
The protocol:

1. (Dealing shares): The dealer sends (fi(x), gi(y)) = (S(x, i), S(i, y)) to Pi

for i ̸∈ ZEROS. Each Pi for i ∈ ZEROS sets (fi(x), gi(y)) = (0, 0).

2. (Pairwise Consistency Checks):
(a) Each i ̸∈ ZEROS sends (fi(j), gi(j)) to every j ̸∈ ZEROS. Let (fji, gji)

be the values received by Pi from Pj .

(b) Each i ̸∈ ZEROS broadcasts complaint(i, j, fi(j), gi(j)) if (a) fji ̸= gi(j)
or gji ̸= fi(j) for any j ̸∈ ZEROS. For j ∈ ZEROS, Pi broadcasts
complaint(i, j, fi(j), gi(j)) if fi(j) ̸= 0 or gi(j) ̸= 0.

3. (Conflict Resolution):
(a) The dealer sets CONFLICTS = ∅. For each complaint(i, j, u, v) such that

u ̸= S(j, i) or v ̸= S(i, j), the dealer adds i to CONFLICTS. The dealer
broadcasts CONFLICTS.

(b) Discard the dealer if any one of the following does not hold: (i) |ZEROS∩
CONFLICTS| = ∅; (ii) |CONFLICTS∪ ZEROS| ≤ t (iii) if some Pi broad-
casted complaint(i, j, ui, vi) and Pj broadcasted complaint(j, i, uj , vj) with
ui ̸= vj or vi ̸= uj , then CONFLICTS should contain either i or j (or
both); (iv) if some Pi broadcasted complaint(i, j, u, v) with j ∈ ZEROS
and u ̸= 0 or v ̸= 0, then i ∈ CONFLICTS.

6 To ease understanding and notion, we sometimes expect to receive from the adver-
sary some sets or inputs that satisfy some conditions. We do not necessarily verify
the conditions in the functionality, and this is without loss of generality. For in-
stance, in this step we require that the adversary sends a set CONFLICTS such that
CONFLICTS∩ZEROS = ∅. Instead, we can enforce that this is the case by resetting:
CONFLICTS = CONFLICTS \ ZEROS.

Detect, Pack and Batch 19

4. (Output): Each Pi outputs discard when the dealer is discarded and
(detect,CONFLICTS) when |CONFLICTS| > t/2 − d.
Else, it outputs (proceed,⊥,⊥,CONFLICTS) when i ∈ CONFLICTS, and
(proceed, fi(x), gi(y),CONFLICTS) otherwise.

Lemma 4.3. Protocol 4.2, ΠShareAttempt, perfectly-securely computes Function-
ality 4.1, FShareAttempt, in the presence of a malicious adversary, controlling at
most t < n/3.

4.2 Reconstruction of g-polynomials in CONFLICTS

When invoking this functionality, we are guaranteed that the shares of the honest
parties define a unique bivariate polynomial, and that the number of parties
that are not in CONFLICTS is at least (n− t/2) + d. The goal of this step is to
reconstruct the g-polynomials for the parties in CONFLICTS, while the possible
outcomes are: (i) the dealer is discarded; (ii) the dealer detects additional t/2
parties that it will make ZEROS in the next iteration; (iii) the protocol succeeds
and all honest parties hold gj(y) as output.

Functionality 4.4: Reconstruction of g-Polynomials – Frec-g

1. Input:7 All honest parties send to the functionality Frec-g the sets ZEROS ⊂
[n] and CONFLICTS ⊂ [n], each honest j ̸∈ CONFLICTS sends (fi(x), gi(y)).
Let S(x, y) be the unique bivariate polynomial of degree at most 3t/2 in x and
at most t+ d in y that satisfies fj(x) = S(x, j) and gj(y) = S(j, y) for every
j ̸∈ CONFLICTS. Moreover, it holds that n−|CONFLICTS| ≥ 2t+1+t/2+d.

2. Frec-g sends (ZEROS,CONFLICTS, (S(x, i), S(i, y))i∈I) to the adversary. If
the dealer is corrupted, then Frec-g sends S(x, y) as well.

3. It receives back from the adversary a message M .

4. Output:
(a) If M = discard and the dealer is corrupted, then Frec-g sends discard

to all parties.

(b) If M = (detect,Bad) with Bad∩(ZEROS∪CONFLICTS) = ∅ and |Bad| >
t/2, and with Bad ⊆ I in the case of an honest dealer, then Frec-g sends
(detect,Bad) to all parties.

(c) If M = proceed, then Frec-g sends:
for each j ∈ CONFLICTS the output (proceed,⊥, S(j, y)), and
for each j ̸∈ CONFLICTS send (proceed, S(x, j), S(j, y)).

7 If not all honest parties send shares that lie on the same bivariate polynomial, or not
all send inputs that satisfy the input assumptions as described, then no security is
guaranteed. This can be formalized as follows. If the input assumptions do not hold,
then the functionality sends to the adversary all the inputs of all honest parties, and
lets the adversary to singlehandedly determine all outputs of all honest parties. This
makes the protocol vacuously secure (since anything can be simulated).

20 Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra

Protocol 4.5: Reconstruct g-Polynomials in CONFLICTS – Πrec-g

Input: All parties hold the same set CONFLICTS and ZEROS. Each honest party
not in CONFLICTS holds a pair of polynomials (fi(x), gi(y)), and it is guaranteed
that all the shares of honest parties lie on the same bivariate polynomial S(x, y)
with degree at most 3t/2 in x and t + d in y.

The protocol:

1. Every party sets HAVE-SHARES = [n] \ (ZEROS ∪ CONFLICTS).

2. For every j ∈ CONFLICTS:
(a) Each party Pi for i ∈ HAVE-SHARES sends (i, fi(j)) to Pj .

(b) Let (i, ui) be the value Pj received from Pi. Moreover, for every i ∈
ZEROS, consider (i, ui) with ui = 0. Given all (i, ui)i ̸∈CONFLICTS, Pj looks
for a codeword of a polynomial of degree t+d with a distance of at most
t/2 from all the values it received (see Theorem 3.1). If there is such
codeword, set gj(y) to be the unique Reed-Solomon reconstruction. If
there is no such a unique codeword, then Pj broadcasts complaint(j)
and every party Pi for i ∈ HAVE-SHARES broadcasts reveal(i, j, fi(j)).

3. The dealer sets Bad = ∅. For each reveal(i, j, u) message broadcasted, the
dealer verifies that u = fi(j). If not, then it adds i to Bad. The dealer
broadcasts Bad.

4. The parties go to Step 6a if one of the following is not true: (i) |ZEROS ∪
CONFLICTS∪Bad| ≤ t; (ii) Bad ⊂ HAVE-SHARES. The parties go to Step 6b
if |Bad| > t/2.

5. Otherwise, for every j ∈ CONFLICTS, if complaint(j) was broadcasted, then
the parties consider all the points Rj = {(i, ui)} such that reveal(i, j, ui) was
broadcasted in Step 2b, and i ∈ HAVE-SHARES\Bad, or ui = 0 if i ∈ ZEROS.
They verify if Rj defines a unique polynomial of degree t+ d. If not, they go
to Step 6a. Otherwise, Pj sets gj(y) to be that unique polynomial.

6. Output:
(a) Discard the dealer: Output discard.

(b) Detect: Output (detect,Bad).

(c) Proceed: Each party j ∈ CONFLICTS outputs (proceed,⊥, gj(y)). All
other parties Pj with j ̸∈ CONFLICTS output (proceed, fj(x), gj(y)).

Lemma 4.6. Protocol 4.5, Πrec-g, perfectly securely computes Functionality 4.4,
Frec-g, in the presence of a malicious adversary, controlling at most t < n/3.
The protocol requires the transmission of O(n2 log n) bits over point-to-point
channels, and each party broadcasts at most O(n log n) bits.

Detect, Pack and Batch 21

4.3 Reconstruction of f-polynomials in CONFLICTS

The goal of this step is to make each party in CONFLICTS to receive its f -share.
This is performed in a similar manner to that of reconstruction of g. This time,
all honest parties hold shares of g, and thus each party in CONFLICTS receives
at least 2t + 1 correct values on each its f polynomial. The f -polynomial is of
degree 3t/2, and therefore we fail to reconstruct if the adversary introduces more
than t/2 errors. In that case, we will have detection, in a similar manner to the
reconstruction of g. The full details of the functionality (denoted by Frec-f), and
the protocol (denoted by Πrec-f), as well as the proof of the following lemma are
given in the full version.

Lemma 4.7. The Protocol Πrec-f, perfectly securely computes the Frec-f func-
tionality, in the presence of a malicious adversary, controlling at most t < n/3.

4.4 Putting Everything Together: Packed Secret Sharing

We view a list of (t/2+1)(d+1) secrets SECRETS as a (t/2+1)×(d+1) matrix.

Functionality 4.8: Packed Secret Sharing – FPSS

The functionality is parameterized by the set of corrupted parties I ⊆ [n].

– Input: All parties input a set ZEROS ⊂ [n] such that |ZEROS| ≤ t. If the
dealer is honest then it is guaranteed that ZEROS ⊆ I.

– Honest dealer: The dealer sends SECRETS to FPSS. The functionality sends
ZEROS to the adversary, which replies with (fi(x), gi(y))i∈I under the con-
straint that fi(x) = gi(y) = 0 for every i ∈ ZEROS. The functionality
chooses a random bivariate polynomial S(x, y) of degree 3t/2 in x and t+ d
in y under the constraints that (i) SECRETS is embedded in S (see Section 3
for the meaning of embedding); (ii) S(x, i) = fi(x) for every i ∈ I; (iii)
S(i, y) = gi(y).

– Corrupted dealer: The functionality sends ZEROS to the adversary, which
replies with S(x, y). FPSS that verifies that S(x, y) is of degree 3t/2 in x and
degree t+d in y, and that for every i ∈ ZEROS it holds that fi(x) = gi(y) = 0.
If not, FPSS replaces S(x, y) = ⊥.

– Output: FPSS sends to each party Pj the pair of polynomials S(x, j), S(j, y).

We claim that there is always a bivariate polynomial that can be reconstructed.
Specifically, consider for simplicity the case where |I| = t:

1. A bivariate polynomial of degree 3t/2 in x and degree t+d in y is determined
by (3t/2 + 1)(t + d + 1) values.

2. The adversary sends t pairs of polynomials of degree 3t/2 and t + d. The f
polynomials define t(3t/2 + 1) values. Each g polynomial is already deter-
mined in t coordinates, and therefore we have a total of t(t + d + 1 − t) =
t(d + 1).

3. SECRETS determines (t/2 + 1) · (d + 1) values.

22 Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra

Therefore, the number of constraints that we have is (t/2 + 1)(d+ 1) + t(3t/2 +
1) + t(d+ 1), which is exactly (3t/2 + 1)(t+d+ 1), the total number of variables
in the bivariate polynomial.

Protocol 4.9: Packed Secret Sharing in the
(FShareAttempt,Frec-g,Frec-f)-hybrid model – ΠPSS

Input: The dealer holds SECRETS. All honest parties hold the same set ZEROS.
The protocol:

1. Dealing the shares:
(a) The dealer chooses a random bivariate polynomial S(x, y) of degree at

most 3t/2 in x and degree t + d in y that embeds SECRETS, under
the constraint that for every i ∈ ZEROS it holds that S(x, i) = 0 and
S(i, y) = 0.

(b) All parties invoke Functionality 4.1, FShareAttempt, where the dealer inputs
S(x, y) and all parties input ZEROS:

i. If the output is discard, then proceed to Step 4a.

ii. If the output is (detect,CONFLICTS) then set ZEROS = ZEROS ∪
CONFLICTS. If |ZEROS| > t then proceed to Step 4a. Otherwise, go
back to Step 1a.

iii. If the output is (proceed, fi(x), gi(y),CONFLICTS), then proceed
to the next step. Note that it must hold that (a) for parties i ∈
CONFLICTS, fi(x) = gi(y) = ⊥ and (b) n − |CONFLICTS| ≥ n −
(t/2 − d).

2. Reconstruct the g-polynomials: The parties invoke Functionality 4.4,
Frec-g, where each party Pi inputs (ZEROS,CONFLICTS, fi(x), gi(y)).
(a) If the output is discard, then proceed to Step 4a.

(b) If the output is (detect,Bad) then set ZEROS = ZEROS ∪ Bad. If
|ZEROS| > t then discard and proceed to Step 4a. Otherwise, go back
to Step 1a.

(c) Otherwise, the output is (proceed, fi(x), gi(y)) where every party Pi

with i ∈ CONFLICTS has gi(y) ̸= ⊥, then proceed to the next step.

3. Reconstruct the f-polynomials: The parties invoke Functionality Frec-f,
where each party Pi inputs (ZEROS,CONFLICTS, fi(x), gi(y)). Note that for
parties in CONFLICTS it holds that fi(x) = ⊥.
(a) If the output of the functionality is discard, then proceed to Step 4a.

(b) If the output is (detect,Bad) then set ZEROS = ZEROS ∪ Bad. If
|ZEROS| > t then discard and go to Step 4a. Otherwise, go back to
Step 1a.

(c) Otherwise, let (proceed, fi(x), gi(y)) be the output, where now all par-
ties have fi(x) ̸= ⊥ and gi(y) ̸= ⊥. Go to Step 4b.

4. Output:
(a) Discard: All parties output ⊥.

(b) Successful: Output fi(x), gi(y).

Detect, Pack and Batch 23

Lemma 4.10. Let t < n/3 and d ≤ t/4. Protocol 4.9, ΠPSS, perfectly securely
computes Functionality 4.8, FPSS, in the (FShareAttempt,Frec-g,Frec-f)-hybrid model,
in the presence of a malicious adversary, controlling at most t < n/3.

Communication and Efficiency Analysis. We conclude the following lemma,
proven in the full version:

Lemma 4.11. Let t < n/3 and d ≤ t/4. There exists a protocol that implements
Functionality 4.8, has a communication complexity of O(n2 log n) bits over point-
to-point channels and O(n2 log n) bits broadcast for sharing O((d + 1)n) values
(i.e., O(n(d + 1) log n) bits) simultaneously in O(1) rounds. Every party broad-
casts at most O(n log n) bits.

5 Batched and Packed Secret Sharing

In this section, we suggest how to keep the broadcast unchanged when running
m instances of the packed secret sharing with the same dealer. That is, if one in-
stance requires O(n2 log n) bits communicated over point-to-point channels and
each party (including the dealer) broadcasts O(n log n) bits, we have a proto-
col that requires O(mn2 log n) bits communicated over point-to-point channels
and each party still has to broadcast at most O(n log n) bits (and a total of
O(n2 log n)). We review the changes necessary for each one of the sub-protocols
of packed secret sharing.

Sharing attempt and Batched Complaints. Here the dealer inputs m bi-
variate polynomials, but there is one set ZEROS ⊂ [n]. It is assumed that all
bivariate polynomials have 0 shares for the parties in ZEROS.

At Step 2b in Protocol 4.2, every Pi checks consistency in all instances but
raises a complaint for only one of them, say, the minimum index of the instance.
A complaint now looks like complaint(i, j, fi(j), gi(j), α) where α ∈ {1, . . . ,m}.
Moreover, if a party broadcasts complaint(i, j, ui, vi) for j ∈ ZEROS, then the
dealer must add Pi to CONFLICTS. Thus, there is no need for Pi to broadcast
such a complaint in each instance that it sees inconsistency with Pj for j ∈
ZEROS, but it is enough to do it in only one of the instances.

This keeps the broadcast cost O(n2 log n) bits among all m instances com-
bined (as opposed O(mn2 log n) when running them simultaneously in a black-
box manner).

Note that when the dealer is honest, honest parties never complain on one
another, and this holds in all m invocations. Moreover, if the dealer is corrupted
and two honest parties have to file a joint complaint, then both will have the
exact same minimal index, and the dealer must have to add one of them into
CONFLICTS, exactly as we have in single instance.

Batched reconstruction of g polynomials in CONFLICTS. Here the change
in the protocol is more delicate than the previous case, and we provide a full
modeling and proof. Specifically, In Step 2b of Protocol 4.5, a party Pj may
fail to reconstruct gj in multiple instances. However, it is enough to pick one

24 Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra

instance β (say, the one with minimum index) and complains publicly with β.
Now, rest of the public verification happens with respect to βth invocation. If
parties publicly reveal values that are different than what they revealed privately,
then the party knows that those parties are corrupted and can try to reconstruct
the polynomials without those shares. In particular, the only case when a party
cannot uniquely reconstruct is when the the adversary introduces more than
t/2 errors. However, if the public reconstruction of g in the βth execution is
successful, it can recognize t/2 misbehaving parties by comparing the polynomial
that was publicly reconstruct to the shares sent to it privately. Note that it is
possible that a corrupted party sends some share to Pj privately but makes some
other value public. Pj knows for sure that such party is corrupt, even though
Bad that the dealer broadcasts can even be empty. Once Pj recognizes more than
t/2 errors, it can eliminate them in all other private reconstructions, remaining
with less than t/2 errors in all the m executions. The functionality (denoted as
Fbatched
rec-g) and the full specification of the protocol (denoted as Πbatched

rec-g) are given
in the full version, as well as the proof of the following lemma:

Lemma 5.1. Protocol Πbatched
rec-g , perfectly-securely computes Fbatched

rec-g in the pres-
ence of a malicious adversary, controlling at most t < n/3.

Batched reconstruction of f-polynomials in CONFLICTS. This follows the
exact same lines as the reconstruction of g polynomials. Specifically, if the local
reconstruction is not unique, then it is enough to pick one instance γ ∈ [m]
and open it publicly. The public verification happens with respect to the γth
instance. Pj will then be able to reconstruct f ℓ

j for every ℓ ∈ [m].

5.1 Sharing

To conclude, we realize the following functionality putting together the batched
version of protocols for the sharing attempt, reconstruction of g and f polyno-
mials. Referring the protocol as Πbatched

PSS , we culminate at the following theorem.

Functionality 5.2: Batched and Packed Secret Sharing – Fbatched
PSS

The functionality is parameterized by the set of corrupted parties I ⊆ [n].

– Input: All parties input a set ZEROS ⊂ [n] such that |ZEROS| ≤ t. If the
dealer is honest then it is guaranteed that ZEROS ⊆ I.

– Honest dealer: The dealer sends (SECRETSℓ)ℓ∈[m] to Fbatched
PSS . The func-

tionality sends ZEROS to the adversary, who sends back (f ℓ
i (x), gℓi (y))i∈I,ℓ∈[m]

such that f ℓ
i (k) = gℓk(i) for every i, k ∈ I and ℓ ∈ [m]. Moreover, for every

i ∈ ZEROS, fi(x) = gi(y) = 0. For every ℓ ∈ [m], the functionality chooses a
random bivariate polynomial Sℓ(x, y) of degree 3t/2 in x and t+d in y under
the constraints that (i) SECRETSℓ is embedded in Sℓ; (ii) Sℓ(x, i) = f ℓ

i (x)
for every i ∈ I; (iii) Sℓ(i, y) = gℓi (y).

– Corrupted dealer: For every ℓ ∈ [m], the dealer sends Sℓ(x, y) to Fbatched
PSS

that verifies that Sℓ(x, y) is of degree 3t/2 in x and degree t + d in y, and

Detect, Pack and Batch 25

for every i ∈ ZEROS it holds that fi(x) = gi(y) = 0. If not, Fbatched
PSS replaces

Sℓ(x, y) = ⊥.

– Output: Fbatched
PSS sends to each party Pj the polynomials (Sℓ(x, j), Sℓ(j, y))ℓ∈[m].

Theorem 5.3. Πbatched
PSS securely computes Fbatched

PSS (Functionality 5.2). It re-
quires a communication complexity of O(mn2 log n) bits over-point-to-point chan-
nels and O(n2 log n) bits broadcast for sharing O((d+1)mn) values (i.e., O((d+
1)mn log n) bits) simultaneously in O(1) rounds. Each party broadcasts at most
O(n log n) bits.

5.2 Reconstruction

We present the reconstruction protocols for our batched and packed secret shar-
ing. As mentioned in the introduction, for our detectable secret sharing, we get
a detectable reconstruction, a weaker form of robust reconstruction. For the case
of d = 0, we get robust reconstruction, and so verifiable secret sharing. We start
with fully specifying the functionality.

Functionality 5.4: Detectable Reconstruction for Batched and Packed
Secret Sharing – Fbatched

PSS-Rec
The functionality is parameterized with the set of corrupted parties I ⊂ [n].

1. Input: All honest parties send ZEROS ⊂ [n]. When the dealer is honest,
ZEROS ⊆ I. Each honest party Pj sends (fk

j (x), gkj (y)) for each k ∈ [m] and

j ̸∈ I. For each k, let Sk(x, y) be the unique bivariate polynomial of degree
3t/2 in x and t + d in y that satisfies fk

j (x) = Sk(x, j) and gkj (y) = Sk(j, y)
for every j ̸∈ I.

2. Send ZEROS and S1(x, y), . . . , Sm(x, y) to the adversary. If d = 0 then go
to Step 4c.

3. Receive back from the adversary a message M .

4. Output:
(a) If M = discard and the dealer is corrupted, then send discard to all

parties.

(b) If M = (detect,Bad) with |Bad| > t/2 and Bad ∩ ZEROS = ∅, and in
case of an honest dealer Bad ⊆ I , then send (detect,Bad) to all parties.

(c) If M = proceed then send to each j the output (proceed, S1(x, y), . . . ,
Sm(x, y)).

Note that if the dealer is honest then discard cannot occur. Moreover, if the
dealer is honest and |ZEROS| > t/2, the (detect,Bad) cannot occur, as |Bad ∪
ZEROS| ≤ t and so we cannot have |Bad| > t/2. In that case, we always succeed
to reconstruct. On the other hand, if the dealer is honest and |ZEROS| ≤ t/2,
the adversary might cause to a failure. In that case, we are guaranteed to have
a mass detection.

The protocol. To reconstruct shared polynomials S1(x, y), . . . , Sm(x, y), the
reconstruction protocol follows a similar structure of that of Protocol Πbatched

rec-g :

26 Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra

1. Each party Pi holds (f ℓ
i , g

ℓ
i (y))ℓ∈[m] and a set ZEROS ⊂ [n].

2. Each party now sends all its polynomials f1
i (x), . . . , fm

i (x) over the private
channel to all other parties.

3. The parties try to reconstruct polynomials gℓ1(y), . . . , gℓn(y) using the poly-
nomials f ℓ

1(x), . . . , f ℓ
n(x) (and taking 0 for the parties in ZEROS). E.g., re-

construct gℓj(y) by considering (k, f ℓ
k(j))k ̸∈ZEROS and adding (k, 0) for k ∈

ZEROS. Try to correct at most t/2 errors, for every ℓ ∈ [m] (see Theo-
rem 3.1). If some party fails to decode some polynomial gℓj(y), then it broad-
cast complaint(j, ℓ). Note that it is enough to broadcast just a single com-
plaint, say the one with the lexicographically smallest j, ℓ.

4. We will have a public reconstruction of gℓj(y): Each party broadcasts its point
on that polynomial, and the dealer broadcasts a set Bad if there are any
wrong values broadcasted. The parties output (detect,Bad) if |Bad| > t/2.
The parties check that when excluding all points in Bad then all points lie
on a single polynomial gℓj(y).

5. Using the public reconstruction, the party Pj can now locate t/2 corruptions
and reconstruct (see full version) all polynomials gℓ1(y), . . . , gℓn(y) for every
ℓ ∈ [m]. All parties can now find unique bivariate polynomials Sℓ(x, y) satis-
fying Sℓ(i, y) = gℓi (y) for every i ∈ [n]. The parties output those polynomials.

There are few properties that we would like to highlight with respect to the
above protocol:

1. Note that when d = 0, then we can simply run Reed-Solomon decoding in
Step 3 and always succeed to reconstruct as Reed Solomon decoding returns
unique decoding when there are at most t errors. Thus, there is no need for
public resolution.

2. There are at most n complaints, which lead to each party broadcasting at
most O(n log n) bits to resolve all complaints.

Conclusion: Detectable Secret Sharing. While we provide functionality-
based modeling and proofs, the verifiable secret sharing literature is also full of
property based definitions, and some readers might find such modeling helpful.
We provide here such properties for completeness. From combining Functional-
ities 5.2 and 5.4, when using d > 0 we obtain a two-phase protocol for parties
P = {P1, . . . , Pn} where a distinguished dealer P ∗ ∈ P holds initial SECRETS,
and all honest parties hold the same set ZEROSP∗ ⊆ [n] (where no honest party
is in ZEROSP∗ if P ∗ is honest) such that the following properties hold:

– Secrecy: If the dealer is honest during the first phase (the sharing phase),
then at the end of this phase, the joint view of the malicious parties is
independent of the dealer’s input SECRETS.

– Reconstruction or detection – corrupted dealer: At the end of the
sharing phase, the joint view of the honest parties define values SECRETS′

such that at the end of the reconstruction phase – all honest parties will
output either SECRETS′, or discard the dealer, or t/2 new values will be
added to ZEROSP∗ .

Detect, Pack and Batch 27

– Reconstruction or detection – honest dealer: At the end of the shar-
ing phase, the joint view of the honest parties define values SECRETS′ =
SECRETS that the dealer used as input for the sharing phase. At the end
of the reconstruction phase, all honest parties will output SECRETS, or t/2
new indices, all of corrupted parties, will be added to ZEROSP∗ . If ZEROSP∗

initially contained more than t/2 values during the sharing phase, then the
output of the second phase is always SECRETS.

When |SECRETS| ∈ Ω(n2), the protocol uses O(n4 log n + |SECRETS| log n)
communication complexity for both sharing and reconstruction.

Conclusion: Verifiable Secret Sharing. From combining Functionalities 5.4
and 5.4, when using d = 0 we obtain a verifiable secret sharing: A two-phase
protocol for parties P = {P1, . . . , Pn} where a distinguished dealer P ∗ ∈ P holds
initial secrets s1, . . . , st is a Verifiable Secret Sharing Protocol tolerating t malicious
parties and the following conditions hold for any adversary controlling at most t
parties:

– Validity: Each honest party Pi outputs the values si,1, . . . , si,t at the end
of the second phase (the reconstruction phase). Furthermore, if the dealer is
honest then (si,1, . . . , si,t) = (s1, . . . , st).

– Secrecy: If the dealer is honest during the first phase (the sharing phase)
then at the end of this phase, the joint view of the malicious parties is
independent of the dealer’s input s1, . . . , st.

– Reconstruction: At the end of the sharing phase, the joint view of the
honest parties defines values s′1, . . . , s

′
t such that all honest parties will output

s′1, . . . , s
′
t at the end of the reconstruction phase.

When |SECRETS| ∈ Ω(n), the protocol uses O(n4 log n + |SECRETS| · n log n)
communication complexity for both sharing and reconstruction.

6 Packed and Batched Verifiable Triple Sharing

Packed verifiable triple sharing (VTS) allows a dealer to verifiably share t/2 + 1
multiplication triples at the cost of incurring O(n2) elements of communication
over point-to-point channels as well as broadcast. Precisely, VTS outputs each
element of the triples to be Shamir-shared via a degree-t polynomial. In the full
version, we show how to implement such packed verifiable triple sharing. We
will also present the batched version, denoted as Πbatched

PVTS , where O(mn) shared
triplets are prepared with O(mn2) elements of communication over point-to-
point channels and the same broadcast as needed for one instance (i.e. O(n2)).
This is an important contribution of this work that utilizes our both verifiable se-
cret sharing and detectable secret sharing constructions, and we refer the reader
to the full version for further details.

28 Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra

7 The MPC Protocol

We now describe our complete MPC protocol as a composition of the building
blocks, the PSS (Sections 4, 5) and the VTS (Section 6) protocols, as well as
other building blocks from the literature (e.g., triplets extractor (ΠtripleExt) and
batch Beaver multiplication (ΠbBeaver), see full version). The protocol ΠMPC and
the corresponding functionality FMPC are provided below. At a high level, the
protocol is divided into the following two phases:

1. Beaver triple generation: In this phase, parties generate C number of degree-t
Shamir-shared multiplication triples where, C denotes the number of multi-
plication gates in the circuit. Towards that, each party first generates triples
using our VTS protocol. Subsequently, a triple extraction protocol “merges”
the triples generated by all parties and “extracts” random triples (not known
to any party) which will be consumed in the second phase. For sufficiently
large circuits, specifically for circuits of size Ω(n3), this phase incurs an
amortized cost of O(n log n) bits point-to-point communication per triple.

2. Circuit computation: Upon sharing of inputs by the input holding parties,
in this phase the computation of the circuit proceeds by parties perform-
ing shared evaluation of the circuit. Since our sharing is linear, the linear
operations of addition and multiplication by a constant are local. For mul-
tiplication of shared values, parties consume the Beaver triples generated in
the prior phase. This is followed by the reconstruction of the outputs to the
designated parties to complete the circuit evaluation.

Functionality 7.1: MPC – FMPC

Input: Each Pi holds input xi ∈ F ∪ {⊥}.
Common Input: An n-party function f(x1, . . . , xn).

1. Each Pi sends xi to the functionality. For any Pi, if xi is outside the domain
or Pi did not send any input, set xi to a predetermined default value.

2. Compute (y1, . . . , yn) = f(x1, . . . , xn) and send yi to Pi for every i ∈ [n].

Protocol 7.2: MPC – ΠMPC

Common input: The description of a circuit, the field F, n non-zero distinct
elements 1, . . . , n and a parameter h where n = 2h + 1. Let m = ⌈ C

h+1−t⌉.
Input: Parties hold their inputs (belonging to F ∪ {⊥}) to the circuit.
(Beaver triple generation:)

1. Each Pi chooses m + n(t/2 + 1) random multiplication triples and executes
Πbatched

PVTS (Section 6) batching ⌈ m
(t/2+1)⌉+n instances each with t/2+1 triples.

Let (⟨aji ⟩, ⟨b
j
i ⟩, ⟨c

j
i ⟩) for j ∈ [m] denote the triples shared by Pi.

2. Parties execute m instances of ΠtripleExt with (⟨aji ⟩, ⟨b
j
i ⟩, ⟨c

j
i ⟩) for every i ∈ [n]

as the input for the jth instance. Let (⟨ai⟩, ⟨bi⟩, ⟨ci⟩) for i ∈ [C] denote the
random multiplication triples generated.

Detect, Pack and Batch 29

(Circuit computation:)

1. (Input) Each party Pi holding ki inputs to the circuit executes Πbatched
PSS

(Section 5) batching ⌈ ki

t/2+1⌉ instances to share its inputs.

2. (Linear Gates) Parties locally apply the linear operation on their respective
shares of the inputs.

3. (Multiplication Gates) Let (⟨ai⟩, ⟨bi⟩, ⟨ci⟩) be the multiplication triple
associated with the ith multiplication gate with shared inputs (⟨xi⟩, ⟨yi⟩).
Parties invoke ΠbBeaver with {⟨xi⟩, ⟨yi⟩, ⟨ai⟩, ⟨bi⟩, ⟨ci⟩} for all gates i at the
same layer of the circuit and obtain the corresponding ⟨zi⟩ as the output
sharing for every gate i.

4. (Output) For each output gate j with the associated sharing ⟨vj⟩, parties
execute ΠRec towards every party Pi who is supposed to receive the output vj .

Theorem 7.3. Let t < n/3. Protocol 7.2 securely implements FMPC (Function-
ality 7.1) and has a communication complexity of O((Cn+Dn2 +n4) log n) bits
over point to point channels and O(n3 log n) bits broadcast for evaluating a cir-
cuit with C gates and depth D in expected O(D) rounds. Every party broadcasts
O(n2 log n) bits.

Acknowledgements

Gilad Asharov is sponsored by the Israel Science Foundation (grant No. 2439/20),
by JPM Faculty Research Award, and by the European Union’s Horizon 2020
research and innovation programme under the Marie Sk lodowska-Curie grant
agreement No. 891234. Shravani Patil would like to acknowledge the support of
DST National Mission on Interdisciplinary Cyber-Physical Systems (NM-ICPS)
2020-2025. Arpita Patra would like to acknowledge the support of DST Na-
tional Mission on Interdisciplinary Cyber-Physical Systems (NM-ICPS) 2020-
2025, Google India Faculty Award, and JPM Faculty Research Award.

References

1. Abraham, I., Asharov, G., Patil, S., Patra, A.: Asymptotically free broadcast in
constant expected time via packed vss. In: TCC (2022). https://doi.org/10.1007/
978-3-031-22318-1 14

2. Abraham, I., Asharov, G., Yanai, A.: Efficient perfectly secure computation with
optimal resilience. In: Theory of Cryptography (2021). https://doi.org/10.1007/
978-3-030-90453-1 3

3. Abraham, I., Dolev, D., Halpern, J.Y.: An almost-surely terminating polynomial
protocol for asynchronous byzantine agreement with optimal resilience. In: PODC
’08 (2008). https://doi.org/10.1145/1400751.1400804

4. Anirudh, C., Choudhury, A., Patra, A.: A survey on perfectly-secure verifiable
secret-sharing. Cryptology ePrint Archive (2021)

https://doi.org/10.1007/978-3-031-22318-1_14
https://doi.org/10.1007/978-3-031-22318-1_14
https://doi.org/10.1007/978-3-031-22318-1_14
https://doi.org/10.1007/978-3-031-22318-1_14
https://doi.org/10.1007/978-3-030-90453-1_3
https://doi.org/10.1007/978-3-030-90453-1_3
https://doi.org/10.1007/978-3-030-90453-1_3
https://doi.org/10.1007/978-3-030-90453-1_3
https://doi.org/10.1145/1400751.1400804
https://doi.org/10.1145/1400751.1400804

30 Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra

5. Asharov, G., Cohen, R., Shochat, O.: Static vs. adaptive security in perfect MPC:
A separation and the adaptive security of BGW. In: 3rd Conference on Information-
Theoretic Cryptography, ITC 2022 (2022)

6. Asharov, G., Lindell, Y.: A full proof of the bgw protocol for perfectly secure
multiparty computation. Journal of Cryptology (2017). https://doi.org/10.1007/
s00145-015-9214-4

7. Asharov, G., Lindell, Y., Rabin, T.: Perfectly-secure multiplication for any t <
n/3. In: Advances in Cryptology - CRYPTO 2011 (2011). https://doi.org/10.1007/
978-3-642-22792-9 14

8. Bangalore, L., Choudhury, A., Patra, A.: Almost-surely terminating asynchronous
byzantine agreement revisited. In: 2018 ACM Symposium on Principles of
Distributed Computing, PODC. ACM (2018). https://doi.org/10.1145/3212734.
3212735

9. Bangalore, L., Choudhury, A., Patra, A.: The power of shunning: Efficient asyn-
chronous byzantine agreement revisited*. J. ACM (2020)

10. Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
Annual International Cryptology Conference (1991). https://doi.org/10.1007/
3-540-46766-1 34

11. Beerliova-Trubiniova, Z., Hirt, M.: Efficient multi-party computation with dispute
control. In: Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3. pp. 305–328
(2006). https://doi.org/10.1007/11681878 16

12. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure mpc with linear communication
complexity. In: Theory of Cryptography Conference (2008). https://doi.org/10.
1007/978-3-540-78524-8 13

13. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: An-
nual ACM Symposium on Theory of Computing (1988). https://doi.org/10.1145/
62212.62213

14. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority. In: Advances in Cryptology–
CRYPTO 2012: 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings. pp. 663–680 (2012). https://doi.org/10.1007/
978-3-642-32009-5 39

15. Berman, P., Garay, J.A., Perry, K.J.: Bit optimal distributed consensus. In: Com-
puter science (1992)

16. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS (2001). https://doi.org/10.1109/SFCS.2001.959888

17. Canetti, R., Damg̊ard, I., Dziembowski, S., Ishai, Y., Malkin, T.: On adaptive
vs. non-adaptive security of multiparty protocols. In: Advances in Cryptology -
EUROCRYPT 2001 (2001). https://doi.org/10.1007/3-540-44987-6 17

18. Canetti, R., Damgard, I., Dziembowski, S., Ishai, Y., Malkin, T.: Adaptive versus
non-adaptive security of multi-party protocols. Journal of Cryptology (2004). https:
//doi.org/10.1007/s00145-004-0135-x

19. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: 20th Annual ACM Symposium on Theory of Computing
(1988). https://doi.org/10.1145/62212.62214

20. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults (extended abstract). In: 26th An-
nual Symposium on Foundations of Computer Science (1985). https://doi.org/10.
1109/SFCS.1985.64

https://doi.org/10.1007/s00145-015-9214-4
https://doi.org/10.1007/s00145-015-9214-4
https://doi.org/10.1007/s00145-015-9214-4
https://doi.org/10.1007/s00145-015-9214-4
https://doi.org/10.1007/978-3-642-22792-9_14
https://doi.org/10.1007/978-3-642-22792-9_14
https://doi.org/10.1007/978-3-642-22792-9_14
https://doi.org/10.1007/978-3-642-22792-9_14
https://doi.org/10.1145/3212734.3212735
https://doi.org/10.1145/3212734.3212735
https://doi.org/10.1145/3212734.3212735
https://doi.org/10.1145/3212734.3212735
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/11681878_16
https://doi.org/10.1007/11681878_16
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/3-540-44987-6_17
https://doi.org/10.1007/3-540-44987-6_17
https://doi.org/10.1007/s00145-004-0135-x
https://doi.org/10.1007/s00145-004-0135-x
https://doi.org/10.1007/s00145-004-0135-x
https://doi.org/10.1007/s00145-004-0135-x
https://doi.org/10.1145/62212.62214
https://doi.org/10.1145/62212.62214
https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1109/SFCS.1985.64

Detect, Pack and Batch 31

21. Choudhury, A.: Protocols for Reliable and Secure Message Transmission. Ph.D.
thesis, Citeseer (2010)

22. Choudhury, A., Patra, A.: An efficient framework for unconditionally secure mul-
tiparty computation. IEEE Transactions on Information Theory (2016)

23. Coan, B.A., Welch, J.L.: Modular construction of nearly optimal byzantine agree-
ment protocols. In: ACM Symposium on Principles of distributed computing
(1989). https://doi.org/10.1145/72981.73002

24. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: International Conference on the Theory
and Applications of Cryptographic Techniques (2000). https://doi.org/10.1007/
3-540-45539-6 22

25. Feldman, P., Micali, S.: Optimal algorithms for byzantine agreement. In: 20th
Annual ACM Symposium on Theory of Computing (1988). https://doi.org/10.
1145/62212.62225

26. Feldman, P.N.: Optimal algorithms for Byzantine agreement. Ph.D. thesis, Mas-
sachusetts Institute of Technology (1988)

27. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive con-
sistency. Information Processing Letters (1982)

28. Franklin, M.K., Yung, M.: Communication complexity of secure computation (ex-
tended abstract). In: 24th Annual ACM Symposium on Theory of Computing
(1992). https://doi.org/10.1145/129712.129780

29. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified vss and fast-track multiparty
computations with applications to threshold cryptography. In: ACM symposium
on Principles of distributed computing (1998). https://doi.org/10.1145/277697.
277716

30. Goyal, V., Liu, Y., Song, Y.: Communication-efficient unconditional mpc with
guaranteed output delivery. In: Annual International Cryptology Conference
(2019). https://doi.org/10.1007/978-3-030-26951-7 4

31. Goyal, V., Song, Y., Zhu, C.: Guaranteed output delivery comes free in honest
majority mpc. In: Advances in Cryptology–CRYPTO 2020: 40th Annual Interna-
tional Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August
17–21, 2020, Proceedings, Part II. pp. 618–646 (2020). https://doi.org/10.1007/
978-3-030-56880-1 22

32. Hirt, M., Maurer, U., Przydatek, B.: Efficient secure multi-party computation. In:
International conference on the theory and application of cryptology and informa-
tion security (2000). https://doi.org/10.1007/3-540-44448-3 12

33. Katz, J., Koo, C.: On expected constant-round protocols for byzantine agreement.
In: Annual International Cryptology Conference (2006). https://doi.org/10.1007/
11818175 27

34. Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure protocols
and security under composition. In: 38th Annual ACM Symposium on Theory of
Computing (2006). https://doi.org/10.1145/1132516.1132532

35. MacWilliams, F.J., Sloane, N.J.A.: The theory of error correcting codes, vol. 16.
Elsevier (1977)

36. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with hon-
est majority (extended abstract). In: ACM Symposium on Theory of Computing
(1989). https://doi.org/10.1145/73007.73014

https://doi.org/10.1145/72981.73002
https://doi.org/10.1145/72981.73002
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1145/62212.62225
https://doi.org/10.1145/62212.62225
https://doi.org/10.1145/62212.62225
https://doi.org/10.1145/62212.62225
https://doi.org/10.1145/129712.129780
https://doi.org/10.1145/129712.129780
https://doi.org/10.1145/277697.277716
https://doi.org/10.1145/277697.277716
https://doi.org/10.1145/277697.277716
https://doi.org/10.1145/277697.277716
https://doi.org/10.1007/978-3-030-26951-7_4
https://doi.org/10.1007/978-3-030-26951-7_4
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/3-540-44448-3_12
https://doi.org/10.1007/3-540-44448-3_12
https://doi.org/10.1007/11818175_27
https://doi.org/10.1007/11818175_27
https://doi.org/10.1007/11818175_27
https://doi.org/10.1007/11818175_27
https://doi.org/10.1145/1132516.1132532
https://doi.org/10.1145/1132516.1132532
https://doi.org/10.1145/73007.73014
https://doi.org/10.1145/73007.73014

	Detect, Pack and Batch: Perfectly-Secure MPC with Linear Communication and Constant Expected Time

