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Abstract. We present a new template for building oblivious transfer
from quantum information that we call the “fixed basis” framework. Our
framework departs from prior work (eg., Crepeau and Kilian, FOCS ’88)
by fixing the correct choice of measurement basis used by each player,
except for some hidden trap qubits that are intentionally measured in
a conjugate basis. We instantiate this template in the quantum random
oracle model (QROM) to obtain simple protocols that implement, with
security against malicious adversaries:
– Non-interactive random-input bit OT in a model where parties share

EPR pairs a priori.
– Two-round random-input bit OT without setup, obtained by show-

ing that the protocol above remains secure even if the (potentially
malicious) OT receiver sets up the EPR pairs.

– Three-round chosen-input string OT from BB84 states without en-
tanglement or setup. This improves upon natural variations of the
CK88 template that require at least five rounds.

Along the way, we develop technical tools that may be of independent
interest. We prove that natural functions like XOR enable seedless ran-
domness extraction from certain quantum sources of entropy. We also
use idealized (i.e. extractable and equivocal) bit commitments, which we
obtain by proving security of simple and efficient constructions in the
QROM.

1 Introduction

Stephen Wiesner’s celebrated paper [61] that kickstarted the field of quantum
cryptography suggested a way to use quantum information in order to achieve
a means for transmitting two messages either but not both of which may be
received. Later, it was shown that this powerful primitive – named oblivious
transfer (OT) [54, 29] – serves as the foundation for secure computation [32, 43],
which is a central goal of modern crytography.

Wiesner’s original proposal only required uni-directional communication, from
the sender to the receiver. However, it was not proven secure, and succesful at-
tacks on the proposal (given the ability for the receiver to perform multi-qubit
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measurements) where even discussed in the paper. Later, [20] suggested a way
to use both interaction and bit commitments (which for example can be instan-
tiated using cryptographic hash functions) to obtain a secure protocol. In this
work, we investigate how much interaction is really required to obtain oblivious
transfer from quantum information (and hash functions). In particular, we ask

Can a sender non-interactively transmit two bits to a receiver
such that the receiver will be able to recover one but not both of the bits?

In a setting where the sender and receiver share prior EPR pairs, we obtain a
positive answer to this question (for random receiver bit). We prove (malicious,
simulation-based) security of our protocol in the quantum random oracle model.

Specifically, we consider a setup where the sender and receiver each begin with
halves of EPR pairs, which are maximally entangled two-qubit states |00⟩+|11⟩√

2
.

These are the simplest type of entangled quantum states, and are likely to be a
common shared setup in quantum networks (see e.g. [56] and references therein).
They have also attracted much interest as a quantum analogue of the classi-
cal common reference string (CRS) model [44, 19, 49, 26]. They have already
been shown to be useful for many two-party tasks such as quantum communica-
tion via teleportation [10], entanglement-assisted quantum error correction [14],
and even cryptographic tasks like key distribution [27] and non-interactive zero-
knowledge [19, 49].

Non-interactive Bit OT in the EPR Setup Model. We show that once Alice
and Bob share a certain (fixed) number of EPR pairs between them, they can
realize a one-shot1 bit OT protocol, securely implementing an ideal functionality
that takes two bits 𝑚0,𝑚1 from Alice and delivers 𝑚𝑏 for a uniformly random
𝑏← {0, 1} to Bob. We provide an unconditionally secure protocol in the QROM,
and view this as a first step towards protocols that rely on concrete properties
of hash functions together with entanglement setup.

Furthermore, our result helps understand the power of entanglement as a
cryptographic resource. Indeed, non-interactive oblivious transfer is impossible
to achieve classically, under any computational assumption, even in the common
reference string and/or random oracle model. Thus, the only viable one-message
solution is to assume the parties already start with so-called OT correlations,
where the sender gets random bits 𝑥0, 𝑥1 from a trusted dealer, and the receiver
gets 𝑥𝑏 for a random bit 𝑏. On the other hand, our result shows that OT can be
achieved in a one-shot manner just given shared EPR pairs.

We note that an “OT correlations setup” is fundementally different than
an EPR pair setup. First of all, OT correlations are specific to OT, while, as
desribed above, shared EPR pairs are already known to be broadly useful, and
have been widely studied independent of OT. Moreover, an OT correlations
setup requires private (hidden) randomness, while generating EPR pairs is a
1 We use the terms "one-shot", "one-message", and "non-interactive" interchangably

in this work, all referring to a protocol between two parties Alice and Bob that
consists only of a single message from Alice to Bob.
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deterministic process. In particular, any (even semi-honest) dealer that sets up
OT correlations can learn the parties’ private inputs by observing the resulting
transcript of communication, while this is not necesarily true of an EPR setup by
monogamy of entanglement. Furthermore, as we describe next, our OT protocol
remains secure even if a potentially malicious receiver dishonestly sets up the
entanglement.

Two-Message Bit OT without Setup. The notion of two-message oblivious trans-
fer has been extensively studied in the classical setting [2, 51, 53, 35, 25] and is
of particular theoretical and practical interest. We show that the above protocol
remains secure even if the receiver were the one performing the EPR pair setup
(as opposed to a trusted dealer / network administrator). That is, we consider a
two-message protocol where the receiver first sets up EPR pairs and sends one
half of every pair to the sender, following which the sender sends a message to
the receiver as before. We show that this protocol also realizes the same bit OT
functionality with random receiver choice bit.

This results in the first two-message maliciously-secure variant of OT, with-
out setup, that does not (necessarily) make use of public-key cryptography. How-
ever, we remark that we still only obtain the random receiver input functionality
in this setting, and leave a construction of two-message chosen-input string OT
without public-key cryptography as an intriguing open problem.

Another Perspective: OT Correlations from Entanglement via 1-out-of-2 Dele-
tion. It is well-known that shared halves of EPR pairs can be used to generate
shared randomness by having each player measure their halves of EPR pairs in
a common basis. But can they also be used to generate OT correlations, where
one of the players (say Bob) outputs a random pair of bits, while the other (say
Alice) learns only one of these (depending on a hidden choice bit), and cannot
guess the other bit.2

At first, it may seem like the following basic property of EPR pairs gives a
candidate solution that requires no communication: if Alice and Bob measure
their halves in the same basis (say, both computational, hereafter referred to as
the + basis), then they will obtain the same random bit 𝑟, while if Alice and Bob
measure their halves in conjugate bases (say, Alice in the + basis and Bob in
the Hadamard basis, hereafter referred to as the × basis), then they will obtain
random and independent bits 𝑟𝐴, 𝑟𝐵 . Indeed, if Alice and Bob share two EPR
pairs, they could agree that Alice measures both of her halves in either the +
basis or the × basis depending on whether her choice bit is 0 or 1, while Bob
always measures his first half in the + basis and his second half in the × basis.
Thus, Bob obtains (𝑟0, 𝑟1), and, depending on her choice 𝑏, Alice obtains 𝑟𝑏,
while deleting information about 𝑟1−𝑏 by measuring the corresponding register
in a conjugate basis.

Of course, there is nothing preventing Alice from simply measuring her first
half in the + basis and her second half in the × basis, obtaining both 𝑟0, 𝑟1
2 While this framing of the problem is different from the previous page, the two turn

out to be equivalent thanks to OT reversal and reorientation methods [36].
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and rendering this initial candidate completely insecure. However, what if Alice
could prove to Bob that she indeed measured both qubits in the same basis,
without revealing to Bob which basis she chose? Then, Bob would be convinced
that one of his bits is independent of Alice’s view, while the privacy of Alice’s
choice 𝑏 would remain intact. We rely on the Random Oracle to implement a
cut-and-choose based proof that helps us obtain maliciously secure bit OT.

We emphasize that this problem is also interesting in the plain model under
computational assumptions. We leave this as an open problem for future work,
and discuss it (together other open problems) in Section 1.1.

Other Technical Contributions. We make additional technical contributions along
the way, that may be of independent interest.

– Seedless Extraction from Quantum Sources of Entropy. Randomness
extraction has been a crucial component in all quantum OT protocols, and
seeded randomness extraction from the quantum sources of entropy that
arise in such protocols has been extensively studied (see e.g. [55, 13]). In our
non-interactive and two-message settings, it becomes necessary to extract
entropy without relying on the existence of a random seed. As such, we
prove the security of seedless randomness extractors in this context, which
may be of independent interest. In particular, we show that either the XOR
function or a random oracle (for better rate) can be used in place of the
seeded universal hashing used in prior works. The XOR extractor has been
used in subsequent work [9] as a crucial tool in building cryptosystems with
certified deletion.

– Extractable and Equivocal Commitments in the QROM. We ab-
stract out a notion of (non-interactive) extractable and equivocal bit com-
mitments in the QROM, that we make use of in our OT protocols. We
provide a simple construction based on prior work [3, 63, 24].

– Three-Message String OT without Entanglement or Setup. We show
that our fixed basis framework makes it possible to eliminate the need for
both entanglement and setup with just three messages. The resulting proto-
col realizes string OT with no entanglement, and only requires one quantum
message containing BB84 states followed by two classical messages. Further-
more, it allows both the sender and the receiver to choose their inputs to the
OT (as opposed to sampling a random input to one of the parties).
On the other hand, we find that using prior templates [20] necessitates a
multi-stage protocol where players have to first exchange basis information
in order to establish two channels, resulting in protocols that require at least
an extra round of interaction.

– Concrete Parameter Estimates. We also estimate the number of EPR
pairs/BB84 states required for each of our protocols, and derive concrete
security losses incurred by our protocols. This is discussed in the full version
[1], where we also provide a table of our estimates. We expect that future
work will be able to further study and optimize the concrete efficiency of
quantum OT in the QROM, and our work provides a useful starting point.
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1.1 Open problems and directions for future research.

Our new frameworks for oblivious transfer raise several fundamental questions
of both theoretical and practical interest.

Strengthening Functionality. It would be interesting to obtain non-interactive
or two-message variants of non-trivial quantum OT realizing stronger function-
ality than we obtain in this work3. Our work leaves open the following natural
questions.

– Does there exist two-message non-trivial quantum chosen-input bit OT, that
allows both parties to choose inputs?

– Does there exist one- or two-message non-trivial quantum chosen-sender-
input string OT, with chosen sender strings and random receiver choice bit?
Such a string OT may be sufficient to construct non-interactive secure com-
putation (NISC) [37] with chosen sender input and random receiver input.

– Does there exist two-message non-trivial quantum OT without entangle-
ment?

– Can our quantum OT protocols serve as building blocks for other non-
interactive functionalities, eg., by relying on techniques in [31] for one-way
secure computation, or [12] for obfuscation?

Strengthening Security. While analyses in this work are restricted to the QROM,
our frameworks are of conceptual interest even beyond this specific model. In
particular, one could ask the following question.

– Does there exist non-interactive OT with shared EPR pair setup from any
concrete computational hardness assumption?

One possible direction towards achieving this would be to instantiate our tem-
plate with post-quantum extractable and equivocal commitments in the CRS
model, and then attempt to instantiate the Fiat-Shamir paradigm in this set-
ting based on a concrete hash function (e.g. [16, 41, 15] and numerous followups).
Going further, one could even try to instantiate our templates from weak com-
putational hardness including one-way functions (or even pseudorandom states).
We imagine that such an OT would find useful applications even beyond MPC,
given how two-message classical OT [2, 51] has been shown to imply a variety
of useful protocols including two-message proof systems, non-malleable commit-
ments, and beyond [52, 5, 39, 42, 7, 40, 6].

Finally, we note that any cryptographic protocol in a broader context typi-
cally requires the protocol to satisfy strong composability properties. It would
be useful to develop a formal model for UC security with a (global) quantum
random oracle, and prove UC security for our OT protocols in this model. An-
other question is whether one can achieve composably (UC) secure protocols
with minimal interaction by building on our frameworks in the CRS model.
3 Here non-trivial quantum OT means OT based on assumptions (such as symmetric-

key cryptography) or ideal models that are not known to imply classical OT.
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Practical Considerations. Our concrete quantum resource requirements and se-
curity bounds are computed assuming no transmission errors. On the other hand,
actual quantum systems, even those that do not rely on entanglement, are of-
ten prone to errors. One approach to reconcile these differences is to employ
techniques to first improve fidelity, eg. of our EPR pair setup via entanglement
purification; and then execute our protocol on the resulting states. Another nat-
ural approach (following eg., [11]) could involve directly building error-resilient
versions of our protocols that tolerate low fidelity and/or coherence. Another
question is whether our games can be improved to reduce resource consumption
and security loss, both in the idealized/error-free and error-prone models.

1.2 Related Work

Wiesner [61] suggested the first template for quantum OT, but his work did not
contain a security proof (and even discussed some potential attacks). Crepeau
and Kilian [20] made progress by demonstrating an approach for basing oblivious
transfer on properties of quantum information plus a secure "bit commitment"
scheme. This led to interest in building bit commitment from quantum informa-
tion. Unfortunately, it was eventually shown by Mayers, Lo, and Chau [47, 46]
that bit commitment (and thus oblivious transfer) is impossible to build by re-
lying solely on the properties of quantum information.

This is indeed a strong negative result, and rules out the possibility of basing
secure computation on quantum information alone. However, it was still ap-
parent to researchers that quantum information must offer some advantage in
building secure computation systems. One could interpret the Mayers, Lo, Chau
impossibility result as indicating that in order to hone in and understand this
advantage, it will be necessary to make additional physical, computational, or
modeling assumptions beyond the correctness of quantum mechanics. Indeed,
much research has been performed in order to tease out the answer to this ques-
tion, with three lines of work being particularly prominent and relevant4.

– Quantum OT from bit commitment. Although unconditionally-secure
bit commitment cannot be constructed using quantum information, [20]’s
protocol is still meaningful and points to a fundamental difference between
the quantum and classical setting, where bit commitment is not known to
imply OT. A long line of work has been devoted to understanding the security
of [20]’s proposal: e.g. [11, 48, 62, 21, 57, 13].

– Quantum OT in the bounded storage model. One can also impose
physical assumptions in order to recover quantum OT with unconditional
security. [22] introduced the quantum bounded-storage model, and [60] in-
troduced the more general quantum noisy-storage model, and showed how
to construct unconditionally-secure quantum OT in these idealized models.
There has also been much followup work focused on implementation and
efficiency [59, 28, 38, 30].

4 Another line of work studies (unconditional) oblivious transfer with imperfect secu-
rity [18, 17, 45], which we view as largely orthogonal to our work.
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– Quantum OT from "minicrypt" assumptions. While [20]’s proposal for
obtaining OT from bit commitments suggests that public-key cryptography
is not required for building OT in a quantum world, a recent line of work has
been interested in identifying the weakest concrete assumptions required for
quantum OT, with [8, 34] showing that the existence of one-way functions
suffices and [50, 4] showing that the existence of pseudo-random quantum
states suffices.

Our work initiates the explicit study of quantum oblivious transfer in the
quantum random oracle model, a natural model in which to study unconditionally-
secure quantum oblivious transfer. Any protocol proven secure in the idealized
random oracle model immediately gives rise to a natural "real-world" protocol
where the oracle is replaced by a cryptographic hash function, such as SHA-256.
As long as there continue to exist candidate hash functions with good security
against quantum attackers, our protocols remain useful and relevant. On the
other hand, the bounded storage model assumes an upper bound on the ad-
versary’s quantum storage while noisy storage model assumes that any qubit
placed in quantum memory undergoes a certain amount of noise. The quan-
tum communication complexity of these protocols increases with the bounds on
storage/noise. It is clear that advances in quantum storage and computing tech-
nology will steadily degrade the security and increase the cost of such protocols,
whereas protocols in the QROM do not suffer from these drawbacks.

2 Technical overview

Notation. We will consider the following types of OT protocols.

– ℱOT[𝑘]: the chosen-input string OT functionality takes as input a bit 𝑏 from
the receiver and two strings 𝑚0,𝑚1 ∈ {0, 1}𝑘 from the sender. It delivers 𝑚𝑏

to the receiver.
– ℱR−ROT[1]: the random-receiver-input bit OT functionality takes as input ⊤

from the receiver and two bits 𝑚0,𝑚1 ∈ {0, 1} from the sender. It samples
𝑏← {0, 1} and delivers (𝑏,𝑚𝑏) to the receiver.

– ℱS−ROT[𝑘]: the random-sender-input string OT functionality takes as input
⊤ from the sender and (𝑏,𝑚) from the receiver for 𝑏 ∈ {0, 1},𝑚 ∈ {0, 1}𝑘. It
set 𝑚𝑏 = 𝑚, samples 𝑚1−𝑏 ← {0, 1}𝑘 and delivers (𝑚0,𝑚1) to the sender.

2.1 Non-Interactive OT in the shared EPR pair model

As discussed in the introduction, there is a skeleton candidate OT protocol
that requires no communication in the shared EPR model that we describe in
Figure 1.

The next step is for Alice to prove that she measured both her qubits in the
same basis, without revealing what basis she chose. While it is unclear how Alice
could directly prove this, we could hope to rely on the cut-and-choose paradigm
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– Setup: 2 EPR pairs on registers (𝒜0,ℬ0) and (𝒜1,ℬ1), where Alice has reg-
isters (𝒜0,𝒜1) and Bob has registers (ℬ0,ℬ1).

– Alice’s output: Input 𝑏 ∈ {0, 1}.
1. If 𝑏 = 0, measure both of 𝒜0,𝒜1 in basis + to obtain 𝑟′0, 𝑟

′
1. Output 𝑟′0

2. If 𝑏 = 1, measure both of 𝒜0,𝒜1 in basis × to obtain 𝑟′0, 𝑟
′
1. Output 𝑟′1.

– Bob’s output: Measure ℬ0 in basis + to obtain 𝑟0 and ℬ1 in basis × to
obtain 𝑟1. Output (𝑟0, 𝑟1).

Fig. 1: An (insecure) skeleton OT candidate.

to check that she measured “most” out of a set of pairs of qubits in the same
basis. Indeed, a cut-and-choose strategy implementing a type of “measurement
check” protocol has appeared in the original quantum OT proposal of [20] and
many followups. Inspired by these works, we develop such a strategy for our
protocol as follows.

Non-interactive Measurement Check. To achieve security, we first modify the
protocol so that Alice and Bob use 2𝑛 EPR pairs, where Alice has one half of
every pair and Bob has the other half.

Alice samples a set of 𝑛 bases 𝜃1, . . . , 𝜃𝑛 ← {+,×}𝑛. For each 𝑖 ∈ [𝑛], she must
measure the 𝑖𝑡ℎ pair of qubits (each qubit corresponding to a half of an EPR pair)
in basis 𝜃𝑖, obtaining measurement outcomes (𝑟𝑖,0, 𝑟𝑖,1). Then, she must commit
to her bases and outcomes com(𝜃1, 𝑟1,0, 𝑟1,1), . . . , com(𝜃𝑛, 𝑟𝑛,0, 𝑟𝑛,1). Once com-
mitted, she must open commitments corresponding to a randomly chosen (by
Bob) 𝑇 ⊂ [𝑛] of size 𝑘, revealing {𝜃𝑖, 𝑟𝑖,0, 𝑟𝑖,1}𝑖∈𝑇 . Given these openings, for
every 𝑖 ∈ 𝑇 , Bob will measure his halves of EPR pairs in bases (𝜃𝑖, 𝜃𝑖) to obtain
(𝑟′𝑖,0, 𝑟

′
𝑖,1). Bob aborts if his outcomes (𝑟′𝑖,0, 𝑟

′
𝑖,1) do not match Alice’s claimed

outcomes (𝑟𝑖,0, 𝑟𝑖,1) for any 𝑖 ∈ 𝑇 . If outcomes on all 𝑖 ∈ 𝑇 match, we will say
that Bob accepts the measurement check.

Now, suppose Alice passes Bob’s check with noticeable probability. Because
she did not know the check subset 𝑇 at the time of committing to her measure-
ment outcomes, we can conjecture that for “most” 𝑖 ∈ [𝑛]∖𝑇 , Alice also correctly
committed to results of measuring her qubits in bases (𝜃𝑖, 𝜃𝑖). Moreover we can
conjecture that the act of committing and passing Bob’s check removed from Al-
ice’s view information about at least one out of (𝑟𝑖,0, 𝑟𝑖,1) for most 𝑖 ∈ [𝑛]∖𝑇 . We
build on techniques for analyzing quantum “cut-and-choose” protocols [21, 13]
to prove that this is the case.

In fact, we obtain a non-interactive instantiation of such a measurement-
check by leveraging the random oracle to perform the Fiat-Shamir transform.
That is, Alice applies a hash function, modeled as a random oracle, to her set
of commitments in order to derive the “check set” 𝑇 of size 𝑘. Then, she can
compute openings to the commitments in the set 𝑇 , and finally send all of her
𝑛 commitments together with 𝑘 openings in a single message to Bob. Finally,
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the unopened positions will be used to derive two strings (𝑡0, 𝑡1) of 𝑛 − 𝑘 bits
each, with the guarantee that – as long as Alice passes Bob’s check – there
exists 𝑏 such that Alice only has partial information about the string 𝑡1−𝑏. We
point out that to realize OT, it is not enough for Alice to only have partial
information about 𝑡1−𝑏, we must in fact ensure that she obtains no information
about 𝑡1−𝑏. We achieve this by developing techniques for seedless randomness
extraction in this setting, which we discuss later in this overview. The resulting
protocol is described in Fig. 2.5 Security against (malicious) Bob is relatively
straightforward in this setting, and essentially reduces to proving that Alice’s
input bit 𝑏 remains hidden; this follows due to the hiding of the commitment.

– Setup: Random oracle RO and 2𝑛 EPR pairs on registers
{𝒜𝑖,𝑏,ℬ𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1}, where Alice has register 𝒜 := {𝒜𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1}
and Bob has register ℬ := {ℬ𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1}.

– Alice’s message: Input 𝑏 ∈ {0, 1}.
1. Sample 𝜃1, . . . , 𝜃𝑛 ← {+,×}𝑛 and measure each 𝒜𝑖,0,𝒜𝑖,1 in basis 𝜃𝑖 to

obtain 𝑟𝑖,0, 𝑟𝑖,1.
2. Commit com1, . . . , com𝑛 to (𝜃1, 𝑟1,0, 𝑟1,1), . . . , (𝜃𝑛, 𝑟𝑛,0, 𝑟𝑛,1).
3. Compute 𝑇 = RO(com1, . . . , com𝑛), where 𝑇 is a subset of [𝑛] of size 𝑘.
4. Compute openings {𝑢𝑖}𝑖∈𝑇 for {com𝑖}𝑖∈𝑇 .
5. Let 𝑇 = [𝑛] ∖ 𝑇 , and for all 𝑖 ∈ 𝑇 , set 𝑑𝑖 = 𝑏⊕ 𝜃𝑖 (interpreting + as 0 and
× as 1).

6. Send {com𝑖}𝑖∈[𝑛], 𝑇, {𝑟𝑖,0, 𝑟𝑖,1, 𝜃𝑖, 𝑢𝑖}𝑖∈𝑇 , {𝑑𝑖}𝑖∈𝑇 to Bob.
– Alice’s output: 𝑚𝑏 := Extract(𝑡𝑏 := {𝑟𝑖,𝜃𝑖}𝑖∈𝑇 ).
– Bob’s computation:

1. Abort if 𝑇 ̸= RO(com1, . . . , com𝑛) or if verifying any commitment in the
set 𝑇 fails.

2. For each 𝑖 ∈ 𝑇 , measure registers ℬ𝑖,0,ℬ𝑖,1 in basis 𝜃𝑖 to obtain 𝑟′𝑖,0, 𝑟
′
𝑖,1,

and abort if 𝑟𝑖,0 ̸= 𝑟′𝑖,0 or 𝑟𝑖,1 ̸= 𝑟′𝑖,1.
3. For each 𝑖 ∈ 𝑇 , measure register ℬ𝑖,0 in the + basis and register ℬ𝑖,1 in

the × basis to obtain 𝑟′𝑖,0, 𝑟
′
𝑖,1.

– Bob’s output: 𝑚0 := Extract(𝑡0 := {𝑟𝑖,𝑑𝑖}𝑖∈𝑇 ),𝑚1 := Extract(𝑡1 := {𝑟𝑖,𝑑𝑖⊕1}𝑖∈𝑇 ).

Fig. 2: Non-interactive OT in the shared EPR pair model. Extract is an (unspec-
ified) seedless hash function used for randomness extraction.

To formally prove security against malicious Alice, we build on several re-
cently developed quantum random oracle techniques [63, 23, 24] as well as tech-
niques for analyzing “quantum cut-and-choose” protocols [21, 13]. In particular,
we require the random oracle based commitments to be extractable, and then
take inspiration from [13] to argue that Bob’s state on registers {ℬ𝑖,0,ℬ𝑖,1}𝑖∈𝑇

5 Our actual protocol involves an additional step that allows Alice to program any
input 𝑚𝑏 of her choice, but we suppress this detail in this overview.
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is in some sense close to a state described by the information {𝜃𝑖, 𝑟𝑖,0, 𝑟𝑖,1}𝑖∈𝑇

in Alice’s unopened commitments. In more detail, we define a projector 𝛱 on
registers {ℬ𝑖,0,ℬ𝑖,1}𝑖∈𝑇 spanned by all states in the {𝜃𝑖}𝑖∈𝑇 basis that are “close”
in Hamming distance to the collection of bits {𝑟𝑖,0, 𝑟𝑖,1}𝑖∈𝑇 . Since these bits are
unopened, defining this projector requires us to run the extractor of the com-
mitment scheme to obtain {𝑟𝑖,0, 𝑟𝑖,1}𝑖∈𝑇 . We show that, conditioned on Bob not
aborting, his left-over state on registers {ℬ𝑖,0,ℬ𝑖,1}𝑖∈𝑇 must be negligibly close
to the image of 𝛱.

To do so, at a high level, we apply the measure-and-reprogram technique
from [23, 24], which roughly shows that in this setting, it suffices to consider
an interactive version of the protocol, where all the commitments are output by
Alice before 𝑇 is chosen uniformly at random. At this point, it becomes possible
to argue by standard Hoeffding inequalities that Bob’s registers must be close
to the image of 𝛱 (conditioned on Bob not aborting).

Finally, recall that Bob is measuring each ℬ𝑖,0 in the standard basis and each
ℬ𝑖,1 in the Hadamard basis (whereas before measurement, as we just determined,
most pairs ℬ𝑖,0,ℬ𝑖,1 were in the image of 𝛱, i.e., “close” to basis states in the
same basis). Thus, intuitively, honest Bob’s measurements must produce at least
some entropy (from Alice’s perspective) when performed on any state in 𝛱.
Converting this entropy into uniform randomness, as is required by the definition
of OT security, turns out to be non-trivial even given prior work on randomness
extraction. In the next section, we discuss hurdles and new methods for extracting
uniform randomness from this entropy.

New Techniques for Randomness Extraction. Note that the arguments above
have not yet established a fully secure OT correlation. In particular, Alice may
have some information about 𝑡1−𝑏, whereas OT security would require one of
Bob’s strings to be completely uniform and independent of Alice’s view.

This situation also arises in prior work on quantum OT, and is usually solved
via seeded randomness extraction. Using this approach, a seed 𝑠 would be sam-
pled by Bob, and the final OT strings would be defined as𝑚0 = Extract(𝑠, 𝑡0) and
𝑚1 = Extract(𝑠, 𝑡1), where Extract is a universal hash function. Indeed, quantum
privacy amplication [55] states that even given 𝑠, Extract(𝑠, 𝑡1−𝑏) is uniformly
random from Alice’s perspective as long as 𝑡1−𝑏 has sufficient (quantum) min-
entropy conditioned on Alice’s state.

Unfortunately, this approach would require Bob to transmit the seed 𝑠 to
Alice for Alice to obtain her output 𝑚𝑏 = Extract(𝑠, 𝑡𝑏), making the protocol no
longer non-interactive.6 Instead, we develop techniques for seedless extraction
that work in our setting, allowing us to make the full description of the hash
function used to derive the final strings public at the beginning of the protocol.

We provide two instantiations of seedless randomness extraction that work in
a setting where the entropy source comes from measuring a state supported on a

6 One idea would be to sample the seed 𝑠 as part of the output of the random oracle.
However, this does not ensure that 𝑠 is uniformly random. For example Alice could
bias certain bits of 𝑠 by choosing her commitments in a certain way.
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small superposition of basis vectors in the conjugate basis. More concretely, given
a state on two registers 𝒜,ℬ, where the state on ℬ is supported on standard basis
vectors with small Hamming weight, consider measuring ℬ in the Hadamard
basis to produce 𝑥. For what unseeded hash functions Extract does Extract(𝑥)
look uniformly random, even given the state on register 𝒜?

– XOR extractor. First, we observe that one can obtain a single bit of uni-
form randomness by XORing all of the bits of 𝑥 together, as long as the
superposition on register ℬ only contains vectors with relative Hamming
weight < 1/2. This can be used to obtain bit OT, where the OT messages
𝑚0,𝑚1 consist of a single bit. In fact, by adjusting the parameters of the
quantum cut-and-choose, the XOR extractor could be used bit-by-bit to ex-
tract any number of 𝜆 bits. However, this setting would require a number of
EPR pairs that grows with 𝜆3, resulting in a very inefficient protocol.

– RO extractor. To obtain a more efficient method of extracting 𝜆 bits, we
turn to the random oracle model, which has proven to be a useful seedless
extractor in the classical setting. Since an adversarial Alice in our proto-
col has some control over the state on registers 𝒜,ℬ, arguing that RO(𝑥)
looks uniformly random from her perspective requires some notion of adap-
tive re-programming in the QROM. While some adaptive re-programming
theorems have been shown before (e.g. [58, 33]), they have all only considered
𝑥 sampled from a classical probability distribution. This is for good reason,
since counterexamples in the quantum setting exist, even when 𝑥 has high
min-entropy given the state on register 𝒜.7 In this work, we show that in the
special case of 𝑥 being sampled via measurement in a conjugate basis, one
can argue that RO(𝑥) can be replaced with a uniformly random 𝑟, without
detection by the adversary. Our proof relies on the superposition oracle of
[63] and builds on proof techniques in [33]. We leverage our RO extractor
to obtain non-interactive 𝜆-bit string OT with a number of EPR pairs that
only grows linearly in 𝜆.

Differences from the CK88 template. As mentioned earlier, the original quantum
OT proposal [20] and its followups also incorporate a commit-challenge-response
measurement-check protocol to enforce honest behavior. However, we point out
one key difference in our approach that enables us to completely get rid of
interaction. In CK88, parties measure their set of qubits8 using a uniformly
random set of basis choices. Then, in order to set up the two channels required
for OT, they need to exchange their basis choices with each other (after the
measurement check commitments have been prepared and sent). This requires
multiple rounds of interaction. In our setting, it is crucial that one of the parties
measures (or prepares) qubits in a fixed set of bases known to the other party,
7 For example, consider an adversary that, via a single superposition query to the

random oracle, sets register ℬ to be a superposition over all 𝑥 such that the first bit
of RO(𝑥) is 0. Then, measuring ℬ in the computational basis will result in an 𝑥 with
high min-entropy, but where RO(𝑥) is distinguishable from a uniformly random 𝑟.

8 Technically, one party prepares and the other measures BB84 states.
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removing the need for a two-way exchange of basis information. In the case of
Fig. 2, this party is Bob. Hereafter, we refer to the CK88 template as the random
basis framework, and our template as the fixed basis framework.

Non-interactive OT reversal. So far, our techniques have shown that, given
shared EPR pairs, Alice can send a single message to Bob that results in the
following correlations: Alice outputs a bit 𝑏 and string 𝑚𝑏, while Bob outputs
𝑚0,𝑚1, thus implementing the ℱS−ROT functionality with Bob as the “sender”.

However, an arguably more natural functionality would treat Alice as the
sender, with some chosen inputs𝑚0,𝑚1, and Bob as the receiver, who can recover
𝑏,𝑚𝑏 from Alice’s message. In fact, for the case that 𝑚0,𝑚1 are single bits, a
“reversed” version of the protocol can already be used to acheive this due to the
non-interactive OT reversal of [36]. Let (𝑏, 𝑟𝑏) and (𝑟0, 𝑟1) be Alice and Bob’s
output from our protocol, where Alice has chosen 𝑏 uniformly at random. Then
Alice can define ℓ0 = 𝑚0 ⊕ 𝑟𝑏, ℓ1 = 𝑚1 ⊕ 𝑟𝑏 ⊕ 𝑏 and send (ℓ0, ℓ1) along with
her message to Bob. Bob can then use 𝑟0 to recover 𝑚𝑐 from ℓ𝑐 for his “choice
bit” 𝑐 = 𝑟0 ⊕ 𝑟1. Moreover, since in our protocol the bits 𝑟0, 𝑟1 can be sampled
uniformly at random by the functionality, this implies that 𝑐 is a uniformly
random choice bit, unknown to Alice, but unable to be tampered with by Bob.
This results in a protocol that satisfies the ℱR−ROT[1] functionality, and we have
referred to it as our one-shot bit OT protocol in the introduction.

2.2 Two-message OT without trusted setup

Next, say that we don’t want to assume a trusted EPR pair setup. In particular,
what if we allow Bob to set up the EPR pairs? In this case, a malicious Bob may
send any state of his choice to Alice. However, observe that in Fig. 2, Alice’s bit
𝑏 is masked by her random choices of 𝜃𝑖. These choices remain hidden from Bob
due to the hiding of the commitment scheme, plus the fact that they are only
used to measure Alice’s registers. Regardless of the state that a malicious Bob
may send, he will not be able to detect which basis Alice measures her registers
in, and thus will not learn any information about 𝑏. As a result, we obtain a two-
message quantum OT protocol in the QROM. As we show in the full version
[1], this protocol satisfies the ℱS−ROT OT ideal functionality that allows Alice
to choose her inputs (𝑏,𝑚), and sends Bob random (𝑚0,𝑚1) s.t. 𝑚𝑏 = 𝑚.

Moreover, adding another reorientation message at the end from Bob to
Alice – where Bob uses 𝑚0,𝑚1 as keys to encode his chosen inputs – results in a
three-round chosen input string OT protocol realizing the ℱOT[𝑘] functionality.
However, as we will see in the next section, with three messages, we can remove
the need for entanglement while still realizing ℱOT[𝑘].

Finally, in the case that𝑚0,𝑚1 are bits, we can apply the same non-interactive
[36] reversal described above to the two-round protocol, resulting in a two-round
secure realization of the ℱR−ROT[1] ideal functionality. This results in our two-
round bit OT protocol as referenced in the introduction.
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2.3 Three-message chosen-input OT

We now develop a three-message protocol that realizes the chosen-input string
OT functionality ℱOT, which takes two strings 𝑚0,𝑚1 from the sender and a
bit 𝑏 from the receiver, and delivers 𝑚𝑏 to the receiver. This protocol will not
require entanglement, but still uses the fixed basis framework, just like the one
discussed in Section 2.1.

Recall that in the EPR-based protocol, Bob would obtain (𝑟0, 𝑟1) by measur-
ing his halves of two EPR pairs in basis (+,×), while Alice would obtain (𝑟0, 𝑟

′
1)

or (𝑟′0, 𝑟1) respectively by measuring her halves in basis (+,+) or (×,×), where
(𝑟′0, 𝑟

′
1) are uniform and independent of (𝑟0, 𝑟1).

Our first observation is that a similar effect is achieved by having Bob send
BB84 states polarized in a fixed basis instead of sending EPR pairs. That is, Bob
samples uniform (𝑟0, 𝑟1) and sends to Alice the states |𝑟0⟩+ , |𝑟1⟩×. Alice would
obtain (𝑟0, 𝑟

′
1) or (𝑟′0, 𝑟1) respectively by measuring these states in basis (+,+)

or (×,×) respectively, where (𝑟′0, 𝑟
′
1) are uniform and independent of (𝑟0, 𝑟1).

The skeleton protocol is sketched in Figure 3.

– Bob’s message and output:
1. Sample (𝑟0, 𝑟1)← {0, 1} and send |𝑟0⟩+ , |𝑟1⟩× in registers 𝒜0,𝒜1 to Alice.
2. Bob’s output is (𝑟0, 𝑟1).

– Alice’s output: Input 𝑏 ∈ {0, 1}.
1. If 𝑏 = 0, measure both of 𝒜0,𝒜1 in basis + to obtain 𝑟′0, 𝑟

′
1. Output 𝑟′0

2. If 𝑏 = 1, measure both of 𝒜0,𝒜1 in basis × to obtain 𝑟′0, 𝑟
′
1. Output 𝑟′1.

Fig. 3: Another (insecure) skeleton OT candidate.

As before, though, there is nothing preventing Alice from retrieving both
(𝑟0, 𝑟1) by measuring the states she obtains in basis (+,×). Thus, as before, we
need a measurement check to ensure that Alice measures “most” out of a set of
pairs of qubits in the same basis. But implementing such a check with BB84
states turns out to be more involved than in the EPR pair protocol.

Non-interactive measurement check without entanglement. Towards building a
measurement check, we first modify the skeleton protocol so that Bob sends 2𝑛
BB84 qubits {|𝑟𝑖,0⟩+ , |𝑟𝑖,1⟩×}𝑖∈[𝑛] on registers {𝒜𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1} to Alice (instead
of just two qubits). Now Alice is required to sample a set of 𝑛 bases 𝜃1, . . . , 𝜃𝑛 ←
{+,×}𝑛. For each 𝑖 ∈ [𝑛], she must measure the 𝑖𝑡ℎ pair of qubits in basis 𝜃𝑖,
obtaining measurement outcomes (𝑟′𝑖,0, 𝑟′𝑖,1). Then, she will commit to her bases
and outcomes com(𝜃1, 𝑟

′
1,0, 𝑟

′
1,1), . . . , com(𝜃𝑛, 𝑟

′
𝑛,0, 𝑟

′
𝑛,1). Once committed, she will

open commitments corresponding to a randomly chosen (by Bob) 𝑇 ⊂ [𝑛] of size
𝑘, revealing {𝜃𝑖, 𝑟′𝑖,0, 𝑟′𝑖,1}𝑖∈𝑇 .
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But Bob cannot check these openings the same way as in the EPR-based
protocol. Recall that in the EPR protocol, for every 𝑖 ∈ 𝑇 , Bob would measure
his halves of EPR pairs in bases (𝜃𝑖, 𝜃𝑖) to obtain (𝑟𝑖,0, 𝑟𝑖,1), and compare the
results against Alice’s response. On the other hand, once Bob has sent registers
{𝒜𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1} containing {|𝑟𝑖,0⟩+ , |𝑟𝑖,1⟩×}𝑖∈[𝑛] to Alice, there is no way for
him to recover the result of measuring any pair (𝒜𝑖,0,𝒜𝑖,1) in basis (𝜃𝑖, 𝜃𝑖).

To fix this, we modify the protocol to allow for a (randomly chosen and
hidden) set 𝑈 of “trap” positions. For all 𝑖 ∈ 𝑈 , Bob outputs registers (𝒜𝑖,0,𝒜𝑖,1)
containing |𝑟𝑖,0⟩𝜗𝑖

, |𝑟𝑖,1⟩𝜗𝑖
, that is, both qubits are polarized in the same basis

𝜗𝑖 ← {+,×}. All other qubits are sampled the same way as before, i.e. as
|𝑟𝑖,0⟩+ , |𝑟𝑖,1⟩×. Alice commits to her measurement outcomes {𝜃𝑖, 𝑟′𝑖,0, 𝑟′𝑖,1}𝑖∈[𝑛],
and then reveals commitment openings {𝜃𝑖, 𝑟′𝑖,0, 𝑟′𝑖,1}𝑖∈𝑇 for a randomly chosen
subset of size 𝑇 , as before. But Bob can now check Alice on all positions 𝑖 in the
intersection 𝑇 ∩ 𝑈 where 𝜗𝑖 = 𝜃𝑖. Specifically, Bob aborts if for any 𝑖 ∈ 𝑇 ∩ 𝑈 ,
𝜗𝑖 = 𝜃𝑖 but (𝑟′𝑖,0, 𝑟

′
𝑖,1) ̸= (𝑟𝑖,0, 𝑟𝑖,1). Otherwise, Alice and Bob will use the set

[𝑛] ∖ 𝑇 ∖ 𝑈 to generate their OT outputs. The resulting protocol is sketched
in Figure 4. Crucially, we make use of a third round in order to allow Bob to
transmit his choice of 𝑈 to Alice, so that they can both agree on the set [𝑛]∖𝑇 ∖𝑈 .

Again, we must argue that any Alice that passes Bob’s check with noticeable
probability loses information about one out of 𝑟𝑖,0 and 𝑟𝑖,1 for “most” 𝑖 ∈ [𝑛]∖𝑇 ∖
𝑈 . Because she did not know the check subset 𝑇 or Bob’s trap subset 𝑈 at the
time of committing to her measurement outcomes, we can again conjecture that
for “most” 𝑖 ∈ [𝑛] ∖𝑇 , Alice also correctly committed to results of measuring her
qubits in bases (𝜃𝑖, 𝜃𝑖). Moreover we can conjecture that the act of committing
and passing Bob’s check removed from Alice’s view information about at least
one out of (𝑟𝑖,0, 𝑟𝑖,1) for most 𝑖 ∈ [𝑛] ∖𝑇 . This requires carefully formulating and
analyzing a quantum sampling strategy that is somewhat more involved than
the one in Section 2.1. Furthermore, as in Section 2.1, we make the measurement
check non-interactive by relying on the Fiat-Shamir transform.

2.4 Extractable and Equivocal Commitments

To achieve simulation-based security, our constructions rely on commitments
that satisfy extractability and equivocality. We model these as classical non-
interactive bit commitments that, informally, satisfy the following properties.

– Equivocality: This property ensures that the commitment scheme admits an
efficient simulator, let’s say 𝒮Equ, that can sample commitment strings that
are indistinguishable from commitment strings generated honestly and later,
during the opening phase, provide valid openings for either 0 or 1.

– Extractability: This property ensures that the commitment scheme admits
an efficient extractor, let’s say 𝒮Ext, that, given access to the committer who
outputs a commitment string, can output the committed bit.

The need for these two additional properties is not new to our work. Indeed,
[21] showed that bit commitment schemes satisfying extraction and equivoca-
tion suffice to instantiate the original [20, 11] QOT template. [21] called their
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– Inputs: Bob has inputs 𝑚0,𝑚1 each in {0, 1}𝜆, Alice has input 𝑏 ∈ {0, 1}.
– Bob’s Message:

1. Sample a “large enough” subset 𝑈 ⊂ [𝑛], and for every 𝑖 ∈ 𝑈 , sample
𝜗𝑖 ← {+,×}.

2. For every 𝑖 ∈ [𝑛], sample (𝑟𝑖,0, 𝑟𝑖,1)← {0, 1}.
3. For 𝑖 ∈ 𝑈 , set registers (𝒜𝑖,0,𝒜𝑖,1) to (|𝑟𝑖,0⟩𝜗𝑖

, |𝑟𝑖,1⟩𝜗𝑖
).

4. For 𝑖 ∈ [𝑛] ∖ 𝑈 , set registers (𝒜𝑖,0,𝒜𝑖,1) to (|𝑟𝑖,0⟩+ , |𝑟𝑖,0⟩×).
5. Send {𝒜𝑖,0,𝒜𝑖,1}𝑖∈[𝑛] to Alice.

– Alice’s message:
1. Sample 𝜃1, . . . , 𝜃𝑛 ← {+,×}𝑛 and measure each 𝒜𝑖,0,𝒜𝑖,1 in basis 𝜃𝑖 to

obtain 𝑟′𝑖,0, 𝑟
′
𝑖,1.

2. Compute commitments com1, . . . , com𝑛 to
(𝜃1, 𝑟

′
1,0, 𝑟

′
1,1), . . . , (𝜃𝑛, 𝑟

′
𝑛,0, 𝑟

′
𝑛,1).

3. Compute 𝑇 = RO(com1, . . . , com𝑛), where 𝑇 is parsed as a subset of [𝑛]
of size 𝑘.

4. Compute openings {𝑢𝑖}𝑖∈𝑇 for {com𝑖}𝑖∈𝑇 .
5. Let 𝑇 = [𝑛] ∖ 𝑇 , and for all 𝑖 ∈ 𝑇 , set 𝑑𝑖 = 𝑏⊕ 𝜃𝑖 (interpreting + as 0 and
× as 1).

6. Send {com𝑖}𝑖∈[𝑛], 𝑇, {𝑟′𝑖,0, 𝑟′𝑖,1, 𝜃𝑖, 𝑢𝑖}𝑖∈𝑇 , {𝑑𝑖}𝑖∈𝑇 to Bob.
– Bob’s Message:

1. Abort if 𝑇 ̸= RO(com1, . . . , com𝑛) or if verifying any commitment in the
set 𝑇 fails.

2. If for any 𝑖 ∈ 𝑇 ∩ 𝑈 , 𝑟𝑖,0 ̸= 𝑟′𝑖,0 or 𝑟𝑖,1 ̸= 𝑟′𝑖,1, abort.
3. Set 𝑥0 = 𝑚0⊕Extract(𝑡0 := {𝑟𝑖,𝑑𝑖}𝑖∈[𝑛]∖𝑇∖𝑈 ) and 𝑥1 = 𝑚1⊕Extract(𝑡1 :=
{𝑟𝑖,𝑑𝑖⊕1}𝑖∈[𝑛]∖𝑇∖𝑈 ).

4. Send (𝑥0, 𝑥1, 𝑈) to Alice.
– Alice’s output: 𝑚𝑏 := 𝑥𝑏 ⊕ Extract(𝑡𝑏 := {𝑟′𝑖,𝜃𝑖}𝑖∈𝑇 ).

Fig. 4: Three-message chosen-input OT without entanglement. Extract is an (un-
specified) function used for randomness extraction. Since Bob is sending the final
message, we may use a seeded function here.

commitments dual-mode commitments, and provided a construction based on
the quantum hardness of the learning with errors (QLWE) assumption. In two
recent works [8, 34], constructions of such commitment schemes were achieved by
relying on just post-quantum one-way functions (and quantum communication).

We show that the most common construction of random-oracle based com-
mitments – where a commitment to bit 𝑏 is 𝐻(𝑏||𝑟) for uniform 𝑟 – satisfies
both extractability and equivocality in the QROM. Our proof of extractability
applies the techniques of [63, 24] for on-the-fly simulation with extraction, and
our proof of equivocality relies on a one-way-to-hiding lemma from [3].

15



3 Seedless extraction from quantum sources

In this section, we consider the problem of seedless randomness extraction from
a quantum source of entropy. The source of entropy we are interested in comes
from applying a Hadamard basis measurement to a state that is in a “small”
superposition of computational basis vectors. More concretely, consider an arbi-
trarily entangled system on registers 𝒜,𝒳 , where 𝒳 is in a small superposition
of computational basis vectors. Then, we want to specify an extractor 𝐸 such
that, if 𝑥 is obtained by measuring register 𝒳 in the Hadamard basis, then 𝐸(𝑥)
looks uniformly random, even given the “side information” on register 𝒜. Note
that seeded randomness extraction in this setting has been well-studied (e.g.
[55, 21, 13]).

3.1 The XOR extractor

First, we observe that if 𝐸 just XORs all the bits of 𝑥 together, then the resulting
bit 𝐸(𝑥) is perfectly uniform, as long as the original state on 𝒳 is only supported
on vectors with relative Hamming weight < 1/2.

Theorem 1. Let 𝒳 be an 𝑛-qubit register, and consider any state |𝛾⟩𝒜,𝒳 that
can be written as

|𝛾⟩ =
∑︁

𝑢:ℋ𝒲(𝑢)<𝑛/2

|𝜓𝑢⟩𝒜 ⊗ |𝑢⟩𝒳 .

Let 𝜌𝒜,𝒫 be the mixed state that results from measuring 𝒳 in the Hadamard basis
to produce 𝑥, and writing

⨁︀
𝑖∈[𝑛] 𝑥𝑖 into the single qubit register 𝒫. Then

𝜌𝒜,𝒫 = Tr𝒳 (|𝛾⟩ ⟨𝛾|)⊗
(︂
1

2
|0⟩ ⟨0|+ 1

2
|1⟩ ⟨1|

)︂
.

Proof. First, write the state on (𝒜,𝒳 ,𝒫) that results from applying Hadamard
to 𝒳 and writing the parity, denoted by 𝑝(𝑥) :=

⨁︀
𝑖∈[𝑛] 𝑥𝑖, to 𝒫:

1

2𝑛/2

∑︁
𝑥∈{0,1}𝑛

⎛⎝ ∑︁
𝑢:ℋ𝒲(𝑢)<𝑛/2

(−1)𝑢·𝑥 |𝜓𝑢⟩

⎞⎠ |𝑥⟩ |𝑝(𝑥)⟩ .
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Then we have that

𝜌𝒜,𝒫 =
1

2𝑛

∑︁
𝑥:𝑝(𝑥)=0

(︃∑︁
𝑢1,𝑢2

(−1)(𝑢1⊕𝑢2)·𝑥 |𝜓𝑢1
⟩ ⟨𝜓𝑢2

|

)︃
⊗ |0⟩ ⟨0|

+
1

2𝑛

∑︁
𝑥:𝑝(𝑥)=1

(︃∑︁
𝑢1,𝑢2

(−1)(𝑢1⊕𝑢2)·𝑥 |𝜓𝑢1⟩ ⟨𝜓𝑢2 |

)︃
⊗ |1⟩ ⟨1|

=
1

2𝑛

∑︁
𝑢1,𝑢2

|𝜓𝑢1
⟩ ⟨𝜓𝑢2

| ⊗

⎛⎝ ∑︁
𝑥:𝑝(𝑥)=0

(−1)(𝑢1⊕𝑢2)·𝑥 |0⟩ ⟨0|+
∑︁

𝑥:𝑝(𝑥)=1

(−1)(𝑢1⊕𝑢2)·𝑥 |1⟩ ⟨1|

⎞⎠
=

1

2𝑛

∑︁
𝑢1,𝑢2

2𝑛/2𝛿𝑢1=𝑢2
|𝜓𝑢1
⟩ ⟨𝜓𝑢2

| ⊗ (|0⟩ ⟨0|+ |1⟩ ⟨1|)

=
1

2

∑︁
𝑢:ℋ𝒲<𝑛/2

|𝜓𝑢⟩ ⟨𝜓𝑢| ⊗ (|0⟩ ⟨0|+ |1⟩ ⟨1|)

= Tr𝒳 (|𝛾⟩ ⟨𝛾|)⊗
(︂
1

2
|0⟩ ⟨0|+ 1

2
|1⟩ ⟨1|

)︂
,

where the 3rd equality is due to the following claim, plus the observation that
𝑢1 ⊕ 𝑢2 ̸= 1𝑛 for any 𝑢1, 𝑢2 such that ℋ𝒲(𝑢1),ℋ𝒲(𝑢2) < 𝑛/2.

Claim 2. For any 𝑢 ∈ {0, 1}𝑛 such that 𝑢 /∈ {0𝑛, 1𝑛}, it holds that∑︁
𝑥:𝑝(𝑥)=0

(−1)𝑢·𝑥 =
∑︁

𝑥:𝑝(𝑥)=1

(−1)𝑢·𝑥 = 0.

Proof. For any such 𝑢 /∈ {0𝑛, 1𝑛}, define 𝑆0 = {𝑖 : 𝑢𝑖 = 0} and 𝑆1 = {𝑖 : 𝑢𝑖 = 1}.
Then, for any 𝑦0 ∈ {0, 1}|𝑆0| and 𝑦1 ∈ {0, 1}|𝑆1|, define 𝑥𝑦0,𝑦1 ∈ {0, 1}𝑛 to be the
𝑛-bit string that is equal to 𝑦0 when restricted to indices in 𝑆0 and equal to 𝑦1
when restricted to indices in 𝑆1. Then,

∑︁
𝑥:𝑝(𝑥)=0

(−1)𝑢·𝑥 =
∑︁

𝑦1∈{0,1}|𝑆1|

∑︁
𝑦0∈{0,1}|𝑆0|:𝑝(𝑥𝑦0,𝑦1 )=0

(−1)𝑢·𝑥𝑦0,𝑦1

=
∑︁

𝑦1∈{0,1}|𝑆1|

2|𝑆0|−1(−1)1
|𝑆1|·𝑦1 = 2|𝑆0|−1

∑︁
𝑦1∈{0,1}|𝑆1|

(−1)𝑝(𝑦1) = 0,

and the same sequence of equalities can be seen to hold for 𝑥 : 𝑝(𝑥) = 1.

This completes the proof of the theorem.

3.2 The Random Oracle extractor

Next, our goal is to extract multiple bits of randomness from 𝑥. To do this, we
model 𝐸 as a random oracle. We derive a bound on the advantage any adversary
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has in distinguishing 𝐸(𝑥) from a uniformly random string, based on the number
of qubits 𝑘 in the register 𝒳 , the number of vectors 𝐶 in the superposition on
register 𝒳 , and the number of queries 𝑞 made to the random oracle. In fact, to be
as general as possible, we consider a random oracle with input length 𝑛, and allow
𝑛−𝑘 of the bits of the input to the random oracle to be (adaptively) determined
by the adversary, while the remaining 𝑘 bits are sampled by measuring a 𝑘-qubit
register 𝒳 .

Theorem 3. Let 𝐻 : {0, 1}𝑛 → {0, 1}𝑚 be a uniformly random function, and
let 𝑞, 𝐶, 𝑘 be integers. Consider a two-stage oracle algorithm (𝐴𝐻

1 , 𝐴
𝐻
2 ) that com-

bined makes at most 𝑞 queries to 𝐻. Suppose that 𝐴𝐻
1 outputs classical strings

(𝑇, {𝑥𝑖}𝑖∈𝑇 ), and let |𝛾⟩𝒜,𝒳 be its left-over quantum state,9 where 𝑇 ⊂ [𝑛] is a
set of size 𝑛 − 𝑘, each 𝑥𝑖 ∈ {0, 1}, 𝒜 is a register of arbitary size, and 𝒳 is a
register of 𝑘 qubits. Suppose further that with probability 1 over the sampling of
𝐻 and the execution of 𝐴1, there exists a set 𝐿 ⊂ {0, 1}𝑘 of size at most 𝐶 such
that |𝛾⟩ may be written as follows:

|𝛾⟩ =
∑︁
𝑢∈𝐿

|𝜓𝑢⟩𝒜 ⊗ |𝑢⟩𝒳 .

Now consider the following two games.

– REAL:
∙ 𝐴𝐻

1 outputs 𝑇, {𝑥𝑖}𝑖∈𝑇 , |𝛾⟩𝒜,𝒳 .
∙ 𝒳 is measured in the Hadamard basis to produce a 𝑘-bit string which

is parsed as {𝑥𝑖}𝑖∈𝑇 , and a left-over state |𝛾′⟩𝒜 on register 𝒜. Define
𝑥 = (𝑥1, . . . , 𝑥𝑛).

∙ 𝐴𝐻
2 is given 𝑇, {𝑥𝑖}𝑖∈𝑇 , |𝛾′⟩𝒜 , 𝐻(𝑥), and outputs a bit.

– IDEAL:
∙ 𝐴𝐻

1 outputs 𝑇, {𝑥𝑖}𝑖∈𝑇 , |𝛾⟩𝒜,𝒳 .
∙ 𝑟 ← {0, 1}𝑚.
∙ 𝐴𝐻

2 is given 𝑇, {𝑥𝑖}𝑖∈𝑇 ,Tr𝒳 (|𝛾⟩ ⟨𝛾|), 𝑟, and outputs a bit.

Then,

|Pr[REAL = 1]− Pr[IDEAL = 1]| ≤
2
√
𝑞𝐶 + 2𝑞

√
𝐶

2𝑘/2
<

4𝑞𝐶

2𝑘/2
.

The proof of this theorem appears in the full version [1].

4 The fixed basis framework: OT from entanglement

We define (non-interactive) commitments in the quantum random oracle model,
and use them to build protocols for OT from shared EPR pairs.

9 That is, consider sampling 𝐻, running a purified 𝐴𝐻
1 , measuring at the end to obtain

(𝑇, {𝑥𝑖}𝑖∈𝑇 ), and then defining |𝛾⟩ to be the left-over state on𝒜’s remaining registers.
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Commitments in the Random Oracle Model. A non-interactive commitment
scheme with partial opening in the quantum random oracle model consists of
classical oracle algorithms (Com,Open,Rec) with the following syntax.

– Com𝐻(1𝜆, {𝑚𝑖}𝑖∈[𝑛]): On input the security parameter 𝜆 and 𝑛 messages
{𝑚𝑖 ∈ {0, 1}𝑘}𝑖∈[𝑛], output 𝑛 commitments {com𝑖}𝑖∈[𝑛] and a state st.

– Open𝐻(st, 𝑇 ): On input a state st and a set 𝑇 ⊆ [𝑛], output messages {𝑚𝑖}𝑖∈𝑇

and openings {𝑢𝑖}𝑖∈𝑇 .
– Rec𝐻({com𝑖}𝑖∈[𝑛], 𝑇, {𝑚𝑖, 𝑢𝑖}𝑖∈𝑇 ): on input 𝑛 commitments {com𝑖}𝑖∈[𝑛], a

set 𝑇 , and a set of message opening pairs {𝑚𝑖, 𝑢𝑖}𝑖∈𝑇 , output {𝑚𝑖}𝑖∈𝑇 or ⊥.

The commitment scheme is parameterized by 𝑛 = 𝑛(𝜆) which is the number of
messages to be committed in parallel, and 𝑘 = 𝑘(𝜆), the length of each message.

In the full version [1], we define correctness, hiding, extractability and equiv-
ocality for these commitments. We prove that a natural construction which es-
sentially commits to a bit 𝑏 as 𝐻(𝑏||𝑟) for 𝑟 ← {0, 1}𝜆com , satisfies extractability
and equivocality in the QROM. The extractability definition guarantees the
existence of a simulator SimExt = (SimExt.RO,SimExt.Ext) where SimExt.RO re-
sponds to the adversary’s random oracle queries and SimExt.Sim extracts from
the commitment strings output by the adversary.

Theorem 4. Instantiate Protocol 5 with the correct, hiding, and extractable
non-interactive commitment scheme above. Then the following hold.

– When instantiated with the XOR extractor, there exist constants 𝐴,𝐵 such
that Protocol 5 securely realizes ℱS−ROT[1].

– When instantiated with the ROM extractor, there exist constants 𝐴,𝐵 such
that Protocol 5 securely realizes ℱS−ROT[𝜆].

Furthermore, letting 𝜆 be the security parameter, 𝑞 be an upper bound on
the total number of random oracle queries made by the adversary, and using
the commitment scheme above with security parameter 𝜆com = 4𝜆, the following
hold.

– When instantiatied with the XOR extractor and constants 𝐴 = 50, 𝐵 = 100,
Protocol 5 securely realizes ℱS−ROT[1] with 𝜇R*-security against a malicious
receiver and 𝜇S*-security against a malicious sender, where

𝜇R* =

(︂
8𝑞3/2

2𝜆
+

3600𝜆𝑞

22𝜆
+

148(450𝜆+ 𝑞 + 1)3 + 1

24𝜆

)︂
, 𝜇S* =

(︂
85𝜆1/2𝑞

22𝜆

)︂
.

This requires a total of 2(𝐴+𝐵)𝜆 = 300𝜆 EPR pairs.
– When instantiated with the ROM extractor and constants 𝐴 = 1050, 𝐵 =

2160, Protocol 5 securely realizes ℱS−ROT[𝜆] with 𝜇R*-security against a ma-
licious receiver and 𝜇S*-security against a malicious sender, where

𝜇R* =

(︂
8𝑞3/2 + 4𝜆

2𝜆
+

77040𝜆𝑞

22𝜆
+

148(9630𝜆+ 𝑞 + 1)3 + 1

24𝜆

)︂
, 𝜇S* =

(︂
197𝜆1/2𝑞

22𝜆

)︂
.

This requires a total of 2(𝐴+𝐵)𝜆 = 6420𝜆 EPR pairs.
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Protocol 5

Ingredients and parameters.
– Security parameter 𝜆, and constants 𝐴,𝐵. Let 𝑛 = (𝐴+𝐵)𝜆 and 𝑘 = 𝐴𝜆.
– A non-interactive extractable commitment scheme (Com,Open,Rec), where

commitments to 3 bits have size ℓ := ℓ(𝜆).

– A random oracle 𝐻𝐹𝑆 : {0, 1}𝑛ℓ → {0, 1}⌈log (
𝑛
𝑘)⌉.

– An extractor 𝐸 with domain {0, 1}𝑛−𝑘 which is either
∙ The XOR function, so 𝐸(𝑟1, . . . , 𝑟𝑛−𝑘) =

⨁︀
𝑖∈[𝑛−𝑘] 𝑟𝑖.

∙ A random oracle 𝐻𝐸𝑥𝑡 : {0, 1}𝑛−𝑘 → {0, 1}𝜆.
Setup. 2𝑛 EPR pairs on registers {ℛ𝑖,𝑏,𝒮𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1}, where the receiver has
register ℛ := {ℛ𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1} and the sender has register 𝒮 := {𝒮𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1}.
Protocol.

– Receiver message. R, on input 𝑏 ∈ {0, 1},𝑚 ∈ {0, 1}𝜆, does the following.
∙ Measurement. Sample 𝜃1𝜃2 . . . 𝜃𝑛 ← {+,×}𝑛 and for 𝑖 ∈ [𝑛], measure

registers ℛ𝑖,0,,ℛ𝑖,1 in basis 𝜃𝑖 to obtain 𝑟𝑖,0, 𝑟𝑖,1.
∙ Measurement check.

∗ Compute
(︀
st, {𝑐𝑖}𝑖∈[𝑛]

)︀
← Com

(︀
{(𝑟𝑖,0, 𝑟𝑖,1, 𝜃𝑖)}𝑖∈[𝑛]

)︀
.

∗ Compute 𝑇 = 𝐻𝐹𝑆(𝑐1‖ . . . ‖𝑐𝑛), parse 𝑇 as a subset of [𝑛] of size 𝑘.
∗ Compute {(𝑟𝑖,0, 𝑟𝑖,1, 𝜃𝑖), 𝑢𝑖}𝑖∈[𝑇 ] ← Open(st, 𝑇 ).

∙ Reorientation. Let 𝑇 = [𝑛] ∖ 𝑇 , and for all 𝑖 ∈ 𝑇 , set 𝑑𝑖 = 𝑏 ⊕ 𝜃𝑖
(interpreting + as 0, × as 1).

∙ Sampling. Set 𝑥𝑏 = 𝐸
(︀
{𝑟𝑖,𝜃𝑖}𝑖∈𝑇

)︀
⊕𝑚, and sample 𝑥1−𝑏 ← {0, 1}𝜆.

∙ Message. Send to S

(𝑥0, 𝑥1), {𝑐𝑖}𝑖∈[𝑛], 𝑇, {𝑟𝑖,0, 𝑟𝑖,1, 𝜃𝑖, 𝑢𝑖}𝑖∈[𝑇 ], {𝑑𝑖}𝑖∈𝑇 .

– Sender computation. S does the following.
∙ Check Receiver Message. Abort if any of the following fails.

∗ Check that 𝑇 = 𝐻𝐹𝑆(𝑐1‖ . . . ‖𝑐𝑛).
∗ Check that Rec({𝑐𝑖}𝑖∈𝑇 , {(𝑟𝑖,0, 𝑟𝑖,1, 𝜃𝑖), 𝑢𝑖}𝑖∈𝑇 ) ̸= ⊥.
∗ For every 𝑖 ∈ 𝑇 , measure the registers 𝒮𝑖,0,𝒮𝑖,1 in basis 𝜃𝑖 to obtain

𝑟′𝑖,0, 𝑟
′
𝑖,1, and check that 𝑟𝑖,0 = 𝑟′𝑖,0 and 𝑟𝑖,1 = 𝑟′𝑖,1.

∙ Output. For all 𝑖 ∈ 𝑇 , measure the register 𝒮𝑖,0 in basis + and the
register 𝒮𝑖,1 in basis × to obtain 𝑟′𝑖,0, 𝑟

′
𝑖,1. Output

𝑚0 := 𝑥0 ⊕ 𝐸
(︀
{𝑟′𝑖,𝑑𝑖}𝑖∈𝑇

)︀
,𝑚1 := 𝑥1 ⊕ 𝐸

(︀
{𝑟′𝑖,𝑑𝑖⊕1}𝑖∈𝑇

)︀
.

Fig. 5: Non-interactive random-sender-input OT in the shared EPR pair model.

Then, applying non-interactive bit OT reversal [36] to the protocol that re-
alizes ℱS−ROT[1] immediately gives the following corollary.

Corollary 1. Given a setup of 300𝜆 shared EPR pairs, there exists a one-
message protocol in the QROM that 𝑂

(︁
𝑞3/2

2𝜆

)︁
-securely realizes ℱR−ROT[1].
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Proof (of Theorem 4) Let 𝐻𝐶 be the random oracle used by the commitment
scheme. We treat 𝐻𝐶 and 𝐻𝐹𝑆 (and 𝐻𝐸𝑥𝑡 in the case of the random oracle
randomness extractor) as separate oracles that the honest parties and adversaries
query, which is without loss of generality. We prove security below.

Sender security. First, we show security against a malicious receiver R*. We will
use on-the-fly simulation, introduced in [63] as a method of guaranteeing effi-
cient simulation of the oracle independent of the number of queries. We will also
use the extractor SimExt = (SimExt.RO,SimExt.Sim) guaranteed by the commit-
ment scheme. We describe the simulator for our OT protocol against a malicious
receiver below.

Sim[R*]:

– Prepare 2𝑛 EPR pairs on registers ℛ and 𝒮.
– Initialize R* with the state on register ℛ. Answer any 𝐻𝐹𝑆 (and 𝐻𝐸𝑥𝑡)

queries using an efficient on-the-fly random oracle simulator. Answer 𝐻𝐶

queries using SimExt.RO.
– Obtain (𝑥0, 𝑥1), {𝑐𝑖}𝑖∈[𝑛], 𝑇, {(𝑟𝑖,0, 𝑟𝑖,1, 𝜃𝑖), 𝑢𝑖}𝑖∈𝑇 , {𝑑𝑖}𝑖∈𝑇 from R* and run

{(𝑟*𝑖,0, 𝑟*𝑖,1, 𝜃*𝑖 )}𝑖∈[𝑛] ← SimExt.Ext({𝑐𝑖}𝑖∈[𝑛]).

– Run the “check receiver message” bullet of the honest sender strategy, except
that {𝑟*𝑖,0, 𝑟*𝑖,1}𝑖∈𝑇 are used in place of {𝑟𝑖,0, 𝑟𝑖,1}𝑖∈𝑇 for the third check. If
any check fails, send abort to the ideal functionality, output R*’s state, and
continue to answering the distinguisher’s oracle queries.

– Let 𝑏 := maj{𝜃*𝑖 ⊕ 𝑑𝑖}𝑖∈𝑇 . For all 𝑖 ∈ 𝑇 , measure the register 𝒮𝑖,𝑏⊕𝑑𝑖 in basis
+ if 𝑏⊕𝑑𝑖 = 0 or basis × if 𝑏⊕𝑑𝑖 = 1 to obtain 𝑟′𝑖. Let 𝑚𝑏 := 𝑥𝑏⊕𝐸({𝑟′𝑖}𝑖∈𝑇 ).

– Send (𝑏,𝑚𝑏) to the ideal functionality, output R*’s state, and continue to
answering the distinguisher’s queries.

– Answer the distinguisher’s 𝐻𝐹𝑆 (and 𝐻𝐸𝑥𝑡) queries with the efficient on-
the-fly random oracle simulator and 𝐻𝐶 queries with SimExt.RO.

Now, given a distinguisher D such that R* and D make at most 𝑞 queries
combined to 𝐻𝐹𝑆 and 𝐻𝐶 (and 𝐻𝐸𝑥𝑡), we consider the following hybrids. The
distributions 𝛱[R*,D,⊤] and ̃︀𝛱ℱS−ROT

[Sim[R*],D,⊤] are formally defined in the
full version [1] to be the real and simulated executions of the protocol, respec-
tively.

– Hyb0: The result of the real interaction between R* and S. This is a distri-
bution over {0, 1} described by 𝛱[R*,D,⊤].

– Hyb1: This is identical to Hyb0, except that all𝐻𝐶 queries of R* and D are an-
swered via the SimExt.RO interface, and {(𝑟*𝑖,0, 𝑟*𝑖,1, 𝜃*𝑖 )} ← Sim.Ext({𝑐𝑖}𝑖∈[𝑛])
is run after R* outputs its message. The values {𝑟*𝑖,0, 𝑟*𝑖,1}𝑖∈𝑇 are used in place
of {𝑟𝑖,0, 𝑟𝑖,1}𝑖∈𝑇 for the third sender check.

– Hyb2: The result of Sim[R*] interacting in ̃︀𝛱ℱS−ROT[1]
(or ̃︀𝛱ℱS−ROT[𝜆]

). This is a
distribution over {0, 1} described by ̃︀𝛱ℱS−ROT[1]

[Sim[R*],D,⊤] (or ̃︀𝛱ℱS−ROT[𝜆]
[Sim[R*],D,⊤]).
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The proof of security against a malicious R* follows by combining the two claims
below, Claim 5 and Claim 6.

Claim 5.

|Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| ≤ 24(𝐴+𝐵)𝜆𝑞

22𝜆
+

148(𝑞 + 3(𝐴+𝐵)𝜆+ 1)3 + 1

24𝜆
.

Proof. This follows by a direct reduction to extractability of the commitment
scheme, since the only difference is whether or not we simulate the adversary’s
access to 𝐻𝐶 and use the extracted values {𝑟*𝑖,0, 𝑟*𝑖,1}𝑖∈𝑇 in place of the opened
values {𝑟𝑖,0, 𝑟𝑖,1}𝑖∈𝑇 .

Claim 6. For any 𝑞 ≥ 4, when 𝐸 is the XOR extractor and 𝐴 = 50, 𝐵 = 100,
or when 𝐸 is the ROM extractor and 𝐴 = 1050, 𝐵 = 2160,

|Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| ≤ 8𝑞3/2

2𝜆
.

Proof. First, note that the only difference between these hybrids is that in Hyb2,
the 𝑚1−𝑏 received by D as part of the sender’s output is sampled uniformly at
random (by the ideal functionality), where 𝑏 is defined as maj{𝜃*𝑖 ⊕𝑑𝑖}𝑖∈𝑇 . Now,
we introduce some notation.

– Let c := (𝑐1, . . . , 𝑐𝑛) be the classical commitments.
– Write the classical extracted values {(𝑟*𝑖,0, 𝑟*𝑖,1, 𝜃*𝑖 )}𝑖∈[𝑛] as matrices

R* :=

[︂
𝑟*1,0 . . . 𝑟*𝑛,0
𝑟*1,1 . . . 𝑟*𝑛,1

]︂
,𝜃* :=

[︀
𝜃*1 . . . 𝜃*𝑛

]︀
.

– Given any R,𝜃 ∈ {0, 1}2×𝑛, define |R𝜃⟩ as a state on 𝑛 two-qubit registers,
where register 𝑖 contains the vector |R𝑖,0,R𝑖,1⟩ prepared in the (𝜃𝑖,𝜃𝑖)-basis.

– Given R,R* ∈ {0, 1}2×𝑛 and a subset 𝑇 ⊂ [𝑛], define R𝑇 to be the columns
of R indexed by 𝑇 , and define 𝛥 (R𝑇 ,R

*
𝑇 ) as the fraction of columns 𝑖 ∈ 𝑇

such that (R𝑖,0,R𝑖,1) ̸= (R*
𝑖,0,R

*
𝑖,1). For 𝑇 ⊂ [𝑛], let 𝑇 := [𝑛] ∖ 𝑇 .

– Given R*,𝜃* ∈ {0, 1}2×𝑛, 𝑇 ⊆ [𝑛], and 𝛿 ∈ (0, 1), define

𝛱R*,𝜃*,𝑇,𝛿 :=
∑︁

R:R𝑇=R*
𝑇 ,𝛥(R𝑇 ,R*

𝑇
)≥𝛿

|R𝜃*⟩ ⟨R𝜃* | .

Intuitively, this is a projection onto “bad” states as defined by R*,𝜃*, 𝑇, 𝛿,
i.e., states that agree with R* on all registers 𝑇 but are at least 𝛿-“far” from
R* on registers 𝑇 .

Define the following projection, which has hard-coded the description of 𝐻𝐹𝑆 :

𝛱𝛿
bad :=

∑︁
c,R*,𝜃*

|c⟩ ⟨c|𝒞 ⊗ |R
*,𝜃*⟩ ⟨R*,𝜃*|𝒵 ⊗𝛱

R*,𝜃*,𝐻𝐹𝑆(c),𝛿
𝒮 ,
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where 𝒞 is the register holding the classical commitments, 𝒵 is the register
holding the output of SimExt.Ext, and 𝒮 is the register holding the sender’s
halves of EPR pairs. Intuitively, this is a projection onto “bad” states defined by
the values R*,𝜃*, and where the check set 𝑇 is computed by 𝐻𝐹𝑆(c).

We will now prove the following sub-claim, which essentially states that the
global state of the system after the malicious receiver outputs their message only
has negligible overlap with the “bad” subspace defined above.

SubClaim 7. Let 𝜏 :=
∑︀

𝐻,c,R*,𝜃* 𝑝(𝐻,c,R*,𝜃*) 𝜏 (𝐻,c,R*,𝜃*), where

𝜏 (𝐻,c,R*,𝜃*) = |c⟩ ⟨c|𝒞 ⊗ |R
*,𝜃*⟩ ⟨R*,𝜃*|𝒵 ⊗ 𝜌

(𝐻,c,R*,𝜃*)
𝒮,𝒳

be the entire state of the system, including the sender’s halves of EPR pairs and
the receiver’s entire state in Hyb1 (equivalently also Hyb2) at the point in the
experiment right after R* outputs its message and SimExt.Ext is run. Here, each
𝑝(𝐻,c,R*,𝜃*) is the probability that the random oracle 𝐻𝐹𝑆 is initialized to the
function 𝐻 and the registers 𝒞,𝒵 hold the classical strings c,R*,𝜃*. We also
define 𝒮 to be the register holding the sender’s halves of EPR pairs, and 𝒳 to be
the register holding the remaining state of the system, which includes the rest of
the receiver’s classical message and its private state. Then,

– If 𝐴 = 50, 𝐵 = 100, then Tr
(︀
𝛱0.25

bad 𝜏
)︀
≤ 64𝑞3

22𝜆
.

– If 𝐴 = 1050, 𝐵 = 2160, then Tr
(︀
𝛱0.054

bad 𝜏
)︀
≤ 64𝑞3

22𝜆
.

Proof. Define Adv𝐻𝐹𝑆

R* to be the oracle machine that runs Hyb1 until R* outputs
c (and the rest of its message), then runs SimExt.Ext to obtain |R*,𝜃*⟩ ⟨R*,𝜃*|,
and then outputs the remaining state 𝜌𝒮,𝒳 . Consider running the measure-and-
reprogram simulator Sim[AdvR* ] [23, 24] (described formally in the full version
[1]) which simulates 𝐻𝐹𝑆 queries, measures and outputs c, then receives a uni-
formly random subset 𝑇 ⊂ [𝑛] of size 𝑘, and then continues to run AdvR* until
it outputs |R*,𝜃*⟩ ⟨R*,𝜃*| ⊗ 𝜌𝒮,𝒳 . Letting

𝛱𝛿
bad[𝑇 ] :=

∑︁
c,R*,𝜃*

|c⟩ ⟨c|𝒞 ⊗ |R
*,𝜃*⟩ ⟨R*,𝜃*|𝒵 ⊗𝛱

R*,𝜃*,𝑇,𝛿
𝒮 ,

for 𝑇 ⊂ [𝑛], the measure-and-reprogram theorem [23, 24] (also full version [1])
gives

Tr
(︀
𝛱𝛿

bad𝜏
)︀

≤ (2𝑞 + 1)2 E

⎡⎣Tr (︀𝛱𝛿
bad[𝑇 ]𝜎

)︀
:

(c, st)← Sim[AdvR* ]
𝑇 ← 𝑆𝑛,𝑘

(R*,𝜃*, 𝜌𝒮,𝒳 )← Sim[AdvR* ](𝑇, st)

⎤⎦ ,
where

𝜎 = |c⟩ ⟨c|𝒞 ⊗ |R
*,𝜃*⟩ ⟨R*,𝜃*|𝒵 ⊗ 𝜌𝒮,𝒳 ,
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and 𝑆𝑛,𝑘 is the set of all subsets of [𝑛] of size 𝑘. Crucially, because Sim[AdvR* ]
is defined to just run AdvR* and answer their oracle queries to 𝐻𝐹𝑆 , it does not
touch the sender’s registers 𝒮 after initializing them with halves of EPR pairs.

Now, recall that the last thing that AdvR* does in Hyb1 is run SimExt.Ext on c
to obtain (R*,𝜃*). Consider instead running SimExt.Ext on c immediately after
Sim[AdvR* ] outputs c. In the full version [1], we show that com has a 8

2𝜆com/2 -
commuting simulator, which means that each time we commute the SimExt.Ext
query past a SimExt.RO query, the overall state of the system changes by at most

8
2𝜆com/2 in trace distance. Thus, plugging in 𝜆com = 4𝜆,

Tr
(︀
𝛱𝛿

bad𝜏
)︀

≤ (2𝑞 + 1)2

⎛⎜⎜⎝E

⎡⎢⎢⎣Tr (︀𝛱𝛿
bad[𝑇 ]𝜎

)︀
:

(c, st)← Sim[AdvR* ]
(R*,𝜃*)← SimExt.Ext(c)

𝑇 ← 𝑆𝑛,𝑘

𝜌𝒮,𝒳 ← Sim[AdvR* ](𝑇, st)

⎤⎥⎥⎦+
8𝑞

22𝜆

⎞⎟⎟⎠
:= (2𝑞 + 1)2𝜖+

8𝑞(2𝑞 + 1)2

22𝜆
,

where
𝜎 = |c⟩ ⟨c|ℬ ⊗ |R

*,𝜃*⟩ ⟨R*,𝜃*|𝒵 ⊗ 𝜌𝒮,𝒳 ,

and where we denote the expectation inside the parantheses by 𝜖.
Now, since the 𝒮 register is not touched by Sim[AdvR* ] at any point after

(R*,𝜃*) are output, we can imagine measuring the 𝒮 registers in the 𝜃*-basis
even before 𝑇 is sampled. Thus, 𝜖 is at most the probabilty that the following
procedure outputs 1, where R* represents the matrix output by SimExt, and R
represents the matrix obtained by measuring register 𝒮 in the 𝜃*-basis.

– Let R,R* ∈ {0, 1}2×𝑛 be two matrices.
– Sample a uniformly random subset 𝑇 ⊂ [𝑛] of size 𝑘.
– Output 1 if and only if (R𝑖,0,R𝑖,1) = (R*

𝑖,0,R
*
𝑖,1) for all 𝑖 ∈ 𝑇 , and (R𝑖,0,R𝑖,1) ̸=

(R*
𝑖,0,R

*
𝑖,1) for at least 𝛿 fraction of 𝑖 ∈ 𝑇 .

In the full version [1], we bound this probability by 2 exp
(︀
−2(1− 𝑘/𝑛)2𝛿2𝑘

)︀
,

using standard Hoeffding inequalities.

– For 𝛿 = 0.25, this probability is bounded by

2 exp
(︀
−2(0.25)2(1−𝐴/(𝐴+𝐵))2𝐴

)︀
< 2−2𝜆,

for 𝐴 = 50, 𝐵 = 100.
– For 𝛿 = 0.054, this probability is bounded by

2 exp
(︀
−2(0.054)2(1−𝐴/(𝐴+𝐵))2𝐴

)︀
< 2−2𝜆,

for 𝐴 = 1050, 𝐵 = 2160.
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Summarizing, we have that in either case,

Tr
(︀
𝛱𝛿

bad𝜏
)︀
≤ (2𝑞 + 1)2 + 8𝑞(2𝑞 + 1)2

22𝜆
≤ 64𝑞3

22𝜆
,

for 𝑞 ≥ 4.

By the calculations above, and by Gentle Measurement (full version [1]),
the 𝜏 defined in SubClaim 7 is within 8𝑞3/2

2𝜆
trace distance of a state 𝜏good in

the image of I − 𝛱0.25
bad if 𝐴 = 50, 𝐵 = 100 and in the image of I − 𝛱0.054

bad if
𝐴 = 1050, 𝐵 = 2160.

For readability, we note that

I−𝛱𝛿
bad =

∑︁
c,R*,𝜃*

|c⟩ ⟨c|𝒞 ⊗ |R
*,𝜃*⟩ ⟨R*,𝜃*|𝒵 ⊗

(︁
I−𝛱R*,𝜃*,𝐻𝐹𝑆(c),𝛿

)︁
𝒮
,

where for any 𝑇 ,

I−𝛱R*,𝜃*,𝑇,𝛿 =
∑︁

R:(R𝑇 ̸=R*
𝑇 )∨(𝛥(R𝑇 ,R*

𝑇
)<𝛿)

|R𝜃*⟩ ⟨R𝜃* | .

Finally, we show the following two sub-claims to complete the proof of Claim 6.

SubClaim 8. If 𝐸 is the XOR extractor, then conditioned on 𝜏 being in the
image of I−𝛱0.25

bad , it holds that

Pr[Hyb1 = 1] = Pr[Hyb2 = 1].

Proof. It suffices to analyze the state 𝜏 conditioned on the register that contains
𝑇 being equal to 𝐻𝐹𝑆(c) (otherwise the honest sender/simulator will abort).

If 𝜏 is in I−𝛱0.25
bad , it must be the case that the register 𝒮 is in the image of

I−𝛱R*,𝜃*,𝑇,0.25, where R*,𝜃* were output by SimExt.Ext. Recall that the sender
aborts if the positions measured in 𝑇 are not equal to R*

𝑇 . Thus, we can condition
on the sender not aborting, which, by the definition of I−𝛱R*,𝜃*,𝑇,0.25 implies
that register 𝒮𝑇 is supported on vectors

⃒⃒
(R𝑇 )𝜃*

⟩︀
such that 𝛥(R𝑇 ,R

*
𝑇
) < 0.25.

To obtain 𝑚1−𝑏, the sender measures register 𝒮𝑖,𝑑𝑖⊕𝑏⊕1 in basis 𝑑𝑖 ⊕ 𝑏 ⊕ 1
for each 𝑖 ∈ 𝑇 to obtain a string 𝑟′ ∈ {0, 1}𝑛−𝑘. Then, 𝑚1−𝑏 is set to 𝐸(𝑟′).
Since 𝑏 is defined as maj{𝜃*

𝑖 ⊕𝑑𝑖}𝑖∈𝑇 in Hyb2, at least (𝑛−𝑘)/2 of the bits 𝑟′𝑖 are
obtained by measuring in 1⊕𝜃*

𝑖 . Let 𝑀 ⊂ 𝑇 be this set of size at least (𝑛−𝑘)/2,
and define r* ∈ {0, 1}𝑛 such that r*𝑖 = R*

𝑖,𝑑𝑖⊕𝑏⊕1 . We know from above that the
register 𝒮𝑀 is supported on vectors |(r𝑀 )𝜃*⟩ for r𝑀 such that 𝛥(r𝑀 , r

*
𝑀 ) < 0.5.

Thus, recalling that each of these states is measured in the basis 1⊕ 𝜃*
𝑖 , we can

appeal to Theorem 1 (with an appropriate change of basis) to show that 𝑚1−𝑏

is perfectly uniformly random from R*’s perspective, completing the proof.
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SubClaim 9. If 𝐸 is the ROM extractor and 𝐵 ≥ 326, 𝑞 ≥ 4, then conditioned
on 𝜏 being in the image of I−𝛱0.054

bad , it holds that

|Pr[Hyb1 = 1] = Pr[Hyb2 = 1]| ≤ 4𝑞

2𝜆
.

Proof. This follows the same argument as the above sub-claim, until we see that
there are (𝑛 − 𝑘)/2 qubits of 𝒮 that are measured in basis 1 ⊕ 𝜃*

𝑀 , and that
the state on these qubits is supported on vectors |(r𝑀 )𝜃*⟩ for r𝑀 such that
𝛥(r𝑀 , r

*
𝑀 ) < 0.108. We can then apply Theorem 3 with random oracle input

size 𝑛−𝑘, register 𝒳 size (𝑛−𝑘)/2, and |𝐿| ≤ 2ℎ𝑏(0.108)(𝑛−𝑘)/2. Note that, when
applying this theorem, we are fixing any outcome of the (𝑛 − 𝑘)/2 bits of the
random oracle input that are measured in 𝜃*, and setting register 𝒳 to contain
the (𝑛− 𝑘)/2 registers that are measured in basis 1⊕ 𝜃*. This gives a bound of
4𝑞2ℎ𝑏(0.108)(𝑛−𝑘)/2

2(𝑛−𝑘)/4 = 4𝑞

2(𝑛−𝑘)( 1
4
− 1

2
ℎ𝑏(0.108))

= 4𝑞

2𝐵𝜆( 1
4
− 1

2
ℎ𝑏(0.108))

≤ 4𝑞
2𝜆

for 𝐵 ≥ 326.

This completes the proof of Claim 6.

Receiver security. Next, we show security against a malicious sender S*. During
the proof, we will use an efficient quantum random oracle “wrapper” algorithm
𝑊 [(𝑥, 𝑧)] that provides an interface between any quantum random oracle sim-
ulator, such as the on-the-fly simulator, and the machine querying the random
oracle. The wrapper will implement a controlled query to the actual random
oracle simulator, controlled on the input 𝒳 register not being equal to 𝑥. Then,
it will implement a controlled query to a unitary that maps |𝑥, 𝑦⟩ → |𝑥, 𝑦 ⊕ 𝑧⟩,
controlled on the input 𝒳 register being equal to 𝑥. The effect of this wrapper
is that the oracle presented to the machine is the oracle 𝐻 simulated by the
simulator, but with 𝐻(𝑥) reprogrammed to 𝑧.

Sim[S*] :

– Query the ideal functionality with ⊥ and obtain 𝑚0,𝑚1.
– Sample 𝑇 as a uniformly random subset of [𝑛] of size 𝑘, sample 𝑑𝑖 ← {0, 1}

for each 𝑖 ∈ 𝑇 , and sample 𝜃𝑖 ← {+,×} for each 𝑖 ∈ 𝑇 .
– For each 𝑖 ∈ [𝑛], sample 𝑟𝑖,0, 𝑟𝑖,1 ← {0, 1} and prepare BB84 states |𝜓𝑖,0⟩ , |𝜓𝑖,1⟩

as follows.
∙ If 𝑖 ∈ 𝑇 , set |𝜓𝑖,0⟩ = |𝑟𝑖,0⟩𝜃𝑖 , |𝜓𝑖,1⟩ = |𝑟𝑖,1⟩𝜃𝑖 .
∙ If 𝑖 ∈ 𝑇 , set |𝜓𝑖,0⟩ = |𝑟𝑖,0⟩+ , |𝜓𝑖,1⟩ = |𝑟𝑖,1⟩×.

– For each 𝑖 ∈ 𝑇 , let 𝑒𝑖 := (𝑟𝑖,0, 𝑟𝑖,1, 𝜃𝑖) and for each 𝑖 ∈ 𝑇 , let 𝑒𝑖 := (0, 0, 0).
Compute (st, {𝑐𝑖}𝑖∈[𝑛])← Com({𝑒𝑖}𝑖∈[𝑛]) and {𝑢𝑖}𝑖∈𝑇 ← Open(st, 𝑇 ).

– Set 𝑥0 := 𝐸({𝑟𝑖,𝑑𝑖
}𝑖∈𝑇 )⊕𝑚0 and 𝑥1 := 𝐸({𝑟𝑖,𝑑𝑖⊕1}𝑖∈𝑇 )⊕𝑚1 (where if 𝐸 is

the ROM extractor, this is accomplished via classical queries to an on-the-fly
random oracle simulator for 𝐻𝐸𝑥𝑡).

– Run S* on input (𝑥0, 𝑥1), {𝑐𝑖}𝑖∈[𝑛], 𝑇, {𝑟𝑖,0, 𝑟𝑖,1, 𝜃𝑖, 𝑢𝑖}𝑖∈𝑇 , {𝑑𝑖}𝑖∈𝑇 , {|𝜓𝑖,𝑏⟩}𝑖∈[𝑛],𝑏∈{0,1}.
Answer 𝐻𝐶 queries using the on-the-fly random oracle simulator, answer
𝐻𝐹𝑆 queries using the on-the-fly random oracle simulator wrapped with
𝑊 [{𝑐𝑖}𝑖∈[𝑛], 𝑇 ], and if 𝐸 is the ROM extractor, answer 𝐻𝐸𝑥𝑡 queries using
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the on-the-fly random oracle simulator. Output S*’s final state and continue
to answering the distinguisher’s random oracle queries.

Now, given a receiver input 𝑏 ∈ {0, 1}, and distinguisher D such that S* and
D make a total of at most 𝑞 queries combined to 𝐻𝐹𝑆 and 𝐻𝐶 (and 𝐻𝐸𝑥𝑡),
consider the following sequence of hybrids.

– Hyb0: The result of the real interaction between R(𝑏) and S*. This is a dis-
tribution over {0, 1} desrcibed by 𝛱[S*,D, 𝑏].

– Hyb1: This is the same as the previous hybrid except that 𝑇 is sampled
uniformly at random as in the simulator, and 𝐻𝐹𝑆 queries are answered
with the wrapper 𝑊 [({𝑐𝑖}𝑖∈[𝑛], 𝑇 )].

– Hyb2: This is the same as the previous hybrid except that the messages
{(𝑟𝑖,0, 𝑟𝑖,1, 𝜃𝑖)}𝑖∈𝑇 are replaced with (0, 0, 0) inside the commitent.

– Hyb3: The result of Sim[S*] interacting in ̃︀𝛱ℱS−ROT[1]
(or ̃︀𝛱ℱS−ROT[𝜆]]

). This is a
distribution over {0, 1} described by ̃︀𝛱ℱS−ROT[1]

[Sim[S*],D, 𝑏] (or ̃︀𝛱ℱS−ROT[𝜆]
[Sim[S*],D, 𝑏]).

Security against a malicious S* follows by observing that Hyb0 and Hyb1 are
identically distributed, since 𝐻𝐹𝑆 is a random oracle and 𝑇 is uniformly random
in Hyb1, and the following claims.

Claim 10. |Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| ≤ 4𝑞
√

3(𝐴+𝐵)𝜆

22𝜆
.

This follows from hiding of the commitments (appropriately parameterized).

Claim 11. Pr[Hyb2 = 1] = Pr[Hyb3 = 1].

Proof. First, note that one difference in how the hybrids are specified is that
in Hyb2, the receiver samples 𝑥1−𝑏 uniformly at random, while in Hyb3, 𝑥1−𝑏 is
set to 𝐸({𝑟𝑖,𝑑𝑖⊕𝑏⊕1}𝑖∈𝑇 ) ⊕𝑚1−𝑏. However, since 𝑚1−𝑏 is sampled uniformly at
random by the functionality, this is an equivalent distribution.

Thus, the only difference between these these hybrids is the basis in which
the states on registers {𝒮𝑖,𝑑𝑖⊕𝑏⊕1}𝑖∈𝑇 are prepared (which are the registers
{𝒮𝑖,𝜃𝑖⊕1}𝑖∈𝑇 in Hyb2). Indeed, note that in Hyb2, the state on register 𝒮𝑖,𝑑𝑖⊕𝑏𝑖⊕1

is prepared by having the receiver measure their corresponding half of an EPR
pair (register ℛ𝑖,𝑑𝑖⊕𝑏𝑖⊕1) in basis 𝜃𝑖 = 𝑑𝑖⊕𝑏, while in Hyb3, this state is prepared
by sampling a uniformly random bit and encoding it in the basis 𝑑𝑖 ⊕ 𝑏𝑖 ⊕ 1.
However, these sampling procedures both produce a maximally mixed state on
register 𝒮𝑖,𝑑𝑖⊕𝑏⊕1, and thus these hybrids are equivalent.

This completes the proof. In the full version [1], we also analyze a two-round
variant without setup where the receiver sets up entanglement. In addition, we
formally describe our 3 round chosen-input OT without entanglement or setup,
as well as optimizations of the CK template to minimize round complexity.
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