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Abstract. Impossible differential (ID), zero-correlation (ZC), and in-
tegral attacks are a family of important attacks on block ciphers. For
example, the impossible differential attack was the first cryptanalytic
attack on 7 rounds of AES. Evaluating the security of block ciphers
against these attacks is very important but also challenging: Finding
these attacks usually implies a combinatorial optimization problem in-
volving many parameters and constraints that is very hard to solve using
manual approaches. Automated solvers, such as Constraint Program-
ming (CP) solvers, can help the cryptanalyst to find suitable attacks.
However, previous CP-based methods focus on finding only the ID, ZC,
and integral distinguishers, often only in a limited search space. Notably,
none can be extended to a unified optimization problem for finding full
attacks, including efficient key-recovery steps.
In this paper, we present a new CP-based method to search for ID, ZC,
and integral distinguishers and extend it to a unified constraint optimiza-
tion problem for finding full ID, ZC, and integral attacks. To show the
effectiveness and usefulness of our method, we applied it to several block
ciphers, including SKINNY, CRAFT, SKINNYe-v2, and SKINNYee. For the
ISO standard block cipher SKINNY, we significantly improve all existing
ID, ZC, and integral attacks. In particular, we improve the integral at-
tacks on SKINNY-n-3n and SKINNY-n-2n by 3 and 2 rounds, respectively,
obtaining the best cryptanalytic results on these variants in the single-
key setting. We improve the ZC attack on SKINNY-n-n (SKINNY-n-2n)
by 2 (resp. 1) rounds. We also improve the ID attacks on all variants
of SKINNY. Particularly, we improve the time complexity of the best
previous single-tweakey (related-tweakey) ID attack on SKINNY-128-256
(resp. SKINNY-128-384) by a factor of 222.57 (resp. 215.39). On CRAFT,
we propose a 21-round (20-round) ID (resp. ZC) attack, which improves
the best previous single-tweakey attack by 2 (resp. 1) rounds. Using our
new model, we also provide several practical integral distinguishers for
reduced-round SKINNY, CRAFT, and Deoxys-BC. Our method is generic
and applicable to other strongly aligned block ciphers.

Keywords: Impossible differential attacks · Zero-correlation attacks ·
Integral attacks · SKINNY · SKINNYe · CRAFT · SKINNYee · Deoxys-BC



1 Introduction

The impossible differential (ID) attack, independently introduced by Biham et
al. [5] and Knudsen [26], is one of the most important attacks on block ciphers.
For example, the ID attack is the first attack breaking 7 rounds of AES-128 [29].
The ID attack exploits an impossible differential in a block cipher, which usually
originates from slow diffusion, to retrieve the master key. The zero-correlation
(ZC) attack, first introduced by Bogdanov and Rijmen [8], is the dual method of
the ID attack in the context of linear analysis, which exploits an unbiased linear
approximation to retrieve the master key.

The integral attack is another important attack on block ciphers which was
first introduced as a theoretical generalization of differential analysis by Lai
[27] and as a practical attack by Daemen et al. [13]. The core idea of integral
attacks is finding a set of inputs such that the sum of the resulting outputs
is key-independent in some positions. At ASIACRYPT 2012, Bogdanov et al.
established a link between the (multidimensional) ZC approximation and integral
distinguishers [7]. Sun et al. at CRYPTO 2015 [42] developed further the links
among the ID, ZC, and integral attacks. Thanks to this link, we can use search
techniques for ZC distinguishers to find integral distinguishers. Ankele et al.
studied the influence of the tweakey schedule in ZC analysis of tweakable block
ciphers at ToSC 2019 [1] and showed that taking the tweakey schedule into
account can result in a longer ZC distinguisher.

The search for ID, ZC, and integral attacks on a block cipher contains two
main phases: finding a distinguisher and mounting a key recovery based on the
discovered distinguisher. One of the main techniques to find ID and ZC dis-
tinguishers is the miss-in-the-middle technique [5, 7]. The idea is to find two
differences (linear masks) that propagate halfway through the cipher forward
and backward with certainty but contradict each other in the middle. However,
applying this technique requires tracing the propagation of differences (resp. lin-
ear masks) at the word- or bit-level of block ciphers, which is a time-consuming
and potentially error-prone process using a manual approach. When it comes to
the key recovery, we should extend the distinguisher at both sides and trace the
propagation of more cryptographic properties taking many critical parameters
into account. In general, finding an optimum complete ID, ZC, or integral attack
usually implies a combinatorial optimization problem which is very hard to solve
using a manual approach, especially when the block size is large and there are
many possible solutions. Therefore, developing automatic tools is important to
evaluate the security of block ciphers against these attacks, mainly, in designing
and analyzing lightweight cryptographic primitives, where a higher precision in
security analysis lets us minimize security margins.

One approach to solving the optimization problems stemming from cryptana-
lytic attacks is developing dedicated algorithms. For instance, in CRYPTO 2016,
Derbez and Fouque proposed a dedicated algorithm [14] to find DS-MITM and
ID attacks. However, developing and implementing efficient algorithms is diffi-
cult and implies a hard programming task. In addition, other researchers may
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want to adapt these algorithms to other problems with some common features
and some differences. This may, again, be very difficult and time-consuming.

Another approach is converting the cryptanalytic problem into a constraint
satisfaction problem (CSP) or a constraint optimization problem (COP) and
then solving it with off-the-shelf constraint programming (CP) solvers. Recently,
many CP-based approaches have been introduced to solve challenging symmet-
ric cryptanalysis problems, which outperform the previous manual or dedicated
methods in terms of accuracy and efficiency [21, 31, 38, 40, 47]. For example, at
EUROCRYPT 2017, Sasaki and Todo proposed a new automatic tool based on
mixed integer linear programming (MILP) solvers to find ID distinguishers [38].
Cui et al. proposed a similar approach to find ID and ZC distinguishers [12].
Sun et al. recently proposed a new CP-based method to search for ID and ZC
distinguishers at ToSC 2020 [43].

Although the automatic methods to search for ID, ZC, and integral attacks
had significant advances over the past years, they still have some basic limita-
tions:

– The CP models for finding ID/ZC distinguishers proposed in [12,38,44] rely
on the unsatisfiability of the models where the input/output difference/mask
is fixed. This is also the case in all existing CP models to search for integral
distinguishers based on division property [15, 45] or monomial prediction
[20, 24]. However, finding an optimal key recovery attack is an optimization
problem, which is based on satisfiability. Hence, the previous CP models for
finding the ID, ZC, and integral distinguishers can not be extended to a
unified optimization model for finding a complete attack. The previous CP
models for finding ID, ZC, and integral distinguishers also require checking
each input/output property individually. As a result, it is computationally
hard to find all possible distinguishers when the block size is large enough.

– The CP model proposed in [43] employs the miss-in-the-middle technique
to find ID/ZC distinguishers. This approach does not fix the input/output
differences/masks. However, the compatibility between the two parts of the
distinguisher is checked outside of the CP model by iterating over a loop
where the activeness pattern of a state cell at the meeting point should be
fixed in each iteration.

– All previous CP models regarding ID, ZC, and integral attacks only focus
on finding the longest distinguishers. However, many other important fac-
tors affect the final complexity of these attacks, which we can not take into
account by only modeling the distinguisher part. For example, the position
and the number of active cells in the input/output of the distinguisher, the
number of filters in verifying the desired properties at the input/output of
distinguishers, and the number of involved key bits in the key recovery are
only a few critical parameters that affect the final complexity of the attack
but can be considered only by modeling the key recovery part. We show
that the best attack does not necessarily require the longest distinguisher.
Hence, it is important to unify the key recovery and distinguishing phases
for finding better ID, ZC, and integral attacks.
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– The tool introduced by Derbez and Fouque [14] is the only tool to find full ID
attacks. However, this tool is based on a dedicated algorithm implemented in
C/C++ and is not as generic as the CP-based methods. In addition, this tool
can not take all critical parameters of ID attacks into account to minimize
the final complexity. As other limitations, this tool can not find related-
(twea)key ID attacks and is not applicable for ZC and integral attacks.

– None of the previous automatic tools takes the relationship between ZC and
integral attacks into account to find ZC distinguishers suitable for integral
key recovery. Particularly, there is no automatic tool to take the meet-in-
the-middle technique into account for ZC-based integral attacks.

Our contributions. We propose a new generic, CP-based, and easy-to-use au-
tomatic method to find full ID, ZC, and integral attacks, addressing the above
limitations. Unlike all previous CP models for these distinguishers, which are
based on unsatisfiability, our CP model relies on satisfiability for finding dis-
tinguishers. This way, each solution of our CP models corresponds to an ID,
ZC, or integral distinguisher. This key feature enables us to extend our distin-
guisher models to a unified model for finding an optimal key-recovery attack.
Furthermore, our unified CP model takes advantage of key-bridging and meet-
in-the-middle techniques. To show the usefulness of our method, we apply it to
SKINNY [3], CRAFT [4], SKINNYe-v2 [32], and SKINNYee [33] and significantly
improve the ZC, ID, and integral attacks on these ciphers. Table 1 summarizes
our results.

– We improve the integral attacks on SKINNY-n-2n and SKINNY-n-3n by 2
and 3 rounds, respectively. To the best of our knowledge, our integral attacks
are the best single-key attacks on these variants of SKINNY.

– We improve the ZC attacks on SKINNY-n-n (SKINNY-n-2n) by 2 (resp. 1)
rounds. We also propose the first 21-round ZC attack on SKINNY-n-3n. Our
ZC attacks are the best attacks on SKINNY in a known-plaintext setting.

– On CRAFT, we provide a 21-round (20-round) single-tweakey ID (resp. ZC)
attack that is 2 (resp. 1) rounds longer than the best previous single-tweakey
attack proposed on this cipher at ASIACRYPT 2022 [41].

– We improve all previous single-tweakey ID attacks on all variants of SKINNY.
We reduce the time complexity of the ID attack on SKINNY-128-256 by
a factor of 222.57. Our ID attacks are the best single-tweakey attacks on
SKINNY-128-128, and all variants of SKINNY-64. We also improved the
related-tweakey ID attack on SKINNY-n-3n.

– We provide the first third-party analysis of SKINNYee by proposing 26-round
integral and 27-round ID attacks.

– We propose several practical integral distinguishers for reduced round of
Deoxys-BC, SKINNY, CRAFT, and SKINNYe-v2/ee (see Table 3).

– Our tool identified several flaws in previous cryptanalytic results on SKINNY
(see Table 2). Our tool is efficient and can find all reported results in a
few seconds when running on a regular laptop. Its source code is publicly
available at the following link: https://github.com/hadipourh/zero
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Table 1: Summary of our cryptanalytic results. ID/ZC/Int = impossible dif-
ferential, zero-correlation, integral. STK/RTK = single/related-tweakey. SK =
single-key with given keysize, CP/KP = chosen/known plaintext, CT = chosen
tweak. †: attack has minor issues.

Cipher #R Time Data Mem. Attack Setting / Model Ref.

SKINNY-64-192

21 2185.83 262.63 249 ZC STK / KP [22, G.3]
21 2180.50 262 2170 ID STK / CP [48]
21 2174.42 262.43 2168 ID STK / CP [22, F.3]

23† 2155.60 273.20 2138 Int † 180,SK / CP,CT [1]
26 2172 261 2172 Int 180,SK / CP,CT [22, H.2]

27 2189 263.53 2184 ID RTK / CP [28]
27 2183.26 263.64 2172 ID RTK / CP [22, F.4]

SKINNY-128-384

21 2372.82 2122.81 298 ZC STK / KP [22, G.3]
21 2353.60 2123 2341 ID STK / CP [48]
21 2347.35 2122.89 2336 ID STK / CP [22, F.3]
26 2344 2121 2340 Int 360,SK / CP,CT [22, H.2]

27 2378 2126.03 2368 ID RTK / CP [28]
27 2362.61 2124.99 2344 ID RTK / CP [22, F.4]

SKINNY-64-128

18 2126 262.68 264 ZC STK / KP [37]
19 2119.12 262.89 249 ZC STK / KP [22, G.2]
19 2119.80 262 2110 ID STK / CP [48]
19 2110.34 260.86 2104 ID STK / CP [22, F.2]

20† 297.50 268.40 282 Int † 120,SK / CP,CT [1]
22 2110 257.58 2108 Int 120,SK / CP,CT [22, H.1]

SKINNY-128-256

19 2240.07 2122.90 298 ZC STK / KP [22, G.2]
19 2241.80 2123 2221 ID STK / CP [48]
19 2219.23 2117.86 2208 ID STK / CP [22, F.2]
22 2216 2113.58 2216 Int 240,SK / CP,CT [22, H.1]

SKINNY-64-64

14 262 262.58 264 ZC STK / KP [37]
16 262.71 261.35 237.80 ZC STK / KP [22, G.1]
17 261.80 259.50 249.60 ID STK / CP [48]
17 259 258.79 240 ID STK / CP [22, F.1]

SKINNY-128-128
16 2122.79 2122.30 274.80 ZC STK / KP [22, G.1]
17 2120.80 2118.50 297.50 ID STK / CP [48]
17 2116.51 2116.37 280 ID STK / CP [22, F.1]

CRAFT
20 2120.43 262.89 249 ZC STK / KP [22, K.2]
21 2106.53 260.99 2100 ID STK / CP [22, K.3]

SKINNYee
26 2113 266 2108 Int SK / CP,CT [22, I.3]

27 2123.04 262.79 2108 ID RTK / CP [22, I.2]

SKINNYe-v2 30 2232 265 2228 Int 240,SK / CP,CT [22, H.3]
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Outline. We recall the background on ID and ZC attacks and review the link
between ZC and integral attacks in Section 2. In Section 3, we show how to
convert the problem of searching for ID and ZC distinguishers to a CSP problem.
In Section 4, we show how to extend our distinguisher models to create a unified
model for finding optimum ID attacks. We discuss the extension of our models
for ZC and integral attacks in Section 5, and finally conclude in Section 6. For
detailed attack procedures of all analyzed ciphers, we refer to the full version of
our paper [22].

Table 2: Attacks with a serious flaw (invalid attacks).

Cipher Attack #R Setting / Model Ref. Flaw

SKINNY-n-n ID 18 STK / CP [46] Section 4.2

SKINNY-n-2n
ID 20 STK / CP [46] Section 4.2

ZC/Int † 22 SK / CP, CT [49] Section 3

SKINNY-n-3n
ID 22 STK / CP [46] Section 4.2

ZC/Int † 26 SK / CP, CT [49] Section 3

† [49] was published after publishing the first version of our paper.

2 Background

Here, we recall the basics of ID and ZC attacks and briefly review the link
between the ZC and integral attacks. We also introduce the notations we use in
the rest of this paper. We refer to the full version of our paper for the specification
of SKINNY and SKINNYe [22, C], CRAFT [22, K.1], and SKINNYee [22, I.1].

2.1 Impossible Differential Attack

The impossible differential attack was independently introduced by Biham et
al. [5] and Knudsen [26]. The core idea of an impossible differential attack is ex-
ploiting an impossible differential in a cipher to retrieve the key by discarding all
key candidates leading to such an impossible differential. The first requirement
of the ID attack is an ID distinguisher, i.e., an input difference that can never
propagate to a particular output difference. Then, we extend the ID distinguisher
by some rounds backward and forward. A candidate for the key that partially
encrypts/decrypts a given pair to the impossible differential is certainly not
valid. The goal is to discard as many wrong keys as possible. Lastly, we uniquely
retrieve the key by exhaustively searching the remaining candidates.

We recall the complexity analysis of the ID attack based on [10, 11]. Let E
be a block cipher with n-bit block size and k-bit key. As illustrated in Figure 1,
assume that there is an impossible differential ∆u 9 ∆l for rd rounds of E
denoted by Ed. Suppose that ∆u (∆l) propagates backward (resp. forward)
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with probability 1 through E−1
b (resp. Ef) to ∆b (∆f), and |∆b| (|∆f|) denotes

the dimension of vector space ∆b (resp. ∆f). Let cb (cf) be the number of
bit-conditions that should be satisfied for ∆b → ∆u (resp. ∆l ← ∆f), i.e.,
Pr (∆b → ∆u) = 2−cb (resp. Pr (∆l ← ∆f) = 2−cf). Moreover, assume that kb
(kf) denotes the key information, typically subkey bits, involved in Eb (resp.
Ef). With these assumptions we can divide the ID attacks into three steps:

– Step 1: Pair Generation. Given access to the encryption oracle (and possibly
the decryption oracle), we generate N pairs (x, y) ∈ {0, 1}2n such that x⊕y ∈
∆b and E(x)⊕E(y) ∈ ∆f and store them. This is a limited birthday problem,
and according to [11] the complexity of this step is:

T0 = max

{
min

∆∈{∆b,∆f}

{√
N2n+1−|∆|

}
, N2n+1−|∆b|−|∆f|

}
(1)

– Step 2: Guess-and-Filter. The goal of this step is to discard all subkeys in
kb ∪ kf which are invalidated by at least one of the generated pairs. Rather
than guessing all subkeys kb ∪ kf at once and testing them with all pairs,
we can optimize this step by using the early abort technique [30]: We divide
kb ∪ kf into smaller subsets, typically the round keys, and guess them step
by step. At each step, we reduce the remaining pairs by checking if they
satisfy the conditions of the truncated differential trail through Eb and Ef.
The minimum number of partial encryptions/decryptions in this step is [10]:

T1 + T2 = N + 2|kb∪kf|
N

2cb+cf
(2)

– Step 3: Exhaustive Search. The probability that a wrong key survives through

the guess-and-filter step is P =
(
1− 2−(cb+cf)

)N
. Therefore, the number of

candidates after performing the guess-and-filter is P ·2|kb∪kf| on average. On

∆b

∆u

∆l

∆f

rb rounds

rd rounds

rf rounds

kb, cb

kf, cf

impossible differential distinguisher ∆u 6→ ∆l

truncated differential from ∆u to set ∆b

truncated differential from ∆l to set ∆f

Fig. 1: Main parameters of the ID attack using an rd-round impossible differential
distinguisher ∆u 6→ ∆l. The distinguisher is extended with truncated differential
propagation to sets ∆u → ∆b over rb rounds backwards and ∆l → ∆f over rf
rounds forward. The inverse differentials ∆b → ∆u and ∆f → ∆l involve kb, kf
key bits and have weight cb, cf, respectively.
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the other hand, the guess-and-filter step does not involve k − |kb ∪ kf| bits
of key information. As a result, to uniquely determine the key, we should
exhaustively search a space of size T3 = 2k−|kb∪kf| · P · 2|kb∪kf| = 2k · P .

Then, the total time complexity of the ID attack is:

Ttot = (T0 + (T1 + T2)CE′ + T3)CE , (3)

where CE denotes the cost of one full encryption, and CE′ represents the ratio
of the cost for one partial encryption to the full encryption.

To keep the data complexity less than the full codebook, we require T0 < 2n.
In addition, to retrieve at least one bit of key information in the guess-and-filter
step, P < 1

2 should hold. Note that Equation 2 is the average time complexity
of the guess-and-filter step; for each ID attack, we must evaluate its complexity
accurately to ensure we meet this bound in practice. To see the complexity
analysis of the ID attack in the related-(twea)key setting, refer to [22, A].

2.2 Multidimensional Zero-Correlation Attack

Zero-correlation attacks, firstly introduced by Bogdanov and Rijmen [8], are the
dual of the ID attack in the context of linear analysis and exploit a linear approx-
imation with zero correlation. The major limitation of the basic ZC attack is its
enormous data complexity, equal to the full codebook. To reduce the data com-
plexity of the ZC attack, Bogdanov and Wang proposed the multiple ZC attack
at FSE 2012 [9], which utilizes multiple ZC linear approximations. However, the
multiple ZC attack relies on the assumption that all involved ZC approximations
are independent, which limits its applications. To overcome this assumption of,
Bogdanov et al. introduced the multidimensional ZC attack at ASIACRYPT
2012 [7]. We briefly recall the basics of multidimensional ZC attack.

Let Ed represent the reduced-round block cipher E with a block size of
n bits. Assume that the correlation of m independent linear approximations
〈ui, x〉 + 〈wi, Ed(x)〉 and all their nonzero linear combinations are zero, where
ui, wi, x ∈ Fn2 , for i = 0, . . . ,m − 1. We denote by l = 2m the number of ZC
linear approximations. In addition, assume we are given N input/output pairs
(x, y = Ed(x)). Then, we can construct a function from Fn2 to Fm2 which maps x
to z(x) = (z0, . . . , zm−1), where zi := 〈ui, x〉+〈wi, Ed(x)〉 for all i. The idea of the
multidimensional ZC distinguisher is that the output of this function follows the
multivariate hypergeometric distribution, whereas the m-tuples of bits drawn at
random from a uniform distribution on Fm2 follow a multinomial distribution [7].
For sufficiently large N , we distinguish Ed from a random permutation as follows.

We initialize 2m counters V [z] to zero, z ∈ Fm2 . Then, for each of the N pairs
(x, y), we compute zi = 〈ui, x〉+ 〈wi, y〉 for all i = 0, . . . , 2m − 1, and increment
V [z] where z = (z0, . . . , zm−1). Finally, we compute the following statistic:

T =
N · 2m

1− 2−m

2m−1∑
z=0

(
V [z]

N
− 1

2m

)2

. (4)
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For the pairs (x, y) derived from Ed, i.e., y = Ed(x), the statistic T follows a
χ2-distribution with mean µ0 = (l−1) 2n−N

2n−1 and variance σ2
0 = 2(l−1)( 2n−N

2n−1 )2.

However, it follows a χ2-distribution with mean µ1 = (l − 1) and variance σ2
1 =

2(l − 1) for a random permutation [7]. By defining a decision threshold τ =
µ0 + σ0Z1−α = µ1 − σ1Z1−β , the output of test is ‘cipher’, i.e., the pairs are
derived from Ed, if T ≤ τ . Otherwise, the output of the test is ‘random’.

This test may wrongfully classify Ed as a random permutation (type-I error)
or may wrongfully accept a random permutation as Ed (type-II error). Let the
probability of the type-I and type-II errors be α and β. Then, the number of
required pairs N to successfully distinguish Ed from a random permutation is [7]:

N =
2n(Z1−α + Z1−β)√

l/2− Z1−β
, (5)

where Z1−α, and Z1−β are respective quantiles of the standard normal distribu-
tion. Thus, the data complexity of the multidimensional ZC attack depends on
the number of ZC approximations, l = 2m, and the error probabilities α and β.

To mount a key recovery based on a multidimensional ZC distinguisher for
Ed, we extend Ed by a few rounds at both ends, E = Ef ◦ Ed ◦ Eb. Given N
plaintext/ciphertext pairs (p, c = E(p)), we can recover the key in two steps:

– Step 1: Guess-and-filter. We guess the value of involved key bits in Eb (Ef)
and partially encrypt (decrypt) the plaintexts (ciphertexts) to derive N pairs
(x, y) for the input x = Eb(p) and output y = E−1

f (c) of Ed. Assuming that
wrong keys yield pairs (x, y) randomly chosen from F2n

2 , we use the statistic
T to discard all keys for which T ≤ τ .

– Step 2: Exhaustive Search. Finally, we exhaustively search the remaining key
candidates to find the correct key.

The time complexity of the guess-and-filter step depends on the number of
pairs N and the size of involved key bits in Eb and Ef. Given that typically a
subset of internal variables is involved in the partial encryptions/decryptions,
we can take advantage of the partial sum technique [16] to reduce the time
complexity of the guess-and-filter step. Moreover, by adjusting the value of α
and β, we can make a trade-off between the time and data complexities as α and
β affect the data, and β influences the time complexity of the exhaustive search.

2.3 Relation Between the Zero-Correlation and Integral Attacks

Bogdanov et al. [7] showed that an integral distinguisher3 always implies a ZC
distinguisher, but its converse is true only if the input and output linear masks
of the ZC distinguisher are independent. Later, Sun et al. [42] proposed the
following theorem that the conditions for deriving an integral distinguisher from
a ZC linear hull in [7] can be removed.

3 Under the definition that integral property is a balanced vectorial Boolean function
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P

TK1

TK2

...

TKz

C

C0

f

h α1

h α2

h αz

Γ0

C1

f

h α1

h α2

h αz

Γ1

C2

f

h α1

h α2

h αz

Γ2

CR−1

f

h α1

h α2

h αz

ΓR−1

CR

ΓR

Γ0[i] Γ1[h−1(i)] Γ2[h−2(i)] ΓR−1[h−R+1(i)] ΓR[h−R(i)]

Fig. 2: The STK construction of the tweakey framework.

Theorem 1 (Sun et al. [42]). Let F : Fn2 → Fn2 be a vectorial Boolean func-
tion. Assume A is a subspace of Fn2 and β ∈ Fn2 \ {0} such that (α, β) is a ZC
approximation for any α ∈ A. Then, for any λ ∈ Fn2 , 〈β, F (x+ λ)〉 is balanced
over the set

A⊥ = {x ∈ Fn2 | ∀ α ∈ A : 〈α, x〉 = 0}.

According to Theorem 1, the data complexity of the resulting integral distin-
guisher is 2n−m, where n is the block size and m is the dimension of the linear
space spanned by the input linear masks in the corresponding ZC linear hull.

At ToSC 2019, Ankele et al. [1] considered the effect of the tweakey on ZC
distinguishers of tweakable block ciphers (TBCs). They showed that taking the
tweakey schedule into account can lead to a longer ZC distinguisher and thus
a longer integral distinguisher. They proposed Theorem 2, which provides an
algorithm to find ZC linear hulls for TBCs following the super-position tweakey
(STK) construction of the tweakey framework [25] (see Figure 2).

Theorem 2 (Ankele et al. [1]). Let EK(T, P ) : Ft×n2 → Fn2 be a TBC follow-
ing the STK construction. Assume that the tweakey schedule of EK has z parallel
paths and applies a permutation h on the tweakey cells in each path. Let (Γ0, Γr)
be a pair of linear masks for r rounds of EK , and Γ1, . . . , Γr−1 represents a pos-
sible sequence for the intermediate linear masks. If there is a cell position i such
that any possible sequence Γ0[i], Γ1[h−1(i)], Γ2[h−2(i)], . . . Γr[h

−r(i)] has at most
z linearly active cells, then (Γ0, Γr) yields a ZC linear hull for r rounds of E.

Ankele et al. used Theorem 2 to manually find ZC linear hulls for several
twekable block ciphers including SKINNY, QARMA [2], and MANTIS [3]. Later,
Hadipour et al. [23] proposed a bitwise automatic method based on SAT to search
for ZC linear hulls of tweakable block ciphers. This automatic method was then
reused by Niu et al. [35] to revisit the ZC linear hulls of SKINNY-64-{128,192}.

2.4 Constraint Satisfaction and Constraint Optimization Problems

A constraint satisfaction problem (CSP) is a mathematical problem including a
set of constraints over a set of variables that should be satisfied. More formally,
a CSP is a triple (X ,D, C), where X = {X0, X1, . . . , Xn−1} is a set of variables;
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D = {D0,D1, . . . ,Dn−1} is the set of domains such that Xi ∈ Di, 0 ≤ i ≤ n− 1;
and C = {C0, C1, . . . , Cn−1} is a set of constraints. Each constraint Cj ∈ C is a
tuple (Sj ,Rj), where Sj = {Xi0 , . . . , Xik−1

} ⊆ X and Rj is a relation on the
corresponding domains, i.e., Rj ⊆ Di0 × · · · × Dik−1

.
Any value assignment of the variables satisfying all constraints of a CSP

problem is a feasible solution. The constraint optimization problem extends the
CSP problem by including an objective function to be minimized (or maximized).
Searching for the solution of a CSP or COP problem is referred to as constraint
programming (CP), and the solvers performing the search are called CP solvers.

In this paper, we use MiniZinc [34] to model and solve the CSP and COP
problems over integer and real numbers. MiniZinc allows modeling the CSP and
COP problems in a high-level and solver-independent way. It compiles the model
into FlatZinc, a standard language supported by a wide range of CP solvers.
For CSP/COP problems over integer numbers, we use Or-Tools [36], and for
CSP/COP problems over real numbers, we employ Gurobi [18] as the solver.

2.5 Encoding Deterministic Truncated Trails

Here, we recall the method proposed in [43] to encode deterministic truncated
differential trails. Thanks to the duality relation between differential and linear
analysis, one can adjust this method for deterministic truncated linear trails;
thus, we omit the details for the linear trails. We define two types of variables
to encode the deterministic truncated differential trails. Assume that ∆X =
(∆X[0], . . . ,∆X[m − 1]) represents the difference of the internal state X in an
n-bit block cipher E, where n = m · c, and ∆X[i] ∈ Fc2 for all i = 0, . . . ,m− 1.
We use an integer variable AX[i] to encode the activeness pattern of ∆X[i] and
another integer variable DX[i] to encode the actual c-bit difference value of ∆X[i]:

AX[i] =


0 ∆X[i] = 0

1 ∆X[i] is nonzero and fixed

2 ∆X[i] can be any nonzero value

3 ∆X[i] can take any value

DX[i] ∈


{0} AX[i] = 0

{1, . . . , 2c−1} AX[i] = 1

{−1} AX[i] = 2

{−2} AX[i] = 3

Then, we link AX[i] and DX[i] for all i = 0, . . . ,m− 1 as follows:

Link(AX[i], DX[i]) :=


if AX[i] = 0 then DX[i] = 0

elseif AX[i] = 1 then DX[i] > 0

elseif AX[i] = 2 then DX[i] = −1

else DX[i] = −2 endif

MiniZinc supports conditional expression ‘if-then-else-endif ’, so we do
not need to convert to integer inequalities. Next, we briefly explain the propa-
gation rules of deterministic truncated differential trails.

Proposition 1 (Branching). For F : Fc2 → F2c
2 , F (X) = (Y, Z) where Z =

Y = X, the valid transitions for deterministic truncated differential trails satisfy

Branch(AX, DX, AY, DY, AZ, DZ) := (AZ = AX ∧ DZ = DX ∧ AY = AX ∧ DY = DX)
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Proposition 2 (XOR). For F : F2c
2 → Fc2, F (X,Y ) = Z where Z = X ⊕ Y ,

the valid transitions for deterministic truncated differential trails satisfy

XOR(AX, DX, AY, DY, AZ, DZ) :=



if AX + AY > 2 then AZ = 3 ∧ DZ = −2

elseif AX + AY = 1 then AZ = 1 ∧ DZ = DX + DY

elseif AX = AY = 0 then AZ = 0 ∧ DZ = 0

elseif DX + DY < 0 then AZ = 2 ∧ DZ = −1

elseif DX = DY then AZ = 0 ∧ DZ = 0

else AZ = 1 ∧ DZ = DX⊕ DY endif

Proposition 3 (S-box). Assume that S : Fc2 → Fc2 is a c-bit S-box and Y =
S(X). The valid transitions for deterministic truncated differential trails satisfy

S-box(AX, AY) :=(AY 6= 1 ∧ AX + AY ∈ {0, 3, 4, 6} ∧ AY ≥ AX ∧ AY− AX ≤ 1)

For encoding the MDS matrices, see [22, B]. To encode non-MDS matrices,
such as the matrix employed in SKINNY, as described in [22, D], we can use the
rules of XOR and branching to encode the propagation.

3 Modeling the Distinguishers

Although the key recovery of ZC and ID attacks are different, the construction
of ZC and ID distinguishers relies on the same approach, which is the miss-in-
the-middle technique [5,6]. The idea is to find two differences (linear masks) that
propagate halfway through the cipher forward and backward with certainty but
contradict each other in the middle. The incompatibility between these propa-
gations results in an impossible differential (resp. unbiased linear hull).

Suppose we are looking for an ID or ZC distinguisher for Ed, which represents
rd rounds of a block cipher E. Moreover, we assume that the block size of E is n
bits, where n = m · c with c being the cell size and m being the number of cells.
We convert the miss-in-the-middle technique to a CSP problem to automatically
find ID and ZC distinguishers. We first divide Ed into two parts, as illustrated in
Figure 3: An upper part Eu covering ru rounds and a lower part El of rl rounds.
Hereafter, we refer to the trails discovered for Eu (El) as the upper (lower) trail.
We denote the internal state of Eu (El) after r rounds by XUr (XLr). The state
XUru (or XL0) at the intersection of Eu and El is called the meeting point.

Let AXUr and AXLr denote the activeness pattern of the state variables XUr
and XLr, as shown in Figure 3. Let DXUr and DXLr denote the actual difference
values in round r of Eu and El. We encode the deterministic truncated differen-
tial trail propagation through Eu and El in opposite directions as two indepen-
dent CSP problems using the rules described in Section 2.5. We exclude trivial
solutions by adding the constraints

∑m−1
i=0 AXU0[i] 6= 0 and

∑m−1
i=0 AXLrl 6= 0. Let

CSPu(AXU0, DXU0, . . . , AXUru , DXUru) be the model for propagation of deterministic
truncated trails over Eu and CSPl(AXL0, DXL0, . . . , AXLrl , DXLrl) for E−1

l .
The last internal state in Eu and the first internal state of El overlap at the

meeting point as they correspond to the same internals state. We define some
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Fig. 3: Modeling the miss-in-the-middle technique as a CSP problem

additional constraints to ensure the incompatibility between the deterministic
differential trails of Eu and El at the position of the meeting point:

CSPM (AXUrl , DXUrl , AXL0, DXL0) :=

m−1∨
i=0

(AXUru [i] + AXL0[i] > 0) ∧
(AXUru [i] + AXL0[i] < 3) ∧
AXUru [i] 6= AXL0[i]

 ∨ m−1∨
i=0

AXUru [i] = 1 ∧
AXL0[i] = 1 ∧
DXUru [i] 6= DXL0[i]

 = True
(6)

The constraints included in CSPM guarantee the incompatibility between the
upper and lower deterministic trails in at least one cell at the meeting point.
Lastly, we define CSPd := CSPu ∧ CSPl ∧ CSPM , which is the union of all three
CSPs. As a result, any feasible solution of CSPd corresponds to an impossible
differential. We can follow the same approach to find ZC distinguishers.

Although we encode the deterministic truncated trails in the same way as [43],
our method to search for distinguishers has some important differences. Sun et al.
[43] solves CSPu and CSPl separately through a loop where the activeness pattern
of a cell at the meeting point is fixed in each iteration. The main advantage of our
model is that any solutions of CSPd corresponds to an ID (or ZC) distinguisher.
In addition, we do not constrain the value of our model at the input/output or
at meeting point. These key feature enables us to extend our model for the key
recovery and build a unified COP for finding the nearly optimum ID and ZC
attacks in the next sections.

We showed how to encode and detect the contradiction in the meeting point.
However, the contradiction may occur in other positions, such as in the tweakey
schedule (see Theorem 2), leading to longer distinguishers. Next, we show how
to generalize this approach to detect the contradiction in the tweakey schedule
while searching for ZC-integral distinguishers according to Theorem 2.

Consider a block cipher E that follows the STK construction with z parallel
independent paths in the tweakey schedule. Assume that E applies the permu-
tation h to shuffle the position of cells in each path of tweakey schedule. Let
STKr[i] be the ith cell of subtweakey after r rounds. For all i = 0, . . . ,m − 1,
we define the integer variable ASTKr[i] ∈ {0, 1, 2, 3}, to indicate the activeness

13



pattern of STKr[i]. Then we define the following constraints to ensure that there
is a contradiction in the tweakey schedule and the condition of Theorem 2 holds:

CSPTK(ASTK0, . . . , ASTKrd−1) :=

m−1∨
i=0




rd−1∑
r=0

bool2int
(
ASTKr[h

−r(i)] 6= 0
)
≤ z

∧
rd−1∨
r=0

(
ASTKr[h

−r(i)] = 1
)

 ∨
(
rd−1∧
r=0

ASTKr[h
−r(i)] = 0

)
(7)

Equation 7 guarantees that at least one path of the tweakey schedule has at most
z active cells, or it is totally inactive. Finally, we create the CSP problem CSPd :=
CSPu ∧ CSPl ∧ CSPTK to find ZC distinguishers of tweakable block ciphers taking
the tweakey schedule into account. According to Equation 7, if the sequence
of linear masks in the involved tweakey lane has z non-zero values, i.e., {1, 2},
then at least one of the taken non-zero values should be 1. We also practically
verified on reduced-round examples that this condition is indeed necessary to
obtain valid ZC-integral distinguishers. This essential condition is ignored in [49];
unfortunately, their claimed distinguishers (and hence their attacks) are invalid.
We contacted the authors of [49], and they confirmed our claim.

In our model for distinguisher, we assume that the round keys are indepen-
dent. Thus, our method regards even those differential or linear propagations over
multiple rounds that cannot occur due to the global dependency between the
round keys as possible propagations. We also consider the S-box as a black box
and do not exploit its internal structure. As a result, regardless of the (twea)key
schedule and the choice of S-box, the ID/ZC/Integral distinguishers discovered
by our method are always valid.

Before extending our models for key recovery, we first show some of the
interesting features of our new model for distinguishers. We can optimize the
desired property by adding an objective function to our CSP models for find-
ing distinguishers. According to Theorem 1, maximizing the number of active
cells at the input of the ZC linear hull is equivalent to minimizing the data
complexity of the corresponding integral distinguisher. Therefore, we maximize
the integer addition of the activeness pattern at the input of the ZC-Integral
distinguisher. Thanks to this feature, we discovered many practical integral dis-
tinguishers for reduced-round Deoxys-BC, SKINNY, SKINNYe-v2, SKINNYee, and
CRAFT. Table 3 briefly describes the specification of our integral distinguishers
for five ciphers. We note that finding integral distinguishers with minimum data
complexity is a challenging task using division property [15, 45] or monomial
prediction [20,24], especially when the block cipher employs large S-boxes. How-
ever, our tool can find integral distinguishers with low data complexity by only
one iteration that takes a few seconds on a regular laptop. For a more detailed
comparison between our method and monomial prediction or division property,
see [22, M].
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Table 3: Summary of integral distinguishers for some ciphers, cell size c ∈ {4, 8}.
Cipher #Rounds Data complexity Ref.

SKINNY-n-n 10 / 11 / 12 25·c / 28·c / 213·c [22, J]
SKINNY-n-2n 12 / 13 / 14 26·c / 29·c / 214·c [22, J]
SKINNY-n-3n 14 / 15 / 16 27·c / 210·c / 215·c [22, J]

SKINNYe-v2 / SKINNYee 16 / 17 / 18 232 / 244 / 264 [22, J]

CRAFT 12 / 13 / 14 / 15 228 / 244 / 256 / 264 [22, K.4]

Deoxys-BC-256 5 / 6 224 / 256 [22, L]
Deoxys-BC-384 6 / 7 232 / 264 [22, L]

4 Modeling the Key Recovery for Impossible Differentials

In this section, we present a generic framework which receives four integer num-
bers (rb, ru, rl, rf) specifying the lengths of each part in Figure 1, and outputs
an optimized full ID attack for r = rb + ru + rl + rf rounds of the targeted block
cipher. To this end, we extend the CSP model for ID distinguishers in Section 3
to make a unified COP model for finding an optimized full ID attack taking all
critical parameters affecting the final complexity into account.

Before discussing our framework, we first reformulate the complexity analysis
of the ID attack to make it compatible with our COP model. Suppose that
the block size is n bits and the key size is k bits. Let N be the number of
pairs generated in the pair generation phase, and P represents the probability
that a wrong key survives the guess-and-filter step. According to Section 2.1,
P = (1 − 2−(cb+cf))N . Let g be the number of key bits we can retrieve through
the guess-and-filter step, i.e., P = 2−g. Since P < 1

2 , we have 1 < g ≤ |kb ∪ kf|.
Assuming that (1−2−(cb+cf))N ≈ e−N ·2−(cb+cf)

, we have N = 2cb+cf+log2(g)−0.53.
Moreover, suppose that LG(g) = log2(g) − 0.53. Therefore, we can reformulate
the complexity analysis of the ID attack as follows:

T0 = max

 min
∆∈{∆b,∆f}

{2
cb+cf+n+1−|∆|+LG(g)

2 },

2cb+cf+n+1−|∆b|−|∆f|+LG(g)

 , T0 < 2n,

T1 = 2cb+cf+LG(g), T2 = 2|kb∪kf|+LG(g), T3 = 2k−g,

Ttot = (T0 + (T1 + T2)CE′ + T3)CE , Ttot < 2k,

Mtot = min
{

2cb+cf+LG(g), 2|kb∪kf|
}
, Mtot < 2k.

(8)

When searching for an optimal full ID attack, we aim to minimize the to-
tal time complexity while keeping the memory and data complexities under the
threshold values. As can be seen in Equation 8, cb, cf, |∆b|, |∆f|, and |kb ∪ kf|,
are the critical parameters which directly affect the final complexity of the ID
attack. To determine (cb, |∆b|), we need to model the propagation of truncated
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differential trails through Eb, taking the probability of all differential cancel-
lations into account. To determine kb, we need to detect the state cells whose
difference or data values are needed through the partial encryption over Eb. The
same applies for partial decryption over E−1

f to determine cf, |∆f|, kf. Moreover,
to determine the actual size of kb ∪ kf, we should take the (twea)key schedule
and key-bridging technique into account.

4.1 Overview of the COP Model

Our model includes several components:

– Model the distinguisher as in Section 3. Unlike the previous methods,
our model imposes no constraints on the input/output of the distinguisher.

– Model the difference propagation in outer parts for truncated trails

∆b
E−1

b←−−− ∆u and ∆l
Ef−→ ∆f with probability one. Unlike our model for the

distinguisher part, where we use integer variables with domain {0, . . . , 3},
here, we only use binary variables to encode active/inactive cells. We also
model the number of filters cb and cf using new binary variables and con-

straints to encode the probability of ∆b
Eb−−→ ∆u and ∆l

E−1
f←−−− ∆f.

– Model the guess-and-determine in outer parts. In this component, we
model the determination relationships over Eb and Ef to detect the state cells
whose difference or data values must be known for verifying the differences
∆u, and ∆l. Moreover, we model the relation between round (twea)keys
and the internal state to detect the (twea)key cells whose values should be
guessed during the determination of data values over Eb, and Ef.

– Model the key bridging. In this component, we model the (twea)key
schedule to determine the number of involved sub-(twea)keys in the key
recovery. For this, we can use the general CP-based model for key-bridging
proposed by Hadipour and Eichlseder in [19], or cipher-dedicated models.

– Model the complexity formulas. In this component, we model the com-
plexity formulas in Equation 8 with the following constraints:

D[0] :=min∆∈{∆b,∆f}{ 1
2
(cb + cf + n+ 1− |∆|+ LG(g))},

D[1] :=cb + cf + n+ 1− |∆b| − |∆f|+ LG(g),

T[0] :=max {D[0], D[1]} , T[0] < n,

T[1] :=cb + cf + LG(g), T[2] := |kb ∪ kf|+ LG(g), T[3] :=k − g,
T :=max{T[0], T[1], T[2], T[3]}, T < k.

(9)

Lastly, we set the objective function to Minimize T.

All variables in our model are binary or integer variables with a limited
domain except for D and T[i] for i ∈ {0, 1, 2, 3} in Equation 9, which are real
numbers. MiniZinc and many MILP solvers such as Gurobi support max, and
min operators. We also precompute the values of LG(g) with 3 floating point
precision for all g ∈ {2, . . . , k}, and use the table feature of MiniZinc to model
LG(g). As a result, our COP model considers all the critical parameters of the
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ID attacks. We recall that the only inputs of our tool are four integer numbers
to specify the lengths of Eb, Eu, El, and Ef. So, one can try different lengths for
these four parts to find a nearly optimal attack. We can also modify the objective
function of our model to minimize the data or memory complexities where time
or any other parameter is constrained. One can extend this single-tweakey model
for the related-tweakey setting, as we will show next.

4.2 Detailed model for SKINNY

Next, we show in more detail how to perform each step. To this end, we build
the COP model for finding full related-tweakey ID attacks on SKINNY as an
example. We choose the largest variant of SKINNY, i.e., SKINNY-n-3n with cell
size c ∈ {4, 8} to explain our model (see [22, C] for the cipher specification).
In what follows, given four integer numbers rb, ru, rl, rf, we model the full ID
attack on r = rb + ru + rl + rf rounds of SKINNY, where rd = ru + rl is the
length of the distinguisher and rb, and rf are the lengths of extended parts in
backward and forward directions, respectively.

Model the distinguisher We first model the difference propagation through
the tweakey schedule of SKINNY. For the tweakey schedule of SKINNY, we
can either use the word-wise model proposed in [3] or a bit-wise model (see
algorithm 1). Here, we explain the bit-wise model. The tweakey path of TK1
only shuffles the position of tweakey cells in each round. Thus, for tweakey path
TK1, we only define the integer variable DTK1[i] to encode the c-bit difference
in the ith cell of TK1. For tweakey path TKm, where m ∈ {2, 3}, we define
the integer variables DTKmr[i] to encode the c-bit difference value in the ith cell
of TKmr, where 0 ≤ i ≤ 15. We also define the integer variables ASTKr[i] and
DSTKr[i] to encode the activeness pattern as well as the c-bit difference value in
the ith cell of STKr. Our CSP model for the tweakey schedule of SKINNY is a
bit-wise model. We use the table feature of MiniZinc to encode the LFSRs. To
this end, we first precompute the LFSR as a lookup table and then constrain the
variables at the input/output of LFSR to satisfy the precomputed lookup table.
This approach is applicable for encoding any function that can be represented
as an integer lookup table, such as DDT/LAT of S-boxes. We tested word-wise
and bit-wise models and found the word-wise model more efficient.

In the data path of SKINNY, SubCells, AddRoundTweakey, and MixColumns
can change the activeness pattern of the state while propagating the determinis-
tic differences. Thus, for the internal state before and after these basic operations,
we define two types of variables to encode the activeness pattern and difference
value in each state cell. Next, as described in algorithm 2 and [22, algorithm
6], we build CSPu and CSPl. We also build the CSPM according to Equation 6.
The combined CSP model is CSPd := CSPu ∧ CSPl ∧ CSPM ∧ CSPDTK . Hence,
any feasible solution of CSPd corresponds to a related-tweakey ID distinguisher
for SKINNY-n-3n. By setting DTK30 in algorithm 1 to zero, we can find related-
tweakey ID distinguishers for SKINNY-n-2n. We can also set DTK1, DTK20, DTK30

in algorithm 1 to zero to find single-tweakey ID distinguishers of SKINNY.
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Algorithm 1: CSP model for the tweakey schedule of SKINNY

Input: Four integer numbers (rb, ru, rl, rf)
Output: CSPDTK

1 R← rb + ru + rl + rf − 1;
2 Declare an empty CSP model M;
3 M.var← {DTK1[i] ∈ {0, . . . , 2c − 1} : 0 ≤ i ≤ 15};
4 M.var← {DTK2r[i] ∈ {0, . . . , 2c − 1} : 0 ≤ r ≤ R, 0 ≤ i ≤ 15};
5 M.var← {DTK3r[i] ∈ {0, . . . , 2c − 1} : 0 ≤ r ≤ R, 0 ≤ i ≤ 15};
6 M.var← {ASTKr[i] ∈ {0, 1} : 0 ≤ r ≤ R, 0 ≤ i ≤ 7};
7 M.var← {DSTKr[i] ∈ {0, . . . , 2c − 1} : 0 ≤ r ≤ R, 0 ≤ i ≤ 7};
8 for r = 0, . . . , R; i = 0, . . . , 7 do
9 M.con← Link(ASTKr[i], DSTKr[i]);

10 for r = 1, . . . , R; i = 0, . . . 15 do
11 if i ≤ 7 then
12 M.con← table([DTK2r−1[h(i)], DTK2r[i]], lfsr2);
13 M.con← table([DTK3r−1[h(i)], DTK3r[i]], lfsr3);

14 else
15 M.con← DTK2r[i] = DTK2r−1[h(i)];
16 M.con← DTK3r[i] = DTK3r−1[h(i)];

17 for r = 0, . . . , R; i = 0, . . . 7 do
18 M.con← DSTKr[i] = DTK1[hr(i)]⊕ DTK2r[i]⊕ DTK3r[i];

19 returnM;

The first operation in the round function of SKINNY is SubCells. However, we
can consider the first SubCells layer as a part of Eb and start the distinguisher
after it. This way, our model takes advantage of the differential cancellation over
the AddRoundTweakey and MixColumns layers to derive longer distinguishers. It
happens if the input differences in the internal state (or tweakey paths) are fixed
and can cancel out each other through AddRoundTweakey or MixColumns. In this
case, we skip the constraints in line 14 of algorithm 2 for the first round, r = 0.

Model the difference propagation in outer parts To model the determin-

istic difference propagations ∆b
E−1

b←−−− ∆u, and ∆l
Ef−→ ∆f, we define a binary

variable for each state cell to indicate whether its difference value is zero. Since
the SubCells layer does not change the status of state cells in terms of having
zero/nonzero differences, we ignore it in this model.

To model the probability of difference propagations ∆b
Eb−−→∆u, and ∆l

E−1
f←−−−

∆f, note that there are two types of probabilistic transitions. The first type
is differential cancellation through an XOR operation. The second type is any

differential transition (truncated
S−→ fixed) for S-boxes; this is only considered

at the distinguisher’s boundary, at the first S-box layer of Ef or the last of Eb.
Let Z = X ⊕ Y , where X,Y, Z ∈ Fc2. Let AX, AY, AZ ∈ {0, 1} indicate whether

the difference of X,Y, Z are zero. We define the new constraint XOR1 to model
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Algorithm 2: CSPu for upper trail in distinguisher of SKINNY

Input: CSPDTK .var and the integer numbers rb, ru
Output: CSPu

1 roff ← rb;
2 Declare an empty CSP model M;
3 M.var← CSPDTK .var;
4 M.var← {AXUr[i] ∈ {0, 1, 2, 3} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};
5 M.var← {DXUr[i] ∈ {−2, . . . , 2c − 1} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};
6 M.var← {AYUr[i] ∈ {0, 1, 2, 3} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};
7 M.var← {DYUr[i] ∈ {−2, . . . , 2c − 1} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};
8 M.var← {AZUr[i] ∈ {0, 1, 2, 3} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};
9 M.var← {DZUr[i] ∈ {−2, . . . , 2c − 1} : 0 ≤ r ≤ ru, 0 ≤ i ≤ 15};

10 M.con←
∑15
i=0 AXU0[i] +

∑15
i=0 DTK1[i] +

∑15
i=0 DTK20 +

∑15
i=0 DTK30[i] ≥ 1;

11 for r = 0, . . . , ru − 1, i = 0, . . . , 15 do
12 M.con←Link(AXUr[i],DXUr[i])∧Link(AYUr[i],DYUr[i])∧Link(AZUr[i],DZUr[i]);

13 for r = 0, . . . , ru − 1, i = 0, . . . , 15 do
14 M.con← S-box(AXUr[i], AYUr[i]);

15 for r = 0, . . . , ru − 1, i = 0, . . . , 7 do
16 M.con← XOR(AXUr[i], DXUr[i], ASTKroff+r[i], DSTKroff+r[i], AZUr[i], DZUr[i]);
17 M.con← (AZUr[i+ 8] = AYUr[i+ 8]) ∧ (DZUr[i+ 8] = DYUr[i+ 8]);

18 for r = 0, . . . , ru − 1, i = 0, . . . , 3 do
19 I1 ← [AZUr[P [i]], AZUr[P [i+ 4]], AZUr[P [i+ 8]], AZUr[P [i+ 12]]];
20 I2 ← [DZUr[P [i]], DZUr[P [i+ 4]], DZUr[P [i+ 8]], DZUr[P [i+ 12]]];
21 O1 ← [AXUr+1[i], AXUr+1[i+ 4], AXUr+1[i+ 8], AXUr+1[i+ 12]];
22 O2 ← [DXUr+1[i], DXUr+1[i+ 4], DXUr+1[i+ 8], DXUr+1[i+ 12]];
23 M.con← Mdiff (I1, I2, O1, O2);

24 returnM;

the difference propagation with probability one through XOR:

XOR1(AX, AY, AZ) := (AZ ≥ AX) ∧ (AZ ≥ AY) ∧ (AZ ≤ AX + AY) (10)

We define a binary variable CBr[i] (CFr[i]) for each XOR operation in the rth
round of Eb (resp. Ef) to indicate whether there is a difference cancellation
over the corresponding XOR, where 0 ≤ i ≤ 19. We also define the following
constraint to encode the differential cancellation for each XOR operation:

XORp(AX, AY, AZ, CB) := if (AX + AY = 2 ∧ AZ = 0) then CB = 1 else CB = 0 (11)

Algorithm 3 and [22, algorithm 7] describe our model for difference propagation

over Eb and Ef. We combine CSP
dp
b and CSP

dp
f into CSPDP := CSP

dp
b ∧ CSP

dp
f to

model the difference propagation through the outer parts.

Model the guess-and-determine in outer parts We now detect the state
cells whose difference or value is needed for the filters in ∆b → ∆u and ∆l ← ∆f.
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Algorithm 3: CSPdpb difference propagation through Eb for SKINNY

Input: CSPDTK .var, CSPu.var and the integer number rb
Output: CSPdpb

1 Declare an empty CSP model M;
2 M.var← CSPDTK .var;
3 M.var← {AXBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb, 0 ≤ i ≤ 15};
4 M.var← {AZBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 15};
5 M.var← {CBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 19};
6 for i = 0, . . . , 15 do
7 M.con← if AXU0[i] ≥ 1 then AXBrb [i] = 1 else AXBrb [i] = 0;

8 for r = 0, . . . , rb − 1, i = 0, . . . , 3 do

9 M.con← Minvdiff1




AXBr+1[i]
AXBr+1[i+ 4]
AXBr+1[i+ 8]
AXBr+1[i+ 12]

 ,


AZBr[P [i]]

AZBr[P [i+ 4]]
AZBr[P [i+ 8]]
AZBr[P [i+ 12]]


;

10 M.con← XORp(AZBr[P [i+ 4]], AZBr[P [i+ 8]], AXBr+1[i+ 8], CBr[i]);
11 M.con← XORp(AZBr[P [i]], AZBr[P [i+ 8]], AXBr+1[i+ 12], CBr[i+ 4]);
12 M.con← XORp(AXBr+1[i+ 12], AZBr[P [i+ 12]], AXBr+1[i], CBr[i+ 8]);

13 for r = 0, . . . , rb − 1, i = 0, . . . , 7 do
14 M.con← XOR1(AZBr[i], ASTKr[i], AXBr[i]);
15 M.con← XORp(AXBr[i], ASTKr[i], AZBr[i], CBr[i+ 12]);
16 M.con← (AXBr[i+ 8] = AZBr[i+ 8]);

17 returnM;

We first discuss detecting the state cells whose difference values are needed.
The difference value in a state cell is needed if the corresponding state cell con-
tributes to a filter, i.e., a differential cancellation. We know that AddRoundTweakey
and MixColumns are the only places where a differential cancellation may occur.
We thus define the binary variables KDXBr[i] and KDZBr[i] to indicate whether the
difference value of Xr[i] and Zr[i] over Eb should be known. We recall that the
difference cancellation through each XOR over Eb is already encoded by CBr[i]. If
CBr[i] = 1, then the difference value in the state cells contributing to this differ-
ential cancellation is needed. For instance, if CBr[i] = 1, then KDZBr[P [i+ 4]] = 1
and KDZBr[P [i+ 4]] = 1, where 0 ≤ i ≤ 3 and 0 ≤ r ≤ ru − 1. Besides detecting
the new state cells whose difference values are needed in each round, we encode
the propagation of this property from the previous rounds, as in lines 14–17 of
algorithm 4. We also define new constraint (line 11) to link the beginning of
Eu to the end of Eb. For Ef, we also define new binary variables KDXFr[i] and
KDZFr[i] to indicate whether the difference values of Xr[i] and Zr[i] are needed.
Then, we follow a similar approach to model the determination of difference
values.

When modeling the determination of data values, SubCells comes into effect.
We explain modeling the determination of data values over S-boxes in Eb; a
similar model can be used for Ef. Suppose that Yr[i] = S(Xr[i]), and the value
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Algorithm 4: CSPgdb guess-and-determine through Eb for SKINNY

Input: CSPu.var, CSPdpb and the integer number rb
Output: CSPgdb

1 Declare an empty CSP model M;

2 M.var← CSPu.var ∪ CSP
dp
b .var;

3 M.var← {KDXBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb, 0 ≤ i ≤ 15};
4 M.con← {KDXBr[i] ≤ AXBr[i] : 0 ≤ r ≤ rb, 0 ≤ i ≤ 15};
5 M.var← {KDZBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 15};
6 M.con← {KDZBr[i] ≤ AZBr[i] : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 15};
7 M.var← {KXBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb, 0 ≤ i ≤ 15};
8 M.var← {KYBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 15};
9 M.var← {IKBr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ 15};

10 for i = 0, . . . , 15 do
11 M.con← if AXU0[i] = 1 then KDXBrb [i] = 1 else KDXBrb [i] = 0;
12 M.con← if AYU0[i] = 1 then KXBrb [i] = 1 else KXBrb [i] = 0;

13 for r = 0, . . . , rb − 1, i = 0, . . . , 3 do

14 M.con← if KDXBr+1[i] = 1 then

KDZBr[P [i]] = AZBr[P [i]]∧
KDZBr[P [i+ 8]] = AZBr[P [i+ 8]]∧
KDZBr[P [i+ 12]] = AZBr[P [i+ 12]]

;

15 M.con← if KDXBr+1[i+ 4] = 1 then KDZBr[P [i]] = AZBr[P [i]];

16 M.con← if KDXBr+1[i+ 8] = 1 then

(
KDZBr[P [i+ 4]] = AZBr[P [i+ 4]]∧
KDZBr[P [i+ 8]] = AZBr[P [i+ 8]]

)
;

17 M.con← if KDXBr+1[i+ 12] = 1 then

(
KDZBr[P [i]] = AZBr[P [i]] ∧
KDZBr[P [i+ 8]] = AZBr[P [i+ 8]]

)
;

18 M.con← if CBr[i] = 1 then (KDZBr[P [i+ 4]] = 1 ∧ KDZBr[P [i+ 8]] = 1);
19 M.con← if CBr[i+ 4] = 1 then (KDZBr[P [i]] = 1 ∧ KDZBr[P [i+ 8]] = 1);

20 M.con← if CBr[i+ 8] = 1 then

KDZBr[P [i]] = AZBr[P [i]] ∧
KDZBr[P [i+ 8]] = AZBr[P [i+ 8]] ∧
KDZBr[P [i+ 12]] = 1

;

21 M.con← Minvdata




KXBr+1[i]
KXBr+1[i+ 4]
KXBr+1[i+ 8]
KXBr+1[i+ 12]

 ,


KYBr[P [i]]

KYBr[P [i+ 4]]
KYBr[P [i+ 8]]
KYBr[P [i+ 12]]


;

22 for r = 0, . . . , rb − 1, i = 0, . . . , 7 do
23 M.con← KDXBr[i] ≥ KDZBr[i];
24 M.con← KDXBr[i+ 8] = KDZBr[i+ 8];
25 M.con← if CBr[i+ 12] = 1 then KDXBr[i] = 1;
26 M.con← (IKBr[i] = KYBr[i] ∧ IKBr[i+ 8] = 0);

27 for r = 0, . . . , rb − 1, i = 0, . . . , 15 do
28 M.con← S-boxgd(KYBr[i], KXBr[i], KDXBr[i]);

29 returnM;
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of ∆Xr is known. If we want to determine the value of ∆Yr[i], e.g., to check a
filter, we need to know the value of Xr[i]. Accordingly, we need the value of Xr[i]
if either we want to determine Yr[i], or we want to determine ∆Yr[i]. On the
other hand, if neither data nor difference values after the S-box is needed, we do
not need to know the data value before the S-box. Therefore, we define binary
variables KXBr[i] and KYBr[i] to indicate whether the values of Xr[i] and Yr[i] are
needed. Then, we model the determination flow over the S-boxes as follows:

S-boxgd(KXBr[i], KYBr[i], KDXBr[i]) :=

{
(KYBr[i] ≥ KXBr[i]) ∧ (KYBr[i] ≥ KDXBr[i])∧
(KYBr[i] ≤ KXBr[i] + KDXBr[i])

We also model MixColumns according to [22, Equation 16] when encoding the
determination of data values over Eb and Ef.

We now explain how to detect the subtweakey cells that are involved in the
determination of data values. Let IKBr[i] be a binary variable that indicates
whether the ith cell of subtweakey in the rth round of Eb is involved, where
0 ≤ r ≤ rb − 1 and 0 ≤ i ≤ 15. One can see that IKBr[i] = 1 if and only if i ≤ 7
and KYBr[i] = 1. Otherwise IKBr[i] = 0. We define binary variables IKFr[i] to
encode the involved subtweakey in Ef similarly. Algorithm 4 and [22, algorithm
8] describe our CSP models for the guess-and-determine through Eb and Ef. We

refer to CSPGD := CSP
gd
b ∧ CSPgdf as our CSP model for the guess-and-determine

through the outer parts.

Model the key bridging Although the subtweakeys involved in Eb and Ef

are separated by rd rounds, they may have some relations due to the tweakey
schedule. Guessing the values of some involved key cells may determine the
value of others. Key-bridging uses the relations between subwteakeys to reduce
the number of actual guessed key variables. We can integrate the generic CSP
model for key-bridging over arbitrary tweakey schedules introduced in [19] into
our model. However, the tweakey schedule of SKINNY is linear, and we provide a
more straightforward method to model the key-bridging of SKINNY. We explain
our model for SKINNY-n-3n; it can easily be adapted for the smaller variants.

For the ith cell of subtweakey after r rounds, we have STKr[i] = TK1[hr(i)]⊕
LFSRr2(TK1[hr(i)])⊕LFSRr3(TK3[hr(i)]). Accordingly, knowing STKr[h

−r(i)]
in 3 rounds yields 3 independent equations in variables TK1[i],TK2[i],TK3[i],
which uniquely determine the master tweakey cells TK1[i],TK2[i], and TK3[i].
Hence, we do not need to guess STKr[h

−r(i)] for more than 3 different rs. To take
this fact into account, we first define new integer variables IK ∈ {0, . . . , rb + rf−
1}, KE ∈ {0, 1, 2, 3}, and KS ∈ {0, . . . , 48}. Then, assuming that roff = rb +ru +rl
and z = 3, we use the following constraints to model the key-bridging:

CSPKB :=


IK[i] =

rb−1∑
r=0

IKBr[h
−r(i)] +

rf−1∑
r=0

IKFr[h
−(roff+r)(i)] for 0 ≤ i ≤ 15,

if IK[i] ≥ z then KE[i] = z else KE[i] = IK[i] for 0 ≤ i ≤ 15,

KS =

15∑
i=0

KE[i]

(12)
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Model the complexity formulas We now show how to combine all CSP
models and model the complexity formulas. The variable KS in Equation 12
determines the number of involved key cells, corresponding to |kb ∪ kf| = c · KS
involved key bits for cell size c. We can model the other critical parameters of
the ID attack as shown in algorithm 5. We combine all CSP problems into a
unified model and define an objective function to minimize the time complexity
of the ID attack.

Results We applied our method to find full ID attacks on all variants of SKINNY
in both single and related-tweakey settings. Our model includes integer and
real variables, so we used Gurobi to solve the resulting COP problems. Table 1
shows our results. Our ID attacks’ time, date, and memory complexity are much
smaller than the best previous ID attacks. Notably, the time complexity of our
19-round single-tweakey ID attack on SKINNY-128-256 ( [22, Figure 8], details

Algorithm 5: COP model for the full ID attack on SKINNY

Input: Four integer numbers rb, ru, rl, rf
Output: COP

1 Declare an empty COP model M;
2 M← CSPd ∧ CSPDP ∧ CSPGD ∧ CSPKB;
3 M.var← g ∈ {1, . . . , z · 16 · c} ; /* Corresponding to parameter g */

4 M.var← Cb ∈ {0, . . . , 20 · rb + 16} ; /* Corresponding to cb */

5 M.var← Cf ∈ {0, . . . , 20 · rf + 16} ; /* Corresponding to cf */

6 M.var← Wb ∈ {0, . . . , 16} ; /* Corresponding to |∆b| */
7 M.var← Wf ∈ {0, . . . , 16} ; /* Corresponding to |∆f| */
8 M.var← {D[i] ∈ [0, z · 16 · c] : i ∈ {0, 1, 2, 3}} ; /* For data complexity */

9 M.var← {T[i] ∈ [0, z · 16 · c] : i ∈ {0, 1, 2, 3}} ; /* For time complexity */

10 M.var← Tmax ∈ [0, z · 16 · c];

11 M.var← Cb =
∑rb−1
r=1

∑19
i=0 CBr[i] +

∑15
i=0 KXBrb [i];

12 M.var← Cf =
∑rf−2
r=0

∑19
i=0 CFr[i] +

∑7
i=0 CFrf−1[i] +

∑15
i=0 KXF0[i];

13 M.var← Wb =
∑15
i=0 AXB1[i];

14 M.var← Wf =
∑15
i=0 AXFrf−1[i];

15 M.con← D[0] = 0.5 · (c(Cb + Cf) + n− c · Wb + LG(g) + 2);
16 M.con← D[1] = 0.5 · (c(Cb + Cf) + n− c · Wf + LG(g) + 2);
17 M.con← D[2] = min(D[0], D[1]);
18 M.con← D[3] = c · (Cb + Cf) + n + 1− c · (Wb + Wf) + LG(g);
19 M.con← T[0] = max(D[2], D[3]);
20 M.con← T[1] = c · (Cb + Cf) + LG(g);
21 M.con← T[2] = c · KS ; /* Corresponding to |kb ∪ kf| */
22 M.con← T[3] = k− g;
23 M.con← g ≤ T [2];
24 M.con← Tmax = max(T [0], T [1], T [2], T [3]);
25 M.con← (T[0] < n ∧ Tmax < k);
26 M.obj← Minimize Tmax;
27 returnM;
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in [22, F.2]) is smaller by a factor of 222.57 compared to the best previous one [48].
As another example, we improved the time complexity of the related-tweakey
ID attack on SKINNY-128-384 by a factor of 215.39 [22, Figure 10], with smaller
data and memory complexity than the best previous one [28]. Our tool can
discover the longest ID distinguishers for SKINNY so far in both single and
related-tweakey settings. However, we noticed that the best ID attacks do not
necessarily rely on the longest distinguishers. For instance, our single-tweakey
ID attacks on SKINNY use 11-round distinguishers, whereas our tool also finds
12-round distinguishers.

We also applied our tool to CRAFT and SKINNYee. On CRAFT, we found
a 21-round ID attack which is 2 rounds longer than the best previous single-
tweakey attack presented at ASIACRYPT 2022 [41]. For SKINNYee, we found
a 27-round related-tweakey ID attack. Our tool can produce all the reported
results on a laptop in a few seconds. Besides improving the security evaluation
against ID attacks, our tool can significantly reduce human effort and error.

We also used our tool to check the validity of the previous results. To do so, we
fix the activeness pattern in our model to that at the input/output of the claimed
distinguisher. Moreover, we constrain the time, memory, and data complexities
to the claimed bounds. An infeasible model indicates potential issues with the
claimed attack. We manually check the attack to find the possible issue in this
case. If the model is feasible, we match the claimed critical parameters with the
output of our tool. In case of any mismatch, we manually check the corresponding
parameter in the claimed attack to ensure it is calculated correctly.

We followed this approach to check the validity of the ID attacks on SKINNY
proposed in [46]. For example, our tool returns ‘unsatisfiable’ when we limit it to
find a 22-round ID attack on SKINNY-n-3n with the claimed parameters in [46].
To figure out the issue, we relax the time/memory/data complexity bounds
and only fix the activeness pattern according to the claimed distinguisher. This
way, our tool returns different attack parameters compared to the claimed ones.
According to [46, Sec. 6], cb +cf is supposed to be 18c for 22-round ID attack on
SKINNY-n-3n with cell size c. However, our tool returns cb = 6c and cf = 15c,
and thus cb+cf = 21c. Accordingly, the actual probability that a wrong tweakey
is discarded with one pair is about 2−21c. So, the 22-round ID attack on SKINNY-
n-3n in [46] requires more data and thus time by a factor of 23c. The time
complexity of the 22-round ID attack on SKINNY-64-192 (SKINNY-128-384) in
[46] is 2183.97 (resp. 2373.48). As a result, the corrected attack requires more time
than the exhaustive search. We also checked the 20-round ID attacks on SKINNY-
n-2n in [46]. We noticed that a similar issue makes the corrected attack require
more data than the full codebook or more time than the exhaustive search. We
contacted the authors of [46], and they confirmed our claim.

5 Modeling the Key Recovery of ZC and Integral Attacks

Similar to our approach for ID attacks, we can extend our models for the ZC
and integral distinguishers to make a unified model for finding full ZC and ZC-
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Fig. 4: ID attack on 19 rounds of SKINNY-n-2n, |kb ∪ kf| = 26 · c, cb = 6 · c,
cf = 15 · c, ∆b = 7 · c, ∆f = 16 · c
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based integral attacks. One of the critical parameters in the key recovery of
ZC and integral attacks is the number of involved key cells in the outer parts.
Another effective parameter is the number of involved state cells through the
outer parts. Thus, we should consider these parameters when modeling the key
recovery of the ZC and integral attacks. Moreover, the meet-in-the-middle and
partial-sum techniques are essential to reduce the time complexity of integral
attacks. Therefore, taking these techniques into account, we provide a generic
CP model for key recovery of ZC and ZC-based integral attacks as follows:

– Model the distinguisher as described in Section 3.

– Model the guess-and-determine part by modeling the value paths in
the outer part and detecting the state/key cells whose values are needed in
key recovery.

– Model the key bridging for the key recovery.

– Model the meet-in-the-middle technique for the key recovery of inte-
gral attacks.

– Set the objective function to minimize the final time complexity, keeping
the data and memory complexities under the thresholds.

We only describe modeling the meet-in-the-middle technique. Other modules
can be constructed similarly to our models for ID attacks. Given that there is
no restriction for the output of ZC-integral distinguishers in our model, some
ZC-integral distinguishers might have more than one balanced output cell. With
more than one balanced cell, we might be able to use the meet-in-the-middle
(MitM) technique [39] to reduce the time complexity. For example, we can use
MitM if the ZC-integral distinguisher of SKINNY has two active output cells
in one column, indicating that the sum of these cells is balanced. Then, we can
recover the integral sums of these two cells for any keyguess separately and merge
compatible key guesses that yield the same sum, i.e., that sum to zero overall.

To consider the MitM technique, we model the path values for each output
cell of the distinguisher separately in an independent CP submodel. We also
define a new integer variable to capture the number of involved key cells in each
path. For example, our CP model for integral attacks on SKINNY splits into
16 submodels for the appended rounds after the distinguisher. Each submodel
aims at encoding the involved cells in retrieving a certain output cell of the
distinguisher. We note that these submodels, together with our CP model for
distinguisher, are all combined into one large unified CP model. This way, we
can encode and then minimize the complexity of the most critical path, which
requires the maximum number of guessed keys in the guess-and-filter step. Sim-
ilarly to our CP model for ID attacks, our model for ZC and integral attack
receives only four integer numbers as input and returns the full ZC or ZC-based
integral attack.

We solve our CP models for integral attacks in two steps with two different
objective functions:

– We first solve a CP model to minimize the number of involved key cells.
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– Next, we limit the number of involved key cells to the output of the previous
step and solve the CP model with the objective of maximizing the number
of active cells at the input of ZC-integral distinguisher.

As a result, besides reducing the time complexity, we can reduce the data com-
plexity of the resulting integral attacks. To compute the exact final complexity,
we introduce an additional helper tool, AutoPSy, which automates the partial-
sum technique [17], and apply it as a post-processing step to the CP output.
AutoPSy optimizes the column order in each round of partial-sum key recovery.

We applied our unified framework for finding full ZC and integral attacks
to CRAFT, SKINNYe-v2, SKINNYee, and all variants of SKINNY and obtained
a series of substantially improved results. Table 1 briefly describes our results.
More details on our ZC and integral attacks can be found in [22, G, H, I.3]. As
can be seen in [22, Figures 14, 15, 19], the inputs of the corresponding ZC dis-
tinguishers have 4 active cells, and the outputs have 2 active cells. The previous
tools which fix the input/output linear masks to vectors with at most one active
cell can not find such a distinguisher.

Our CP models for ZC and integral attacks include only integer variables.
Thus, we can take advantage of all integer programming (IP) solvers. We used
Or-Tools in this application, and running on a regular laptop, our tool can find
all the reported results in a few seconds.

When reproducing the best previous results on SKINNY with our automatic
tool, we again noticed some issues in previous works. The previous ZC-integral
attacks on SKINNY proposed by Ankele et al. at ToSC 2019 [1] have some minor
issues where the propagation in the key recovery part is incorrect. For example,
in the 20-round TK2 attack in [1, Figure 20] between X18, Y18, the last row is not
shifted; in the 23-round TK3 attack in [1, Figure 22], the mixing between Y20, Z20

is not correct. In both cases, this impacts the correctness of all following rounds.
However, the attacks can be fixed to obtain similar complexities as claimed.

The comparison with those attacks highlights three advantages of our auto-
mated approach: (1) Our approach is much less prone to such small hard-to-spot
errors; (2) Our approach can find distinguishers with many active input cells
(rather than just one as classical approaches), which is particularly helpful in
ZC-integral attacks where a higher input weight implies a lower data complex-
ity; (3) Our approach optimizes the key recovery together with the distinguisher,
which together with (2) allows us to attach more key-recovery rounds (7 vs. 5
for TK2 in [1], 9 vs. 7 for TK3 in [1]).

6 Conclusion and Future Works

In this paper, we presented a unified CP model to find full ID, ZC, and ZC-
based integral attacks for the first time. Our frameworks are generic and can be
applied to word-oriented block ciphers. To show the effectiveness and usefulness
of our approach, we applied it to CRAFT, SKINNYe-v2, SKINNYee, and all mem-
bers of the SKINNY family of block ciphers. In all cases, we obtained a series
of substantially improved results compared to the best previous ID, ZC, and
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integral attacks on these ciphers. Our tool can help the cryptanalysts and the
designers of block ciphers to evaluate the security of block ciphers against three
important attacks, i.e., ID, ZC, and ZC-based integral attacks, more accurately
and efficiently. While we focused on the application to SPN block ciphers, it is
also applicable to Feistel ciphers. Applying our approach to other block ciphers
such as AES or Feistel ciphers is an interesting direction for future work.

Our improved results show the advantage of our method. However, it also has
some limitations. Our CP model for the distinguisher part detects the contradic-
tions in the level of words and does not exploit the internal structure of S-boxes
(i.e., DDT/LAT) to consider bit-level contradictions. Thus, one interesting fu-
ture work is to provide a unified model considering bit-level contradictions. We
note that our CP framework for ID, ZC, and integral attacks is modular. The
key-recovery part of our CP model can be combined with other CP-based meth-
ods for finding distinguishers. For example, regardless of the distinguisher part,
one can feed our CP model for the key-recovery part by a set of input/output ac-
tiveness patterns for the distinguisher part to find the activeness pattern yielding
the best key-recovery attack. Next, one can use a more fine-grained CP model
that detects bit-level contradictions to check if the selected activeness pattern
yields an ID or ZC distinguisher. We recall that in CP models, we can specify
a set of input/output activeness patterns by a set of constraints, and we do not
have to enumerate all possible input/output activeness patterns. Currently, our
tool automatically applies the partial-sum technique as a post-processing step in
integral attacks for a refined complexity analysis. Thus, another interesting fu-
ture work is integrating the partial-sum technique into our CP model for integral
attacks. This way, one may be able to improve the integral attacks further.
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