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Abstract. Decentralized multi-authority attribute-based encryption
(MA-ABE) is a distributed generalization of standard (ciphertext-policy)
attribute-based encryption where there is no trusted central authority:
any party can become an authority and issue private keys, and there is
no requirement for any global coordination other than the creation of an
initial set of common reference parameters.

We present the first multi-authority attribute-based encryption schemes
that are provably fully-adaptively secure. Namely, our construction is se-
cure against an attacker that may corrupt some of the authorities as well
as perform key queries adaptively throughout the life-time of the system.
Our main construction relies on a prime order bilinear group where the
k-linear assumption holds as well as on a random oracle. Along the way,
we present a conceptually simpler construction relying on a composite
order bilinear group with standard subgroup decision assumptions as
well as on a random oracle.

Prior to this work, there was no construction that could resist adaptive
corruptions of authorities, no matter the assumptions used. In fact, we
point out that even standard complexity leveraging style arguments do
not work in the multi-authority setting.

1 Introduction

Attribute-based encryption schemes [41}22] allow fine-grained access control
when accessing encrypted data: Such encryption schemes support decryption
keys that allow users that have certain credentials (or attributes) to decrypt cer-
tain messages without leaking any additional information. Over the years, the
challenge of designing ABE schemes has received tremendous attention resulting
in a long sequence of works achieving various trade-offs between expressiveness,
efficiency, security, and underlying assumptions.

Multi-Authority Attribute-Based Encryption: In ABE schemes, restricted
decryption keys can only be generated and issued by a central authority who pos-
sesses the master secret key. Chase [10] introduced the notion of multi-authority



ABE (MA-ABE) which allows multiple parties to play the role of an author-
ity. More precisely, in an MA-ABE, there are multiple authorities which control
different attributes and each of them can issue secret keys to users possessing
attributes under their control without any interaction with the other authorities
in the system. Given a ciphertext generated with respect to some access pol-
icy, a user possessing a set of attributes satisfying the access policy can decrypt
the ciphertext by pulling the individual secret keys it obtained from the various
authorities controlling those attributes.

After few initial attempts [10,32,|34/11,135] that had various limitations,
Lewko and Waters [30] were able to design the first truly decentralized MA-ABE
scheme in which any party can become an authority and there is no requirement
for any global coordination other than the creation of an initial trusted setup. In
their scheme, a party can simply act as an authority by publishing a public key
of its own and issuing private keys to different users that reflect their attributes.
Different authorities need not even be aware of each other and they can join the
system at any point of time. There is also no bound on the number of attribute
authorities that can ever come into play during the lifetime of the system. Their
scheme supports all access policies computable by NC! circuits. Furthermore,
utilizing the powerful dual system technique [45], security is proven assuming a
composite order bilinear group with “subgroup decision”-style assumptions and
in the random oracle model.

Following Lewko and Waters [30] there were several extensions and improve-
ments. Okamoto and Takashima [38] gave a construction over prime order bi-
linear groups relying on the decision-linear (DLIN) |7] assumption. Rouselakis
and Waters |40] and Ambrona and Gay [2] provided efficiency improvements
but provide weaker security guarantees and/or used the less standard g¢-type
assumptions and the generic group model (GGM) respectively. Datta et al. [14]
gave the first Learning With Errors (LWE)-based construction supporting a non-
trivial class of access policies. All of the above are in the random oracle model.
Very recently, Waters, Wee, and Wu [48] gave a construction (for the same class
of policies as [14]) whose security can be based in the plain model without ran-
dom oracles, relying on the recently-introduced evasive LWE assumption [49}/43]
which is a very strong knowledge type assumption.

Security: The natural MA-ABE security definition requires the usual collu-
sion resistance against unauthorized users with the important difference that
now some of the attribute authorities may be corrupted and therefore may col-
lude with the adversarial users. While some constructions support adaptive key
queries, there is no known construction, under any assumption, which supports
fully adaptive corruption of authorities. Given the distributed nature of
MA-ABE it seems unsatisfying to assume that an attacker commits on a cor-
rupted set of authorities at the beginning of the security game, even before
seeing any secret key. Indeed, in reality we do not even expect all attribute
authorities to join the system at the same time. Therefore, we argue that the
“static corruptions” model that previous works have considered does not capture



realistic attack scenarios, and we therefore ask whether it is possible to improve
it by supporting adaptive corruption of authorities.

We emphasize that getting fully adaptive security is a well-known gap in
existing constructions. Even though the authors of [30] were well versed in so-
phisticated dual system technique, they (and all followup attempts) got funda-
mentally stuck in solving this obstacle. More broadly, getting adaptive security
is a fundamental area of research in the cryptographic community with many
successes over the years (e.g., [47113,/21,/33,26]). Still, this natural question in the
MA-ABE domain remained untouched.

Interestingly, this is one of the rare cases where generic complexity lever-
aging/guessing style arguments fail (even if we are fine with a sub-exponential
security loss). Indeed, applying these arguments in our setting results in an expo-
nential loss proportional to the maximum number of authorities per ciphertext.
Thus, there needs to be a pre-determined maximum number of authorities per
ciphertext limit and then the security parameter needs to be chosen appropri-
ately. Our goal, of course, is to devise a truly decentralized scheme where any
party could join as an authority at any point in time and there is no limit to the
number of authorities.

1.1 Our Results

We construct the first truly decentralized MA-ABE schemes which is provably
secure even when fully adaptive corruption of authorities are allowed, in addition
to fully adaptive key queries. Our schemes are based on bilinear groups with
standard polynomial hardness assumptions and in the random oracle model. We
emphasize that our constructions are the first provably secure schemes against
fully adaptive corruptions of authorities under any assumption.

We first give a construction based on bilinear groups of composite order with
(by now) standard subgroup-decision assumptions, and then give a construc-
tion in prime order bilinear groups where the k-Linear (k-Lin) [24,42] or more
generally the matrix Diffie-Hellman (MDDH) [17] holds.

Theorem 1.1 (Informal; see Section : Assume a composite order bilinear
group where “standard” subgroup-decision assumptions hold. Then, there is a
fully-adaptive MA-ABE scheme in the random oracle model.

The assumptions that we use in the above theorem have been used mul-
tiple times in the past and they were shown to hold in the generic bilinear
group model [29,31,30]. However, we still point out that composite order-based
constructions have few drawbacks compared to the more standard prime order
setting. First, in prime order groups, we can obtain security under more stan-
dard assumptions such as k-LIN or bilinear Diffie-Hellman (BDH) [8] assumption.
Second, in prime order groups, we can achieve much more efficient systems for
the same security levels [19,23}/39]. This is because in composite order groups,
security typically relies on the hardness of factoring the group order. In turn,
this requires the use of large group orders, which results in considerably slower
group and pairing operations.



To this end, starting with Freeman [19] and Lewko [27], multiple frameworks
and tools have been developed to translate existing composite order group con-
structions into prime order analogues (see, for example, [36,37,2544{12,201/1/13]).
We use a recent set of tools due to Chen, Gong, Kowalczyk, and Wee [13] (build-
ing on [12,[20]) and manage to obtain a construction in (asymmetric) bilinear
groups of prime order whose security is based on the more standard k-Lin or
MDDH assumption ]

Theorem 1.2 (Informal; see Section : Assume a prime order bilinear group
where the k-Lin or MDDH assumption holds. Then, there is a fully-adaptive
MA-ABE scheme in the random oracle model.

The state of the art MA-ABE constructions are compared in Table [I]

Table 1. State of the Art in Decentralized MA-ABE
] Scheme \Access policy\ Assumption \Security\Bounded policy size‘

12] NC' GGM adaptive no

12] NC! SXDH selective no

[30] NC! subgroup decision|adaptive no

[38] NC! DLin adaptive no
[40] NC! g-type static no

[14] DNF LWE static yes

[15] NC! C/D-BDH static yes
[48] DNF evasive LWE static yes
This Work NC! subgroup decision| full no
This Work NC! k-Lin or MDDH full no

In this table, static security requires all of the ciphertexts, secret keys, and
corruption queries to be issued by the adversary before the public key of any
attribute authority is published, selective security requires the ciphertext
and corruption queries to be made upfront while the key queries can be made
adaptively, adaptive security requires corruption queries to be issued ahead
of time, but all other queries (secret keys and ciphertexts) can be made
adaptively, and full security enables all queries, including corruption queries,
to be made adaptively. Schemes having a restriction that the maximal size
of policies has to be declared during system setup are said to have bounded
policy size. All of the works are in the random oracle model except [48].
Lastly, we mention that this table only lists truly decentralized schemes
with no trusted centralized authority.

Technical highlight: As all previous group-based decentralized MA-ABE sys-
tems secure against adaptive key queries in the standard model [30,38], we also

4 Our construction is secure based on any choice of k. For instance, setting k = 1 we
get security under the Symmetric External Diffie-Hellman Assumption (SXDH), and
setting k = 2 corresponds to security under the DLIN assumption.



use the dual-systems methodology. However, as we explain below, the existing
techniques in this space cannot be used to prove fully adaptive security, that is,
security against both adaptive key queries and adaptive corruption of attribute
authorities. As our main conceptual contribution, we introduce a new technique
within this space that allows us to bleed information from one sub-group to
another in an unnoticeable way. We call this technique dual systems with dual
sub-systems and it allows us to undetectably move information between different
sub-groups across ciphertexts and key components via a secondary dual sub-
system. We believe that this conceptual contribution is of independent interest.
See Section [ for details.

2 Technical Overview

This section starts by providing an overview of the notion of MA-ABE schemes
and our fully adaptive security definition, followed by an exposition of previous
works and why they failed to achieve the fully adaptive security. We then con-
tinue with explaining our main new ideas, followed by an overview of the final
scheme and its security proof. We decided to provide an extensive and detailed
technical overview in order to help in understanding the challenges stemming
from the fully adaptive security model and our approach for dealing with them.
A reader interested in our constructions can directly refer to Section [2.4.1

2.1 Background on MA-ABE

Our MA-ABE (like all other known MA-ABE schemes) is designed under the
assumption that each user in the system has a unique global identifier GID coming
from some universe of global identifiers GZD C {0, 1}*. We shall further assume
(without loss of generality) that each authority controls just one attribute, and
hence we can use the words “authority” and “attribute” interchangeably. (We
note that this restriction can be relaxed to support an a priori bounded number
of attributes per authority [30].) We denote the authority universe by AU.

Let us recall the syntax of decentralized MA-ABE for NC! access policies,
which is well known to be realizable by (monotone) linear secret sharing schemes
(LSSS) [6,130]. A decentralized MA-ABE scheme consists of 5 procedures
GlobalSetup, AuthSetup, KeyGen, Enc, and Dec. The GlobalSetup procedure gets
as input the security parameter (in unary encoding) and outputs global public
parameters. All of the other procedures depend on these global parameters (we
may sometimes not mention them explicitly when they are clear from context).
The AuthSetup procedure can be executed by any authority u € AU to generate
a corresponding public and master secret key pair, (PK,, MSK,,). An authority
holding the master secret key MSK,, can then generate a secret key SKgp ,, for a
user with global identifier GID. At any point in time, using the public keys {PK,}
of some authorities, one can encrypt a message msg relative to some linear secret
sharing policy (M, p), where M is the policy matrix and p is the function that
assigns row indices in the matrix to attributes controlled by those authorities,



to get a ciphertext CT. Finally, a user holding a set of secret keys {SKgip,u}
(relative to the same GID) can decrypt a given ciphertext CT if and only if the
attributes corresponding to the secret it possesses “satisfy” the access structure
with which the ciphertext was generated. If the MA-ABE scheme is built in the
random oracle model as is the case in this paper and in all previous collusion
resistant MA-ABE Schemesﬂ the existence of a public hash function H mapping
the global identifiers in GZD to some appropriate space is considered. This hash
function H is generated by GlobalSetup and is modeled as a random oracle in the
security proof.

2.2  Fully Adaptive Security

Just like standard ABE, the security of an MA-ABE scheme demands collusion
resistance, that is, no group of colluding users, none of whom is individually
authorized to decrypt a ciphertext, should be able to decrypt the same when
they pull their secret key components together. However, in case of MA-ABE,
it is further required that collusion resistance should hold even if some of the
attribute authorities collude with the adversarial users and thereby those users
can freely obtain secret keys corresponding to the attributes controlled by those
corrupt authorities. Decentralized MA-ABE further allows the public and secret
keys of the corrupt authorities to be generated in a malicious way and still needs
collusion resistance. This is crucial since, in a decentralized MA-ABE scheme,
anyone is allowed to act as an attribute authority by generating its public and
secret keys locally and independently of everyone else in the system. We are
aiming for fully adaptive security which is roughly defined by the following
game:

— Global Setup: The challenger runs GlobalSetup to generate global public
parameters.

— Query Phase I: The attacker is allowed to adaptively make a polynomial
number of queries of the following form:

1. Authority Setup Query : the challenger runs AuthSetup to create a pub-
lic/master key pair for an authority specified by the adversary.

2. Secret Key Query : the challenger runs KeyGen to create a secret key for
a given attribute.

3. Authority Master Key Query : the challenger provides the attacker the
master secret key corresponding to some authority of the adversary’s
choice.

— Challenge Phase: The adversary submits two messages msg,, msg;, and
an access structure along with a set of public keys of authorities involved
in the access structure. The authority public keys supplied by the attacker
can potentially be malformed, i.e., can fall outside the range of AuthSetup. It

5 The very recent construction of Waters, Wee, and Wu [48] is in the plain model, how-
ever, as mentioned, it is based on a newly introduced and less standard assumption
and achieves the rather weak “static” security definition.



gets back from the challenger an encryption of one of the messages (chosen at
random) with respect to the access structure. It is crucial that the adversary
does not hold enough secret keys/authority master keys to decrypt a message
that is encrypted with respect to the access structure.

— Query Phase 2: Same as in Query Phase 1 (while making sure that the
constraint from the challenge phase is not violated).

— Guess: The attacker submits a guess for which message underlies the chal-
lenge ciphertext.

All previous MA-ABE schemes consider a much weaker definition where the
adversary must commit during the Global Setup phase on the set of authorities
in the system as well as on the subset of corrupted authorities. Already at that
point, the private/public key pairs of all non-corrupt authorities are created by
the challenger and the public keys are given to the attacker. (That is, during
Query Phase I and II, only queries of form [2| (secret key query) are allowed.)
Our fully adaptive definition is much more realistic given the distributed nature
of MA-ABE.

2.3 Limitations of Previous Works

As in any ABE scheme, the challenge in MA-ABE is to make it collusion resistant.
Usually, ABE schemes achieve collusion resistance by using the system’s author-
ity who knows a master secret key to “tie” together different key components
representing the different attributes of a user with the help of fresh randomness
specific to that user. Such randomization would make the different key compo-
nents of a user compatible with each other, but not with the parts of a key issued
to another user.

In a multi-authority setting, however, we want to satisfy the simultaneous
goals of autonomous key generation and collusion resistance. The requirement
of autonomous key generation means that standard techniques for key random-
ization cannot be applied since there is no one party to compile all the pieces
together. Furthermore, in a decentralized MA-ABE system each component may
come from a different authority, where such authorities have no coordination
and are possibly not even aware of each other. To overcome this, all previous
decentralized MA-ABE schemes use the output of a public hash function applied
on the user’s global identity, GID, as the randomness tying together multiple key
components issued to a specific user by different authoritiesﬁ

To see the challenge let us focus on one particular construction due to Lewko
and Waters [30]. Although this is the very first truly decentralized MA-ABE
scheme, all relevant follow-up works heavily rely on it and therefore suffer from
similar problems. The security proof of the [30] construction uses the dual sys-
tem technique originally developed by Waters [45]. In a dual system, ciphertexts
and keys can take on two forms: normal or semi-functional. Semi-functional ci-
phertexts and keys are not used in the real system, they are only used in the
security proof. A normal key can decrypt normal or semi-functional ciphertexts,

5 [48] is an exception; see Footnote



and a normal ciphertext can be decrypted by normal or semi-functional keys.
However, when a semi-functional key is used to decrypt a semi-functional cipher-
text, decryption will fail. Security for dual systems is proved using a sequence of
“indistinguishable” games. The first game is the real security game (with nor-
mal ciphertext and keys). In the next game, the ciphertext is semi-functional,
while all the keys are normal. For an attacker that makes q secret key requests,
we define ¢ games, where in the k-th one, the first k£ keys are semi-functional
while the remaining keys are normal. In game g, all the keys and the challenge
ciphertext given to the attacker are semi-functional. Hence, none of the given
keys are useful for decrypting the challenge ciphertext.

The proof of [30] follows this high level approach, but inherently relies on the
fact that the corrupted authorities are specified in advance. There, towards the
end of the proof, all keys are semi-functional and the challenge ciphertext is also
semi-functional. The goal in the last hybrid is to move to a game where the semi-
functional challenge ciphertext is of a random message (rather than the original
message). For this to be indistinguishable, they need to “shut off” the rows in
the matrix of the access policy corresponding to the corrupted authorities. This
is done by using an information theoretic tool of choosing a vector which is
orthogonal to those rows in the challenge ciphertext (such a vector must exist
since the corrupted set must be unauthorized). Effectively, this allows them to
completely ignore the existence of authority master keys corresponding to those
rows, while for the other rows the inexistence of a secret key was already taken
care of when they moved to a game where all keys are semi-functional.

This approach clearly fails when authorities can be corrupted adaptively.

Technically, it is impossible to “shut off” the rows corresponding to the cor-
rupted authorities since the latter may not be even known at the time the chal-
lenge ciphertext is created since authorities may be corrupted after the challenge
ciphertext is created where the challenger should be able to give the adversary
the corresponding master key. However, with the (proof) approach of Lewko and
Waters [30] this is impossible since the challenger (at that point) does not even
have a properly formed master key for the authority.
A Fundamental Limitation?: At this point it is useful to step back and try
to discern whether and why handling corrupted authorities was a foundational
problem of [30] and has remained open for more than a decade. Lewko and
Waters create an intricate dual system encryption proof that uses two semi-
functional subspaces. Their techniques go beyond the prior methods of |28}29]
to adapt to the demands of the multi-authority setting. Now the question is the
following.

Question: Is the lack of handling authority corruption mostly an oversight that
can be addressed by pushing their techniques a tiny bit further or is there a more
Sfundamental barrier?

The answer to this question can be distilled by making a quick observation
about the Lewko-Waters construction. In their construction all user keys are
composed of bilinear group elements. Thus, one can execute a dual system en-
cryption proof by applying subgroup decision or k-linear assumptions (depending



on the setting) to change the distribution of such groups over the course of a
sequence of games as is typically done.

The authority master secret keys however consist solely of exponents over the
order of the group. The reason for authority keys being exponents is a conse-
quence of the demands of the multi-authority setting. To bring authority keys
into the fold of a dual system encryption proof one would need a plan for chang-
ing such keys to some kind of semi-functional form. However, there is no trodden
path in the dual system encryption literature for doing this for keys formed solely
from exponents. Indeed, none of the hardness assumptions seem to align with
this goal at all!

Due to these fundamental barriers, the construction and proof of Lewko
and Waters dealt with key queries and corrupted authorities separately. For
uncorrupted authorities, the proof handles key generation queries via a dual
system encryption. In contrast, corrupted authorities were statically “routed
around” in the proof so as to not have important information when needed and
thus taken “outside” the dual system encryption proof.

In our work, we will show how to overcome this barrier and bring adaptive
corruption of authorities into the fold of a dual system encryption proof. Doing
so will require both a novel construction and proof ideas. We shall focus on the
composite order construction next as this is where most of the new ideas already
come up and it is also much easier to describe. We give an overview of how we
port the construction to the prime order setting in Section 2.5

2.4 Overview of Our Approach and Our (Composite Or-
der) Scheme

Looking into the Lewko-Waters [30] MA-ABE scheme and the security proof more
closely, we observe that their authority master keys consist of two exponents,
namely o,y < Zy where N = pypaps is the order of the underlying composite
order group. At the final step of their security proof where they transition from
a correctly formed semi-functional ciphertext for the challenge message to one
for a completely random message, they simulated the exponents « and y based
on the instance of the underlying hard problem. As such, they could not hope to
give out those keys to the adversary during the security game. In other words,
they could not support adaptive corruption of authorities.

In order to resolve this problem, ultimately, we want to come up with a
construction and a corresponding proof strategy that never needs to simulate the
authority master keys based on instances of underlying hard problems. Towards
this end, we first observe that it is due to their scheme design that Lewko-
Waters [30] needed to simulate the authority master keys. More specifically, in
each ciphertext, the payload is masked with the group element e(g;, g1)® in the
target group for random s <— Zy. Next, the ciphertext provides secret shares of
the masking factor s according to the underlying access policy in the exponent
of e(g1,91) and they mask them with « for the corresponding authorities also
in the exponent of e(g1, g1). This is done to ensure that during decryption, only
the shares corresponding to the attributes possessed by the decryptor can be



recovered by canceling out the « part with a collection of appropriate secret
keys for user GID.

Now, at the final hybrid transition of their security proof, they utilized an
assumption similar to decisional bilinear Diffie-Hellman (DBDH) where they sim-
ulate s as abc, where a,b,c < Zy are random exponents and unknown to the
simulator. Therefore, the simulator has to embed the term ab within « so that it
can simulate the ciphertext components containing the shares of s by canceling
out ab in the exponent.

In order to do away with « and transition to a construction and proof tech-
nique that do not require simulating the authority master keys, we consider a
new element h from the p; subgroup in the global public parameters. Instead
of relying on the entropy derived from the exponents « corresponding to the
authorities/attributes a user does not possess, we would like to rely on the en-
tropy obtained from this new component A to hide the payload (recall that h is
a part of the global public parameters and is not associated with any attribute
authority). Simulating h based on the underlying hard problem would not affect
the simulator’s ability to give out authority master keys. So, our initial idea is to
simply mask the payloads with e(g1,h)® for s < Zy. We then provide ElGamal
encryptions of the secret shares of the masking factor s under the corresponding
authority master keys, which now consist only of the exponents y. More pre-
cisely, we include Cy , = ¢1*, Ca, = gi"™ "™ g7* for all rows = of the associated
LSSS access structure (M, p)m For the user’s secret keys, instead of generating
it as g® - H(GID)Y, as in Lewko-Waters construction, we form the secret keys as
(h-H(GID))v.

The high level idea of the security proof is then to change h from being an
element of the p; subgroup to being an element of the p;ps subgroup. Then, the
factor masking the message would become e(g1, h)® - e(gz, h)®. At this point, we
can leverage the entropy of s mod py to hide the payload in the final game.
Dual systems with dual sub-systems: Unfortunately, the above scheme does
not satisfy correctness. This is because, at the time of decryption, while pairing
the ciphertext and key components, some additional terms involving the shares
of the masking factor s in the exponent of e(g;, H(GID)) would remain. In order
to cancel out these terms and ensure correctness, we introduce another parallel
sub-system where we provide ElGamal encryptions of shares of —s under cor-
responding authority master keys and provide elements of the form H(GID)Y as
part of the user’s secret keys. At the time of decryption, this part will produce
e(g1,H(GID))~* that will cancel e(g1, H(GID))® from the first sub-system.

Now, observe that if the same authority master keys y are used across both
the sub-systems, then a user obtaining (h-H(GID))¥ and H(GID)Y as parts of its
secret key can easily recover hY which may hamper security. We therefore use
two different exponents for the two sub-systems.

Overall, our scheme consists of two sub-systems which we refer to as the “A”
sub-system and the “B” sub-system. Accordingly, the master key of an attribute

" The p function maps between rows of the policy matrix M and the index of the
associated authorities/attributes.

10



authority consists of two random exponents y4,yp < Zy. The first sub-system
deals with encoding the payload and the shares of the masking factor s, whereas
the second sub-system works as a shadow system to cancel out some extra terms
during decryption to ensure correctness.

Our security proof proceeds as follows. The first step of our proof is to make
a ciphertext semi-functional over the ps subgroup. The argument relies on two
key facts. (1) Any subset of authorities the attacker compromises will not satisfy
the access structure. Thus, the corrupted authorities alone are not enough to (in-
formation theoretically) determine if the challenge ciphertext is semi-functional.
(2) The keys given out by uncorrupted authorities will not have any component
in the order p3 subgroup, thus they will not help out such an attacker (at this
step). Put together, this gives a method to leverage the information theoretic
steps in order to handle adaptive corruption of authorities. Our approach uses
both computational and information theoretic arguments to step between differ-
ent hybrid experiments. A critical feature of our security proof is that any step
that relies on the attacker’s keys not satisfying the access structure will be an
information theoretic argument, thereby sidestepping issues related to guessing
which authorities are corrupted. (There will of course be multiple computational
arguments between and setting up the information theoretic ones.) A similar
high-level approach of using information regarding what the adversary corrupts
only in information theoretic arguments was used in few previous dual system
proofs (e.g., |4529,28]), but here we are able to implement the technique in the
(more challenging) distributed setting and enfolding corrupted authorities.

Our approach allows us to establish both semi-functional keys and ciphertexts
in a given subspace of the cryptosystem. However, it comes with a big caveat.
While the semi-functional argument is established in the ps subgroup we had
to keep it separate from the ciphertext component blinding the message which
lives solely in the p; subgroup. At this stage it is therefore unclear that all the
work we did will even hide the message at all. Therefore, the next portion of
our proof needs to “bleed” the semi-functional portions of the ciphertext into
the portions blinding the message. Here again our two sub-system construction
crucially comes into play. We will take turns by first bleeding over into one and
then into the other.

We call this novel technique as a dual system with dual sub-systems. This
technique utilizes the semi-functionality within one sub-system to introduce
semi-functionality within the other. Then, this will allow us to transform the
challenge ciphertext and keys in such a way that the ps segment of the special
group element h remains information-theoretically hidden to the adversary and
S0 its entropy can then be amplified using a suitable randomness extractor to
hide the encrypted message completely.

As we mentioned above, we set the user secret key components for the two
sub-system asymmetrically, namely, we multiply the special group element h
within the user secret key components that correspond to the first sub-system.
But, we do not multiply it within those corresponding to the second sub-system.
We crucially leverage this asymmetry in the security proof as follows. We first
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bleed the semi-functional portions within the ps subgroup of the second sub-
system into the p, subgroup of the same to make the py components semi-
functional. After that, we utilize this semi-functionality of the second sub-system
to switch the special group element A from being embedded within the user se-
cret key components of the first sub-system to those corresponding to the second
sub-system. Once we are done with this step, we then bleed the semi-functional
portions within the p3 subgroup of the first sub-system into the ps portions of the
same and make the po portions of this sub-system semi-functional. This strategy
is crucial since it is not clear how to leverage the dual-system methodology to in-
ject semi-functionality into the py portions of the first sub-system if the group el-
ement A is not moved away from this sub-system. At this point, the py segment of
the ciphertext component blinding the message becomes completely independent
of the ps segments of all the other ciphertext and key components. Therefore,
we can utilize its entropy to blind the message information-theoretically. For a
more detailed overview of our hybrid proof strategy, please refer to Section [2.4.2
below.

We once again emphasize that all applications of the dual system methodol-
ogy so far only dealt with a single system. The two sub-system design is com-
pletely new to this work. Also, as we argued above, full security of MA-ABE
seems out of reach using standard previously used dual system techniques (since
it is not clear how to bleed the semi-functional portions of the ciphertext com-
ponents into those blinding the message and make the user keys independent
of the special group element h within a single system). As is evident from our
work, our new technique is useful and we believe that it will find further uses in
other contexts related to adaptive security (for example, constructing adaptively
secure functional encryption schemes beyond linear functions under standard
group-based assumption).

2.4.1 Owur Construction

Recall that our scheme relies on bilinear group G of composite order N which
is a product of three primes, that is, N = pipap3 with subgroups G, , G,,, and
Gp,. We also make use of a seeded randomness extractor Ext and let seed be
a seed for it. The elements ¢g; and h are uniformly random generators of the
subgroup G,, that along with seed are part of the global parameters GP. H is a
global hash function that we model as a random oracle in the security proof.
At a very high level, as is evident from the construction, the encryption
algorithm blinds the message msg with the term Ext(e(g1, h)®,seed), where s is
a random element in Zy. The goal in the security proof is to show that given
the view of the adversary there is enough entropy left in e(gq,h)® so that the
message is indeed hidden. There are two secret sharing schemes involved, one of
s and the other of —s. Let us denote the shares of s with 04, and the shares of
—s with o 5. The decryptor recovers e(gi, H(GID) - h)74= and e(g1, H(GID))?5-=
by appropriately pairing their keys for attributes and ciphertext components.
If the user holds sufficient secret keys to decrypt a ciphertext, the two terms
e(g1, H(GID) - h)?4.= and e(g1, H(GID))?5:= can be used to recover e(g;, H(GID) -
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h)® and e(g1,H(GID))™*® which, if multiplied, give the blinding factor e(gy, h)*,
as necessary.

AuthSetup(GP, u): The algorithm chooses random values y4 v, Yp.« € Zy and
outputs

PKU = (ggl;AyuagilB‘u) MSKu = (yA,uayB,u)-

Enc(GP, msg, (M, p), {PK.}): It first chooses a random value s < Zy. It then
uses the LSSS access policyﬁ (M, p) to generate a secret sharing of s where o4 ,
will be the share for all « € [¢], i.e, for all © € [{], let 04, = M, - va, where
va < Z% is a random vector with s as its first entry and M, is the z*! row
of M. It additionally creates another secret sharing of —s with respect to the
LSSS access policy (M, p) where op 5 is the corresponding share for p(x) for all
x € [f], i.e., for all v € [{], 0p» = M, - vp, where vg <+ Z% is a random vector
with —s as its first entry. The procedure generates the ciphertext as follows: For
each row x € [{], it chooses random 74 5, 7B » < Zn and outputs the ciphertext

CT = ((M7 0)7 C7 {CI,A,(L‘7 CQ,A,;w Cl,B,aL‘7 CQ,B,I}zE[g])a

where

Ya,p(z)TA,z CAx
91

C= msg © E‘Xt(e(917 h>37 Seed)a C].,A,CE = g;AYI C?,A@ =0

_ TB.x _ YB,p(z)TB,x OB,z
CiBe =0 CoBz=91 ° g

KeyGen(GP, GID, MSK,,): The authority attribute u generates a secret key
SKaip,, for GID as SKaip.w = (Kaip, 4,4, KGiD,B,u), Where

KGID,A,u = (H(G|D) . h)yA'“ KGID,B,u = (H(G|D))y3“

Dec(GP, CT, GID, {SKgip,» }): Decryption takes as input the global parameters
GP, the hash function H, a ciphertext CT for an LSSS access structure (M, p)
with M € Z5% and p : [(] — AU, the user’s global identifier GID € GID,
and the secret keys {SKGID,p(m)}er corresponding to a subset of rows of M
with indices I C [¢]. If (1,0,...,0) is not in the span of these rows, M, then
decryption fails. Otherwise, the decryptor finds coefficients {w, € Zy},; such
that (1,0,...,0) = Y, wy - M.
For all x € I, the decryption algorithm computes:

Day = e(Ca a2, H(GID) - h) - e(C1 a2, KaiD,a,p(2)) ' = €(g1,H(GID) - )74
Dp, = e(C2,5,4,H(GID)) - e(C1, 8,4, Kaip,B,p(x)) - = €(g1, H(GID))7%=.

It computes D = [[,c;(Da,e-Dp.o)"" = e(g1, h)® and outputs CGExt(D, seed) =
msg. The proposed scheme is correct by inspection; see Section for details.

8 The access policy (M, p) is of the form M = (M ;)exa = (M, ..., M,)" € Z5¢
and p : [¢] — AU. The function p associates rows of M to authorities. We assume
that p is an injective function, that is, an authority/attribute is associated with at
most one row of M. This can be extended to a setting where an attribute appears
within an access policy for at most a bounded number of times [461[30].
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2.4.2 Our Security Proof

We now dive into a more detailed look at our security proof. We choose to
present an overview of the main steps of our proof interleaved with a running
commentary on the intuition behind them. Our goal here is to give a reader
both a semi-detailed sense of the proof along side the conceptual ideas driving
our approach.

Hyb,
Hyb,

Hyb,

Hyb;

Hyb,

: We start with the real game.
: Modify the random oracle to return random elements from G, . This

modification is clearly indistinguishable under the subgroup decision as-
sumption between G,, and G.

After this step all user key material is relegated to the G,, subgroup.
(Recall h was already in G, ). One important consequence of this is that
for any uncorrupted authority u, both the y4, and yp, values modulo
po and ps are information theoretically hidden no matter how many keys
the attacker requests from the authority .

: Add a G, component to each part of the challenge ciphertext. This

transition follows from the subgroup decision assumption between G,
and Gy, ps-

: We modify the G,, components of Cs 4 4,C2 B, to involve shares of

independent secrets instead of correlated ones.

This is an information theoretic step relying on two important facts. (1)
That the attacker has no information on ya ., ys.(mod p3) of any un-
corrupted authority u per our step in Hyb,. The fact that 4, mod p3 is
hidden (and each authority appears at most once in a ciphertext) means
that C 4, cannot be distinguished from random in the G,, subgroup.
Thus, the share is hidden when row x corresponds to an uncorrupted au-
thority u. (2) That the rows of the challenge matrix (M, p) associated
with the corrupted authorities are unauthorized for decryption. Hence,
they are insufficient for learning the value of s mod ps.

Critically, this step employs an information theoretic argument and there-
fore there is no issue to how to properly embed a reduction to a compu-
tational assumption in the presence of adaptive corruptions. In general,
this is a theme in our whole reduction process. Throughout the proof,
we separate the computational and information theoretic arguments. The
parts of the argument that relate to what the attacker corrupted is only
in the information theoretic pieces where adaptivity is not a problem.
After this step the ciphertext begins to have a somewhat semi-functional
form in that the G,, subgroups are not correlated in the system A and
B halves. However, the effect is currently vacuous as none of the keys
“look at” the G,, subgroup which vanishes upon pairing the keys and
ciphertext.

: Add a G, component to each part of the challenge ciphertext. This

transition follows from the subgroup decision assumption between G,
and Gy, p,-
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Hyb; : Modify the random oracle to return random elements from G, ,,. The
proof that this change is indistinguishable actually goes through a se-
quence of sub-hybrids where we change the oracle queries one by one.
Intuitively, changing the random oracle output for a certain GID is akin
to making the secret key components for GID to be semi-functional. Thus,
the proof will need to leverage the fact that the key components acquired
by GID do not satisfy the challenge ciphertext access structure. For each
GID the proof will first establish this in the G,, subgroup to be “tem-
porarily semi-functional”, then use this to move it to the “permanent
semi-functional” space in Gy, . Finally, undo the work in the G,, space to
make it available for moving the next GID over.

We consider the following sequence of sub-hybrids for each random oracle
query GID;.

e First modify the random oracle output H(GID;) to be a random element
in Gp,p, instead of Gp,. This change is clearly indistinguishable under
the subgroup decision assumption between G, and G, p,.

e Modify the G,, components of C3 4 5, C2 B 5 to involve shares of inde-
pendent secrets instead of correlated ones. This is again an information
theoretic step which uses the fact that the rows of the challenge matrix
(M, p) associated with the corrupted authorities in conjunction with
all those rows for which the adversary requests a secret key for GID; are
unauthorized for decryption. The adaptive corruption of the authority
as well as the adaptive key requests for GID; do not cause any problem.
We emphasize that since this information theoretic argument is done
over the G,, subgroup, it does not matter whether the adversary has
information about the G,, from keys for other global identities. This
is the benefit for modifying keys one by one in an isolated subspace.

o Next, modify H(GID;) to be a random element from the whole group
G. This transition is indistinguishable under the subgroup decision as-
sumption between G,,,, and G. The work done so far allows us to
simulate this transition using the group elements available in the prob-
lem instance.

e Modify the G,, components of C3 4, C2 g, to again involve shares of
correlated secrets instead of independent ones. This is again an infor-
mation theoretic step similar to the previous one.

e Change the random oracle output H(GID;) to be a random element
in Gp,p, instead of G. This transition is indistinguishable under the
subgroup decision assumption between G, and G, p,.

Note that in the above sequence of sub-hybrids, the G,, subgroup is used
over and over again to “escort” a value into the G,, subgroup. Until this
step, this portion of the proof follows closely [30] at a high level although
there are differences in the low level details. In particular, unlike [30] which
involves a single semi-functional form of the ciphertext, we consider several
different semi-functional forms in order to handle a more sophisticated
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Hybg

Hyb,

Hyb,,

scenario of adaptive authority corruption in addition to the adaptive secret
key queries. However, the following steps significantly depart from [30].

: Sample h from G, , instead of Gy, . The indistinguishability follows from

the subgroup decision assumption between G,, and Gy, ,, In addition, the
challenge ciphertext message is now blinded as

C = msg, ® Ext(e(g1, h)® -| e(g2, h)*" | seed)

for random s” and a generator go € Gyp,. At this point the message is
blinded in G, while the semi-functional components are established in
the G, subgroups for both keys and ciphertexts. We now need to bleed
these over into Gy, to argue the message is hidden.

: Make the C1 Bz, C2 B, parts have shares of an independent random

secret in Gy, rather than one correlated to Ci 4,4, C2 4,,. This is again
an information theoretic step which relies on the fact that the rows of the
challenge matrix M labeled by the corrupted authorities are unauthorized
for decryption.

We now have that the ‘B’ side of our cryptosystem is complete for our
proof with the secret shared on the ‘B’ side being uncorrelated in the G,
component with both the ‘A’ share and s” from C. This step is feasible
since the keys in our system are created as H(GID)¥5 .. In contrast the ‘A’
side has keys created as (H(GID) - h)¥4-». To decouple the G, component
of the ‘A’ side with s” we must next effectively move the h value from the
‘A’ side to ‘B’ side.

ﬂ Modify the random oracle output for all the global identifiers GID
queried by the adversary as H(GID;) = P; - h=! for the ;' random oracle
query where P; is randomly sampled from G,,,,. Once this transition
is achieved, we will clearly have H(GID;) - h = P; for all random oracle
queries, i.e., H(GID;)-h involves no G, component. This step is crucial for
changing the G,, components of C 4 4,2 4, in the subsequent hybrids.
This transition is achieved via a sequence of sub-hybrids.

e Modify the j** random oracle query to output random elements from G.
The indistinguishability follows from the subgroup decision assumption
between G, p, and G.

e Modify the j** random oracle query to output R; - h~1! where R; is
randomly sampled from G. Observe that since R; is uniformly sampled
from G, this new form of H(GIDj;) is actually identical to the one in the
previous game.

e Modify the j*® random oracle query to output P; - h~! where P; is
randomly sampled from G,,,,. The indistinguishability follows from
the subgroup decision assumption between G, ,, and G.

9 In our formal proof presented in the full version [16] this is spread out over Hybrids
8-10. We will condense these for this overview and thus skip two numbers of hybrids.
We are however not changing the numbers from those in the formal proof for ease
of correlation.
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Hyb,; : Make the C 4,C2 4, parts have shares of an independent random
secret in G,,. This is again an information theoretic step similar to the
previous one of Hybg.

Hyb,, : Replace C with a random value unrelated to the message. Due to the
work done so far, s” mod ps is information theoretically hidden and so s”
has at least log(ps) bits of entropy. The extractor hides the message.

2.5 Porting to Prime Order Groups

As mentioned there have been many works trying to come up with a method
to translate existing composite order group constructions into prime order ana-
logues [|19}27,36137.125},4,|12L[20}1}/13]. All of these frameworks are different and
have varying levels of simplicity or generality. We use the recent framework of
Chen et al. [13] which seems to be the most efficient and (arguably) the simplest
to use, and succeed in adapting the construction as well as the proof from the
composite order setting to the prime order setting.

This framework, in a high level, shows how to simulate a composite order
group and its subgroups using a prime order group while guaranteeing a prime
order analogue of various subgroup decision style assumptions. These analogues
follow from the standard k-Linear assumption (and more generally, the MDDH
assumption [18]). Here, since the translation process is not completely black
box and needs to be adapted for the scheme at hand, we need to introduce a
few extra technical ideas to handle our specific setting. Specifically, the proof
of security of our prime order construction relies not only on subgroup decision
style assumptions but also on few information theoretic arguments as well as on
the security of a random oracle. Using the framework and making it work on
our scheme is fairly technical and systematic; we refer to the technical section
for details. Nevertheless, we point out that the high level idea as well as the
sequence of hybrids is the same as in the composite order case.

3 Preliminaries

A function negl: N — R is negligible if it is asymptotically smaller than any
inverse-polynomial function, namely, for every constant ¢ > 0 there exists an
integer N, such that negl(A) < A7¢ for all A > N.. We let [n] = {1,...,n}.

We use bold lower case letters, such as v, to denote vectors and upper-case,

such as M, for matrices. We assume all vectors, by default, are column vectors.
The ith row of a matrix is denoted M; and analogously for a set of row indices
I, we denote M for the sub-matrix of M that consists of the rows M, for all
i € I. For an integer ¢ > 2, we let Z, denote the ring of integers modulo ¢g. We
represent Z, as integers in the range (—¢/2, ¢/2].
Indistinguishability: Two sequences of random variables X = {X)},y and
Y = {Vx}ren are computationally indistinguishable if for any non-uniform PPT
algorithm A there exists a negligible function negl(-) such that | PrlA(1*, X)) =
1] — Pr[A(1*, V) = 1]| < negl()\) for all X € N.
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For two distributions D and D’ over a discrete domain {2, the statistical
distance between D and D’ is defined as SD(D, D) = (1/2)-> . |D(w)—D'(w)|.
A family of distributions D = {Dy},cy and D’ = {D} },.y, parameterized by
security parameter A, are said to be statistically indistinguishable if there is a
negligible function negl(-) such that SD(Dj, D) < negl(\) for all A € N.

3.1 Access Structures and Linear Secret Sharing Schemes

Definition 3.1 (Access Structures, [6,/5]): Let U be the attribute universe.
An access structure on U is a collection A C 2Y\ () of non-empty sets of attributes.
The sets in A are called the authorized sets and the sets not in A are called the

unauthorized sets. An access structure is called monotone if VB,C € 2V if B € A
and B C C, then C € A.

Definition 3.2 (Linear Secret Sharing Schemes (LSSS), [6,(5,(30]): Let
¢ = q(\) be a prime and U the attribute universe. A secret sharing scheme IT
with domain of secrets Z, for a monotone access structure A over U, a.k.a. a
monotone secret sharing scheme, is a randomized algorithm that on input a secret
z € Zq outputs |U| shares shy, ..., shjy; such that for any set S € A the shares
{shi};cg determine z and other sets of shares are independent of z (as random
variables). A secret sharing scheme IT realizing monotone access structures on
U is linear over Z, if

1. The shares of a secret z € Z, for each attribute in U form a vector over Z,.

2. For each monotone access structure A on U, there exists a matrix M € Zf}xs,
called the share-generating matrix, and a function p: [¢] — U, that labels the
rows of M with attributes from U which satisfy the following: During the
generation of the shares, we consider the vector v = (z,73,...,rs), where
T9,...,7s < Lq. Then the vector of ¢ shares of the secret z according to II
is given by p = Mo € Zg“, where for all j € [¢] the share u; “belongs” to
the attribute p(j). We will be referring to the pair (M, p) as the LSSS policy
of the access structure A.

The correctness and security of a monotone LSSS are formalized in the follow-
ing: Let S (resp. S’) denote an authorized (resp. unauthorized) set of attributes
according to some monotone access structure A and let I (resp. I') be the set
of rows of the share generating matrix M of the LSSS policy pair (M, p) as-
sociated with A whose labels are in S (resp. S"). For correctness, there exist
constants {w;};c; in Z, such that for any valid shares {p; = (MUT)i}z‘eI of
a secret z € Z, according to I1, it is true that ), ; w;p; = 2z (equivalently,

s—1
Y icr wiM; = (1,0,...,0), where M is the ith row of M). For soundness, there
does not exists any subset I’ of the rows of the matrix M and any coefficients
{wi};c ;s for which the above hold.

Remark 3.1 (NC' and Monotone LSSS): Consider an access structure A
described by an NC" circuit. There is a folklore transformation that converts this
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circuit to a Boolean formula of logarithmic depth that consists of (fan-in 2) AND,
OR, and (fan-in 1) NOT gates. We can further push the NOT gates to the leaves
using De Morgan laws, and assume that internal nodes only constitute of OR
and AND gates and leaves are labeled either by attributes or by their negations.
In other words, we can represent any NC' policy over a set of attributes into
one described by a monotone Boolean formula of logarithmic depth over the
same attributes together with their negations. Lewko and Waters [30] presented
a monotone LSSS for access structures described by monotone Boolean formulas.
This implies that any NC' access policy can be captured by a monotone LSSS.

3.2 Strong Randomness Extractors

The min-entropy of a random variable X is Ho (X) = — log(max, Pr[X = z]).
A t-source is a random variable X with Hy,(X) > ¢. The statistical distance
between two random variables X and Y over a finite domain (2 is SD(X,Y) =
Y wenlPrX =w] — PrlY = w]|.

Definition 3.3 (Seeded Randomness Extractor, Definition 6.16 [44]): A
function Ext : 2 x S — I' is a strong (¢, €)-extractor if for every t-source X on
2, SD((Us,Ext(X,Us)), Us,Ur)) < €.

Theorem 3.1 (Theorem 6.17 [44]): For every n,t € N and € > 0, there
exists a strong (t,e)-extractor Ext : {0,1}" x {0,1}¢ — {0,1}™ with m =
t —2log(1/e) — O(1) and d = log(n —t) + 2log(1/e) + O(1).

3.3 Fully-Adaptive Decentralized MA-ABE for LSSS

A decentralized multi-authority attribute-based encryption (MA-ABE) system
MA-ABE = (GlobalSetup, AuthSetup, KeyGen, Enc, Dec) consists of five proce-
dures whose syntax is given below. The supported access structures that we
deal with are ones captured by linear secret sharing schemes (LSSS). We denote
by AU the authority universe and by GZD the universe of global identifiers of
the users. We denote by M the supported message space. Additionally, we as-
sume that each authority controls just one attribute, and hence we would use
the terms “authority” and “attribute” interchangeably. This definition naturally
generalizes to the situation in which each authority can potentially control an
arbitrary (bounded or unbounded) number of attributes (see [30,/40]).

— GlobalSetup(1*) + GP : The global setup algorithm takes in the security
parameter \ in unary representation and outputs the global public parame-
ters GP for the system. We assume that GP includes the descriptions of the
universe of attribute authorities AU and universe of the global identifiers of
the users GZD. Note that both AU and GZID are given by {0, 1}>‘ in case
there is no bound on the number of authorities and users in the system.

— AuthSetup(GP, u) — (PK,, MSK,) : The authority v € AU calls the authority
setup algorithm during its initialization with the global parameters GP as
input and receives back its public and master secret key pair PK,,, MSK,,.
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— KeyGen(GP, GID, MSK,,) — SKqip.,, : The key generation algorithm takes as
input the global parameters GP, a user’s global identifier GID € GZD, and
a master secret key MSK,, of an authority u € AU. It outputs a secret key
SKaip,., for the user.

— Enc(GP, msg, (M, p), {PK,}) — CT : The encryption algorithm takes in the
global parameters GP, a message msg € M, an LSSS access policy (M, p) such
that M is a matrix over Zy and p is a row-labeling function that assigns to
each row of M an attribute/authority in AU, and the set {PK,} of public
keys for all the authorities in the range of p. It outputs a ciphertext CT. We
assume that the ciphertext implicitly contains (M, p).

— Dec(GP,CT,{SKcgip,u}) + msg’ : The decryption algorithm takes in the
global parameters GP, a ciphertext CT generated with respect to some LSSS
access policy (M, p), and a collection of keys {SKgip .} corresponding to
user ID-attribute pairs {(GID,u)} possessed by a user with global identifier
GID. It outputs a message msg’ when the collection of attributes associated
with the secret keys {SKgip,} satisfies the LSSS access policy (M, p), i.e.,
when the vector (1,0,...,0) is contained in the linear span of those rows of
M which are mapped by p to some attribute/authority v € AU such that
the secret key SKgip,, is possessed by the user with global identifier GID.
Otherwise, decryption fails.

Correctness: An MA-ABE scheme for LSSS-realizable access structures is said
to be correct if for every A € N, every message msg € M, and GID € GID, every
LSSS access policy (M, p), and every subset of authorities U C AU controlling
attributes which satisfy the access structure, it holds that

GP « GlobalSetup(1*)
Yu € U: PK,, MSK, < AuthSetup(GP,u)
Pr [msg’ = msg | Yu € U: SKqip,,  KeyGen(GP, GID, MSK,,) | = 1.
CT ¢ Enc(GP. msg, (M. p). {PK,}

msg’ = Dec(GP, CT, {SKaIp,u},crr)

Fully Adaptive Security: We define the fully adaptive (chosen-plaintext) se-
curity for a decentralized MA-ABE scheme, namely, we consider a security game
where there could be adaptive secret key queries, adaptive authority corruption
queries, and adaptive challenge ciphertext query. This is formalized in the follow-
ing game between a challenger and an attacker. Note that we will consider two
types of authority public keys, those which are honestly generated by the chal-
lenger and those which are supplied by the attacker itself where the former type
of authority keys can be corrupted by the attacker at any point of time during
the game and the latter type of authority keys can potentially be malformed.
The game consists of the following phases:

Global Setup: The challenger runs GlobalSetup to generate global public
parameters GP and gives it to the attacker.

Query Phase 1: The attacker is allowed to adaptively make a polynomial
number of queries of the following types:
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— Authority Setup Queries: The attacker request to set up an authority
u € AU of its choice. If an authority setup query for the same authority
u has already been queried before, the challenger aborts. Otherwise, the
challenger runs AuthSetup to create a public/master key pair (PK,, MSK,)
for the authority u. The challenger provides PK, to the attacker and stores
(PK., MSK,,). Note that the challenger does not return the generated pub-
lic/master key pair to the attacker.

— Secret Key Queries: The attacker makes a secret key query by submitting
a pair (GID,u) to the challenger, where GID € GZID is a global identifier
and u € AU is an attribute authority. If an authority setup query for the
authority u has not been made already, the challenger aborts. Otherwise,
the challenger runs KeyGen using the public/master key pair it already
created in response to authority setup query for v and generates a secret
key SKqip,, for (GID, ). The challenger provides SKgip ,, to the attacker.

— Authority Master Key Queries: The attacker requests the master secret key
of an authority v € AU to the challenger. If an authority setup query for
the authority u has not been made previously, the challenger aborts. Oth-
erwise, the challenger provides the attacker the master secret key MSKy
for authority u it created in response to the authority setup query for w.

Challenge Phase: The attacker submits two messages, msg,, msg; € M
and an LSSS access structure (M, p). The attacker also submits the public
keys {PK,} for a subset of attribute authorities appearing in the LSSS access
structure (M, p). The authority public keys {PK,} supplied by the attacker
can potentially be malformed, i.e., can fall outside the range of AuthSetup.
The LSSS access structure (M, p) and the authority public keys {PK, } must
satisfy the following constraints.

(a) Let Uy denote the set of attribute authorities for which the attacker
supplied the authority public keys {PK,}. Also let Up denote the set of
attribute authorities for which the challenger created the master public
key pairs in response to the authority setup query of the attacker so far.
Then, it is required that U4 N Ug = 0.

(b) Let V denote the subset of rows of M labeled by the authorities in U4
plus the authorities for which the attacker made a master key query so
far. For each global identifier GID € GID, let Vgp denote the subset
of rows of M labeled by authorities v such that the attacker queried
a secret key for the pair (GID, u). For each GID € GID, it is required
that the rows of M labeled by authorities in V' U Vgp do not span
(1,0,...,0).

The challenger flips a random coin b < {0, 1} and generates a ciphertext CT
by running the Enc algorithm that encrypts msg;, under the access structure
(M, p).

Query Phase 2: The attacker is allowed to make all types of queries as in
Query Phase 1 as long as they do not violate the constraints Properties @
and @ above.
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Guess: The attacker must submit a guess b’ for b. The attacker wins if b = ¥'.

The advantage of an adversary A in this game is defined as:
AdVJI\ZI‘A—ABE,fully—adaptive()\) — |PI‘[b/ — b] _ 1/2|

Definition 3.4 (Fully adaptive security for MA-ABE for LSSS): An MA-
ABE scheme for LSSS-realizable access structures is fully adaptively secure if for
any PPT adversary A there exists a negligible function negl(-) such that for all
A € N, we have AdviAABEMulv-2deptive () < hegi()).

Remark 3.2 (Fully adaptive security of MA-ABE for LSSS in the Ran-
dom Oracle Model): Similar to [30140,38], we additionally consider the afore-
mentioned notion of fully adaptive security in the random oracle model. In this
context, we assume a global hash function H published as part of the global
public parameters and accessible by all the parties in the system, including the
attacker. In the security proof, we model H as a random function and allow it
to be programmed by the challenger. Therefore, in the fully adaptive security
game described above, we further let the adversary adaptively submit H-oracle
queries to the challenger, along with the key queries it makes both before and
after the challenge ciphertext query.

4 Our Composite Order Group MA-ABE Scheme

In Section we recall composite order bilinear groups. In Section [4.2] we give
the construction. In Section we prove correctness of the construction and
we give the security proof in the full version [16] The complexity assumptions
on which our security proof relies on are basically different types of subgroup
decision assumptions and can also be found in the full version.

4.1 Composite Order Bilinear Groups

Our system relies on composite order bilinear groups, which were first defined
in [9]. Particularly, we will rely on a bilinear group G of composite order N
which is a product of three primes, that is, N = pipop3. Such a group has
unique subgroups of order ¢ for all divisor ¢ of N and we will denote such a
subgroup as G,. Also every element g € G, can be written (uniquely) as the
product of an element of Gy, an element of G,,, and an element of G,,. We
refer to these elements as the “G,, part of g7, the “G,, part of g”, and the “G,,
part of g”, respectively. We shall assume that there is a procedure G(1*) that
gets as input a security parameter A and outputs G = (N = p1paps3, G,Gr,e),
where e: G x G — G is a pairing. We assume that the group operations in G
and G as well as the bilinear map e are computable in polynomial time in A.
Further, we assume that e satisfies the following;:

1. (Bilinear) Vg,h € G, a,b € Zy, e(g®, h®) = e(g, h)*®.
2. (Non-degenerate) 3g € G such that e(g, g) has order N in Gr.
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4.2 The Construction

Here, we present our MA-ABE for NC! construction in composite order bilinear
groups. As mentioned, we assume that each authority controls just one attribute,
and hence we would use the terms “authority” and “attribute” interchangeably.
GlobalSetup(1*): The global setup algorithm takes in the security parameter
1* encoded in unary. The procedure first chooses primes p1, p2, p3 and let N =
p1peps. Next, it generates a bilinear group G = (N, G,Gr,e) of order N. Let
Gp, be the subgroup of G of order p; and let g; and h be uniformly random
generators of the subgroup G,,. We make use of a strong seeded randomness
extractor Ext : Gp x S — M, where Ml C {0,1}* is the message space and
S C {0,1}* is the seed space. The algorithm samples a seed seed < S. It sets
the global parameters GP = (G, g1, h, seed). Furthermore, we make use of a hash
function H : {0,1}* — G mapping global identities GID € GID to elements in
G.

AuthSetup(GP, H, u): Given the global parameters GP, the hash function
H, and an authority index u € AU, the algorithm chooses random values
YAuYBu € Zy and outputs

PKu = (PA,u - glyAwua PB,u = gzlJBﬁu) MSKu - (yA,uvyB,u)'

Enc(GP, H, msg, (M, p), {PK.,}): The encryption algorithm takes as input the
global parameters GP, the hash function H, a message msg € M to encrypt, an
LSSS access structure (M, p), where M = (M, ;)oxa = (M,...,M;)" € Z?VXd
and p : [{] — AU, and public keys of the relevant authorities {PK,, }. The function
p associates rows of M to authorities (recall that we assume that each authority
controls a single attribute). We assume that p is an injective function, that is,
an authority/attribute is associated with at most one row of M.

It first chooses a random value s < Zy . It then uses the LSSS access structure
(M, p) to generate a secret sharing of s where 04 ,, will be the share for all z € [(],
ie, for all x € [(], let 04, = M, - va, where v4 + Z4 is a random vector with
s as its first entry and M, is the z*" row of M. It additionally creates another
secret sharing of —s with respect to the LSSS access policy (M, p) where o, is
the corresponding share for p(z) for all x € [¢], i.e., forall z € [{], op, = M, vp,
where vp + Z;’l\, is a random vector with —s as its first entry. The procedure
generates the ciphertext as follows: For each row x € [{], it chooses random
TAx, "B,z < ZN and outputs the ciphertext

CT == ((Ma P)> 07 {Cl,A,m7 CQ,A,:E) Cl,B,:L‘, OQvar}xE[f])’
where

C = msg @ Ext(e(g1, h)’, seed),

_ TAxz _ pTAx TAx _ YA px)TAx OAx
CI,A,;c =9 CQ,A,I = PA,p(x)gl =0

_ TB.x o TB,x OB, __ YB,p(z)TB,z OB,z
Cl,B,x =01 CZ,B,z - PB,p(m)gl =0 91 .

KeyGen(GP, H, GID, MSK,,): The key generation algorithm takes as input the
global parameters GP, the hash function H, the user’s global identifier GID &
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GID, and the authority’s master secret key MSK,. It generates a secret key
SK(;|D7U for GID as

SKeip,w = (Kcip, A,u; Kcip,B,u)

where KGID,A,u = (H(GlD) . h)yA*“ and KGID,B,u = (H(GlD))yB“

Dec(GP, H, CT, GID, {SKgip, }): Decryption takes as input the global param-
eters GP, the hash function H, a ciphertext CT for an LSSS access structure
(M, p) with M € Z8* and p : [(] — AU injective, the user’s global identifier
GID € GID, and the secret keys {SKG|D,u}u€p(I) corresponding to a subset of
rows of M with indices I C [¢]. If (1,0,...,0) is not in the span of these rows,
My, then decryption fails. Otherwise, the decryptor finds {w, € Zy},; such
that (1,0,...,0) = Y, wy - M,.

For all x € I, the decryption algorithm first compute:

Dy = e(Co a4, H(GID) - h) - e(C1 4,2, Kaip,apx)) " = €(g1,H(GID) - h)74=
Dpz = e(C2,B,2,H(GID)) - (C1,B,x, KGID,B,p(m))_l =e(g1,H(GID))?B:=

Then compute D = []
Ext(D,seed) = msg.

wer(Daz - Dp )" = e(g1,h)*. Finally it outputs C' @

Remark 4.1 (On GlobalSetup): Similar to all prior decentralized MA-ABE
schemes, our proposed schemes utilize a GlobalSetup algorithm that samples a
random string (“setup”) with a specific structure (i.e., private coin). This setup
string needs to be generated only once, can be reused in different sessions, and
the randomness used to generate it is never used subsequently so it can be
discarded once the setup string is generated.

Theorem 4.1 (Security of Composite-Order MA-ABE Scheme): The
above MA-ABE scheme for NC' is fully adaptively secure in the random oracle
model assuming the various types of sub-group decision assumptions.

The proof of correctness of the scheme is presented in Section [£:3] The proof
of security, i.e., that of Theorem is deferred to the full version [16].

4.3 Correctness

Assume that the authorities in {SKgip ., } correspond to a qualified set according
to the LSSS access structure (M, p) associated with CT, that is, the correspond-
ing subset of row indices I corresponds to rows in M that have (1,0,...,0) in
their span.

For each x € I, letting p(z) be the corresponding authority,

e(C2,4,5,H(GID) - h) = e(g{ """ * " g7** /H(GID) - )

(glllA,p(m)rAvm’ H(G|D) . h) . e(ng’w’ H(GlD) . h)
(91, H(GID) - h)¥4»@ ™4 . e(gy, H(GID) - h)74,

€
(&
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Also, for each x € I,

€(Cl,A,z7KGID,A,p(z)) = e(QIA'Iv (H(GID) - h)¥4.r())
= €(g1, H(GlD) . h)yA,p(I)rA,m.

HenCe,
Dy =e(C2a0,H(GID) - h) - e(C1 4,2, Kcip, a,p(x)) "
_ elg1, H(GID) - h)r2emaw - e(g1, H(GID) - h)74-
- e(g1, H(GID) - h)¥4.p@)T 4.
= e(g1,H(GID) - h)74=.
Similarly,

DB,;C = €(OQ,B,;57 H(GlD)) . 6(017379“ KG|D7B,p(x))71
_ (1. H(GID))*»72< - e(gy H(GID)) 7>~
N e(g1, H(GID))¥B.p(e) 752

— e(g1, H(GID))7#+.

‘We then have

D=][(Pas Dpa)"

xel

= T (e(g1, H(GID) - k)74=)" - (e(g1, H(GID))7= =)™
xel

= [ e(91, H(GID) - k)74 - e(g1, H(GID)) "= >
xel

= e(g1,H(GID) - h)* - e(g1,H(GID)) ™% = e(g1,h)*,

where the fourth equality follows since » _; w, - M, = (1,0,...,0) and 04, =
M, -vy and 0, = M, - vp. Thus we have

C @ Ext(D, seed) = msg @ Ext(e(g1, h)®, seed) & Ext(e(g1, h)?, seed)

= msg.

5 Our Prime Order Group MA-ABE Scheme

In Section [5.1] we recall prime order bilinear groups and give the associated nota-
tions. In Section[5.2] we give the basis structure of the translation framework. Our
construction is based on various subspace assumptions derived from the MDDH
assumption [13] and can also be found in the full version [16]. In Section [5.3| we
give the construction. The correctness and security proofs are deferred to the
full version.

25



5.1 Prime Order Bilinear Groups and Associated Nota-
tions

Notations: Let A be a matrix over the ring Z,. We use span(A) to denote the
column span of A, and we use span™(A) to denote matrices of width m where
each column lies in span(A); this means M <+ span™(A) is a random matrix of
width m where each column is chose uniformly from span(A). We use basis(A)
to denote a basis of span(A), and we use (A1 || A2) to denote the column-wise
concatenation of matrices A;, A;. We let I be the identity matrix and 0 be a
zero matrix whose size will be clear from the context.

Fix a security parameter, for any bilinear group parameter G =
(p,G1,Ga,Gr,01,92,¢) and any i = 1,2, T with gr = e(g1,g2), we write [M];
for gM where the exponentiation is element-wise. When bracket notation is used,
we denote group operations with 8, i.e., [M]; B [IN]; = [M + NJ; for matri-
ces M, N, and B as their negatives, i.e., [M]; B[N]; = [M — NJ];. Also, we
define N © [M]; = [NM]; and [M]; © N = [M NJ],. We also slightly abuse
notations and use the original pairing notation e to denote the pairing between
matrices of group elements as well, i.e., we write e([M]1, [N]2) = [M N]r.
Prime Order Bilinear Groups: Let Gi, Gy and G7 be three multiplicative
cyclic groups of prime order p = p(\) where the group operations are efficiently
computable in the security parameter A and there is no isomorphism between
Gy and Go that can be computed efficiently in A. Let g1,g2 be generators of
G1,Gs respectively and e : Gy x Gy — G be an efficiently computable pairing
function that satisfies the following properties:

— Bilinearity: for all u € G1,v € Gy and a,b € Z, it is true that e(u®,v®) =
e(u,v)®.

— Non-degeneracy: e(g1,92) # lg,, where 1g,. is the identity element of the
group Gr.

Let G be an algorithm that takes as input 1*, the unary encoding of the security

parameter A\, and outputs the description of an asymmetric bilinear group G =

(0, G1,G2,Gr, g1, 92, €).

5.2 Composite to Prime Order Translation Framework

We want to simulate composite order groups whose order is the product of three
primes. Fix parameters ¢1, o, {3, £y > 1. Pick random

A1 < ngzl s A2 < ZéXZQ,Ag < Zf)xgig

where ¢ := {1 +0o+/5. Let (A} || A% || A3)" denote the inverse of (A; || Az || A3),
so that A] A¥ = I (known as non-degeneracy) and A;'—A;'f = 0if ¢ # j (known
as orthogonality).
Correspondence: We have the following correspondence with composite order
groups:
gi = [Ai]1, g; + [Ais]:
we Ly W e 2w, g9 = [A] W],
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The following statistical lemma is analogous to the Chinese Remainder Theorem,
which tells us that w mod ps is uniformly random given g{’, g5, where w + Zn:

Lemma 5.1 (statistical lemma): With  probability 1 — 1/p  over
Ay, Ay, Az, AT, A5, AL, the following two distributions are statistically
identical.

{ATW, ATW.[W] and {A]W,AJW, W + VP ),

where W« Z5* and V) «+ span®v (A3).

5.3 The Construction

Here, we present our MA-ABE for NC! construction in prime order bilinear
groups. As mentioned, we assume that each authority controls just one attribute,
and hence we would use the terms “authority” and “attribute” interchangeably.
GlobalSetup(1*): The global setup algorithm takes in the security parameter
1* encoded in unary. The procedure first chooses a prime p. Next it generates a
bilinear group G = (p, G1, G2, G, g1, g2, €) of order p. Let g1, g2 be the generators
of G, Gy respectively. We make use of a strong seeded randomness extractor
Ext : Gy xS — M, where M C {0, 1}* is the message space and S C {0,1}* is the
seed space. The algorithm samples a seed seed < S. Next, the algorithm samples
Ay, Ao, Ay T3F b 7. Let (A7 || A3 | A3) = (A1 || A2 || A5)~) " where
A}, Aj, Af « Z3F%F such that A A5 = T'ifi = j, and 0if i # j for all i,/ € [3].
It outputs the global parameters as GP = (G, [A1]1, H = [A}h]2, seed).

Furthermore, we assume that all parties has access to the hash function
H:{0,1}* — G3* mapping global identifiers GID € GZD to random vectors in
G35, i.e., for all GID € GID we have H(GID) = [hgip]2 for some hgp + Z3.
AuthSetup(GP, u): Given the global parameters GP and an authority index
u € AU, the algorithm chooses random matrices Wy ., Wg ,, € Zg’”% and
outputs

PKy = (Pau = W4, ®[Aih, Ppu =Wy, © [A1]1)
= (W4, A, [Wg ,AilL)
MSK, = (WA,u, WB,u)«

Enc(GP, msg, (M, p), {PK,}): The encryption algorithm takes as input the
global parameters GP, a message msg € M to encrypt, an LSSS access structure
(M, p), where M = (M, ;)oxa = (My,...,M;)"T € Z5% and p: [¢(] — AU, and
public keys of the relevant authorities {PK, }. The function p associates rows of
M (viewed as column vectors) to authorities (recall that we assume that each
authority controls a single attribute). We assume that p is an injective function,
that is, an authority/attribute is associated with at most one row of M.

It first samples a random vector d < Z’; and random matrices Uy, Up +

ngx(d*l). The procedure generates the ciphertext as follows: For each row x €
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[€], it chooses random vectors sS4 ,, SB .y < Z'; and outputs the ciphertext

CT=((M,p),C, {Cl A,z Co,4,2,C1,B T Co.B x}xe g])
where C' = msg @ Ext(e([A1d]1, H), seed), and
Ciraz=[A1]1 ©sa, =[A184.]1
Conp = ([A1l1 ©d||[Ualy) © M, + [[Wlp(w)x‘hﬂl © 84z
= [Aral ) M.+ W] Arsa]
Ci.By =[A1]1 © spx = [A1SB 2]
Copo = ([Ai]1 © (=d) | [Ush) © My + [Wpg () A1l © sB.4
= [—Awd| Us) M, + W] ) Avsia]|
KeyGen(GP, GID, MSK,,): The key generation algorithm takes as input the

global parameters GP, the user’s global identifier GID € GZD, and the authority’s
master secret key MSK,,. It generates a secret key SKgip,, for GID as

SKeip,u = (Kaip,A,us Kcip,B,u)

where

Kaip,Au = Wi,y © (H(GID) - H) = [Wa,y - (haip + ATh)]2

Keip,B,u = Wg,u © H(GID) = [Wp_, - haip]2
Dec(GP, CT, GID, {SKgip, }): Decryption takes as input the global parameters
GP, a ciphertext CT for an LSSS access structure (M, p) with M € Z5*¢ and

p: [f] — AU injective, the user’s global identifier GID € GZD, and the secret keys
{SKGIDv“}uEp(I) corresponding to a subset of rows of M with indices I C [¢]. If

(1,0,...,0) is not in the span of these rows, M7, then decryption fails. Otherwise,
the decryptor finds {w, € Zn},¢; such that (1,0,...,0) =Y ., w, - M.
For all x € I, the decryption algorithm first compute:

e(C2,4,2, [haip + ATh]2)e(Croaz, Kaip,a,px)
[(wal ) )" - (heo + A7)
e(C2,8,2, [haip]2)e(Cr,B.w, Keip,B,p(x) "

A .
|[ (~A1d||Up) M) - han |

Then compute D = [],.;
C @ Ext(D, seed) = msg.

Theorem 5.1 (Security of Prime-Order MA-ABE Scheme): Assuming
the MDDH assumption holds, then all PPT adversary has a negligible advantage
i breaking the fully adaptive security of the above MA-ABE scheme in the
random oracle model.

(Day - Dpg)"* = e([A1d]1, H). Finally it outputs
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