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Abstract. In recent years, there has been significant work in studying
data structures that provide privacy for the operations that are executed.
These primitives aim to guarantee that observable access patterns to
physical memory do not reveal substantial information about the queries
and updates executed on the data structure. Multiple recent works, in-
cluding Larsen and Nielsen [Crypto’18], Persiano and Yeo [Eurocrypt’19],
Hubagek et al. [TCC’19] and Komargodski and Lin [Crypto’21], have
shown that logarithmic overhead is required to support even basic RAM
(array) operations for various privacy notions including obliviousness and
differential privacy as well as different choices of sizes for RAM blocks b
and memory cells w.

We continue along this line of work and present the first logarithmic lower
bounds for differentially private RAMs (DPRAMs) that apply regardless
of the sizes of blocks b and cells w. This is the first logarithmic lower
bounds for DPRAMs when blocks are significantly smaller than cells,
that is b < w. Furthermore, we present new logarithmic lower bounds
for differentially private variants of classical data structure problems in-
cluding sets, predecessor (successor) and disjoint sets (union-find) for
which sub-logarithmic plaintext constructions are known. All our lower
bounds extend to the multiple non-colluding servers setting.

We also address an unfortunate issue with this rich line of work where
the lower bound techniques are difficult to use and require customization
for each new result. To make the techniques more accessible, we general-
ize our proofs into a framework that reduces proving logarithmic lower
bounds to showing that a specific problem satisfies two simple, mini-
mal conditions. We show our framework is easy-to-use as all the lower
bounds in our paper utilize the framework and hope our framework will
spur more usage of these lower bound techniques.

1 Introduction

In this work, we will study privacy-preserving data structures in the setting where
a client outsources the storage of data to one or more potentially untrusted
servers (such as a cloud provider). Even though the client delegates the storage
to the server, the client may need to perform operations on the outsourced data
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in an efficient manner. In terms of privacy, the client wishes to maintain the
confidentiality of the outsourced data. A straightforward first attempt is for
the client to encrypt all data locally before transferring to the server. While
guaranteeing that the server cannot see the data in plaintext, this technique
does not address the leakage of access patterns that the server observes when the
client performs operations on the outsourced data. For example, the server may
observe the exact memory locations that are retrieved or modified. Therefore, it
is integral to protect the patterns of data access to also maintain privacy for the
actions performed over the outsourced data.

Oblivious RAMs. Oblivious RAMs (ORAMs), introduced by Goldreich and
Ostrovsky [17], are one cryptographic primitive that may be leveraged to hide
access patterns. At a high level, ORAMs can be viewed as a data structure that
enables maintenance of a dynamic array where the client either query or update
any entry. The obliviousness privacy guarantee of ORAMs ensures that any
adversary given two candidate equal-length operational sequences and observes
the access pattern incurred by the execution of one of the sequences still cannot
determine the identity of the executed operational sequence. In recent years,
ORAMs have been studied extensively to try and determine the optimal overhead
(see [17,18,25,43,30,10,40,5,9,14,32,19] and references therein). For b-bit entries
on machines with memory cell (word) size of w bits, the best known constructions
obtain logarithmic overhead O((1 4+ b/w) -logn) [1]. This ends up being optimal
as it matches the lower bounds of £2((b/w)-logn) by Larsen and Nielsen [28] and
2(logn/(1+log(w/b))) by Komargodski and Lin [23] up to logarithmic factors in
b and w for all choices of b and w. Due to their strong privacy guarantees, ORAMs
have seen usage in many applications such as multi-party computation [47,4,15]
and secure cloud storage systems [42,3].

Differentially Private RAMs. In various practical applications, the guaran-
tees provided by obliviousness end up being unnecessarily strong. For example,
we can consider the problem of privacy-preserving data analysis where the goal
is to reveal statistics about a data set, but still maintain the privacy of each in-
dividual. An algorithm is considered differentially private if the probability dis-
tribution of the output of the algorithm for two data sets that differ in only one
record will not differ significantly. Therefore, if the adversary observes the disclo-
sure of the algorithm, it may not learn information about whether an individual
was a member of the input data set. Consider the problem of privacy-preserving
data analysis over a data set outsourced to an untrusted server. For any accesses
to the data set, we could use an ORAM to completely hide any subset of records
accessed from the data set. However, this may be stronger privacy than needed
as the differentially private disclosure only provides privacy for individuals.
Instead, we turn to differentially private RAMs (DPRAMs) whose privacy
guarantees align closer to the ones used in privacy-preserving data analysis.
DPRAMSs aim to provide privacy for individual operations, but may reveal in-
formation about a sequence consisting of many operations. In more detail, if an
adversary receives two candidate equal-length operational sequences that differ
in one operation and the access pattern incurred by the execution of one of the



two sequences, the adversary should not be able to guess the identity of the ex-
ecuted sequence with too high probability. Due to the weaker guarantees, there
is hope to obtain sub-logarithmic overhead smaller than ORAMs. For example,
sub-logarithmic constructions have been shown for differentially private Tur-
ing machines, stacks and queues [24] whereas logarithmic overhead is required
for their oblivious counterparts [21,24]. Unfortunately, the 2(b/w - logn) lower
bound for DPRAMs by Persiano and Yeo [37] showed that this is impossible
when b = 2(w). However, no such lower bound is known when blocks are signif-
icantly smaller than cells, b < w, leading to the following question that was also
posed as an open problem in [23]:

What is the optimal overhead for differentially private RAMs
for the setting when blocks are much smaller than cells, b < w?

We resolve this by proving a logarithmic lower bound for all choices of b and w.

Framework for Cell Probe Lower Bounds. Starting from the seminal work
of Larsen and Nielsen [28] that introduced the usage of cell probe techniques
for oblivious RAMs, there has been a significant amount of work for proving
cell probe lower bounds for various data structure problems and privacy guaran-
tees. Previous works have considered lower bounds for different privacy notions
beyond obliviousness and differential privacy including obliviousness without ad-
versarial knowledge of operational boundaries [20], obliviousness in the multiple
non-colluding server setting [29] and searchable encryption leakage functions [34].
Lower bounds have also been proven for other oblivious data structure problems
beyond RAMs including stacks, queues, deques, heaps and search trees [21] as
well as near-neighbor search [27].

Unfortunately, the lower bounds end up being very technical and customized
to each specific setting. To date, if one wished to prove lower bounds for a specific
data structure with certain privacy guarantees, one would have to understand all
the various techniques and modify them accordingly to obtain the desired lower
bound. Ideally, we would like to encapsulate the re-usable portions of the proofs
into a blackbox framework that enables future users to prove lower bounds by
only modifying parts that need to be customized for the specific data structure
problem and/or privacy notion. This leads us to the following natural question:

Is it possible to generalize the techniques into a framework
that enables easier lower bound proofs for future works?

To address this, we present a framework that reduces proving logarithmic lower
bounds for privacy-preserving data structures to showing that the data structure
problem and privacy notion satisfy two simple (and seemingly minimal) condi-
tions. Furthermore, we show that our framework is widely applicable by proving
logarithmic lower bounds for a whole set of new data structure problems for
which sub-logarithmic upper bounds are known with no privacy guarantees.



1.1 Owur Contributions

We summarize our results below. All our lower bounds are proven in the cell
probe model where overhead refers to the required number of probes into server
memory cells. If one restricts the server to be passive (i.e., may not perform any
computation), then our results become communication lower bounds.

Differentially Private RAMs (DPRAMs). For our first result, we present
new lower bounds for DPRAMs. Informally speaking, a RAM is (¢, §)-differentially
private if, for any two sequences of operations O; and O, that differ in one oper-
ation and for any PPT adversary A, we have that pf‘ <ef- pf‘ + J, where pnA is
the probability that A outputs 1 on input the transcript of the RAM executing
sequence O,. We look at in the setting where blocks are significantly smaller
than the word size, b < w and show that DPRAMSs must still have logarithmic
overhead regardless of the parameter settings for b and w. In our work, we will
prove the following theorem. Throughout this section, we ignore O(log loglogn)
factors to avoid being overburdensome. See Theorem 5 for a more precise state-
ment.

Theorem 1 (Informal). Any (¢,0)-DP RAM for n b-bit entries with constant
€ > 0, sufficiently small, constant § > 0 and client storage of ¢ bits has overhead:

0 log(nb/c)
(1 + log(W/b)> '

To interpret the lower bound, we note that our lower bound is the same as
the one proved in [37] for DPRAMs in the case b = ©(w). However, for the
case when b < w, our lower bound ends up peaking a lot higher. For example,
consider the case where b = ©(1) and w = ©(logn). Then, our lower bound ends
being 2(logn) while the lower bound in [37] becomes trivial at £2(1). In other
words, our result ends up proving logarithmic lower bounds for all reasonable
choices of block and cell sizes b = log”® ™ (n) and w = log®® (n). In such regimes,
our lower bound is tight up to O(loglogn) factors with the best known ORAM
constructions [1].

Additionally, we show that we can extend our lower bound to the multiple
server setting improving previous multi-server ORAM lower bounds by Larsen
et al. [29]. These are the first logarithmic lower bounds for DPRAMs in the
multi-server setting (regardless of the choice of b and w).

General Framework. To make these techniques more accessible, we develop a
framework that abstracts out the necessary properties of a cryptographic data
structure for which logarithmic lower bounds may be obtained. We modularize
the proof such that the lower bound techniques leverage properties of either the
data structure problem or privacy in exactly two points. Then, we identify the
two properties needed to prove logarithmic lower bounds:

1. Large Information Retrieval: For any data structure problem P, one must
find a random sequence of n updates U = (uy,...,u,) such that for any
consecutive sequence of £ updates ug, . .., U,1¢—1, there exists a set Q of O(¢)



queries whose answers have high entropy with respect to updates ug, ..., ug4o—1-

If we let A(U, Q) be the answers of all queries ¢ € @ immediately executed
after U, then we must have that the average contribution to the entropy for
each of the O(¢) queries is at least £2(v) bits:

HA(U,Q) |u1,...,u4—1,Ug4¢,...,up)/l = 2(v).

2. Event Probability Transfer: Consider the setting with k > 1 server(s) where
at most one server is compromised by the adversary. Let E;(U,q) be any
event that is observable by a PPT adversary that compromises the ¢-th server
when executing the update sequence U from above and a query g. Further-
more, suppose that the probability of the event satisfies Pr[FE;(U, q)] > (/k
for some constant ¢ > 0. Then, the same event must occur with similar
probability for any other query ¢':

PrE;(U, ¢')] = 2(Pr(Ei(U, ).

The first property requires that the data structure problem is “complex”
enough to enable retrieving updates with queries. For example, this rules out
contrived data structures whose queries may not return any information about
updates. The second property acts as a proxy for leveraging the privacy guar-
antees. For any data structure problem and associated privacy guarantees that
can satisfy the above two properties, we immediately get the following theorem
(see Theorem 3 for a formal statement).

Theorem 2 (Informal). Let P be a data structure problem satisfying the above
two properties with query outputs of b bits. Any data structure DS solving P using
at most client storage of ¢ bits must have overhead:

(b ).

As a result, we believe that we have made the lower bound techniques more
accessible as one can reduce the problem of proving logarithmic lower bounds
to simply showing that the data structure problem satisfies the two properties
above. Furthermore, we identify that a key metric is the ratio between the size
of the query output b and the amount of information gained per query v.

New Data Structure Lower Bounds. We show that our framework is widely
applicable by proving logarithmic lower bounds for many data structure prob-
lems where lower bounds are not known with respect to any privacy guarantees.
In our applications, we target data structure problems where o(logn) upper
bounds are known when no privacy guarantees are required. By plugging these
data structure problems into our framework, we obtain fZ(log n) lower bounds
showing that the differentially private versions of these data structures inher-
ently require more overhead compared to the non-private versions. In particular,
we prove logarithmic lower bounds for the following data structure problems:



— Set Membership: In this problem, the data structure maintains a subset S C
[n]. A query for ¢ € [n] returns a bit indicating whether ¢ € S. This is
a natural problem where the output is a single bit and the cell size w is
much larger. Without privacy, one can solve this problem using a bit vector
of length n and answer queries in constant time. Using our framework, we
show that DP versions would, instead, require £2(log(n/c)/logw) overhead.

— Predecessor and Successor: Predecessor (successor) aim to maintain a subset
S C U of size at most n. A query for some i € U returns the largest (smallest)
item in S that is no larger (smaller) than the query input . Without privacy
requirements, one can solve predecessor in O(loglogn) overhead using van
Emde Boas trees [45] when |U| = n®®1). When DP guarantees are required,
we show that the overhead must be £2(log(n/c)/log(w/logn)).

— Disjoint Sets (Union-Find): Finally, we consider the disjoint sets data struc-
ture that maintains a set of sets over n elements. The union operation takes
two elements and joins their corresponding sets. The find operation takes an
element and returns a set representation of the input element. For any two el-
ements in the same set, the find operation will return the same set representa-
tion. The classical algorithm achieves overhead O(a(n)) where a(n) is the in-
verse Ackermann function that is essentially constant in all practical settings.
We show that the DP version requires overhead f2(log(n/c)/log(w/logn)).

One result of our new framework is that we can prove lower bounds for
natural data structures that do not enable writing of random blocks of data.
Most prior works [28,21,37,20,27,29,23] considered “key-value” data structures
where the values could be b-bit random blocks to derive enough entropy for
lower bounds. The above data structure problems do not enable storing random
b-bit blocks, but our framework is still able to prove logarithmic lower bounds.
Finally, our framework may handle other privacy guarantees besides differential
privacy and obliviousness. For example, our framework may prove lower bounds
for leakage functions common in searchable encryption extending [34].

Separation Result for Oblivious Stacks (and Queues). Finally, we con-
sider the generality of our framework. For example, one may question whether
there exist data structures that do not satisfy our framework’s two required
properties, but could still have a logarithmic lower bound. We provide evidence
that our framework is quite general and tight by studying stacks and queues,
two data structures that do not satisfy the first condition of large information
retrieval. For oblivious stacks and queues, Jacob, Larsen and Nielsen [21] proved
an 2(b/w - log(nb/c)) lower bound. For differentially private stacks and queues,
Komargodski and Shi [24] showed an upper bound of O((1 + b/w) - loglogn).
The correct overhead is unknown for oblivious stacks and queues when b < w.
We present constructions of oblivious stacks and queues with O(b/w-log(nbd/c))
amortized overhead. So, one may obtain sub-logarithmic overhead when b < w.
If b= 0(1) and w = O(logn), then our construction uses O(1) amortized over-
head. Furthermore, our result can obtain even sub-constant amortized times.
When b = O(1) and w = O(log® n), our construction requires O(1/logn) over-
head meaning that, on average, only one operation amongst logn operations



require interacting with the server. To our knowledge, this is the first separation
between an online oblivious data structure and ORAMs when b < w.

Re-framing this result with respect to our framework, it becomes clear that
oblivious stacks and queues should not satisfy the properties of our framework.
Therefore, we believe that if one can prove logarithmic lower bounds for a dif-
ferentially private version of a data structure problem P for all choices of b and
w, then one should be able to do so using our framework by showing that P
satisfies the two necessary properties.

1.2 Related Works

Balls-and-Bins Lower Bounds. The first logarithmic lower bounds were
proven by Goldreich and Ostrovsky [17] of the form 2((b/w)-(logn/logc)) where
the client has storage of ¢ bits. Boyle and Naor [6] pointed out that these lower
bounds only existed in the balls-and-bins model with a non-encoding assumption
on the underlying blocks. Lower bounds of the form £2(b/w - (logn/logc)) for
DPRAMs were proven in [33]. Cash, Drucker and Hoover [7] proved lower bounds
showing that one-round ORAMs must have £2(y/n) overhead or client storage in
the balls-and-bins model. Lower bounds for PIR were proven in similar models
including for public preprocessing [2,38] and private preprocessing [12,11,50].

Cell Probe Lower Bounds. The cell probe model is a computational model
where only probes into memory are charged cost. Everything else such as com-
putation or randomness generation can be done for free. Therefore, proving
cell probe lower bounds is the holy grail as these lower bounds will apply to
any realistic computational model. Although, proving cell probe lower bounds
ends up being difficult for this reason as the highest static lower bounds are
Q(logn) [31] and the highest dynamic lower bounds are £2(log?n) [26]. For
privacy-preserving data structures, the first cell probe lower bounds were proven
by Larsen and Nielsen [28] for ORAMs. Further works have proven lower bounds
for other oblivious data structures [21] and near-neighbor search [27]. Other
works have also considered various privacy notions including differentially pri-
vate RAMs [37], ORAMs where adversaries do not know the boundaries of op-
erations [20], ORAMSs with multiple servers [29] and searchable encryption [34].

Lower Bound Barriers. Boyle and Naor [6] showed that proving unconditional
lower bounds for offline ORAMs (that is, all operations are provided at one time)
would imply currently unknown circuit lower bounds. Extending this result,
Weiss and Wichs [49] showed that lower bounds for read-only online ORAMs
would result in new lower bounds for either locally decodable codes or circuits.

Constructions. As mentioned early, there has been a long line of work at-
tempting to construct ORAMs efficiently such as [17,18,25,43,40,14,32,1] as well
as in various settings including statistical security [10], multi-party computa-
tion [47,15], multiple non-colluding servers [30,19] and parallel access [5,9] to
list some examples. Beyond ORAMs, other works have considered construction
oblivious variants of other data structures [48,41,22]. Previous works also pre-



sented constructions for differentially private RAMs [46,33], search trees [§],
Turing machines, stacks and queues [24].

2 Technical Overview

Reviewing the Information Transfer Tree. We start with the information
transfer tree technique of Patragcu and Demaine [35] used first by Larsen and
Nielsen [28] to prove ORAM cell probe lower bounds. Komargodski and Lin [23]
extended the technique to enable proving logarithmic lower bounds for ORAMs
even when blocks are smaller than cells (b < w). At a high level, the information
transfer tree technique arranges n operations into a tree with arity y > 2 where
each of the n operations are uniquely assigned to a leaf node based on the
execution order. Each cell read is uniquely assigned to an internal node as the
lowest common ancestor of the leaf nodes associated to the operation performing
the cell read and the last operation to overwrite the read cell. For internal node
v, the totality of information that is read by queries in the right subtree rooted at
v from updates in the left subtree of v exists in the contents of cells in the set of
probes assigned to v. For any subtree rooted at v with £ leaf nodes, the number of
assigned probes is maximized at 2(¢) when right subtree reads blocks overwritten
in the left subtree. As the adversary may also compute the information transfer
tree, it must be that each internal node is assigned its maximum. Otherwise,
the adversary can determine that the worst case sequence was not executed.
Summing the worst case across all internal nodes obtains the lower bound.
Unfortunately, the information transfer technique seems to inherently require
a strong privacy condition, like obliviousness, for sequences differing in f)(n)
operations as the worst-case sequences for each internal node differ drastically.
This is incompatible with differential privacy as the privacy guarantees degrade
exponentially in the number of different operations. We note that Patel et al. [34]
investigated weaker leakage guarantees for encrypted search using information
transfer, but still leveraged privacy for sequences differing in Q(n) operations.

Previous Chronogram Approach. To prove lower bounds for differentially
private RAMs, Persiano and Yeo [37] adapted the chronogram (introduced by
Fredman and Saks [16]). The chronogram considers hard sequences of ©(n) up-
dates followed by a single query. The n updates are divided into K = O(log n)
epochs that decay exponentially by a factor of r > 2. Epochs are numbered in
reverse order, so that the i-th epoch has r* updates. The main idea is as fol-
lows. For any epoch ¢, the information stored about updates occuring in the i-th
epoch must appear in updates following the i-th epoch. Since we chose epochs
to decay exponentially, the total size of epochs {1,...,i — 1} is strictly smaller
than the i-th epoch. As a result, future update operations cannot encode all the
information written in the i-th epoch as long as r is chosen sufficiently large.
Consider the final query to randomly retrieve information from written in the
i-th epoch. If the data structure answers queries correctly, then, intuitively, the
query must directly probe cells last overwritten in the i-th epoch with high prob-
ability. Finally, differential privacy guarantees require that the query probes a



similar number of cells last overwritten from all K epochs to hide the identity
of the epoch from which information is retrieved. We highlight privacy is only
needed for sequences differing in the final query.

The crux of the above technique is an efficient communication protocol built
using a too-good-to-be-true data structure. In this communication game, Alice
and Bob both receives updates in all but the i-th epoch. Alice also receives the
answers to queries in the i-th epoch that it wishes to encode to Bob. To do this,
Alice and Bob will jointly execute the data structure with Alice helping Bob to fill
in the i-th epoch. For all updates before epoch ¢, Alice and Bob can individually
execute the updates. Alice will execute the i-th epoch of updates and keep track
of all cell writes. For updates in following epochs, Alice will record any reads to
cells (both locations and contents) last overwritten in epoch i. Finally, Alice will
also execute all queries relevant to the i-th epoch and record all reads to cell last
overwritten in epoch 4. The set of all cell locations and contents that are read
during operations following epoch i are encoded to Bob. So, Bob executes the
data structure identically to Alice and retrieves query outputs to the i-th epoch.

There are two key observations to complete the proof. First, the encoding
of cells and locations of all updates following epoch 7 is too small to encode
everything about epoch i. Therefore, the information needed to retrieve a query
must be encoded in cells last overwritten in the i-th epoch. Since queries output
b bits, one can use an averaging argument to show that 2(b/w) cells must be
probed by random queries to retrieve b bits of information from the i-th epoch.

A New Chronogram Approach for Small Blocks. Unfortunately, the above
approach suffers from an b/w factor that seems inherent in the specific commu-
nication protocol. When b < w, there is nothing ruling out the data structure
from storing the answers for ©(w/b) queries in a single cell.

Our paper introduces a more efficient communication protocol than the one
in [37] to handle these settings. If our goal is to prove logarithmic lower bounds,
then we must show that random queries must probe 2(1) cell last overwritten
in epoch i regardless of the choices of b and w. This is impossible if we rely
on trying to encode the contents of cells probed by a query since cell sizes w
are larger than the output of the query b. Instead, we make the observation
that the outputs of queries are actually smaller than contents of cells. In other
words, it is more efficient for Alice to simply encode the answers to queries
instead of encoding the contents of even a single cell probed by a query. However,
Alice cannot simply encode the answers of all queries to Bob as this would not
enable deriving any meaningful lower bound on query time. So, we also need
another method to further compress Alice’s encoding. The second idea is for
Alice to identify queries that do not need to be encoded at all. For example,
consider a query that does not probe any cell last overwritten by the i-th epoch.
These queries may be executed correctly by Bob for free without any additional
information from Alice. However, the frequency of these free queries is unclear.
If no free queries exist, we would obtain a trivial encoding of simply sending
all the query’s outputs. In fact, a contrived data structure could simply force
every query retrieving updates from the i-th epoch to simply probe a cell last



overwritten in the i-th epoch to guarantee that there are no free queries at all.
By increasing the update overhead by a single probe, each update in the i-th
epoch can write to one additional cell that will be read by the corresponding
subsequent query ensuring no free queries.

Taking a closer look, the above approach by a contrived data structure only
succeeds because the epoch structure is fixed ahead of time. Instead, we consider
a randomized epoch structure that cannot be leveraged by the data structure.
To do this, we pick a random number of updates from {n/2,...,n} followed
by a single query. The structure of K = O(log n) epochs is built over the final
n/2 updates. Consider any data structure that probes at most K /100 cells dur-
ing queries. As the epochs are randomly placed, we can show that if the data
structure can answer a query regarding a block written in the i-th epoch then it
will have to probe a cell last overwritten in the i-th epoch with some constant
probability, of approximately 1/100. In other words, we just showed that around
(99/100)-fraction of queries that retrieve information from the i-th epoch end
up being free queries in Alice’s encoding. As a result, we obtain a very efficient
communication protocol that allows us to prove that queries must probe 2(1)
cells from all K epochs.

We note that the lower bound in [37] also used randomized epoch structures,
but did so to remove loglogn factors from the lower bound. Their work would
still obtain an 2(logn/loglogn) lower bound without random epochs. In our
work, we leverage random query locations in a vastly different way to prove the
existence of many free queries. Without this, we cannot prove anything more
than a trivial £2(1) lower bound.

Comparison with [36]. We note that Patragcu and Tarnita [36] also studied
the setting of proving chronogram lower bounds when blocks were smaller than
memory cells. However, they only considered data structures without any privacy
requirements. Instead, they had to leverage properties of the underlying data
structure problems. One can view our work as an extension of [36] where we
prove chronogram lower bounds for easier data structure problems, but heavily
rely on the privacy requirements of the data structure. In fact, all problems
studied in our paper are known to have sub-logarithmic upper bounds without
privacy requirements. As a result, we had to develop new techniques (especially
in the efficient communication protocol) to be able to utilize differential privacy
to prove lower bounds for these easier data structure problems.

3 Lower Bound Model

We prove our lower bounds in a variant of the cell probe model that were in-
troduced by Larsen and Nielsen [28]. At a high level, the cell probe model only
charges data structures for probes into memory cells. All other operations are
free of charge (such as computation and randomness generation). To enable
lower bounds for cryptographic data structures, we use the cell probe model
that adapts the setting to multiple parties representing the client and k£ > 1
server(s). We assume that the client has at most ¢ bits of storage. Each server’s
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storage consists of memory cells (words) of w bits. In this variant of the cell
probe model, the only operation that is charged cost is to probe a cell in any
of the server’s memory. In our model, all accesses into client memory are free of
charge. Additionally, we assume there exists an arbitrarily long, but finite, ran-
dom string R that is available to both parties without any cost to access. One
can view R as a random oracle, so our lower bounds apply even if one assumes
random oracles exists.

In our work, we will consider dynamic data structure problems. By dynamic,
we refer to the fact that the data structure enables operations that allow its users
to update the information stored by the data structure. Furthermore, dynamic
data structures are allowed to update its memory representation during each
operation. We present a formal definition of dynamic data structures below:

Definition 1 (Dynamic Data Structure Problem). A dynamic data struc-
ture consists of the tuple (Uy,U,) where U, is the universe of update operations
and Uy, is the universe of query operations. The error probability is at most «
if for every sequence of updates u,...,u, € (U,)"™ and every query q € Uy, the
probability that the query q(uy, ..., u,) produces the wrong answer is at most «.

Next, we consider the view of the adversarial server(s) in this model. In par-
ticular, each of the k > 1 servers will receive a transcript consisting of everything
that each server observes while processing operations that are executed by the
client. For any sequence of operations O € (U, U Uq)|0|, we denote by V;(O)
the view of the i-th server when processing the operational sequence O. The
transcript V;(O) will consist of the contents of all memory cells stored on the
i-th server as well as sequences of probes to cells that occur for each of the
operations in the sequence O. We note that V;(O) also contains information de-
noting the boundaries of when each operation starts and ends®. If the adversary
compromises the i-th server, the adversary will receive V;(0). We use Tps(O) to
denote the entire transcript seen by the adversary for all compromised servers.
Note that our definition assumes that the adversarial server(s) are honest-but-
curious. As we are proving lower bounds, assuming that the adversary is weaker
makes our result stronger as our lower bounds immediately also apply to more
stronger adversaries such as those that are malicious.

Using the above definition, one can now formulate privacy notions for data
structures. For example, obliviousness guarantees that any efficient adversary
A should not be able to distinguish between V;(O;) and V;(O3) for any two
equal-length sequences O; and Os. In our work, we will consider two weaker
notions: differential privacy and privacy with respect to leakage functions. As
our framework does not make assumptions on any specific privacy notion, we
delay formal defintions of these notions until Section 5.

3 We note that Hubacek et al. [20] proved a logarithmic lower bound for ORAMs even
when the adversary does not learn operational boundaries. We leave it as future
work to adapt their techniques to work with our proof.
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4 Framework for Lower Bounds

In this section, we present a formal framework for proving lower bounds. In
particular, we will only assume certain properties of the data structure problem
(that we will describe later) and then we show that for any problems that sat-
isfy these properties, one can immediately utilize our framework to prove lower
bounds. Later, we will show that one can utilize our framework for many settings
with different privacy guarantees and/or data structure functionalities.

Consider a data structure problem P = (U,,U,). For any sequence of U of
update operations and for any query operation g € Uy, we denote by A(U, q)
the correct answer to ¢ when it is executed following the update operations in
U. We abuse notation and, for a sequence @ = (g1, .- ., q¢) of queries, we denote
by A(U, Q) the sequence of the correct answers for queries ¢; € @ obtained by
executing each query directly after the update sequence U. We re-iterate that
this set consists of all the correct answers and not the answers returned by a
potentially randomized data structure with non-zero error probabilities. We will
abuse notation and use A(U, Q) for distribution U over update sequences to
denote the distribution over the sequences of correct answers with respect to a
update sequence distributed according U. When U and @ are clear from context,
we will drop the arguments and simply use A.

We are now ready to formally define the required properties.

Definition 2 (Large Information Retrieval). We say that a data structure
problem P has the Large Information Retrieval property with parameter v if there
exists a distribution U = (uy,...,u,) over sequences of n update operations such
that for any subsequence (Ug,...,Uqye—1) of £ > \/n update operations, there
exists a sequence Q of length ¢ < |Q| < c¢- £, for some constant ¢ > 1, such that

HAU,Q) |u1,...,Uq—1,Ug44,...,u,) > L 0.

Definition 3 (Event Probability Transfer). Consider a data structure DS
for the problem P. For any update sequence U and query q, let E(U,q) be some
event that can be checked whether to have occurred by a PPT adversary such
that Pr[E(U,q)] > ¢ for some constant { > 0. We say that P has the Event
Probability Transfer if for every DS and for any two queries q and q', it must
be that

Pr[E(U.q")] = 2(Pr[E(U, q)])

where the probability is over the internal randomness of DS.

Next, we present the main theorem of our framework.

Theorem 3. Consider a data structure problem P that allows update and query
operations such that query outputs are b bits and b = n®M) * Let DS be any data
structure for P with expected update and query overhead t,, and t, respectively,

4 For most natural problems, the output size is b = O(log n). For generality, we picked
the largest upper bound as possible for b without affecting our lower bound.
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client storage ¢ and error probability o < v/(blog?n) in the cell probe model
with w > 1 cell size. If P enjoys the Large Information Retrieval property with
parameter v and Event Probability Transfer property then

_ofr. log(nuv/c)
tu +tg =82 (b 1+10g((w+10g10gn)/b)) .

We dedicate the remainder of this section to proving this theorem. Later, we
will show how to apply our framework to prove lower bounds in various settings.

Discussion about b and v. In the above theorem, b is the number of bits
to describe the output of each query. On the other hand, v is the amount of
information that is retrieved about the random updates with each query. In
general, we know that v < b as we cannot learn more information that the query
output’s size. Prior works have made the assumption that b = v such as for array
maintenance. By generalizing this, we illuminate the importance of this ratio for
lower bounds in cryptographic data structures. In later sections when we prove
lower bounds for specific problems, we will convert natural problems to artificial
variants with the goal of maximizing the ratio v/b to prove higher lower bounds.

We point out that this b/v factor is distinctly different from the b/w factor
that appears in prior lower bounds. The b/v factor characterizes the average
information retrieved per bit in the query output. In contrast, the b/w factor
characterizes the number (or fraction) of cells needed to represent the answer of
a single query. For the case when cell size is larger than the query output w > b,
our lower bound is better than the previous one of 2(b/wlog(nb/c)) [37] as it
only loses 1/(1 4 log((w + loglogn)/b) factor.

Comparison with [23]. We note that our lower bound is slightly lower than
the one proved by Komargodski and Lin [23]. They proved a lower bound of
the form 2(log(nb/c)/log(w/b)) but, to our knowledge, may be only applied
to strong oblivious guarantees. On the other hand, we prove a lower bound of
the form 2(log(nb/c)/log((w + loglogn)/b)), but it is applicable to a wider
range of possibly weaker privacy guarantees and data structure functionalities.
We note the gap is very small and only exists in very restricted settings. When
w = N(loglogn), both lower bounds are asymptotically identical. Furthermore,
if b = £2(w), we can use the original £2(b/w-log(nb/c)) lower bounds such as [28§].
Therefore, a gap between the lower bounds exists only when w = o(loglogn)
and b = o(w). It is not hard to see that the gap is at most O(logloglogn).

Discussion about Error Probability. We note that one can obtain a slightly
stronger theorem for constant error probability « if one is willing to make ad-
ditional assumptions about the data structure DS. In particular, if one assumes
that v = ©(b), then one can prove lower bounds that hold also for data structures
that err with constant probability. For convenience and the ability to handle gen-
eral data structures, we consider weaker error probabilities of O(1/log® n). This
is still much larger than the negligible error required for cryptographic primitives.
Weaker Large Information Retrieval. In our definitions, we assumed that
every subsequence of at least v/n updates enabled a query sequence whose out-
puts had high entropy. A weaker definition would have sufficed for our lower
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bound where only a certain fraction of the subsequences admit this property
(such as if a random subsequence satisfied this property with constant prob-
ability). However, we chose the stronger definition as it was sufficient for all
applications of our lower bound framework and enabled simpler proofs.

4.1 An Efficient Communication Protocol

In this section, we show that a data structure for any problem P with error
probability at most « emits a public coin one-way communication protocol for
the problem where Alice wishes to efficiently encode the correct answers for all
queries in a query set to Bob. In particular, this protocol efficiently encodes the
output of queries even if the query output of b bits is significantly smaller than
the cell size w. We describe the problem below:

Communication Problem. Let U = (uq,...,u,) be a sequence of update
operations. In the communication problem, Alice and Bob will receive the same
sub-sequence of update operations U’ = (uq, ..., Ug—1, Uats, - - - , U ) Where the
consecutive ¢ operations ug, ..., uq+¢—1 are omitted, along with a set of queries
@ and a random string R. Additionally, Alice will receive sequence A(U, Q);
that is, the set of correct answers for all ¢ € ) where each query is executed
immediately after U. The goal of Alice will be to encode A(U, Q) to Bob. In
particular, Alice’s encoding will have to account for the fact that Bob is missing
¢ update operations while ensuring Bob receives the correct answers.

Random Variables. Next, we denote some additional random variables that
will be used to bound the total communication of our protocol. In particular,
these variables will measure the number of probes by future updates and queries
into the group of updates that are missing in Bob’s input.

— X2 denotes the number of probes perform by the update operations
(Ugre,---,Up) into a cell last overwritten by an update in the missing group
(Ugy -y Ugto—1)-

— X denotes the number of probes performed by all queries ¢ € @ into a cell
last overwritten by an update in the missing group (uq,. .., Uate—1)-

— T%“” denotes the total number of probes performed by all update opera-
tions starting from and including wg 4.

Lemma 1. If there exists a data structure DS for problem P that has error
probability 0 < a < 1, then there is a public coin one-way communication protocol
solving the above problem using expected communication at most

E [X29+] (w +log t“(”;‘E[_Xi;ir D > +E[Xo)] (b +log 1[«:[)1<Q]) +alQ) (b +log i) .

Proof. We start by presenting our communication protocol below followed an
analysis of correctness and the encoding length.

Alice’s Encoding. We describe the procedure used by Alice to encode the
correct answers A(U, Q). Recall that Alice and Bob share the update sequence
U’ as well as public randomness R. The encoding consists of five phases.
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1. Alice reconstructs the missing ¢ update operations ug, . . ., Ug+¢—1 by trying
all possible update operations until finding the sequence that matches the
answers in the set A(U, Q).

2. Alice runs the data structure, using shared random string R, and executes

all the update operations (uq, ..., u,—1). That is, Alice executes all updates
until the ones missing from Bob’s input.
3. Alice executes the missing update operations (ug,...,uqs4+¢—1) that are not

part of Bob’s input. At the end of this phase, Alice appends the ¢ bits found
in client memory after the last update operation wug4¢—1.

4. Alice executes all updates in the remaining update operations known to both
parties (uq¢, .- ., Un) using the shared random string R.
In this phase, Alice keeps a list of all the special probes of this phase. A
probe is special if it is a probe to a cell last overwritten by an update in the
missing group. For this purpose, the probes of this phase are indexed with
the integers 0, 1,2 and so forth. At the end of this phase, Alice appends an
encoding of the set of indices of the special probes along with the ordered
sequence of all the cell contents read by these probes.

5. Alice executes each query ¢ from the query set . All queries are executed
starting from the state of the data structure at the end of update wu,, (that
is, after the last update operation). In this phase, Alice keeps two lists: a
list of the non-free queries that include a probe to a cell last overwritten in
epoch i and a list of the wrong queries for which the data structure returns
the wrong answer. At the end of this phase, Alice appends an encoding of the
subset of queries that are either non-free or wrong along with the ordered
sequence of the correct answers of the non-free and wrong queries.

Bob’s Decoding. We describe Bob’s decoding algorithm to recover the cor-
rect answers in A(U, Q). Recall that Bob receives the subsequence of update

operations U’ = (u1, ..., Uq—1, Ugtt—1, - - - , Gy) and the random string R.
1. Bob executes the updates uq,...,uq—1 using the shared random string R.
2. Bob skips the missing updates ug, ..., uqs+¢—1 and reads the content of the

client memory at the end of update w441 found in the encoding. Bob keeps
the server memory in the state at the end of update operation u,_1.

3. Bob executes the remaining updates uqy, ..., a,, using the shared random
string R. Before performing a probe as requested by the data structure,
Bob checks if the probe is in the list of the special probes as found in the
encoding. If the probe is special, Bob uses the cell contents found in the
encoding. Otherwise, Bob performs the probe using the current snapshot of
the server memory.

4. Bob takes a snapshot of the server and client memory at the end of update
U, and uses it as a starting state for all the queries ¢ € Q. For each query
q, Bob first checks whether the query is non-free or wrong. If so, the answer
of the query is read from the encoding. Otherwise, the answer of the query
is obtained by executing the data structure’s query algorithm.
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Correctness. As Alice and Bob share the same random string R and updates
outside of the missing group ug, ..., uas+¢—1, their executions of the data struc-
ture are identical up to update operation u,_i. For all updates u,y¢ and af-
terwards, every probe to a cell last overwritten by an update in the missing
group Ug, - . ., Ugt+¢—1 (thus, the cell contents are unknown to Bob) are encoded
by Alice. Therefore, all cells overwritten in update operation wu,, and after are
correct and identical to Alice’s execution. Finally, for the |Q| queries, we note
that Bob can get the correct answer whenever the query is correct and does
not probe any cell last overwritten by the missing group. As Alice encodes the
answer for all queries not satisfying the above two conditions, Bob will always
retrieve the correct answers for every query g € Q.

Expected length of the encoding. We now bound the expected length of the
encoding produced by Alice in each phase.

1. Alice does not produce any encoding in phase 1 and phase 2.

2. In phase 3, Alice encodes client memory for a total of ¢ bits.

3. Phase 4 contributes the encoding of the subset of special probes along with
contents of the cells probed by a special probe. In other words, a subset
of XZ9+* probes of the set of total probes performed during the updates
Ugits - - -, U after the missing group along with w bits for each of the X o+
probes. Therefore, phase 3 contributes at most:

Zott >ate
u a+
log <X§“+e) +w- - X2

>a+/4 TEaJrZ >a+/4 n
<E|XZ%log e +w-E[X574H] by log ) < klog(n/k)

U

E

<E [Xf‘”q log ——<—7 +w-E [Xf““] (by concavity)

E[T?LQJFZ]
E[Xflﬁ_é]

tym—a—L+1)
<E[X29 [ w + log
— [ } ( g ]E[Xga-i-f]

4. Phase 5 contributes the encoding of the set of non-free and wrong queries.
If the data structure has probability of error 0 < a < 1, then the expected
number of wrong queries is «-|@Q| queries and b bits are added to the encoding
for each wrong query. Similarly, for the non-free queries, the encoding of a
subset of size P, of a set of size ¢; followed by b- P}, bits. Therefore, phase 4
contributes at most the following expected number of bits to the encoding.

oo,/ Y] - a5 o (12)] #2100

< a|Q|(b+logl/a)+E [XQ -log g] +b-E[Xg]

) . (by E[TZ) < tu(m —a —0))

<a|Q|(b+1logl/a)+E[Xg] - (b + log EE?QO .

This completes the proof of our public coin one-way communication protocol. [
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4.2 The Hard Distribution

We now describe the distribution of updates and queries that we will use to
prove our lower bound. We then show how to organize the updates into epochs
so to utilize the protocol of the previous section. At a high level, by looking at
the components of the communication cost of Lemma 1, we notice that the first
component is due to the reconstruction of the necessary information for future
updates occurring after the missing updates. The second component takes into
account the amount of information for queries that were embedded during the
missing update operations. Note that the first component depends only on the
update time while the second component depends only on the query time. We
organize our updates into epochs so that the two components are balanced and
we can obtain a lower bound on the sum of query and update times.

Our hard distribution will make use of the random update sequence U =
(ug,...,u,) that we will assume exists for the data structure problem P. We
define our hard distribution denoted by U as follows:

1. Pick m uniformly at random from {n/2+1,n/2+1,...,n}.
2. Output sequence of operations U = (uy, ..., Uy).

In other words, we are picking a random prefix of length between n/2 and n
from the random update sequence U. For any query ¢, we denote by Q(q) the
distribution over the sequences Q(q) = (U, ¢) obtained by selecting U according
to U. Additionally, we will consider Q(Q) with respect to a set of queries Q. In
this case, Q(Q) consists of a random update sequence drawn from U as well as a
uniformly random query drawn from @. Our final hard distribution will be Q(q)
for some query gq.

Definition of epochs. Let U = (uq,...,u;) be a sequence of operations in
the support of . Define r to be the multiplicative decay between each future
epoch. We will choose a correct value of r later, but we will ensure that r > 2.
We partition the operations of U into epochs of exponentially increasing sizes
0 = 1 by := 12, ... with epochs starting from wu,, and growing backward to
ui. That is, epoch 1 consists of operations u,, Um—1, ..., Um—yr+1, €poch 2 of
operations Um—_r, ..., Uym—_r_r241 and so on. We define s; := 22:1 Z; to be the
number of the operations in epochs 1,...,7. Another way to view s; is that it
is the total number of operations that occur after epoch i 4+ 1. We will denote
U; to be the set of all updates in epoch i. We will also denote U_; to be the set
of all updates except for those that are updated in the i-th epoch. The index of
the starting update operation of the i-th epoch will be denoted by p;.

We say that an epoch is large if ¢; > max{8c/v,\/n} and we denote by
K the number of large epochs. Note that the number of large epochs is K =
6(log, (m/:)) = O(log, (nv/c)).

The organization of updates into epochs formalizes the intuition provided in
the previous section. For any large epoch i with ¢; updates, we note that the
number of update operations following it is at most 2¢;/r. In other words, the
future updates are a little bit smaller than the total number of updates within
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the i-th epoch. So, we can balance the two components of the communication
cost in the one-way protocol from the prior section to prove our lower bound.

Important notions of information. Finally, we will introduce two more vari-
ables that will aim to capture the notion of information that will be utilized
throughout our work. In particular, these will look very similar to the communi-
cation cost of the one-way protocol from the prior section. However, they will be
used specifically with respect to our epoch organization. We denote X%p “~! to be
the number of probes performed by updates occurring after the i-th epoch (that
is, in epochs @ — 1,...,0) that access a cell last overwritten in the i-th epoch.
We denote ng to be the number of probes performed by all queries ¢ € @ to
cells last overwritten in the i-th epoch. We denote Xfl to the number of probes
performed by a single query ¢ € @ to cells last overwritten in the i-th epoch.
We denote by Z(i, Q) the quantity defined as follows:

Z(i,Q) =min {|Q| - v,E [XZP~'] (w + loglogn) + b E [X’Q} }.

This captures the total amount of information needed to answer all queries
q € Q. Note, this matches the communication cost of our one-way communication
protocol in Lemma 1 by plugging in the i-th epoch as the missing group of
updates. We use the minimum as we know the information transferred is at
most |@| - v bits as v bits are learned on average from each |Q| queries. For a
single query ¢ € @, we can similarly define Z(4, q):

>pi—1
Z(i,q) = min {v, E[XZ" ] (212|+ loglogn) . [Xf]] } .

We use minimum as the average information in a single query is v bits. We will
utilize Z(¢, Q) and Z(i, q) later as the events that can be viewed by an adversary.

4.3 Bounding Query and Update Times

Finally, we will finish the proof of Theorem 3 in this section. In particular, we will
leverage the epoch organization as well as our one-way communication protocol
to prove lower bounds on the query and update times. To do this, we start by
showing that the cost of the one-way communication protocol can be directly
related to the entropy of the correct answers of the query set.

Lemma 2. Consider a data structure DS with error probability oo < v/(blog®n)
for a data structure problem P that satisfies the Large Information Retrieval
property. Then for every large epoch i such that E[X5 '] = O(t.l;/(rK)), there
exists a sequence QQ; of at least £; queries such that

2(i,Q;) = 2(4; - v).

Proof. We remind the reader that a large epoch ¢ consists of ¢; > /n update
operations. Therefore, if we consider a sequence U of n updates and the sub-
sequence of the ¢; updates of the i-th epoch then, by the Large Information
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Retrieval property, there exists a sequence ); of queries such that
H(A(U,Q;) | U_y) > Ly,

where U_; is the sequence of updates obtained from U by removing the updates
of epoch i. Since ); has at least ¢; queries, it suffices to focus on the second
argument of the minimum of the definition of Z(i).

Next, we utilize query set ); in the context of the one-way communication
protocol of Lemma 1, where Alice and Bob receive the updates U_;. By Shan-
non’s source coding theorem, the expected length of Alice’s encoding of A(U, Q)
must be at least the entropy of A(U, Q) conditioned on the shared information
U_; and R. Moreover, observe that R is chosen independently from U and @
and thus the expected length of the encoding must be at least

H(A(U,Q),| U_;,R) = HA(U,Q) | U_;) > t;v.

In other words, the expected communication cost must be 2(¢; - v).

Recall that we use p; to denote the position of the first operation of the i-
th epoch and s;_1 is the number of update operations in epochs 1,2,...,i — 1.
Furthermore, we use X¢ . to denote the number of probes by queries ¢ € Q; into
cells last overwritten by updates U; in the i-th epoch. Therefore, by Lemma 1,

, tuSi—1 : Qi 1
AR [X2Pi1] (w4 log —==— |+E[XL | | b+ log ) 4o |Q;|- [ b+ log — | > 4.

Note, that a < v/(blog? n), so we get that the last addend is at most |Q;|v/ log® n-
(1 + log(bn/v)). As b = n°M) and |Q;| = O(¢;), we get that this is at most
Liv-O(1/1logn) < £;v/8 for sufficiently large n. For a large epoch, we also have
¢ < 4;v/8. Therefore,

. tySi—1 ; Qi 3
E [X2Pi-1] (w4 log ——ar— | + E[X5 ] | b+ log - > — L.

Consider two cases. If E [XlQ] <|Q:]/16, then log ]E[l%;l.] < 4. Therefore,

i

'&"U

N =

: tuSi—1 ;
E [XZPi-t +log — = | +b-E[X, ] >
[ ]<w o E[Xip“]> %o

as |Q;| > ;. Finally, we use the fact that E[X%5' '] = O(t,/;/(rK)) and plug it
into the above to obtain the following inequality:

E (X377 '] (w+loglogn) + b E [X§,| = 2(4v)

where we used the fact that s;—1/¢; < 2/r and K = O(logn) by our epoch
construction. This completes the proof for the case of E [ij < |Q;l/16. For

the other case when E [X{, | > |Qi]/16, we can see that the result is trivially
obtained by plugging the value into Z(i) since |Q;| > ¢;. O
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The lemma above tells us that, for every large epoch, there exists one set of
queries with a large value of Z. The set of “expensive” queries depends on the
epoch and different epochs might have different bad queries. Conversely, a query
q might be “expensive” for one epoch but not for the others. Next, we show that
the Adversarially Observable Event implies that there exists one query that is
“expensive” for all epochs.

Using the Adversarially Observable Event. As we shall see later, this prop-
erty is guaranteed by the security notions (differential privacy, obliviousness)
that we will consider for the specific data structure problems for which we will
derive lower bounds. We note that quantity Z(i,q) only depends on the data
structure probes and thus it can be efliciently computed by an adversary even
without knowing the executed query ¢. Therefore, by the Adversarially Observ-
able Event property, its value should not “vary too much” with q.

To formalize this, we define the event Efl to be a binary random variable that
checks whether Z(i, ¢) is above a certain threshold. In particular, we denote

Xgpifl
Q|

for some constant S > 0 that we will choose later. Note, the above formula is
the second argument of Z(i,q). We will also use E(, as a binary random variable
with respect to the second argument of Z(7, Q) as follows:

E,=1 < (w+loglogn) +b- X > Bv

22 =1 <= X%’”-l (w+loglogn) +b- Xég > |Q|Bv

We show that there exists a single query ¢ such that Pr[EfI = 1] > p for some
constant probability p > 0 for all large epochs i. We prove this next:

Lemma 3. Consider a data structure DS for a data structure problem P satis-
fying the Large Information Retrieval and the Event Probability Transfer prop-
erties. Then, there exists a query q and a constant 0 < p < 1 such that for all
large epochs i where E[X3 '] = O(t {;/(rK)), Pr[El = 1] > p.

Proof. By Lemma 2, we know that for each large epoch i, it must be that the
following holds for some constant 0 < v < 1:

Z(i,Q) = min {¢; - v,E [XZP~'] (w + loglogn) + b- E (X5} = 1Ql v

as |Q] = O(¢;). We set the value 8 from the definition of the events EZQ and E,
equal to 3 := ~/2. For each large epoch i where E[X%' '] = O(t,/;/(rK)), we will
show there exists some query ¢; € @ such that Pr[E; = 1] > p’ for some constant
positive probability p’. Suppose this is false and Pr[3q € Q, Efz = 1] = o(1). Then,
we get that with probability at least 1 — o(1), the following is true:

>pi—1

) X i
Y 2= W (w+loglogn) +b- X, <v/2-]Q|-v
q€Q q€Q
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where we can always use the second argument of Z(4, q) by our assumption that
E} # 1. Let p}, = Pr[3¢q € Q, E} = 1]. Next, we bound the expectation of Z(i, Q):

>pi—1
E[Z(i,Q)) < (1-p)) > (X]LQl (w+loglogn) +b- X?,) +py - (1Q] - v)
q€Q

<7/2-1Q|- v+ o(|Qv) <v-Q - v.

To understand this inequality, we consider the two cases. We can always bound
the value of Z(¢,Q) by |Q| - v as we do when g € @ such that Efl = 1. For the
other case, note that Z(i,¢) < v so we can replace it with the second argument of
Z(i,q) and apply linearity of expectation. Note that the last derived inequality
contradicts with the first inequality from Lemma 2. Therefore, for some prob-
abilty p’ > 0, for each large epoch i such that E[X5' '] = O(t,¢;/(rK)), there
exists ¢; € Q and Pr[th =1]>p.

Since the value of Efl can be efficiently computed, the Event Probability
Transfer property gives that there exists a query ¢ such that Pr[Ef] =1] =p for
some constant p > 0 and for all large epochs . O

The above lemma shows that there must exist one “expensive” query ¢ for
which Z(i, q) is large for all large epochs i for which the expected value of X}~
is not too large. We next show that these extra conditions holds for all large
epochs. In particular, we show that the average number of probes to cells last
overwritten in each of the ¢; update operations is at most O(t,/r).

Lemma 4. ), E[X77")/t; = O(t./r) over all large epochs i.

Proof. We start by identifying which probes contribute to X37'~" for all large
epochs i. Let us consider a probe occurring as part of the S-th update operation
and denote by v the index of the operation that last overwrote the same cell.
We index operations according to the time they were performed so that updates
occurring in epoch 1 have the largest index. In other words, update operations are
numbered from left to right and we remind the reader that epochs are numbered
from right to left. Therefore we have 8§ > ~ and we let x denote the epoch
satisfying the inequality s, 1 < 8 —~ < s,. Note that this z is unique as s;
grows as i grows. We break down the analysis into two different cases.

Case I: i < z. The probe does not contribute to X7 for i < @ regardless
of the location of the query operation. First, suppose that the query operation
occurs immediately after the S-th operation; that is, the 8-th update operation
is part of epoch 1. Since f—~ > s,_1, the v-th operation takes place after epoch
x — 1 has finished and, since ¢ < x, this implies that epoch i begins after the
~v-th update has been performed. If instead the query operation does not occur
immediately following the 5-th operation then i-th epoch will begin even later
and thus it is still after the v-th update operation has been performed.

Case II: ¢ > x. First of all observe that epoch ¢ — 1 must start between v and
and thus there at most 5 —v < s, good positions. Moreover, observe that epoch
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i — 1 cannot start before g —s;_1 + 1, for otherwise operation S would take place
before operation 1 which is clearly a contradiction. We thus have at most s;_1
good positions. Therefore the probability that a probe performed as part of the
B-th update contributes to X77*"* is at most 2/n - min{s;_1, s, }.

Now a probe associated with x contributes to Xfp ‘=t for randomly chosen
epoch 4, for at most 2/(nK) - min{s;_1, s, }, for ¢ > z. By summing over all

1 > x, we can bound the contribution of one probe to a random epoch by

Z 2min{si,1,sz}i < 40;
i>x n K — rmK"~

SEXSP 0 < Aty ). 0

As we have at most n -t, probes, we conclude that

Finally, we are ready to prove our main theorem.

Proof of Theorem 3. We start from Lemma 2. For every large epoch ¢ such that
E[Xg’”‘l] = O(t ¥l;/(rK)), we have Pr[Z(i,q) = 2(v)] > p for some constant
p > 0 for every query ¢q. In other words, we know that by linearity of expectation:

E[Xipi‘l]

Q
First, we do the easier task of bounding ]E[Xg]. Note that the expected query
time is ), E[X}] < t, where we only iterate over all large epochs i. Consider

(w+loglogn) +b-E [X!] = 2(v).

the experiment of picking a random epoch i. Then, know that E[X(‘l] < t,/K
where K is the number of large epochs. By Markov’s inequality, we know that
Pry[E[X] < 100t,/K] > 99/100.

By Lemma 4, we know that ZiE[Xfpi’l]/& < ~t,/r for some constant
~v > 0 over all large epochs i. Again, we can show that for a random index i, that
Pr;[E[X5"'] < 100745t /(rK)] > 99/100 as there are K large epochs. Then,

1007‘€itu 3
< ——AEX] <
S—% (X4

i< > 98/100.

100t
P Bz ]

We pick any such ¢ satisfying the above two inequalities for the rest of the proof.
By plugging the above bounds into the inequality and using |Q| = ©(¢;),

rK

t—u w+lo
&7y

Si—1 tq
K b= 0(v).
i r >+ % (v)
By using the fact that s;_1/¢; < 2/r and K = O(logn) as r > 2, we obtain
1w+ Toglogn) + 2 = 0(v)
g (W T loglogn) + 22b = £2(v).

Finally by substituting r = 2 + (w + loglogn)/b and K = ©O(log, (nv/c)),

v log(nv/c) >
b 1+ log((w+ loglogn)/b)

tu+tq:(2(%-K) —rz(
that completes our proof. O
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4.4 Extension to Multiple Non-Colluding Servers

In this section, we show that our framework may also be extended to the multiple
non-colluding server setting. We assume there are k servers and the PPT adver-
sary has compromised exactly one server. Our lower bound immediately applies
to settings where the adversary compromises multiple (or even all) servers. First,
we define the equivalent of the Event Probability Transfer property for k servers.

Definition 4 (k-Event Probability Transfer.). For any update sequence U
and query q, let E;(U,q) be some event that can be checked whether to have
occurred by a PPT adversary that compromised the i-th server. Suppose that
Pr[E;(U, q)] > ¢/k for some constant ¢ > 0. Then, we say that a data structure
enjoys the k-Event Probability Transfer property if for any query ¢, it holds that

Pr(E; (U, ¢')] = 2(Pr[E;(U, )])
where the probability is over the internal randomness of the data structure.

We present our theorem below and defer the proof to the full version that
adapts some ideas from [29] for our proof technique.

Theorem 4. Consider a data structure problem P that allows update and query
operations such that query outputs are b bits and b = n®MV) . Consider a data
structure DS that implements problem P over k servers with expected update
and query overhead t,, and ty respectively, client storage c and error probability
a < v/(blog®n) in the cell probe model with w > 1 cell size. If P enjoys the Large
Information Retrieval property and the Event Probability Transfer property then

v log(nv/c) )
b 1+log((w+loglogn)/b) /"

%+%:Q(

The above lower bound holds even for k = n©() servers. In particular, the
above can be used to show lower bound that even if a PPT adversary com-
promises only one of k& = n®™) servers under certain privacy properties. See
Section 5.1 for some further discussion.

5 Lower Bounds

In this section, we show that our framework may be used to derive a whole new
set of logarithmic lower bounds for differentially private (and, thus, oblivious)
versions of data structure problems.

We start by applying our framework to prove our main result of logarithmic
lower bounds for DP RAMs in the setting of b < w. To show that our framework
may handle various privacy guarantees, we show that we can extend the search-
able encryption lower bounds in [34] for the setting of b < w. We also consider a
suite of classical data structures where o(logn) overhead is known without any
privacy guarantees. Through our framework, we show that these data structures
require logarithmic overhead as soon as privacy requirements are enforced. All
missing proofs are deferred to the full version.
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5.1 Differentially Private RAMs

As the first application of our framework, we will prove logarithmic lower bounds
for differentially private (DP) RAMs. As a reminder, a prior lower bound of
2(b/w - log(nb/c)) was proved in [37]. However, this does not preclude sub-
logarithmic overhead when b <« w. For example, if b = O(1) and w = O(logn),
the above lower bound becomes trivial at £2(1). In this section, we show that
this lower bound remains logarithmic even in the case when b < w.

We start by defining (e, 6, 1, k)-DP for k-server data structures for which the
view of an adversary that corrupts 1 of the k servers is (¢, §)-DP, following the
definition in [37] where neighboring sequences of operations are those that differ
in exactly one operation. As a note, this definition uses computational differential
privacy with respect to efficient adversaries.

Definition 5. A data structure DS is (€, 9, 1, k)-DP (differentially private) if for
any pair of operational sequences Oy and O that differ in at most one operation
and any PPT adversary A that compromises one of the k servers,

Pr[A(Tps(01)) = 1] < e Pr[A(Tps(02) = 1] + 6

where Tps(O) is the transcript seen by the adversary across all compromised
servers when the operational sequence O is executed by DS.

We show that our lower bound framework enables proving logarithmic lower
bound for DP RAMs as follows. See the proof in the full version.

Theorem 5. Any (¢,0,1, k)-DP data structure DS that solves the dynamic array
maintenance problem for n b-bit entries with constant € > 0 and 6 < B/k, for
a sufficiently small constant 8 > 0, expected update and query time t,, and tg,
client storage ¢ and error probability a < l/log2 n in the cell probe model with
w > 1 cell size must satisfy the following:

log(nb/c) )
1+ log((w +loglogn)/b) J

m+%:9(

Discussion about k£ and J. We note that for the setting of £ > 2 servers
and one compromised server, we can only prove non-trivial lower bounds when
0 < 1/k. To see this, note that there is a trivial algorithm that picks one of the
random k servers and performs a plaintext data structure. An adversary will
only see anything with probability at most 1/k. Therefore, this is a (0,1/k)-DP
data structure. Our lower bound shows that anything with stronger security
parameters results in the identical lower bound as the single-server model. As
an extreme example, if k = n®1) and § = negl(n), our lower bound still holds.

5.2 Set Membership

Next, we move onto proving lower bounds for other data structures. In general,
previous lower bounds have focused on “key-value” types of data structures. For
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example, RAMs are essentially arrays with keys from [n] and b-bit values. Prior
lower bounds relied upon the fact that the b-bit value is truly random.

We show that our lower bound framework can also used to prove lower bounds
for data structures without associated values. For the first such problem, we will
consider the simple dynamic set data structure that maintains a subset S C [n]
that enables the following two operations:

1. add(4): Adds item ¢ € U into subset S.
2. query(i): Returns 1 if i € S and 0 otherwise.

Note that the set problem is a natural problem where the query output size is
only a single bit that will most likely be much smaller than the word size w.

In the non-oblivious setting, it is clear that the dynamic set problem over
the universe [n] can be solved with O(1) time using a bit vector of length n.
Using our framework, we will show that the dynamic set membership problem
with differential privacy requires logarithmic overhead. The proof may be found
in the full version.

Theorem 6. Any (¢,6,1,k)-DP data structure DS that solves the dynamic set
problem over [n] with constant € > 0 and § < B/k for a sufficiently small constant
B > 0, expected update and query time t, and tq, client storage c and error
probability a < 1/ log® n in the cell probe model with w > 1 cell size must satisfy:

log(n/c)
1+ log(w + loglogn) /-

m+@:9<

5.3 Predecessor and Successor

We consider another classic data structure for which sub-logarithmic overhead
constructions are known without any privacy requirements. In this section, we
will prove lower bounds for the predecessor and successor problem. The prede-
cessor data structure stores subset S C U of size at most n with the following;:

— add(i): Adds item ¢ € U into subset S.
— query(:): Returns the value max{s € S : s < ¢}. That is, the largest value
that is not strictly larger than the value of .

In the non-oblivious setting, there exists dynamic predecessor and successor
data structures with overhead O(loglog|U|) using van Emde Boas trees [45]. For
standard settings of |U| = n©(") this becomes O(loglogn). With differentially
privacy, the overhead must be logarithmic. See the proof in the full version.

Theorem 7. Any (€,9,1,k)-DP data structure DS that solves the dynamic pre-
decessor (successor) problem over universe U storing at most n items with con-
stant € > 0 and § < B/k for a sufficiently small constant 8 > 0, expected update
and query time t,, and ty, client storage ¢ and error probability o < 1/ log® n in
the cell probe model with w > 1 cell size must satisfy the following:

log(nlog(|U|/n)/c) )
1+ log((w +loglogn)/log(|U|/n)) )

oty =
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5.4 Disjoint Sets (Union-Find)

Another classic data structure that has very efficient (sub-logarithmic) overhead
is the disjoint sets (union-find) data structure. At a high level, the disjoint sets
data structure must maintain n items that may be arranged into disjoint sets.
Initially, the n items are assumed to be in n individual different sets. Afterwards,
the following operations may be performed:

— union(a, b): Given a,b € [n], merge the two sets containing a and b.
— find(a): Given an item a € [n], return the identity of the set containing a.

For correctness, it is required that if two items a,b € [n] are in the same set,
then find(a) should be equal to £ind(b). Also, if @ and b are not in the same
set, then find(a) should be different from find(b). We will assume that set
representations are integers from the set [no(l)] as done by classic constructions.
Thus, the query output size is O(logn) bits.

There are classic constructions [44] that require only O(a(n)) overhead where
a(n) is the inverse Ackermann function. In all reasonable settings, a(n) is prac-
tically constant. If we enforce differentially privacy, we leverage our framework
to prove a logarithmic lower bound. See the proof in the full version.

Theorem 8. Any (¢,0,1,k)-DP data structure DS that solves the dynamic dis-
joint set problem over at most n items with constant ¢ > 0 and 6 < S/k for
a sufficiently small constant B > 0, expected update and query time t, and tg,
client storage ¢ and error probability o = O(l/log2 n) in the cell probe model
with w > 1 cell size must satisfy the following:

_ log(n/c)
=2 (o ionm)

5.5 Searchable Encryption (Encrypted Multi-Maps)

Finally, we show that our framework can also be used to prove logarithmic lower
bounds for other privacy notions beyond differential privacy and obliviousness. In
this section, we consider lower bounds for data structures that provide guarantees
on upper bounds on leakage functions. We note this is a standard approach to
proving privacy for searchable encryption schemes [13].

Patel et al. [34] proved lower bounds for encrypted multi-maps that guarantee
leakage at most the decoupled key-equality leakage pattern Lpeckeyeq- This leakage
reveals whether two queries (or two updates) operations occur for the same key.
However, this leakage does not reveal whether a query and an update operation
occur on the same key. In particular, they showed such data structures must have
overhead £2(b/w -log(nb/c)) for multi-maps that can store values of b bits. Once
again, there remains the possibility that sub-logarithmic overhead is possible
when b < w. Using our framework, we show that logarithmic overhead is still
required. We refer to (L, €, 1, k)-secure as a data structure with leakage at most
L, adversarial advantage at most € for a PPT adversary that compromises one
of k servers. Formal definitions and the proof may be found in the full version.
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Theorem 9. Any (Lpeckeyeq: 8/k, 1, k)-secure data structure DS that solves the
dynamic multi-map problem for n b-bit entries for a sufficiently small constant
B > 0, expected update and query time t, and tq, client storage c and error
probability o < 1/ log® n in the cell probe model with w > 1 cell size must satisfy:

B log(nb/c)
bl =8 (1 + log((w +loglogn)/b)) '

Lpeckeyeq Lower Bounds. Similar to differential privacy, we can prove a generic
result for Lpeckeykq leakage with respect to the Event Transfer Probability prop-
erty. See the full version for more details. As a result, we can prove lower bounds
for Lpeckeyeq-secure versions for sets, predecessor and union-find. We omit fur-
ther details as they follow as straightforward applications of our framework.

6 Constructions for Oblivious Stacks and Queues

We show that it is possible to construct an oblivious stack (queue) with sub-
logarithmic overhead. by showing one can speed up oblivious stacks (queues) by a
multiplicative b/w factor. This gives a separation result showing that, when b <
w, oblivious stacks (queues) are inherently faster than ORAMs. Our construction
will match the £2(b/w - log(nb/c)) lower bound in [21].

Construction. We now describe our oblivious stack construction. It can be
modified in a straightforward manner to also obtain oblivious queues or deques.
Our construction of an oblivious stack of at most n elements of size b with a
server with word size w will make black-box use of any ORAM I with blocks
of length ¥ = w. The ORAM will store at most N = O(n - (b/w)) blocks each
containing L := w/b stack elements. We can now consider two settings depending
on the values of b and w. When b < w, L > 1 signifies that each ORAM block
stores multiple stack elements. For b > w, L < 1 signifies that a stack element is
spread over one or more ORAM blocks. Assuming one-way functions, there exist
ORAMs with O(log(Nb'/e)) = O(log(nb/c)) query overhead and O(c) client
storage when the block size is equal to the word size [1].

At a high level, the client will store an integer counter C' describing the total
number of blocks currently stored in the stack to keep track of the location of
the stack top. For the case when b > w, we can directly use the above ORAM as
an oblivious stack and each stack operation will involve b/w ORAM operations.
The value of C' keeps a pointer to where these operation must occur.

Let us now focus on the case when b < w and each ORAM block thus contains
L = w/b stack blocks. The idea is to break up stack operations into groups of L
operations. To locally handle the L operations of a group, we make sure that, at
the start of a group of operations, the client local memory contains the L elements
at the top of the stack. As it is easily seen, this is all the information needed
to perform a group of L operations and at the end of a group, the local client
memory holds at most 2L stack elements (this happens if all L operations are
push operations). The client thus performs the write of at most 2L stack elements
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back to the ORAM. Since each ORAM block contains L = w/b blocks, this can
be accomplished by 3 ORAM write operations, as 2L stack elements could spread
over 3 ORAM blocks. Not to break obliviousness, the client performs 3 writes
even if the stack elements found in client memory at the end of a group happen
to belong to fewer ORAM blocks. Following this and to prepare for the next
group, the client reads the top L elements of the stack from the ORAM and
this can be accomplished by reading 2 ORAM blocks. A formal description and
proof may be found in the full version.

Theorem 10. Assuming one-way functions, the above construction is an obliv-
ious stack for block size b > 1 and word size w > 1 with client storage ¢ = O(w+
logn) bits, server storage O(n-b) bits and amortized overhead O(b/w-log(nb/c)).

7 Conclusions

In this work, we present logarithmic lower bounds for differentially private data
structures for all parameter settings of block sizes b and cell sizes w. This im-
proves upon the prior lower bounds proved in [37] for the setting of b < w and
answers an open question posed in [23]. Our lower bounds apply for differentially
private RAMs, sets, predecessor and disjoint sets (union-find).

Additionally, we present a framework that can be re-used for different data
structure problems and privacy guarantees. To try and make our techniques
more accessible, we identify two simple, minimal conditions that are required
to prove lower bounds in our framework. We reduce proving logarithmic lower
bounds to showing that a specific data structure problem and privacy guarantee
satisfy the two conditions of our framework. We hope our framework will make
it easier to prove lower bounds without unnecessarily customizing techniques.
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