
On Non-uniform Security
for Black-box Non-Interactive CCA

Commitments

Rachit Garg1, Dakshita Khurana2, George Lu1, and Brent Waters1,3

1 University of Texas at Austin, Austin, TX, USA
2 University of Illinois Urbana-Champaign, Champaign, Illinois, USA

3 NTT Research, Sunnyvale, CA, USA

Abstract. We obtain a black-box construction of non-interactive CCA
commitments against non-uniform adversaries. This makes black-box use
of an appropriate base commitment scheme for small tag spaces, vari-
ants of sub-exponential hinting PRG (Koppula and Waters, Crypto 2019)
and variants of keyless sub-exponentially collision-resistant hash func-
tion with security against non-uniform adversaries (Bitansky, Kalai and
Paneth, STOC 2018 and Bitansky and Lin, TCC 2018).
All prior works on non-interactive non-malleable or CCA commitments
without setup first construct a “base” scheme for a relatively small iden-
tity/tag space, and then build a tag amplification compiler to obtain
commitments for an exponential-sized space of identities. Prior black-
box constructions either add multiple rounds of interaction (Goyal, Lee,
Ostrovsky and Visconti, FOCS 2012) or only achieve security against
uniform adversaries (Garg, Khurana, Lu and Waters, Eurocrypt 2021).
Our key technical contribution is a novel tag amplification compiler for
CCA commitments that replaces the non-interactive proof of consistency
required in prior work. Our construction satisfies the strongest known
definition of non-malleability, i.e., CCA2 (chosen commitment attack)
security. In addition to only making black-box use of the base scheme,
our construction replaces sub-exponential NIWIs with sub-exponential
hinting PRGs, which can be obtained based on assumptions such as
(sub-exponential) CDH or LWE.

1 Introduction

Non-malleable commitments [18] and their stronger counterparts CCA commit-
ments [12] are core cryptographic primitives that provide security in the presence
of “man in the middle” attacks. They ensure that a man-in-the-middle adver-
sary, that simultaneously participates in two or more protocol sessions, cannot
use information obtained in one session to breach security in another. They also
enable secure multi-party computation, coin flipping and auctions.

This work builds non-interactive CCA commitments, which involve just a sin-
gle commit message from the committer. We focus on the (standard) notion of
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security against non-uniform adversaries, which necessitates that these commit-
ments be perfectly binding and computationally hiding. For these commitments,
the perfect binding requirement is that for any commitment string c generated
maliciously with potentially an arbitrary amount of preprocessing, there do not
exist two openings to messages m and m′ such that m 6= m′. The (computa-
tional) hiding property requires that for every pair of equal-length messages m
and m′, the distributions of commitments com(m) and com(m′) are computa-
tionally indistinguishable.

The notion of CCA security for commitments is defined analogously to en-
cryption schemes, except that the adversary is given access to a decommitment
oracle. However, unlike the case of encryption, non-interactive commitments
without setup do not allow for efficient decommitment given a trapdoor/secret
key. In more detail, the hiding game is strengthened significantly to give the
adversary oracle access to an inefficient decommitment/value function CCA.Val
where on input a string c, CCA.Val(tag, c) will return m if CCA.Com(tag,m; r)→
c for some r. The adversary must first specify a challenge tag tag∗, along with
messages m∗0,m∗1. It is then allowed oracle access to CCA.Val(tag, ·) for every
tag 6= tag∗, and can make an arbitrary (polynomial) number of queries before
and after obtaining the challenge commitment. 4

This CCA-based definition is the strongest known definition of non-malleability.
In the non-interactive setting, the often-used definition of (concurrent) non-
malleability with respect to commitment is a special case of this definition where
the adversay is only allowed to make parallel oracle queries once it obtains the
challenge commitment.

Prior Work on Non-Malleable Commitments. There have been several results [18,
4, 40, 41, 37, 38, 34, 44, 42, 35, 21, 22, 25, 23, 14, 15, 30, 36, 32, 24] that gradu-
ally reduced the round complexity and the cryptographic assumptions required
to achieve non-malleable commitments. In the non-interactive setting, Pandey,
Pass and Vaikuntanathan [38] first obtained non-malleable commitments from a
strong non-falsifiable assumption. A lower bound due to Pass [39] demonstrated
the difficulty of obtaining a non-interactive construction from standard assump-
tions.

Nevertheless, recent works of Lin, Pass and Soni [36], Bitansky and Lin [8],
Kalai and Khurana [29], Garg et al. [19] and Khurana [31] made progress towards
improving these assumptions. These works proceed in two steps: the first step
builds a “base” scheme supporting a small (typically, constant-sized) tag space
and the second step converts commitments supporting a small tag space to
commitments that support a much larger tag space.

Base Constructions. Three recent works [36, 8, 29] build non-interactive base
schemes: non-malleable commitments for a tag space of size c log log κ for a spe-
4The assumption that the commitment takes input a tag is without loss of generality
when the tag space is exponential. As is standard with non-malleable commitments,
tags can be generically removed by setting the tag as the verification key of a signature
scheme, and signing the commitment string using the signing key.
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cific constant c > 0, based on various hardness assumptions. Specifically, Lin,
Pass and Soni [36] assume a sub-exponential variant of the hardness of time-
lock puzzles, and Bitansky and Lin [8] rely on sub-exponentially hard injective
one-way functions that admit hardness amplification beyond negligible. Finally,
Kalai and Khurana [29] assume classically sub-exponentially hard but quantum
easy non-interactive commitments (which can be based, e.g., on sub-exponential
hardness of DDH), and sub-exponentially quantum hard non-interactive com-
mitments (which can be based, e.g., on sub-exponential hardness of LWE).

Tag Amplification. The second step, as discussed above, builds a tag amplfi-
ciation compiler that increases the tag space exponentially. Starting with non-
malleable commitments for a tag space of size c log log κ for a specific constant
c > 0 (or sometimes even smaller), multiple applications of this compiler yield
commitments for a tag space of size 2κ.

This step, which is also the focus of the current work, typically involves
encoding a single tag from a larger space into many tags from a smaller space,
and then committing to a given message several times, once w.r.t. each small
tag. In addition, an implicit/explict proof of consistency of these commitments
is provided, and this proof is required to hide the committed message. Such a
proof becomes challenging to implement in the non-interactive setting without
setup.

Nevertheless, tag amplification was obtained in [36] against uniform man-in-
the-middle adversaries based on sub-exponential non-interactive witness indis-
tinguishable (NIWI) proofs and keyless collision resistant hash functions against
uniform adversaries. It was also obtained in [8] against non-uniform man-in-
the-middle adversaries based on sub-exponential non-interactive witness indis-
tinguishable (NIWI) proofs and keyless collision resistant hash functions with a
form of collision resistance even against non-uniform adversaries. Somewhat or-
thogonally, [31] obtained tag amplification from sub-exponential indistinguisha-
bility obfuscation and sub-exponential one-way functions, while avoiding the
need for keyless collision resistant hashing.

Black-box Tag Amplification. Recently, [19] developed the first tag amplifica-
tion technique that only made black-box use of the base commitment. That work
additionally assumed (black-box access to) hinting PRGs and keyless collision
resistant hash functions against uniform adversaries. Hinting PRGs themselves
admit constructions from the CDH and LWE assumptions. Besides being black-
box , this was the first solution that did not rely on non-interactive witness
indistinguishable (NIWI) proofs, which so far are only known based on the hard-
ness of the decisional linear problem over bilinear maps [26], or derandomization
assumptions and trapdoor permutations [5], or indistinguishability obfuscation
and one-way functions [9]. However, GKLW only obtain security against uniform
adversaries.

But non-uniform security is often necessary when using non-malleable com-
mitments within a bigger protocol. For instance, round efficient secure multi-
party computation protocols in the plain model [10, 1, 27, 6, 2, 13] against



4 Rachit Garg, Dakshita Khurana, George Lu, and Brent Waters

malicious adversaries usually include a step where participants commit to their
inputs via a non-malleable/CCA commitment, in addition to providing a proof
that the CCA commitment is consistent with other messages sent in the proto-
col. In low-interaction settings such as those of super-polynomial secure MPC in
two or three [3] messages, these proofs of consistency are often simulated non-
uniformly, which ends up necessitating the use of non-malleable commitments
with security against non-uniform adversaries.

Our work addresses the following natural gap in our understanding of non-
interactive non-malleable/CCA commitments.

Is it possible to obtain black-box non-interactive CCA commitments against
non-uniform adversaries?

Our Results. This work provides a black-box approach to achieving non-interactive
CCA commitments with security against non-uniform adversaries, by relying on
keyless hash functions that satisfy collision-resistance against non-uniform ad-
versaries, and by overcoming seemingly fundamental limitations from the prior
work of [19]. In addition, our tag amplification technique achieves provable se-
curity without the need for NIWIs as in prior work [8], and by instead relying
on a sub-exponentially secure variant of hinting PRGs, which can themselves
be obtained from (sub-exponential) CDH or LWE just like their counterparts
in [33].

2 Overview of Techniques

We now give an overview of our amplification technique, where the goal is to
amplify a scheme for O(N) tags to a scheme for 2N tags, with computational
cost that grows polynomially with N and the security parameter κ. This process
can be applied iteratively c + 1 times to a base NM commitment scheme that
handles tags of size lg lg · · · lg︸ ︷︷ ︸

c times

(κ) for some constant c and results in a scheme

that handles tags of size 2κ.

Templates for Tag Amplification. To perform tag amplification, we will build on
a tag encoding scheme that was first suggested by [18]. They suggest a method
of breaking a large tag T j (say, in [2N ]) into N small tags tj1, t

j
2, . . . t

j
N , each in

2N , such that for two different large tags T 1 6= T 2, there exists at least one
index i such that t2i 6∈ {t11, t12, . . . t1N}. This is achieved by setting tji = i||T j [i],
where T j [i] denotes the ith bit of T j .

Given this tag amplification technique, we start by describing a template
for non-interactive tag amplification suggested in [32, 36]. A CCA commit-
ment scheme for tags in 2N will generate a commitment to a message m as
CCA.Com(1κ, tag,m; r) → com. The string com is generated by first applying
the DDN encoding to tag to obtain N tags t1, . . . tN . Next, these (smaller)
tags are used to generate commitments to m in the smaller tag scheme as
ci = Small.Com(1κ, (ti),msg = m; ri) for i ∈ [N ]. The intuition for security
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is as follows: recall that the DDN encoding ensures that for two different large
tags T 1 6= T 2, there exists at least one index i such that t2i 6∈ {t11, t12, . . . t1N}. This
(roughly) implies that the commitment generated by an adversary w.r.t. tag t2i
is independent of the challenge commitment string, as we desire. However, the
commitments w.r.t. other tags t2j could potentially depend on the challenge com-
mitment, which is undesirable. To get around this issue, the templates in [32, 36]5
suggest that the committer attach a type of zero knowledge (ZK) proof that all
commitments are to the same message m using the random coins as a witness.
In the setting of non-interactive amplification, the ZK proof will need to be
non-interactive. For technical reasons, it is in fact required to be ZK against
adversaries running in time T , where T is the time required to brute-force break
the underlying CCA scheme for small tags.

Since non-interactive ZK proofs do not exist without trusted setup, the tech-
niques in [36, 32, 8, 29] rely on weaker variants of ZK such as NIWIs, and
[36, 32, 8] combine NIWIs with a trapdoor statement that an (inefficient) ZK
simulator uses to simulate the ZK proof. At the same time, for soundness, we
require that an adversary cannot use the trapdoor statement to cheat. This is
challenging when the trapdoor statement is fixed independently of the state-
ment being proven, because a non-uniform adversary can always hardwire the
trapdoor and use this to provide convincing proofs of false statements.

Given this barrier, [36] restricted themselves to achieving tag amplifica-
tion against uniform adversaries, based on (sub-exponential) NIWIs and keyless
collision-resistant hash functions against uniform adversaries. Subsequently [8]
developed a technique to obtain tag amplification against non-uniform adver-
saries, based on NIWIs and assuming the existence of keyless collision-resistant
hash functions that satisfy some form of security against non-uniform adver-
saries. Very roughly, they assume that no adversary with non-uniform advice of
size S can find more than poly(S) collisions6.

More recently, [19] developed a method for performing non-interactive tag
amplification without NIWIs, and while only making black-box use of the un-
derlying base commitment. However, the resulting scheme is secure only against
uniform adversaries. On the other hand, the goal of this work is to achieve
a black-box construction that avoids NIWIs and achieves security against non-
uniform adversaries, under a similar keyless assumption as [8]. To highlight the
bottlenecks in the non-uniform setting, we give a brief overview of the technique
of [19].

Black-box Tag Amplification. To begin, we note that the tag amplification tech-
nique sketched above is not black-box in the base commitment due to the use
of variants of ZK. Recall that ZK is used to ensure consistency of adversarial

5These are the non-interactive versions of templates previously suggested in [18, 34, 44].
6Technically, they rely on a more general notion of incompressible problems, which is
a collection of efficiently recognizable and sufficiently dense sets, one for each security
parameter, for which no adversary with non-uniform description of polynomial size in
S can find more than K(S) elements in the set.
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commitments generated w.r.t. different small tags. In the CCA setting, this al-
lows using a CCA decommitment oracle that opens a commitment under any
one of the adversary’s small tags, without the adversary noticing which one was
opened. In other words, ZK is used to establish a system where the adversary
cannot submit a commitment such that its opening will be different under ora-
cle functions that open different commitments, which turns out to be crucial to
achieving CCA security.

In [19], this system is established by means of a hinting PRG [33]. At a high
level, the construction in [19] sets things up so that the CCA oracle that opens
a commitment under one of the adversary’s small tags will recover a candidate
PRG seed s. This seed deterministically generates (a significant part of) the ran-
domness used to create commitments with respect to all the adversary’s small
tags. The oracle uses this property to check for consistency by re-evaluating
the underlying small-tag commitments, and checking them against the origi-
nal. These checks intuitively serve as a substitute for ZK proofs, however they
differ from ZK in that the checking algorithm sometimes allows partially mal-
formed commitments to be opened to valid values. While creating such partially
malformed commitments is actually easy for the adversary, the adversary is still
unable to distinguish between oracles that open different small tag commitments.

The work [19] converts CCA commitments with 4N tags to CCA commit-
ments with 2N tags, assuming hinting PRGs and statistically equivocal commit-
ments without setup, that satisfy binding against uniform adversaries. A hinting
PRG satisfies the following property: for a uniformly random short seed s, ex-
pand PRG(s) = z0z1z2 . . . zn. Then compute matrix x by sampling uniformly
random v1v2 . . . vn, and setting for all i ∈ [n], Msi,i = zi and M1−si,i = vi. The
requirement is that z0,M generated using a uniformly random seed must be
indistinguishable from a uniform random string.

Here, we actually note that prior works [33, 19] can be made to work based
on a hinting PRG that actually satisfies a weaker property: namely, that z0,M
obtained as described above should be indistinguishable from u,M where u is
generated uniformly at random and M is generated as described above. Looking
ahead, we will define a variant of a hinting PRG and will rely on the fact that
this weaker property can be used instead.

Hinting PRGs were built based on CDH, LWE [33], as well as more efficient
versions based on the φ-hiding and DBDHI assumptions [20]. The required equiv-
ocal commitments can be obtained from keyless collision resistant hash functions
against uniform adversaries, based on the blueprint of [17] and [28], and more
recently [7], in the keyless hash setting.

The [19] technique. We now provide a brief overview of the [19] technique, since
their construction will serve as a starting point for our work.

Let (Small.Com,Small.Val,Small.Recover) be a CCA commitment for 4N tags.
Then [19] assume tags take identities of the form (i, β, γ) ∈ [N ]×{0, 1}× {0, 1}
and that the Small.Com algorithm requires randomness of length `(κ). Their
transformation produces three algorithms, (CCA.Com,CCA.Val,CCA.Recover).
The CCA.Com algorithm on input a tag tag from the large tag space, an in-
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put message, and uniform randomness, first samples a seed s of size n for a
hinting PRG. It uses the first co-ordinate z0 (of the output of the hinting PRG
on input s), as a one-time pad to mask the message m, resulting in string c.
Next, it generates n equivocal commitments {σi}i∈[n], one to each bit of s. We
will let yi denote the opening of the ith equivocal commitment (this includes the
ith bit si of s). Finally, it ‘signals’ each of the bits of s by generating commit-
ments {cx,i,b}x∈[N ],i∈[n],b∈{0,1} using the small tag scheme. For every i ∈ [n], the
commitments {cx,i,0}x∈[N ] and {cx,i,1}x∈[N ] are generated as follows:

1. If si = 0

(a) cx,i,0 = Small.Com(1κ, (x, tagx, 0),msg = yi; rx,i)
(b) cx,i,1 = Small.Com(1κ, (x, tagx, 1),msg = yi; r̃x,i)

2. If si = 1

(a) cx,i,0 = Small.Com(1κ, (x, tagx, 0),msg = yi; r̃x,i)
(b) cx,i,1 = Small.Com(1κ, (x, tagx, 1),msg = yi; rx,i)

where all the r̃x,i values are uniformly random, whereas rx,i values correspond to
the output of the hinting PRG on seed s. The output of CCA.Com is tag, c, {σi}i∈[n],
{cx,i,b}x∈[N ],i∈[n],b∈{0,1}.

On an oracle query of the form CCA.Val(tag, com), we must return the mes-
sage committed in the string com, if one exists. To do this, we parse com =
tag, c, {σi}i∈[n], {cx,i,b}x∈[N ],i∈[n],b∈{0,1}, and then recover the values committed
under small tags (1, tag1, 0) and (1, tag1, 1), which also helps recover the seed s
of the hinting PRG. Next, we check that for every i ∈ [n], the recovered values
correspond to openings of the respective σi. We also compute hinting PRG(s),
and use the resulting randomness to check that for all x ∈ [N ], the commitments
that were supposed to use the outcome of the PRG were correctly constructed.
If any of these checks fail, we know that the commitment string com cannot be
a well-formed commitment to any message. Therefore, if any of the checks fail,
the oracle outputs ⊥. These checks are inspired by [33], and intuitively, ensure
that it is computationally infeasible for an adversary to query the oracle on com-
mitment strings that lead to different outcomes depending on which small tag
was used. If all these checks pass, the CCA.Val algorithm uses c to recover and
output m.

To prove that the resulting scheme is CCA secure against uniform adversaries,
note that the set {(x, tagx)}x∈[N ] is nothing but the DDN encoding of the tag
tag. This means that for our particular method of generating the commitments
cx,i,b described above, for each of the adversary’s oracle queries, there will be an
index x′ ∈ [N ] such that the tags (x′, tagx′ , 0) and (x′, tagx′ , 1) used to generate
{cx′,i,b}i∈[n],b∈{0,1} in that query will differ from all small tags used to generate
the challenge commitment.

The first step towards proving security of the resulting commitment will be to
define an alternative CCA.ValAlt algorithm, that instead of recovering the values
committed under tags (1, tag1, 0) and (1, tag1, 1), recovers values committed un-
der (x′, tagx′ , 0) and (x′, tagx′ , 1). The goal is to ensure that it is computationally
infeasible for an adversary to query the oracle on commitment strings for which
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CCA.Val and CCA.ValAlt lead to different outcomes. In more detail, because of
the checks performed by the valuation algorithms, it is possible to argue that
any adversary that distinguishes CCA.Val from CCA.ValAlt must query the oracle
with a commitment string that has following property: For some i ∈ [n], x ∈ [N ],
cx,i,0 and cx,i,1 are small tag commitments to openings of the equivocal com-
mitment to some bit b and 1− b respectively. One can then brute-force extract
these openings from cx,i,0 and cx,i,1 to contradict the binding property of the
commitment against uniform sub-exponential adversaries.

This first step already becomes a bottleneck in the non-uniform setting: in
general, an adversary with bounded polynomial advice can always sample an
equivocal (non-interactive) commitment string together with an opening to 0
and another opening to 1.

The problem in the non-uniform case. As discussed above, the proof/construction
in [19] falls apart in the very first step when considering a non-uniform adver-
sary. In fact, such an adversary can attack the [19] scheme by non-uniformly
sampling equivocal commitments {σ̃i}i∈[n] together with randomness {ỹ0,i}i∈[n]
and {ỹ1,i}i∈[n] that can be used to open these commitments to both 0 and 1 re-
spectively. Next, it can set the components {c̃x,i,b}x∈[N ],i∈[n],b∈{0,1} as small-tag
commitments to both types of openings. This allows the attacker to explicitly
break CCA2 security, as we describe next.

Let x′ ∈ [N ] be an index such that the tags (x′, tagx′ , 0) and (x′, tagx′ , 1)
used to generate {cx′,i,b}i∈[n],b∈{0,1} in that query differ from all small tags
used to generate the challenge commitment. On one hand, CCA2 security of
the small-tag scheme will ensure that seed recovered from small-tag commit-
ments (x′, t̃agx′ , 0) and (x′, t̃agx′ , 1) are independent of the seed in the challenge
commitment. On the other hand, the actual committed value, which is defined
via the seed recovered from (1, t̃ag1, 0), (1, t̃ag1, 1) will exactly match the value
in the challenge commitment, allowing this adversary to break CCA2 security.
The equivocation described above would allow the adversary to ensure that all
the hinting PRG checks pass, despite the use of different types of seeds in small
tags (1, t̃ag1, 0), (1, t̃ag1, 1) versus (x′, t̃agx′ , 0), (x

′, t̃agx′ , 1).

Towards a Solution. Now, one could hope to rely on some form of non-uniform
security of keyless hash functions [7, 8]. Prior works [7, 8] have formulated and
used the assumption that there exist keyless hash functions where any adversary
with non-uniform advice of size S can only find poly(S) collisions. Inspired by
a technique in [8], we could hope to define a “bad” CCA2 query as one that
contains openings to both a zero and a one for the equivocal commitment. Next,
we could hope to limit the number of “bad” CCA2 queries that a non-uniform
adversary will make to its decommitment oracle. As long as this set of “bad”
queries is bounded and is just a function of the adversary’s non-uniform advice,
our challenger could also hope to non-uniformly obtain answers to such queries
and use these instead of running the CCA.Val or CCA.ValAlt function.

Unfortunately, in the [19] protocol, even given just bounded (polynomial)
non-uniform advice, an adversary will be able to equivocate all of its commit-
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ments and generate an unbounded number of bad queries. Moreover, because
the hinting PRG is not injective, each bad query could have multiple possible
openings to different seeds. This indicates that the [19] protocol needs to be
fundamentally modified to enable security against non-uniform attacks.

Our Approach. We begin by understanding how the [19] protocol can possibly
be modified to disallow the attack described above.

– As described above, we want to force the adversary to “use up” bits of non-
uniform advice for each new bad query that it makes. This will hopefully
help limit the number of unique bad queries, and our reduction could then
non-uniformly obtain answers to each of these queries.

– To allow the reduction to non-uniformly answer bad queries, we will aim
to pair every possible bad query with a unique seed value that can be used
to answer this bad query in place of running the CCA.Val or CCA.ValAlt
function.

Limiting bad seeds instead of bad queries. The first bullet aims to limit the
number of bad queries. While we will not be able to achieve this, we will achieve
a slightly weaker property that will nevertheless suffice for our proof idea to
go through. In more detail, we will tie every CCA2 query, and in particular the
equivocal commitment part of every CCA2 query to an auxiliary input parameter.
That is, in addition to message and randomness, each equivocal commitment will
obtain as input an auxiliary parameter. There will be no hiding requirement on
the auxiliary parameter; it will only serve to strengthen the binding property of
the equivocal commitment. We will require that there exists a fixed polynomial
K(·) such that any adversary with non-uniform advice of size S is unable to
output K(S) different pairs of auxiliary parameters and commitment strings,
with valid openings for each pair to both a zero and a one. We will rely on
keyless collision-resistant hash functions against non-uniform adversaries to build
modified equivocal commitments with this guarantee. While this does not limit
the number of bad queries that an adversary can make, it does limit the number
of unique auxiliary input parameters that an adversary can use to generate CCA2
queries where it is able to open the equivocal commitments to both a zero and
a one.

The goal of the second bullet is to allow a reduction to answer all bad queries
by pairing every such query with a unique seed that can be used to non-uniformly
answer this query in place of running the CCA.Val or CCA.ValAlt function. To get
this idea to work, we must assign a “right” candidate seed to each bad query. As
discussed above, in the [19] protocol, any adversary that can find two openings
for the equivocal commitments could submit a bad query where multiple possible
seed values match the output of the HPRG. To prevent this, we will explicitly
force the HPRG to be injective. In more detail, we add what we call an“injective
extension” to the HPRG. This is an additional algorithm ExtEval(s)→ rext that
is an injective function on the HPRG seed s. The HPRG security requirement is
also slightly modified to ensure that an adversary will not be able to distinguish
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the PRG output z from uniform given the hint matrix M (described above) and
additionally given rext.

Now the CCA2 commitment will additionally consist of the value rext =
ExtEval(s), and CCA.Val/CCA.ValAlt will reject if for a recovered candidate seed
s′, ExtEval(s′) 6= rext. As a result, there will be at most a single seed s that will
be “compatible” with any commitment string.

Going back to the construction of our CCA2 commitment, we will compute
the modified equivocal commitments with auxiliary parameter set to rext, where
recall that rext = ExtEval(s). At this point, we will be able to assign (at most) one
unique ‘s’ to each auxiliary parameter. Moreover, by the (strengthened) binding
property of equivocal commitments, any non-uniform attacker will be able to
equivocate on at most a small number of auxiliary parameter values.

Analyzing Security. To prove CCA2 security of the resulting construction, we will
proceed as follows. In the first hybrid (Game 1), we will switch to a challenger
that depending on the adversary’s non-uniform advice, stores a “cheat-sheet”
consisting of all ‘bad’ rext that the adversary can query on (with more than a
certain inverse-polynomial probability), together with their inverses s under the
injective algorithm ExtEval(·). Our challenger will (1) rely on the cheat-sheet to
answer any adversarial queries for which rext lies on the cheat-sheet, and (2) use
CCA.Val to decrypt only those queries for which rext lies outside the cheat-sheet.

In the second hybrid (Game 2), the challenger will behave similarly as the
previous hybrid, except using CCA.ValAlt to decrypt queries for which rext lies
outside the cheat-sheet. By the strong binding property of the equivocal com-
mitment, the adversary is guaranteed to not equivocate on these queries (except
with low probability). Therefore by the argument outlined in the proof of the [19]
technique, the outputs of CCA.Val and CCA.ValAlt will be indistinguishable on
these queries. The rest of the proof will follow similarly to [19]. There is one
major hurdle in realizing this outline, as we discuss next.

Modifying the CCA.Val algorithm. The first hybrid (Game 1) described above
will actually not be indistinguishable from the output of the actual CCA2 game.
This is because a non-uniform adversary may generate equivocation queries for
which rext lies on the cheat-sheet and has an inverse (a hinting PRG seed), but
the CCA.Val algorithm run by the CCA2 challenger may not be able to find this
seed. To deal with this issue, we will change the CCA.Val algorithm so that it
performs a brute-force search through all possible seeds to find the one (if any)
that matches rext.

At first it appears that the rest of the proof should be easy once this is
done. It should be possible to rely on security of the (1) auxiliary-input equiv-
ocal commitments and (2) hinting PRGs with injective extension, to show that
the (updated) CCA2 game is indistinguishable from the first hybrid. However,
while this is true, proving it turns out to be fairly tricky. To prove indistin-
guishability, we must design an efficient reduction B that has oracle access to an
adversary A which distinguishes between the CCA2 game and the first hybrid.
This reduction B should be able to use such an adversary to break security of
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equivocal commitments, by generating many more equivocal openings than its
(non-uniform) advice would allow it to. The adversary A is a CCA2 adversary,
which means it makes multiple (a-priori unbounded) calls to a CCA.Val oracle,
and B must find a way to answer these queries. But recall that the oracle needs
to perform a brute-force search through all possible seeds to find the one (if any)
that matches rext – simulating this process will make B inefficient. As such, B
will need to maintain its own cheat-sheet to answer CCA.Val queries. Even with
such a cheat-sheet, the proof is not straightforward: the set of most common
equivocal queries in the CCA2 game may in general be different from the set of
most common queries when B answers from its cheat-sheet.

Intermediate Cheat-Sheets. To make the proof go through, we will rely on a
sequence of carefully defined intermediate cheat-sheets (that we will call lists
from this point on). These will be defined inductively, and in the base case L(0)

will be empty. Let Q = Q(κ) denote the total number of oracle calls that the
attacker makes. For j ∈ [1, Q], the jth intermediate list, denoted by L(j) will
contain the rext values and corresponding seeds for A’s most common equivocal
queries in its first j oracle calls. Note that this does not suffice to fully define
L(j), since we also need to determine how the first j − 1 oracle calls of A will
be answered: in the definition of L(j), the first j oracle calls will be answered
using the CCA.ValAlt algorithm with access to the list L(j−1). The final list L
used by CCA.ValAlt in Game 1 will correspond exactly to L = L(Q). We show
the following inductively for every j: when the first j − 1 CCA.Val queries are
answered using list L(j−1), then it is possible to add new common equivocal
queries and update the list to L(j). This will eventually allow us to switch to the
first hybrid described above, which uses CCA.ValAlt (plus the final list L(Q)).

We point the reader to our full version for a more detailed overview of this
part of the proof. There we also discuss why for technical reasons, we require
as building blocks for our equivocal commitment, keyless hash functions with
specific parameters. In more detail, we require that an adversary with S(κ) bits
of advice cannot produce more than S(κ) · p(κ) pairs of “distinct collisions” for
some a-priori fixed polynomial p(·), where “distinct collisions” means that no
entry in any pair of collisions matches an entry in another pair. The assumption
is described formally and analyzed in Section 4.1.

Completing the Analysis. After switching to CCA.ValAlt (plus the cheat-sheet),
the next hybrid will sample equivocal commitments {σi}i∈[n], for the challenge
commitment, together with randomness {y0,i}i∈[n] and {y1,i}i∈[n] that can be
used to equivocally open these commitments to 0 and 1 respectively. Next, in-
spired by [33] the components {c∗x,i,b}x∈[N ],i∈[n],b∈{0,1} are modified in the chal-
lenge commitment to “drown” out information about s via noise, while relying on
CCA2 security of the underlying small tag scheme to run the CCA.ValAlt func-
tion and recover values committed under (x′, tagx′ , 0) and (x′, tagx′ , 1). This step
crucially makes use of the fact that the tags (x′, tagx′ , 0) and (x′, tagx′ , 1) dif-
fer from all small tags used to generate the challenge commitment. Finally, we
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rely on the security of the hinting PRG to switch to using uniform randomness
everywhere.

Hinting PRGs with Injective Extension. We now describe how to achieve hinting
PRGs with injective extension by modifying the constructions in [33]. Recall that
we require hinting PRGs with injective extensions that satisfy a different security
property than prior work: namely, for a uniformly random short seed s, expand
PRG(s) = z0z1z2 . . . zn and compute the injective output rext. Then compute
matrix M by sampling uniformly random v1v2 . . . vn, and setting for all i ∈ [n],
Msi,i = zi and M1−si,i = vi. The requirement is that z0 generated using a
uniformly random seed must be indistinguishable from uniform, even given M
and given the output rext of the injective extension.

We build hinting PRGs with an injective extension by modularly combining
the constructions in [33] with any leakage-resilient injective one-way function
(LRIOWF). To enable this, we note that hinting PRG constructions in [33] from
CDH and LWE have a “lossy” property, where PRG parameters can be generated
in lossy mode in such a way that the output of the hinting PRG is simulatable
given just a small amount of advice. We call the resulting abstraction a lossy
hinting function. To achieve injectivity, we rely on a leakage resilient injective
one-way function (LRIOWF) applied to the seed s of the lossy hinting function7.
Finally, we generate the ‘mask’ z0 of the hinting PRG as the Goldreich-Levin
hardcore bits of the LRIOWF. To prove that z0 is pseudorandom even in the
presence of rext and M , we will switch the lossy hinting function to lossy mode.
In this mode the hinting function will only leak a few bits about the inverse
s of the LRIOWF. We will then invoke the Goldreich-Levin theorem to argue
that distinguishing the mask from uniform will require inverting the LRIOWF
given just a few bits of leakage on s, which is impossible by assumption on the
LRIOWF. This completes an overview of our techniques.

Comparison with Prior Work. We conclude with a comparison of our techniques
against prior work that relies on keyless collision-resistant hash functions against
non-uniform adversaries. While [7] relies on this assumption to obtain 3-message
zero-knowledge via substantially different techniques, [8] applies this to a set-
ting that is much closer to our work, that is, to achieving non-interactive non-
malleable commitments. In more detail, [8] use keyless hash functions against
non-uniform adversaries to build a special type of 1-message zero-knowledge for
NP with a weak soundness guarantee against non-uniform provers. They achieve
this by building on the usual template for 1-message ZK, where a prover proves
(via a NIWI) that either x ∈ L or that the prover knows a trapdoor. The
trapdoor, roughly, corresponds to a collision in a keyless hash function; and is
derived as a function of the statement x. This ensures that a prover that can
(non-uniformly) find a fixed set of non-uniform collisions will only be able to
provide convincing proofs for a fixed set of statements. In their construction of

7For example, any sub-exponentially secure injective one-way function will suffice for
our purposes.
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non-malleable commitments, the use of NIWIs to prove a statement of the form
“x ∈ L or the prover knows a trapdoor” results in non-black-box use of the
underlying base scheme.

Unlike [8], we do not construct any variant of non-interactive ZK (or rely
on assumptions like NIWI that imply non-interactive ZK). We develop a new
template to directly achieve tag amplification for non-malleable commitments
against non-uniform adversaries, without reliance on NIWIs. Our methodology
to “tie” together the set of collisions an adversary can find with the number of
commitments that an adversary can cheat on is entirely different from that of [8].

3 Background

3.1 Non-uniform Security

We say that a cryptographic game is T(·)-non-uniform secure if for any Tur-
ing Machine in poly(T(κ)) time with poly(κ) non-uniform advice only has only
negligible advantage in said game. We will refer to poly(·)-non-uniform secure
schemes as achieving ‘plain’ non-uniform security.

In addition, we will say a cryptographic scheme is subexponentially secure
against non-uniform adversaries if there exists some constant c > 0 such that the
scheme is 2n

c

-non-uniform secure. When the constant c is explicitly required, we
will say c-subexponentially secure.

3.2 CCA Commitments

We present our definition of CCA secure commitments [12], which is derived from
[19] with modifications made for defining security against non-uniform attackers.
Intuitively, these are tagged commitments where a commitment to message m
under tag tag and randomness r is created as CCA.Com(tag,m; r) → com. The
scheme will be statistically binding, i.e., for all tag0, tag1, r0, r1 and m0 6= m1

we have that CCA.Com(tag0,m0; r0) 6= CCA.Com(tag1,m1; r1).
The hiding property is a strengthened CCA2-style definition where an at-

tacker outputs a challenge tag tag∗ along with messages m0,m1 and receives a
challenge commitment com∗ to eitherm0 orm1. The attacker’s job is to guess the
message that was committed to with oracle access to an (inefficient) value func-
tion CCA.Val where CCA.Val(com) will return m if CCA.Com(tag,m; r) → com
for some r. The attacker is allowed oracle access to CCA.Val(·) for any tag 6= tag∗.
In the non-interactive setting, the traditional notion of non-malleability (as seen
in [8, 29], etc.) is simply a restriction of the CCA game where the adversary
is only allowed to simultaneously submit a single set of decommitment queries.
The proof of this is immediate and can be found in [11].

We mention two distinct features of our definition.First, we explicitly denote
the running time of the CCA.Val algorithm despite the fact that it is not poly-
nomial time. Explicitly specifying the runtime of the CCA.Val oracle will help
us in complexity leveraging when performing tag amplification. We will call the
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commitment scheme to be 2κ
v

-efficient, i.e. can run in time (polynomially in)
2κ

v

where v ≥ 1 and the security of the scheme is considered for subexponential
adversaries. This additional specification was not required in [19].

Second, (as in [19]) we require a recover from randomness property, which al-
lows one to open the commitment given all the randomness used to generate said
commitment. This can be achieved generically with no additional assumptions.

Remark 3.1. We note that by considering non-uniform attackers our definition
actually becomes simpler than that of [19] where they considered security against
a stronger than uniform adversary, which they labeled as e-computationally
enabled security. Such an adversary can run any Turing Program that runs
in time poly(2κ

e

) and obtain it’s output as a non-uniform advice. This notion
helped them perform complexity leveraging and obtain a uniformly secure non-
malleable commitment scheme. Since we consider security against non-uniform
adversaries, which are allowed to obtain non-uniform advice that may take an
arbitrary amount of time to compute, our presentation is simpler.

Definition A CCA secure commitment is parameterized by a tag space of size
N = N(κ) where tags are in [1, N ] for message spaceM = {0, 1}w(κ) where w(·)
is a polynomial function (for simplicity in notation we often skip the dependence
on κ). It consists of three algorithms:

CCA.Com(1κ, tag,m; r) → com is a randomized PPT algorithm that takes as
input the security parameter κ, a tag tag ∈ [N ], a message m ∈ {0, 1}w
and outputs a commitment com, including the tag com.tag. We denote the
random coins explicitly as r.

CCA.Val(com) → m ∪ ⊥ is a deterministic inefficient algorithm that takes in
a commitment com and outputs either a message m ∈ {0, 1}w or a reject
symbol ⊥.

CCA.Recover(com, r) → m is a deterministic algorithm which takes a com-
mitment com and the randomness r used to generate com and outputs the
underlying message m.

We now define the correctness, efficiency properties, as well as the security
properties of perfect binding and message hiding.

Correctness

Definition 3.2. We say that our CCA secure commitment scheme is perfectly
correct if the following holds. ∀m ∈ {0, 1}w, tag ∈ [N ] and r we have that

CCA.Val(CCA.Com(1κ, tag,m; r)) = m.

Efficiency
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Definition 3.3. We say that our CCA secure commitment scheme is T(·)-efficient,
if CCA.Com,CCA.Recover run in time poly(|m|, κ), while CCA.Val runs in time
poly(|m|,T(κ))).8

Security

Binding.

Definition 3.4. We say that our CCA secure commitment is perfectly binding
if ∀c,∀m0,m1 ∈ {0, 1}w s.t. m0 6= m1 and CCA.Val(c) ∈ {m1,⊥}, there does not
exist r such that

CCA.Recover(c, r) = m0

Moreover, for any c such that CCA.Val(c) = m1 6= ⊥, then there exists r such
that CCA.Recover(c, r) = m1.

Weak Binding.

Definition 3.5. We say that our CCA secure commitment is perfectly binding
if ∀c,∀m0,m1 ∈ {0, 1}w s.t. m0 6= m1 and CCA.Val(c) ∈ {m1,⊥}, there does not
exist r such that

CCA.Recover(c, r) = m0

CCA Hiding. We also define a CCA message hiding game between a challenger
and an attacker. The game is parameterized by a security parameter κ.

1. The attacker sends a “challenge tag” tag∗ ∈ [N ].
2. The attacker makes a polynomial number of repeated commitment queries

com. If com.tag = tag∗ the challenger responds with ⊥. Otherwise it responds
as

CCA.Val(com).

3. The attacker sends two messages m0,m1 ∈ {0, 1}w.
4. The challenger flips a coin b ∈ {0, 1} and sends com∗ = CCA.Com(tag∗,mb; r)

for randomly chosen r.
5. The attacker again makes a polynomial number of repeated queries of com-

mitment com. If com.tag = tag∗ the challenger responds with ⊥. Otherwise
it responds as

CCA.Val(com).

6. The attacker finally outputs a guess b′.

We define the attacker’s advantage in the game to be Pr[b′ = b] − 1
2 where the

probability is over all the attacker and challenger’s coins.

8In order for the scheme to be secure, the runtime of the CCA.Val oracle should be
bigger than the runtime of the subexponential adversary. We will imagine runtime of
the CCA.Val oracle to be 2κ

v

where v > 1.
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Definition 3.6. A CCA secure commitment scheme scheme given by algorithms
(CCA.Com, CCA.Val, CCA.Recover) is said to be T(·)-CCA secure if for any T(·)-
non-uniform adversary A there exists a negligible function negl(·) such that the
attacker’s advantage in the game is negl(κ).

We also define another notion of security which we call “same tag" computa-
tion enabled secure for a weaker class of adversaries who only submit challenge
queries that all have the same tag.

Definition 3.7. A CCA secure commitment scheme scheme given by algorithms
(CCA.Com, CCA.Val, CCA.Recover) is said to be “same tag" T(·)-CCA secure
if for any T(·)-non-uniform adversary A which generates queries such that all
commitment queries submitted by A are on the same tag, there exists a negligible
function negl(·) such that the attacker’s advantage in the game is negl(κ).

Recovery From Randomness

Definition 3.8. We say that our CCA secure commitment scheme can be re-
covered from randomness if the following holds. For all m ∈ {0, 1}w, tag ∈ [N ],
and r we have that

CCA.Recover(CCA.Com(1κ, tag,m; r), r) = m.

4 Setupless Equivocal Commitments against
Non-Uniform Adversaries

Equivocal commitments are commitments introduced by DiCrescenzo et al [16]
that have two computationally indistinguishable modes of setup. In the normal
mode the setup outputs public parameters such that the commitment is statis-
tically binding. In the alternate mode, the setup outputs public parameters and
a trapdoor which can output commitments that open to both 0 and 1.

A setupless equivocal commitment sceme doesn’t have a trusted setup al-
gorithm. Instead we have an inefficient equivocation algorithm that can output
commitments to both 0 and 1. The security of the scheme is guaranteed for
adversaries that run in less than the equivocation time. A setupless equivocal
commitment scheme, secure against uniform adversaries can be constructed from
any setupless statistical hiding, computationally binding commitment scheme
[19]. These can be built using a strong extractor and a keyless collision resistant
hash function ([17, 28, 7]). But for non-uniform adversaries, it is easy to hard-
wire collisions for the setupless collision resistant hash function and hence break
binding security of the scheme.

In order to achieve non-uniform security, Bitansky et al [7], suggested a multi-
collision resistance assumption that essentially claims that hardwiring collisions
is the best that an adversary can do. Informally, the K strong multi-collision
resistant property states that any non-uniform adversary with advice advice can
not output more than K(|advice|) many collisions (assume that K blows up the
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length). This assumption was used by Bitansky et al [7] to create statistically
hiding commitments with a special binding against non-uniform adversaries.

We introduce a modified notion called “Setupless Equivocal Commitment
with Auxiliary Input" that builds on these prior work, assumptions and takes in
an auxiliary input aux ∈ {0, 1}∗ additionally and commits to a bit b and aux. The
inefficient equivocation algorithm can take in any aux and output a commitment
that can be open to both 0 and 1. We hide b (aux can not be hidden) while
guaranteeing computational binding against non-uniform adversaries. We show
that a similar construction showed by [7] using multi-collision resistant hash
functions and a strong extractor also gives this notion.

4.1 Distinct Strong Keyless Multi-Collision Resistance

The definition from [7, 8] states that a non-uniform attacker with advice string
advice cannot output more than K(κ, |advice|) collisions (one can think of K as
a polynomial that grows the advice length, [8] say this could, for instance, be a
quadratic polynomial). We further weaken the definition so that the adversary
is required to output all distinct elements in its pairs of collisions, i.e. letting
X =

(
X

(0)
1 , X

(1)
1 , . . . , X

(0)
K , X

(1)
K

)
, we require that there do not exist any i, j ∈

[K]2, b, c ∈ {0, 1}2 such that X(b)
i = X

(c)
j . We call this modified notion distinct

strong multi-collision resistance. Formally,

Definition 4.1 ((T,K)-Distinct Strong Multi-Collision Resistance). Let
T = T(·) and K = K(·, ·) be functions of the security parameter κ. A keyless hash
function H : {0, 1}∗ → {0, 1}κ is (T,K) distinct strong multi-collision resistant if
there is a negligible function negl such that for every polynomial size non-uniform
adversary A that runs in time poly(T) and is given advice advice of length
poly(κ), for every security parameter κ, for T = T(κ) and K = K(κ, |advice|),

Pr


(
X

(0)
1 , X

(1)
1 , . . . , X

(0)
K , X

(1)
K

)
← A(1κ)

:

∀(i, b) 6= (j, c) ∈ [K]× {0, 1},
X

(b)
i 6= X

(c)
j ,

∀i ∈ [K],H.Hash(1κ, X
(i)
0 ) =

H.Hash(1κ, X
(i)
1 )

 ≤ negl(κ).

While this is not part of our definition, for applications we will require that
the number of collisions remain linear in the size of advice, i.e., there is a fixed
polynomial p(·) such that K(κ, |advice|) ≤ p(κ) · |advice|. In our full version, we
show that our assumption, namely (T,K)-distinct strong multi-collision resis-
tance holds in the auxiliary-input random oracle model [43] with p(κ) as small
as 1, i.e. K(κ, |advice|) ≤ |advice|.

4.2 Setupless Equivocal Commitment with Auxillary Input

An auxiliary input equivocal commitment scheme AuxEquiv without setup con-
sists of the algorithms:
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AuxEquiv.Com(1κ, aux, b) → (c, d) is a randomized PPT algorithm that takes
in a bit b ∈ {0, 1}, some auxiliary information aux ∈ {0, 1}∗ and security
parameter κ ∈ N and outputs a commitment c, decommitment string d.

AuxEquiv.Decom(aux, c, d) → {0, 1,⊥} is a deterministic polytime algorithm
that takes in the commitment c along with the auxiliary information aux
and it’s opening d and reveals the bit that it was committed to or ⊥ to
indicate failure.

AuxEquiv.Equivocate(1κ, aux) → (c, d0, d1) is an (inefficient) randomized algo-
rithm that takes in the security parameter and some auxiliary information
aux and outputs a commitment string c and decommitment strings to both
0 and 1.

Definition 4.2. Correctness - We say an equivocal commitment scheme is per-
fectly correct if for all b ∈ {0, 1}, aux ∈ {0, 1}∗,

Pr

(c, d)← AuxEquiv.Com(1κ, aux, b)
b′ ← AuxEquiv.Decom(aux, c, d)

b′ = b

 = 1

Definition 4.3. Efficiency - We say an equivocal commitment scheme is ef-
ficient if AuxEquiv.Com and AuxEquiv.Decom run in poly(κ, |aux|) time, and
AuxEquiv.Equivocate runs in time poly(2κ, |aux|).

We now define the binding and equivocal properties.

Definition 4.4. An equivocal commitment without setup scheme is said to be
(T(·),K(·)) binding secure if for any non-uniform adversary A running in time
poly(T(κ)) for some polynomial and given an advice advice(κ) (for simplicity,
denoted as advice) of length poly(κ) and a setting of K = K(|advice|, κ), there
exists a negligible function negl(·) such that,

Pr


(
(aux(1), c(1), d

(1)
0 , d

(1)
1 ), . . . ,

(aux(K), c(K), d
(K)
0 , d

(K)
1 )

)
← A(1κ)

:

∀i ∈ [K],

Decom(aux(i), c(i), d
(i)
0 ) = 0,

Decom(aux(i), c(i), d
(i)
1 ) = 1

∀i 6= j ∈ [K], aux(i) 6= aux(j)

 ≤ negl(κ).

Definition 4.5. We say that a scheme is equivocal if for all b ∈ {0, 1}, aux ∈
{0, 1}∗ the statistical difference between the following two distributions is negli-
gible in κ.

– D0 = (aux, c, d) where AuxEquiv.Com(1κ, aux, b)→ (c, d).
– D1 = (aux, c, db) where AuxEquiv.Equivocate(1κ, aux)→ (c, d0, d1).

4.3 Construction

We construct auxiliary-input equivocal commitments assuming a keyless hash
function that is distinct strong multi-collision resistant and a strong extractor.
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This is based on constructions introduced and presented in [17, 28, 7]. Let the
keyless hash function be H : {0, 1}∗ → {0, 1}κ. A (κ, negl(κ)) strong extractor
SExt (see full version for detailed preliminaries) that takes a seed of κ bits and
an input of 3κ bits and outputs a single bit, SExt : {0, 1}κ × {0, 1}3κ → {0, 1}.

AuxEquiv.Com(1κ, aux, b)→ (c, d).
Sample a seed g ← {0, 1}κ. Choose v ← {0, 1}3κ. Compute w = b ⊕
SExt(g, v). Compute h = H.Hash(1κ, (aux, v)). Compute c = (g, w, h) and
d = v.

AuxEquiv.Decom(aux, c, d)→ {0, 1,⊥}
Parse c as (g, w, h). Check if h = H.Hash(1κ, (aux, d)), output ⊥ if fails.
Output w ⊕ SExt(g, d).

AuxEquiv.Equivocate(1κ, aux)→ (c, d0, d1)

Sample a seed g ← {0, 1}κ for a SExt. Sample w ← {0, 1}. Sample t R←−
{0, 1}3κ.
Define Vt = {v : H.Hash(1κ, (aux, v)) = H.Hash(1κ, (aux, t))}. Partition Vt =
V0
t ∪ V1

t where Vit = {v : v ∈ Vt ∧ SExt(g, v) = i}, output ⊥ if either V0
t or

V1
t are ∅.

Sample v0
R←− Vwt , v1

R←− Vw⊕1t . Output ⊥ if no such v0 or v1 exist. h ←
H.Hash(1κ, (aux, t)). Output ((g, w, h), v0, v1).

We defer the analysis of this construction and a proof of the following lemma to
the full version.

Lemma 4.6. If H(·) is a (T(·),K(·, ·)) distinct strong multi-collision resistant
keyless hash function against non-uniform adversaries and SExt is a (k, ε) =
(κ, negl(κ)) Strong Seeded extractor, then the construction above is a correct and
efficient equivocal commitment scheme (Definition 4.3), and is (T(·),K(·, ·))-
binding secure (Definition 4.4).

4.4 Amplification

Lemma 4.7. If there exists a (T(·),K(·, ·))-binding equivocal commitment scheme,
then for any polynomial p(·), there exists a (T(·),K(·, ·))/p(κ))-binding equivocal
commitment scheme.

Proof. Let Small.AuxEquiv.Com,Small.AuxEquiv.Decom,Small.AuxEquiv.Equivocate
be a (T(·),K(·))-binding equivocal commitment scheme. Consider a p(·)−parallel
repetition of Small.AuxEquiv

AuxEquiv.Com(1κ, aux, b)→ (c, d).
For i ∈ [p(κ)], run (ci, di) ← Small.AuxEquiv.Com(1κ, (aux, i), b). Output
(c = {ci}, d = {di})

AuxEquiv.Decom(aux, c, d)→ {0, 1,⊥}
If ∃b ∈ {0, 1} : ∀i ∈ [p(κ)], AuxEquiv.Decom((aux, i), ci, di) = b, output b.
Otherwise output ⊥.
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AuxEquiv.Equivocate(1κ, aux)→ (c, d0, d1)
For i ∈ [p(κ)], run (ci, d0,i, d1,i) ← Small.AuxEquiv.Equivocate(1κ, (aux, i)).
Output (c = {ci}, d0 = {d0,i}, d1 = {d1,i})

We defer the analysis of this construction to the full version.

Corollary 4.8. Suppose there exists a (T(·),K(·, ·)) distinct strong collision re-
sistant hash function satisfying Definition 4.1, for some K(κ, |advice|) = |advice|·
p(κ) for some p ∈ poly(κ). Then for every polynomial poly(·), there exists a
(T(·), |advice|poly(κ) )-binding equivocal commitment scheme.

Proof. Fix the polynomial p(·) and the distinct strong collision resistant hash
function that is guaranteed by the assumption. By lemma 4.6, there exists a cor-
rect and efficienct equivocal commitment that is (T(·), p(κ) · |advice|)-binding.
Fix any polynomial poly(κ). Then by invoking lemma 4.7 on the polynomial
poly(κ) · p(κ), we have that there exists a (T(·), |advice|poly(κ) )-binding equivocal com-
mitment scheme.

5 Hinting PRGs with injective extension

A hinting pseudorandom generator as introduced by Koppula and Waters[33] is
a pseudorandom generator with an enhanced security property. In this security
game blocks that are output from the PRG are interspersed with random blocks
where the placement is according to the seed of the PRG.

In this section we introduce a variant of Hinting PRGS that we call Hinting
PRGs with injective extension. Our variant follows along the lines of the original,
but with two critical modifications. The first is that we slightly relax the security
game. On a seed s of length n bits, the hinting PRG outputs length n+1 blocks
each consisting of ` bits. Informally, our security guarantee is that the adversary
cannot distinguish between the following two distributions, each consisting of
(2n + 1) blocks. In both distributions, all blocks but the first are generated
identically: these output as a 2×n matrix where for all i ∈ [n] the (si, i)th entry
is set according to the (i+1)th block of the PRG evaluation, while the (1−si, i)th
entry is a uniformly random string. In the first distribution, the first `-bit block
is set as the first block of the PRG evaluation, and in the second distribution,
the first `-bit block is set uniformly at random.

This relaxed security definition differs from the original security definition
in which the second distribution consists of all random blocks. It is fairly easy
to observe that our relaxed notion also suffices for performing the CCA trans-
formation of [33] and will also suffice for our purposes. The primary reason for
relaxing the security definition, is that it makes it easier to realize our second
modification.

We additionally define an injective extension for the hinting PRG, where
we require that the Hinting PRG evaluation algorithm additionally outputs a
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separate block that is injective with respect to the seed. To ensure injectivity
we will define an algorithm that checks the Hinting PRG public parameters and
outputs 0 if the public parameters were sampled so that the extended block might
not be an injective function of the seed. That is there could be two seeds that
output the same extended block. If the check function outputs 1, the extended
block will be an injective function of the seed. The hinting PRG scheme consists
of the following algorithms,

Setup(1κ, 1`): The setup algorithm takes as input the security parameter κ,
and length parameter `, and outputs public parameters pp and input length
n = n(κ, `)

Eval (pp, s ∈ {0, 1}n, i ∈ [n] ∪ {0}): The evaluation algorithm takes as input the
public parameters pp, an n bit string s, an index i ∈ [n] ∪ {0} and outputs
an ` bit string y.

ExtEval (pp, s ∈ {0, 1}n): The extended evaluation algorithm takes as input the
public parameters pp, an n bit string s and outputs a string of length m =
m(κ, `).

CheckParams (pp, n): The algorithm takes as input the public parameters pp,
the seed input length n and checks them to see if the function sampled is
injective or not. It outputs {0, 1} accordingly.

Definition 5.1. A hinting PRG scheme is said to be non-uniform T (·)-secure
if for any polynomial `(·) and any adversary A running in time poly(T (κ)) and
poly(κ) advice, there exists a negligible function negl(·) such that the following
holds:∣∣∣∣∣∣∣∣Pr
β ← A

(
pp,
(
rβ0 , rext,

{ri,b}i∈[n],b∈{0,1}
)) :

(pp, n)← Setup(1κ, 1`(κ)), s← {0, 1}n,
r00 = Eval(pp, s, 0), r10 ← {0, 1}`,
rext = ExtEval(pp, s), β ← {0, 1},

ri,si = Eval(pp, s, i), ri,si ← {0, 1}` ∀ i ∈ [n]

− 1

2

∣∣∣∣∣∣∣∣ ≤ negl(κ).

Definition 5.2. A hinting PRG scheme is said to be extended injectively if for
any security parameter κ ∈ N, any polynomial `(·) and any pp ∈ {0, 1}∗ the
following holds,

Pr

[
∃s1 6= s2 ∈ {0, 1}n,

ExtEval(pp, s1) = ExtEval(pp, s2)
:

n ∈ N
CheckParams(pp, n) = 1

]
= 0.

Definition 5.3. A hinting PRG scheme is setup such that it outputs injective
parameters if for any security parameter κ ∈ N, any polynomial `(·) the following
holds,

Pr
[
CheckParams(pp, n) = 0 : (pp, n)← Setup(1κ, 1`(κ))

]
= 0.

Definition 5.4. A hinting PRG scheme is succinct if the length of the seed n,
public parameters and injective extension are independent of the block length
parameter `.
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Theorem 5.5. If there exists an injective sub-exponentially secure one way
function, either of the three assumptions - DDH, CDH or LWE - are sub-
exponentially secure, and there exists a sub-exponentially secure pseudorandom
generator, then there exists a hinting PRG scheme that can be extended injec-
tively, outputs injective parameters, is succinct and for some constant δ ∈ (0, 1),
satisfies non-uniform 2κ

δ

-security.

We defer the construction and its analysis to the full version.

6 Tag Amplification

We discuss how to amplify a non-uniform subexponentially secure CCA scheme
for N ′ = 4N tags to a scheme with 2N tags. We will perform the amplifica-
tion using non uniform subexponentially secure primitives AuxEquiv (Section 4),
extended hinting PRG (Section 5). The amplification algorithm runs in time
polynomial in N and the runtime of the primitives involved, thus N should al-
ways stay polynomial in the security parameter for the amplification to be an
efficient algorithm.

Let the hinting PRG scheme (Setup,Eval,ExtEval,CheckParams) be a succinct
T = 2κ

γ

secure for some constant γ ∈ (0, 1). Let AuxEquiv be T = 2κ
δ

-binding se-
cure and statistically hiding where δ ∈ (0, 1). Let (Small.Com,Small.Val,Small.Recover)
be a 2κ

c

-subexponentially secure, weak binding, 2κ
v

-efficient CCA commitment
scheme for N ′(κ) = N ′ = 4N tags where c < 1 and v ≥ 1 for message length
u(κ)9. We will assume tags take identities of the form (i, β, Γ ) ∈ [N ]× {0, 1} ×
{0, 1} and that the Small.Com algorithm take in random coins of length `(κ).

Let m be the message input to the commitment algorithm and length be
denoted by |m|. Let n′ = n′(κ) be the length of the seed plus public parameters
plus injective extension of the hinting PRG scheme when invoked on security pa-
rameter κ′′ = κ

v
δγ . Since the scheme is succinct, n′ is a function of only κ′′ (and

hence κ) and not the block length, which we will specify later. By Lemma 4.7,
we will use a (2κ

δ

, |advice|2·n′ )-binding secure commitment scheme AuxEquiv, and
let |y| refer to the length of the decommitment strings of said scheme. Finally,
we run Small.Com on messages of size |y|, and let ` be the size of random-
ness used by Small.Com on said input size. We set the block size of our hinting
PRG scheme to be the maximum of |m|, N ·`. For ease of notation we assume that
HPRG.Eval(pp, s, 0) ∈ {0, 1}|m| and ∀i ∈ [n], HPRG.Eval(pp, s, i) ∈ {0, 1}`·N , i.e.
we ignore any extra bits output by the HPRG.Eval algorithm. Let Θ(κṽ) denote
the length of the seed n in relation to the security parameter.

Our transformation will produce three algorithms, (CCA.Com,CCA.Val,CCA.Recover)

which we prove non-uniform 2κ
c

-subexponentially secure and 2κ
v′

-efficient where
v′ = v·ṽ

δ·γ . The construction will call AuxEquiv on security parameter κ′ = κ
v
δ ,

HPRG on security parameter κ′′ = κ
v
δ·γ and Small on security parameter κ.

9Recall from Definition 3.3 that a 2κ
v

-efficient scheme with v ≥ 1 implies that the
runtime of Small.Val is polynomial in 2κ

v

.
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The different parameters will help us perform complexity leveraging. For
simplicity, we assume that the message space of Small, u(κ) is equal to the length
of the decommitment string of the equivocal commitment called on κ′. We will
ensure this property is satisfied in Section 7 when we recursively amplify the tags.
The CCA.Val procedure in our transformation will be an inefficient algorithm
that brute forces through each hinting PRG seed and run in time 2n where
n = Θ(κ′′

ṽ
). Thus our transformation will increase the runtime of CCA.Val from

Small.Val that runs in time 2κ
v

to 2κ
v′

.
Additionally, we will also present a fourth non-uniform algorithm CCA.ValAlt,

which is only used in the proof and depends on the non-uniform advice it gets.
In our proof we will first change how we answer an adversary’s decommitment
queries by using CCA.ValAlt to answer instead of CCA.Val. Since the queries
made to the CCA.Val oracles differ in at least one position from tag∗, CCA.ValAlt
will crucially rely on the security of Small.Com at this position by making calls
to Small.Val to help in decommitment.

CCA.ValAlt(tag∗, com,L) → m ∪ ⊥ is a deterministic inefficient algorithm
that takes in tag∗, a commitment com and a non-uniform advice list L and
outputs either a message m ∈ {0, 1}w or a reject symbol ⊥. It will be used solely
as an instrument in proving the scheme secure and not exported as part of the
interface.

CCA.FindSeed(aux)

Inputs: String aux = (HPRG.pp, aux′) Output: s̃ ∈ {0, 1}n ∪ ⊥

– Parse aux as (HPRG.pp, aux′)
– Iterate through all s̃ ∈ {0, 1}n
• If aux′ = HPRG.ExtEval(HPRG.pp, s̃), return s.

– Return ⊥
Fig. 1: Routine CCA.FindSeed

We now describe our transformation.

Transformation Amplify(Small = (Small.Com,Small.Val,Small.Recover),
HPRG,AuxEquiv, w(κ), v′)→ NM = (CCA.Com,CCA.Val,CCA.Recover) :

CCA.Com(1κ, tag,m ∈ {0, 1}w(κ); r)→ com

1. Compute κ′ = κ
v
δ . Compute κ′′ = κ′

1
γ .10

10The variables δ and γ are known from the security guarantees of AuxEquiv,HPRG
respectively.
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CCA.Check(s̃, com)

Inputs: Seed candidate s̃ = s̃1, s̃2, . . . , s̃n

Commitment com =
(
tag, aux, c, (σi, (cx,i,0, cx,i,1)x∈[N ])i∈[n])

)
Output: {0, 1}

– For i ∈ [n]
1. Compute (r1,i, r2,i, . . . , rN,i) = HPRG.Eval(HPRG.pp, s̃, i)
2. For x ∈ [N ]

(a) Let ỹi = Small.Recover(cx,i,s̃i , rx,i). If ỹi = ⊥, output 0
(b) If cx,i,s̃i 6= Small.Com(1κ, (x, tagx, s̃i), ỹi; rx,i), output 0.
(c) If s̃i 6= AuxEquiv.Decom(aux, σi, ỹi), output 0.

– Parse aux as (HPRG.pp, aux′).
– If HPRG.CheckParams(HPRG.pp, n) = 0, output 0.
– If aux′ 6= HPRG.ExtEval(HPRG.pp, s) output 0.
– If all the above checks have passed, output 1.

Fig. 2: Routine CCA.Check

CCA.FindAlt(x′, com,L)

Inputs: Index x′ ∈ [N ]

Commitment com =
(
tag, aux, c, (σi, (cx,i,0, cx,i,1)x∈[N ])i∈[n])

)
Polynomial Size Non-Uniform Advice List L

Output: s̃ ∈ {0, 1}n

– If for some s̃ ∈ {0, 1}n, (com.aux, s̃) ∈ L, where s̃ is the seed
recorded from the advice. Output s̃.

– Else if com.aux is not recorded in L,
• For each i ∈ [n]

1. Let ỹi = Small.Val(cx′,i,0)
2. Set z̃i = AuxEquiv.Decom(aux, σi, ỹi). If z̃i = ⊥, set s̃i =

1. Else, set s̃i = z̃i.
• Output s̃ = s̃1, s̃2, . . . , s̃n.

Fig. 3: Routine CCA.FindAlt

2. Sample (HPRG.pp, n)← HPRG.Setup(1κ
′′
, 1max(|m|,N ·`)).

3. Sample s = s1 . . . sn
R←− {0, 1}n as the seed of the extended hinting PRG.

4. Set aux = (HPRG.pp,HPRG.ExtEval(HPRG.pp, s)).
5. For all i ∈ [n] run AuxEquiv.Com(1κ

′
, aux, si)→ (σi, yi).

6. Let for x ∈ [N ], i ∈ [n], rx,i, r̃x,i ∈ {0, 1}` be defined as follows:
7. For i ∈ [n]
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(a) Compute (r1,i, r2,i, . . . , rN,i) = HPRG.Eval(HPRG.pp, s, i)

(b) Sample (r̃1,i, r̃2,i, . . . , r̃N,i)
R←− {0, 1}N ·`

8. Compute c = m⊕ HPRG.Eval(HPRG.pp, s, 0)
9. For i ∈ [n], x ∈ [N ]

(a) If si = 0
i. cx,i,0 = Small.Com(1κ, (x, tagx, 0),msg = yi; rx,i)
ii. cx,i,1 = Small.Com(1κ, (x, tagx, 1),msg = yi; r̃x,i)

(b) If si = 1
i. cx,i,0 = Small.Com(1κ, (x, tagx, 0),msg = yi; r̃x,i)
ii. cx,i,1 = Small.Com(1κ, (x, tagx, 1),msg = yi; rx,i)

10. Output com =
(

tag, aux, c, (σi, (cx,i,0, cx,i,1)x∈[N ])i∈[n])
)
as the commit-

ment. All of the randomness is used as the decommitment string.
CCA.Val(com)→ m ∪ ⊥

1. Set s̃ = CCA.FindSeed(com.aux).
2. If CCA.Check(s̃, com) = 0 output ⊥.
3. Output c⊕ HPRG.Eval(HPRG.pp, s̃, 0).

CCA.ValAlt(tag∗, com,L)→ m ∪ ⊥
1. If com.tag = tag∗, output ⊥.
2. Let x∗ be the smallest index where the bits of tag∗, com.tag differ.
3. Set s̃ = CCA.FindAlt(x∗, com,L).
4. If CCA.Check(s̃, com) = 0 output ⊥.
5. Output c⊕ HPRG.Eval(HPRG.pp, s̃, 0).

CCA.Recover(com, r)→ m ∪ ⊥
1. From r, parse the seed s of the Hinting PRG.
2. If CCA.Check(s, com) = 0, output ⊥.
3. From com, parse the commitment component c and the public parameter

HPRG.pp.
4. Output c⊕ HPRG.Eval(HPRG.pp, s, 0).

7 Compilation of Transformations

We show how to combine our transformations Amplify and OneToMany to prove
that if we start with a base scheme that is secure against non-uniform “same
tag" adversaries (see Definition 3.7) for 32 · ilog(q, κ) tags where the notation
ilog(q, κ) denotes lg lg · · · lg︸ ︷︷ ︸

q times

(κ) 11 and q is some constant, then using our described

transformations, we can construct a scheme that is secure against non-uniform
adversaries (see Definition 3.6) for 16 · 2κ tags.

Our sequence of transformations is very similar to [19], where we start with a
base scheme BaseCCA that satisfies property Definition 3.8. We then remove the
same tag restriction on the adversary by using the transformation OneToMany
(described in the full version) and then amplify the tag space by using the
transformation Amplify in Section 6 q + 1 times. The two main deviations from
11The notation ilog(0, κ) is defined as κ.
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the formal treatment of [19] is due to our proof technique, i.e. we need to keep
track of the message and efficiency of the val oracle when we perform the sequence
of transformations.

We remind the reader that the order of the sequence of transformations is im-
portant as to perform Amplify and OneToMany we need the commitment scheme
to be recoverable from randomness. Additionally, OneToMany does computation
that is polynomial in the number of tags for the input scheme. Thus, we must
remove the “same tag" restriction from our adversary before amplifying our tags
with Amplify. Based on the sequence of transformations we have discussed, our
tag space will amplify as follows. At the end of OneToMany, we will end up with
16 · ilog(q, κ) sized tag space. And after q + 1 applications of Amplify, we will
end up with 16 · 2κ sized tag space. One application of Amplify converts a 4N
tag space scheme to a 2N tag space scheme. Thus on input a 4 · 4 · ilog(q, κ) tag
space, one gets a 24·ilog(q,κ) = 16 · ilog(q − 1, κ) tag space.

Additionally, when using the schemes in a sequence of transformations we
need to keep track of the message spaces we chose in our output scheme. For
instance, to perform the transformation Amplify and OneToMany, the construc-
tions output committment σ to each seed bit of the hinting PRG. The base
scheme here takes in the decommitment string of σ as input. Thus the length of
the base scheme being transformed should be able to support messages of this
length for the transformation to be correct. Let the length of the decommitment
string be denoted by a polynomial function DecomLen(·) that takes as input the
security parameter κ 12. Thus for the transformations Amplify and OneToMany,
u (input message length of the base scheme) should be equal to DecomLen(κ′)
where κ′ is the security parameter input to the equivocal commitment. In our
transformations κ′ is set as κ

v
δ where there exists a constant δ such that the se-

tupless equivocal commitment scheme is 2κ
δ

-hiding secure and the base scheme
is 2κ

v

-efficient13.
Our formal transformation is below. We start with a base commitment scheme

BaseCCA and output the scheme (AmplifiedCCAq+1.Com,AmplifiedCCAq+1.Val).
We list a few assumptions on our transformation -

– Let there exist variables δ, γ, ṽ such that δ ∈ (0, 1) and the setupless equivocal
commitment scheme is 2κ

δ

-hiding secure, γ ∈ (0, 1) and the hinting PRG
with injective extension is 2κ

γ

-secure and the dependence of seed on the
security parameter be such that seed length n = Θ(κṽ).

– We start with a base scheme that is 2κ-efficient and secure against non-
uniform “same tag" 2κ

c

-subexponentially secure adversaries for tag space
32ilog(q, κ) tags for any constant q.

12The length of the decommitment string can depend on aux, but since aux is also
called with a polynomial function in κ based on the hinting PRG construction, we
simplify the notation. In our specific construction for AuxEquiv in Section 4, the
decommitment string length doesn’t depend on aux.

13Recall from Definition 3.3 that a 2κ
v

-efficient scheme with v ≥ 1 implies that the
runtime of Small.Val is polynomial in 2κ

v

.
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If the base scheme runs in time some constant poly(2κ
a

) where a ∈ (0, 1)
then the scheme is 2κ-efficient. Otherwise, on input security parameter κ,
we can run the scheme with parameters κ

1
a to get a 2κ-efficent scheme that

is still 2κ
c

sub-exponentially secure with c ∈ (0, 1) for some constant c. Thus
we can wlog claim that we start with a 2κ-efficient scheme. This will help
simplify notation.

– Let the base scheme support messages of length u = AuxEquiv.DecomLen(κ
1
δ )

and the final scheme support messages of length w.

Recall that the transformations OneToMany (see full version) and Amplify
(Section 6) take in the following parameters - a scheme to be transformed, hinting
PRG with injective extension HPRG, setupless equivocal commitment scheme
AuxEquiv, the length of the messages supported by the output scheme and an
efficiency parameter v such that the output scheme is 2κ

v

-efficient.

CompiledAmplify(BaseCCA = (BaseCCA.Com,BaseCCA.Val, u),HPRG,AuxEquiv, w)
1. AmplifiedCCA0 ←

OneToMany(BaseCCA,HPRG,AuxEquiv,AuxEquiv.DecomLen(κ
v0
δ ), v0) where

v0 = ṽ
δ·γ .

2. For i ∈ [q],
(a) AmplifiedCCAi ← Amplify(AmplifiedCCAi−1,HPRG,

AuxEquiv,AuxEquiv.DecomLen(κ
vi
δ ), vi) where vi =

(
ṽ
δ·γ

)i+1

.

3. AmplifiedCCAq+1 ← Amplify(AmplifiedCCAq,HPRG,AuxEquiv, w, vq+1) where

vq+1 =
(
ṽ
δ·γ

)q+2

.

4. Output (AmplifiedCCAq+1.Com,AmplifiedCCAq+1.Val)

Below we analyze CompiledAmplify by stating theorems on correctness, efficiency
and security.

Theorem 7.1. For every κ ∈ N, any constant q, any polynomial w, let BaseCCA =
(BaseCCA.Com, BaseCCA.Val, u) be a perfectly correct CCA commitment scheme
for message space {0, 1}u by Definition 3.2 with tag space 32 · ilog(q, κ). Let
AuxEquiv = (AuxEquiv.Com, AuxEquiv.Decom, AuxEquiv.Equivocate) be a per-
fectly correct equivocal commitment scheme by Definition 4.2. Let there exist a
constant δ such that u = AuxEquiv.DecomLen(κ

1
δ ).

Then, we have that the scheme CompiledAmplify(BaseCCA, HPRG, AuxEquiv, w)
is a perfectly correct CCA commitment scheme for 16 · 2κ tags.

Theorem 7.2. For every κ ∈ N, any constant q, any polynomial w, let BaseCCA =
(BaseCCA.Com, BaseCCA.Val, u) be an 2κ-efficient CCA commitment scheme
by Definition 3.3 with tag space 32 · ilog(q, κ). Let AuxEquiv = (Equiv.Com,
Equiv.Decom, Equiv.Equivocate) be an efficient equivocal commitment scheme
by Definition 4.3. Let there exist constants δ, γ, ṽ such that setupless equivo-
cal commitment scheme is 2κ

δ

-hiding secure and u = AuxEquiv.DecomLen(κ
1
δ );

γ ∈ (0, 1) and the hinting PRG with injective extension is 2κ
γ

-secure; the depen-
dence of seed on the security parameter be such that n = Θ(κṽ).
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Then, CompiledAmplify(BaseCCA,HPRG,AuxEquiv, w) is an 2κ
v
q+1-efficient CCA

commitment scheme for 16 · 2κ tags where vq+1 =
(
ṽ
δ·γ

)q+2

.

Theorem 7.3. For every κ ∈ N, any constant q, any polynomial w, let BaseCCA =
(BaseCCA.Com, BaseCCA.Val, u) be a CCA commitment scheme that is hiding
against non-uniform “same tag" 2κ

c

-subexponential adversaries according to Def-
inition 3.7 for tag space 32 · ilog(q, κ). HPRG = (HPRG.Setup,HPRG.Eval) be a
hinting PRG scheme with injective extension that is T = 2κ

γ

secure by Defini-
tion 5.1 for γ ∈ (0, 1). AuxEquiv = (AuxEquiv.Com,AuxEquiv.Decom,AuxEquiv.Equivocate)

be an equivocal commitment without setup scheme that is T = 2κ
δ

binding secure
Definition 4.4 and statistically hiding for some constant δ ∈ (0, 1). Let u be equal
to AuxEquiv.DecomLen(κ

1
δ ).

Then, CompiledAmplify(BaseCCA,HPRG,AuxEquiv, w) is a CCA commitment
scheme that is hiding against non-uniform 2κ

c

-subexponential adversaries ac-
cording to Definition 3.6 for tag space 16 · 2κ.

We import the following theorems about instantiating base schemes, from
prior work.

Theorem 7.4. [29] For every constant c > 0, there exist correct, polynomially
efficient, binding (3.4), same-tag CCA secure commitments with randomness
recovery satisfying Definition 3.7 against non-uniform adversaries, with tag space
(c lg lg lg κ), message space u = poly(κ) that make black-box use of subexponential
quantum hard non-interactive commitments and subexponential classically hard
non-interactive commitments in BQP, both with randomness recovery.

Theorem 7.5. [36] For every constant c > 0, there exist correct, polynomi-
ally efficient, weak binding (3.5), same-tag CCA secure commitments with ran-
domness recovery satisfying same-tag CCA security according to Definition 3.7
against non-uniform adversaries, with tag space (c lg lg lg κ), that make black-box
use of subexponential time-lock puzzles [36].

We remark that while [36, 29] prove that their constructions satisfy non-
malleability with respect to commitment, their proof techniques also extend to
exhibit same-tag CCA security against non-uniform adversaries. In a nutshell,
both these works rely on two simultaneous axes of hardness to build their base
schemes. As a consequence of this in the same-tag setting, for any pair of tags
(tag, t̃ag) corresponding to the challenge query and CCA oracle queries of the
adversary respectively, there is an oracle that inverts all commitments generated
under ˜tag but where commitments under tag remain secure in the presence of
this oracle. In both these works [36, 29], we note that while the specific oracle
is only used to invert parallel queries of the adversary (thereby obtaining many-
many non-malleability), the oracle is actually capable of inverting (unbounded)
polynomially many adaptive queries, thereby also achieving same-tag CCA se-
curity. In [36], this oracle over-extracts, therefore achieving the weaker property
of same-tag CCA security with weak binding. The [29] scheme does not suf-
fer from over-extraction and achieves the stronger notion of (standard) binding.
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The [29] scheme can be observed to satisfy randomness recovery by relying on
the recovery algorithm of the underlying commitments. The [36] scheme outputs
a commitment to a bit b as

f(s; r), r′, 〈s, r′〉 ⊕ b

which satisfies randomness recovery given all the randomness used to commit.
Combining this theorem with Theorem 7.3, we obtain the following corollar-

ies.

Corollary 7.6. There exists a perfectly correct, polynomially efficient, binding
(Definition 3.4) and CCA secure commitment satisfying Definition 3.6 against
non-uniform adversaries, with tag space 2κ for security parameter κ, that makes
black-box use of subexponential quantum hard one-way functions, subexponential
classically hard one-way functions in BQP, subexponential hinting PRGs and
subexponential keyless collision-resistant hash functions.

Corollary 7.7. There exists a perfectly correct, polynomially efficient, binding
(Definition 3.4) and CCA secure commitment satisfying Definition 3.6 against
non-uniform adversaries, with tag space 2κ for security parameter κ, that makes
black-box use of subexponential time-lock puzzles as used in [36], subexponential
hinting PRGs and subexponential keyless collision-resistant hash functions.

Finally, we point out that while all our formal theorems discuss CCA security,
our transformations also apply as is to the case of amplifying parallel CCA
security (equivalently, concurrent non-malleability w.r.t. commitment). That is,
given a base scheme that is only same-tag parallel CCA secure (or non-malleable
w.r.t. commitment) for small tags, our transformations yield a scheme for all tags
that is parallel CCA secure (or concurrent non-malleable w.r.t. commitment) for
tags in 2κ, without the same tag restriction.
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