
Optimal Security for Keyed Hash Functions:
Avoiding Time-Space Tradeoffs for Finding

Collisions

Cody Freitag1[0000−0002−6307−204X], Ashrujit Ghoshal2[0000−0003−2436−0230],
and Ilan Komargodski3[0000−0002−1647−2112]

1 Cornell Tech
cfreitag@cs.cornell.edu

2 Paul G. Allen School of Computer Science & Engineering
University of Washington, Seattle, Washington, USA

ashrujit@cs.washington.edu
3 School of Computer Science and Engineering, Hebrew University of Jerusalem

and NTT Research 91904 Jerusalem, Israel
ilank@cs.huji.ac.il

Abstract. Cryptographic hash functions map data of arbitrary size to
a fixed size digest, and are one of the most commonly used cryptographic
objects. As it is infeasible to design an individual hash function for every
input size, variable-input length hash functions are built by designing
and bootstrapping a single fixed-input length function that looks suf-
ficiently random. To prevent trivial preprocessing attacks, applications
often require not just a single hash function but rather a family of keyed
hash functions.
The most well-known methods for designing variable-input length hash
function families from a fixed idealized function are the Merkle-Damg̊ard
and Sponge designs. The former underlies the SHA-1 and SHA-2 con-
structions and the latter underlies SHA-3. Unfortunately, recent works
(Coretti et al. EUROCRYPT 2018, Coretti et al. CRYPTO 2018) show
non-trivial time-space tradeoff attacks for finding collisions for both.
Thus, this forces a parameter blowup (i.e., efficiency loss) for reaching a
certain desired level of security. We ask whether it is possible to build
families of keyed hash functions which are provably resistant to any non-
trivial time-space tradeoff attacks for finding collisions, without incurring
significant efficiency costs.
We present several new constructions of keyed hash functions that are
provably resistant to any non-trivial time-space tradeoff attacks for find-
ing collisions. Our constructions provide various tradeoffs between their
efficiency and the range of parameters where they achieve optimal secu-
rity for collision resistance. Our main technical contribution is proving
optimal security bounds for converting a hash function with a fixed-sized
input to a keyed hash function with (potentially larger) fixed-size input.
We then use this keyed function as the underlying primitive inside the
standard Merkle-Damg̊ard and Merkle tree constructions. We strongly
believe that this paradigm of using a keyed inner hash function in these
constructions is the right one, for which non-uniform security has not
been analyzed prior to this work.

1 Introduction

A cryptographic hash function is a (deterministic) algorithm that takes arbi-
trary length input data and outputs a fixed length digest. It is one of the most
fundamental tools in modern applications of cryptography, underlying numerous
widely used applications. For example, it facilitates the hash-and-sign paradigm,
proofs-of-work for blockchains, and more. While it is empirically believed that
concrete cryptographic hash functions satisfy various useful security properties,
formalizing this seems to be currently out of reach. Thus, in the context of
provable security, cryptographic hash functions are usually modeled as random
oracles, i.e., completely random functions [6]. This allows us to analyze specific
properties and argue about the concrete security of systems that use them. In
this work, we focus on the property of a hash function being collision resis-
tant, i.e., the idea that although collisions exist in abundance in a compressing
function, it should be computationally hard to find them.

The task of finding collisions in a given compressing function is only in-
teresting if the adversary is uniform. That is, the adversary is “fixed” before
the hash function. Indeed, otherwise, a non-uniform attacker can simply have
collisions hardwired. However, the uniform model of security does not capture
many real-world adversaries, and therefore it is common to model adversaries
as non-uniform in theoretical cryptography. Specifically, non-uniform security
captures adversaries that have been designed to attack specific instances, adver-
saries that have gone through an expensive preprocessing stage, or even protect
against (currently unknown) future attacks. Non-uniform security is also nec-
essary for composition within larger systems [18]. For all of these reasons, it is
widely believed by the theoretical community that modeling attackers as non-
uniform is the right thing to do, despite potentially being overly conservative
and including unrealistic attackers.

Dealing with non-uniform attackers in the context of hashing and collision
finding makes it necessary to consider a family of keyed hash functions, rather
than a single hash function. Collision finding is then defined via the following
two-stage game. First, a (keyed) family H of hash functions is fixed, and the
attacker can depend arbitrarily on H. Second, a random key key is sampled, and
the adversary needs to find a collision in H relative to key. Intuitively, in order
to attack the hash function (e.g., find a collision), a non-uniform attacker must
either (a) have some hard-coded information about key, or (b) can essentially be
treated as uniform.

For applications, we typically want each member of H to operate on un-
bounded input lengths. That is, H : {0, 1}κ×{0, 1}∗ → {0, 1}n should be viewed
as a two-input function, operating on (key,m), where key ∈ {0, 1}κ is the key
and m ∈ {0, 1}∗ is an arbitrary length input. Since it is practically infeasible
to design a different hash function for every input length, what happens is that
a single basic compressing function h : {0, 1}a → {0, 1}n for some a > n is de-
signed, and then it is iterated in some way to get a hash function that compresses
arbitrarily. For instance, the well-known Merkle-Damg̊ard design [24,13] iterates
such a basic compressing function in order to get a variable-input-length hash

2

function that can operate on arbitrary sized data up to some maximum length
(e.g., 264 bits).

AI-ROM. Since we consider non-uniform security in the random oracle model,
we model attackers using the auxiliary-input random oracle model (AI-ROM),
formally defined by Unruh [27] although implicitly used earlier, for example, by
Hellman [20], Yao [28], and Fiat and Naor [15]. In this model, we assume a hash
function h : {0, 1}a → {0, 1}n with a > n modeled as a completely random one,
i.e., a random oracle [6]. The AI-ROM models preprocessing adversaries as two-
stage algorithms (A1,A2) parameterized by S (for “space”) and T (for “time”).
We refer to such an attacker as an (S, T)-attacker. The first part A1 (i.e., the
offline phase) has unbounded access to h, and its goal is to compute an S-bit
“advice” σ for A2. The second part A2 (i.e., the online phase) gets the advice
σ, can make at most T queries to h, and attempts to accomplish some task
involving h. In our case, A2 gets a random key key←$ {0, 1}κ as a challenge and
its goal is to come up with a collision in H(key, ·). Aside from the restrictions
that |σ| ≤ S and that A2 can make at most T queries to h, both A1 and A2 are
allowed to be computationally unbounded.

Building a keyed hash from a single hash function. Observe that for
every keyed hash construction, there is an (S, T)-attacker that finds a collision
relative to a random key with probability4 Ω(S/2κ + T 2/2n) via the following
attack. First, the preprocessing adversary outputs Ω(S) collisions with respect
to arbitrary distinct keys. The online adversary receives a random key. If key is in
the remembered list from the preprocessing phase, it outputs the corresponding
collision. Otherwise, it performs a T -query birthday-style attack. The adversary
wins if either the challenge key appears in one of its preprocessed collisions (giving
the S/2κ term) or if the birthday attack succeeds (giving the T 2/2n term). We
refer to this attack as the naive attack, and say that a construction is optimally
secure if there is provably no better attack. This brings us to the main question
we consider in this work.

Can we build a keyed hash function (i.e., H : {0, 1}κ × {0, 1}∗ → {0, 1}n)
from non-keyed one (i.e., h : {0, 1}a → {0, 1}n) with optimal non-uniform

security?

If we could design an ha : {0, 1}a → {0, 1}n for every a ∈ N, then the above
task is easy. We can simply parse the input to the appropriate ha into two parts,
one for the key and the other for the input toH : {0, 1}κ×{0, 1}∗ → {0, 1}n. That
is, define H(key,m) = hκ+|m|(key‖m), where ‖ stands for string concatenation
and | · | stands for bit length. For this construction, Dodis, Guo and Katz [14]
showed that the best attack achieves advantage O(S/2κ +T 2/2n), matching the
advantage of the naive attack.

Unfortunately, it is infeasible to design a different hash function for every
input length as discussed above. The design of a new h is a delicate and lengthy

4 To simplify notation throughout the introduction, we suppress poly factors in n in
the asymptotic O(·) and Ω(·) notation.

3

process that could take many years to test and standardize. Having a single hash
function is therefore more robust security-wise. Thus, the standard procedure is
to design a hash function h with fixed input size and then iterate it in some way
to get a hash function that supports arbitrary input lengths.

It may seem that standard domain extension techniques for hash functions
(like Merkle-Damg̊ard, Sponge, or Merkle trees) provide a solution for this prob-
lem. Indeed, their goal is to take a hash function on a small domain and turn it
into a hash function with arbitrary-size domain. But, as we point out next, the
standard constructions suffer from a significant security loss. A priori, it is not
even clear that this security loss is avoidable.

The security of existing constructions. First, consider (a keyed variant
of) the Merkle-Damg̊ard (MD) construction [24,13], perhaps the most widely
popular design for getting a hash function on long inputs from one on fixed input
sizes. This design is not only extremely fundamental in cryptographic theory, but
it also underlies popular hash functions used in practice, most notably MD5,
SHA-1, and SHA-2. The MD : {0, 1}κ × {0, 1}∗ → {0, 1}n construction iterates
the basic hash function h : {0, 1}a → {0, 1}n by feeding in input blocks of size
s = a−max{κ, n} one by one. It first pads the message appropriately such that
it is a multiple of s bits. For key key ∈ {0, 1}κ and input m ∈ {0, 1}s, define
MD(key,m) = h(key‖m). Then, for a longer input m ∈ ({0, 1}s)`, viewed as `
blocks m1, . . . ,m` each from {0, 1}s, recursively define MD(key, (m1, . . . ,m`)) =
h(MD(key, (m1, . . . ,m`−1)),m`). We note that in the standard MD construction
(studied, for example, in [11,1,17,2]), key is only explicitly included once when
processing the first message block.

Collision resistance of MD in the AI-ROM was first studied by Coretti, Dodis,
Guo, and Steinberger [11] and more recently by [1,17,2]. It is known that there
is an attack, loosely based on the idea of rainbow tables [20,25], which succeeds
in finding a collision with probability Ω(S/2κ + ST 2/2n). In typical settings of
parameters, the ST 2/2n term dominates the above expression and in this case
it is evident that MD suffers from a significant security loss.

Concretely, in the SHA-1 construction, a = 678 and κ = n = 160. If we
model the underlying primitive h : {0, 1}678 → {0, 1}160 as a perfectly random
function, an (S, T)-attacker with S = 253 and T = 250 will find a collision
with probability ≈ 2−7 (essentially completely breaking the scheme).5 On the
other hand, the best one could hope is a construction with maximal advantage
O(S/2κ + T 2/2n) ≈ 2−60 (obtained by the naive attack).

Another construction we mention is the Sponge [8,7] construction, an alter-
native to the Merkle-Damg̊ard design that underlies the modern SHA-3 hashing
standard. As opposed to MD, the Sponge construction relies on a random per-
mutation Π : {0, 1}n → {0, 1}n. Sponge iterates Π by feeding in blocks of size
r < n from the input one at a time in a certain way. It results with a keyed hash
function Sp : {0, 1}κ × {0, 1}∗ → {0, 1}r with κ + r = n. Coretti et al. [11] (see

5 These parameters roughly correspond to an attacker with ≈ 1000 terabytes of mem-
ory that uses optimized hardware that can compute 3 billion hashes per second for
a long weekend.

4

also [16]) showed that there is a collision finding (S, T)-attack with advantage
Ω(ST 2/2κ + T 2/2r) against Sp relative to a random key. Again, we see that
there is a non-trivial security loss in this construction.

It is important to note that for every choice of S and T the above attacks
on Merkle-Damg̊ard and Sponge beat the naive attack. In particular, there is no
non-trivial choice of parameters where MD or Sp achieve the optimal security
bound.

Lastly, we mention two other popular (variable-input-length) hash function
designs: Merkle trees [23] and the BLAKE family [3,4]. The former (Merkle
trees) is a popular design that has important features like local opening and
can be easily parallelized. Although it is extremely popular both in theory and
in practice, we are not aware of a keyed variant that has been studied in the
non-uniform setting. The latter (BLAKE) is a runner-up in NIST’s competition
to create a new hashing standard (where Sponge ended up as the winner). This
design is based on the MD design, but they allow the inner hash function h to
be keyed at every invocation. We are not aware of a formal study of its security
in the non-uniform setting. Looking ahead, two of our main contributions are a
proposal and analysis of the non-uniform security of Merkle tree and the MD/
BLAKE design, where the inner hash function h is keyed in every invocation.
Concretely, we believe that this is the right notion to consider moving forward,
in terms of non-uniform security.

A different perspective. Above, we considered the scenario where h : {0, 1}a →
{0, 1}n is given, and we want to build an H : {0, 1}κ × {0, 1}∗ → {0, 1}n which
is as secure as possible for every (S, T)-attacker. A different perspective, slightly
more target oriented, is to first fix a desired security level (say 2−50) and the
power of adversaries (say S = T = 260) and then understand which h is needed
in order to get the desired H. If we use MD (for concreteness) for H, we will
need n ≥ 230, but if we had an optimally secure construction of H, we would
need only n ≥ 170. The latter could potentially be easier to design and argue
about.

1.1 Our Results

We provide several constructions of keyed hash functions from non-keyed ones
that do not suffer from any security loss (i.e., the naive attack that has advan-
tage Θ(S/2κ + T 2/2n) is provably optimal). Our constructions provide various
tradeoffs between their efficiency and the range of parameters (S and T) where
they achieve optimal security.

Merkle-Damg̊ard and Merkle trees with a keyed inner hash. All of
our constructions can be viewed within a framework that builds on the Merkle-
Damg̊ard and Merkle tree constructions.

We start by discussing the MD-based approach. We consider an iterative
hashing design where a compression phase is performed in every step using an
“inner hash” function. The input for the compression phase is the current state
and the next input. At the end, the compression phase outputs the next state.

5

Of course, the inner hash function in the compression phase can use h as a
subroutine. Abstractly, the compression phase for the MD-based construction is

y := compress(key, y,m),

where importantly the compress function takes key as input. See Figure 1 for an
illustration. With this notation, the compression function of the standard MD
function (at least as studied in numerous recent works including [11,1,17,2]) is
simply compress(key, y,m) = h(y,m), and for the first step, y is initialized to
key. Notably key is not included in every compression phases.

y0 y1 y2 y3

com
press

com
press

com
press

key

Fig. 1: Our framework for building keyed hash functions based on the Merkle-
Damg̊ard construction with a keyed inner compression function.

We next consider a parallelizable hashing design that generalizes the Merkle
tree hash function. Here, each input is fed into a “leaf” of the Merkle tree,
along with the key value. The compression function is then used to recursively
combine outputs in previous levels until a final output is generated. Crucially,
we always include key in the compression function. See Figure 2 for an illustra-
tion. This framework provides an alternative to the generalized MD approach
described above. It requires at most a factor of two more calls to compress, but it
is extremely parallelizable. Further, it provides a local opening property, where
someone can prove that an individual message block mi was included in the
hash, without providing the full message.

Our constructions are obtained by different implementations of compress,
namely viewing compress as an inner keyed hash function used in the MD and
Merkle tree designs. Quantitatively, the MD and Merkle tree approaches give
similar results, so we focus our attention on instantiating compress in the case of
the MD-based framework. However, all of our main results extend to the setting
of the generalized Merkle tree framework, which we provide in the full version.

For simplicity of presentation of our results, we slightly simplify notation
and assume that κ (the key length) is equal to n (the output size of the hash
function).6 In our formal theorem statements in the technical sections, κ and n
are treated independently when relevant.

6 We note that there are constructions that use κ 6= n by design (e.g., BLAKE
hash [3,4] uses κ = n/2).

6

com
press

com
press

com
press

com
press

com
press

com
press

com
press

…

m1

m2

m3

m4

key

Fig. 2: Our framework for building keyed hash functions based on the Merkle
tree construction.

Efficiency: We measure efficiency of a given construction by the number of
calls to h needed to evaluate H at a single point. For example, in the standard
MD construction with an underlying hash that maps {0, 1}a to {0, 1}n, to hash
a b-bit input, the query complexity is b/(a − n) (ignoring rounding7). Indeed,
every application of h takes as input the previous output (n bits) and so it can
process a− n bits from the input each time.

Assuming a large inner hash. Our first result shows that optimal security
loss is achievable. That is, we show that there is a way to take a random oracle
that operates on a fixed input length and get a keyed hash H that operates
on arbitrary-length inputs with the following security guarantee: for any S, T ,
any (S, T)-attacker has minimal possible advantage in finding a collision in H
relative to a random key. In words, the new construction is a variant of MD
where we also feed key as input in every block. We refer to this construction as
the MD construction with a keyed inner hash, in contrast to the standard MD
construction where key is only fed in the first block. At a high level, feeding the
key into every invocation of h allows us to reduce the probability of finding a
long collision in H to that of finding a collision in h, which achieves optimal
security O(S/2n + T 2/2n) [14]. Refer to Figure 3 for an illustration of how the
construction works.8

7 To be more precise, MD requires d(b + n + 1)/(a − n)e calls to h after padding the
input with its length followed by a 1 and a sequence of 0s to fill the remaining current
block. However, for ease of presentation, we ignore rounding in the introduction. In
the formal theorem statements, we give exact efficiency bounds.

8 Essentially the same construction appears in Goldwasser-Bellare’s lecture notes [19,
§8.5] where it is shown that this construction is collision resistant in the uniform
setting. Our result shows that this holds in the non-uniform (AI-ROM) setting as
well.

7

Theorem 1 (Informal; see Theorem 8). Assume h : {0, 1}a → {0, 1}n is
modeled as a random oracle with a > 2n. Then, there is an H1 : {0, 1}n ×
{0, 1}∗ → {0, 1}n such that:

1. For any S, T ∈ N and any (S, T)-attacker, their advantage in finding a col-
lision in H1(key, ·) relative to a random key←$ {0, 1}n is O(S/2n + T 2/2n).

2. One evaluation of H1 on a given key and a b-bit message requires b/(a−2n)
queries to h.

h0n

m1 2 {0, 1}a�2n

y0 h

m2 2 {0, 1}a�2n

h

m3 2 {0, 1}a�2n

y1 y2 y3

key 2 {0, 1}n

Fig. 3: The construction H1 underlying Theorem 1 given a hash function
h : {0, 1}a → {0, 1}n for a > 2n.

The above result is optimal in terms of security and is almost as efficient as
standard MD if a ≥ 2n+Ω(n). For example, if a = 3n, processing a b-bit input of
H1 requires querying h as many as b/(a− 2n) = b/n times. In the standard MD
construction, only b/(a − n) = b/(2n) queries are required, so our construction
is less efficient than MD by a small constant factor at most 2 when a = 3n.

However, H1 is significantly less efficient than MD if a is roughly 2n, i.e. h
compresses by a factor of 2. For example, if a = 2n+ 1, then processing a b-bit
input of H1 requires invoking h as many as b times. However, MD requires only
b/(n+ 1) queries. This is a significant difference. We emphasize that having an
efficient construction even when a ≈ 2n is not only a technicality but is rather
important: concretely, assuming that the basic compressing function shrinks by
a factor 2 is extremely common, both in theory and in practice. Thus, our next
results are focused on closing this gap.

Instantiating the keyed inner hash with standard MD. To this end, we
start by considering a construction H2 that works for any a > n and only incurs
a factor of 2 overhead in terms of efficiency relative to MD. While this may seem
too good to be true, we pay in terms of the assumptions we need to make to
claim optimal security for collision resistance. Namely, the scheme has “optimal
security,” meaning any (S, T)-attacker can find a collision with probability at
most O(S/2n + T 2/2n), only whenever S ≤ T and ST 2 ≤ 2n.

This main idea behind the construction H2 is to instantiate the compress
function in the MD-based framework of Figure 1 with a standard MD hash

8

function. We use key as the key for MD, and we treat yi−1‖mi as the message. If
we use a message block size |mi| = n, this results in only a factor of two overhead
relative to MD (essentially, half of the invocations of h incorporate bits of the
message mi, and half of the invocations incorporate bits of the previous output
yi−1). This construction is depicted in Figure 4 and gives the following result.

Theorem 2 (Informal; see Theorem 10). Assume h : {0, 1}a → {0, 1}n is
modeled as a random oracle with a > n. Then, there is an H2 : {0, 1}κ×{0, 1}∗ →
{0, 1}n such that:

1. For any S, T ∈ N such that S ≤ T , ST 2 ≤ 2n, and any (S, T)-attacker,
their advantage in finding a collision in H2(key, ·) relative to a random
key←$ {0, 1}n is O(S/2n + T 2/2n).

2. One evaluation of H2 on a given key and a b-bit input requires 2 · b/(a− n)
queries to h.

0n y0km1 2 {0, 1}2n y1km2 2 {0, 1}2n y2km3 2 {0, 1}2n

MDh MDh MDh

key 2 {0, 1}n

Fig. 4: The construction H2 underlying Theorem 2 given a hash function
h : {0, 1}a → {0, 1}n for a > n. The gray dotted boxes represent the compress
function, instantiated with the Merkle-Damg̊ard construction, that uses key ∈
{0, 1}n as the key and yi−1‖mi ∈ {0, 1}2n as the message.

We note that the assumption that ST 2 ≤ 2n in the construction above comes
from the fact that best currently known time-space tradeoffs for the collision
resistance of standard MD (culminating in [17,2] following the works of [11,1,9])
require this assumption to get optimal bounds when analyzing the `-block MD
construction when ` ∈ ω(1). In the special case where we only use a 2-block
variant of MD as the underlying compress function, [1] give tight bounds that
do not require that ST 2 ≤ 2n (and furthermore, [17] gave tight bounds for all
constants `). This motivates our next construction, H3, which uses the 2-block
MD construction for compress, but requires that the input size to h satisfies
a > 3n/2. See Figure 5 for an illustration, and the corresponding result is given
in the following theorem.

Theorem 3 (Informal; see Corollary 1). Assume h : {0, 1}a → {0, 1}n is
modeled as a random oracle with a > 3n/2. Then, there is an H3 : {0, 1}κ ×
{0, 1}∗ → {0, 1}n such that:

9

1. For any S, T ∈ N such that S ≤ T and any (S, T)-attacker, their advantage
in finding a collision in H3(key, ·) relative to a random key←$ {0, 1}n is
O(S/2n + T 2/2n).

2. One evaluation of H3 on a given key and a b-bit input requires 2 ·b/(2a−3n)
queries to h.

h h

y0km1 2 {0, 1}2a�2n y1km2 2 {0, 1}2a�2n y2km3 2 {0, 1}2a�2n
0n

h h h h

key 2 {0, 1}n

Fig. 5: The construction H3 underlying Theorem 3 given a hash function
h : {0, 1}a → {0, 1}n for a > 3n/2. The gray dotted boxes represent the compress
function, instantiated with a two-block Merkle-Damg̊ard construction, that uses
key ∈ {0, 1}n as the key and yi−1‖mi ∈ {0, 1}2a−2n as the message. The 2a− 2n
bit message is split evenly into the first and second call to h, indicated in the
figure by a diamond.

Instantiating the keyed inner hash with a 2-level Merkle tree. For our
final construction, we seek to build a hash function H4 that is both efficient
and optimally secure whenever a ≈ 2n (h is only compressing by a factor of
2), without assuming that S ≤ T . In particular, S � T makes sense in many
practical scenarios: the pre-processing attacker may have much more than time
T to generate its advice string of size S, the online attacker may have easy
random access to a structured advice string, or the online time T may be small
for applications that enforce a timeout with fixed-time communication session
(see [5] as an example of an attack on a TLS session that requires relatively
heavy computation in an offline phase). Lastly, we mention that the bounds we
obtain on H2 and H3 are tight—there is a non-trivial attack whenever S > T
that scales with advantage Ω(ST`/2n) for standard `-block MD [11,1].

For H4, we instantiate the compress function from the framework of Figure 1
using a keyed variant of a Merkle tree construction (this has never been formally
defined or analyzed to the best of our knowledge). In our variant, we feed key
into all leaves of the Merkle tree. Concretely, in our construction, we use a 2-
level Merkle tree and feed key to both of them, corresponding to two distinct
invocations of h, and we split the “message” yi−1‖mi into the remaining input
bits for the leaves. The second level of the Merkle tree combines the two outputs
from the first level, to produce a n bit output for compress. The full construc-
tion of H4 is illustrated in Figure 6. We conjecture that this Merkle tree-based

10

construction is optimally secure for collision resistance (see Remark 1 for more
details), but analyzing its security turns out to be highly non-trivial. In partic-
ular, our current analysis is only optimally secure when ST 2 ≤ 2n, as stated in
the following theorem.

Theorem 4. Assume h : {0, 1}a → {0, 1}n is modeled as a random oracle with
a ≥ 2n. Then, there is an H4 : {0, 1}κ × {0, 1}∗ → {0, 1}n such that:

1. For any S, T ∈ N such that ST 2 ≤ 2n and any (S, T)-attacker, their advan-
tage in finding a collision in H4(key, ·) relative to a random key←$ {0, 1}κ
is O(S/2n + T 2/2n).

2. One evaluation of H4 on a given key and a b-bit input requires 3 ·b/(2a−3n)
queries to h.

h

h

h

y0km1 2 {0, 1}2a�2n0n y1km2 2 {0, 1}2a�2n

h

h

h

y2km3 2 {0, 1}2a�2n

h

h

h

key 2 {0, 1}n

Fig. 6: The construction H4 underlying Theorem 4 given a hash function
h : {0, 1}a → {0, 1}n for a ≥ 2n. The gray dotted boxes represent the compress
function, instantiated with a two-level Merkle tree, that uses key ∈ {0, 1}n in
each leaf and yi−1‖mi ∈ {0, 1}2a−2n as the message. The 2a− 2n bit message is
split evenly between the two leaves of the Merkle tree, indicated by a diamond
in the figure. We require a ≥ 2n so that both outputs from the leaves can be fed
into the next layer of the Merkle tree.

We summarize our results in Table 1.

Remark 1 (A conjecture on the security of keyed Merkle trees). The main build-
ing block in our construction of Theorem 4 is a Merkle tree where the key value
key is included only at the leaves. Concretely, we include a key key in each of
the leaves of a Merkle tree and then fill in the rest of the leaves with bits of
some message m ∈ {0, 1}∗, and then run the Merkle tree construction (with an
unkeyed hash) as normal to get an n-bit output. In this work, we analyze the
simplest case where the Merkle tree has depth 2 with only two leaves. However,
this naturally generalizes to any number of ` leaves resulting in a tree of depth
O(log `).

11

Advantage Efficiency Input Size Assumptions

MD Θ(ST 2/2n) b/(a− n) a > n None

H1 (Thm. 1) Θ(S/2n + T 2/2n) b/(a− 2n) a > 2n None

H2 (Thm. 2) Θ(S/2n + T 2/2n) 2 · b/(a− n) a > n S ≤ T, ST 2 ≤ 2n

H3 (Thm. 3) Θ(S/2n + T 2/2n) 2 · b/(2a− 3n) a > 1.5n S ≤ T

H4 (Thm. 4) Θ(S/2n + T 2/2n) 3 · b/(2a− 3n) a ≥ 2n ST 2 ≤ 2n

Table 1: A summary of our results as well as the standard MD construction for
reference. The advantage of a construction is given in terms of the probability
of (S, T)-attackers to find collisions relative to a random key. The efficiency is
measured in terms of the number of calls to h that maps a-bit inputs to n when
processing a b-bit input. The assumptions column specifies conditions on various
parameters.

We conjecture that this approach, where only the leaves are keyed, is as
secure as the Merkle tree approach of Figure 2 where the inner hash function is
keyed at every invocation, including interior nodes. This latter approach requires
a larger, more complicated, inner hash function, so we would like to avoid this
if at all possible.

First, for the simple case of a depth two tree with keyed leaves, we conjec-
ture that the bound we show in this work is not tight (see Theorem 12 for the
exact bound we show). Namely, we believe that we should not need to assume
ST 2 ≤ 2n (or make any assumptions on S, T) in order to get optimal secu-
rity. Second, we believe that this intuition should extend to the arbitrary depth
Merkle trees that are keyed at the leaves, and we conjecture that it should also
achieve optimal (S, T) security without any assumptions on S, T . However, even
getting a bound in this case that is optimal in the setting ST 2 ≤ 2n we believe
would be very interesting. Additionally, handling deeper Merkle trees could po-
tentially allow for constructions that do not necessarily have even a two-to-one
structure, meaning that we could build a keyed hash function based on Merkle
trees without assuming the hash function h has input size a ≥ 2n.

1.2 Related Work

The motivation for this work comes from a recent line of results on the non-
uniform security loss of various hashing mechanisms.

For Merkle-Damg̊ard’s construction [24,13], this was first studied by Coretti
et al. [11] who showed how to find collisions with probability Ω(S/2κ+ST 2/2n).
The idea is reminiscent of the rainbow tables attack due to Oechslin [25] (in
turn building on Hellman [20]). The collisions they get are rather long (of length

12

proportional to T). Akshima et al. [1] generalized the attack to get an `-block
collision with probability Ω(S/2κ + ST`/2n) and showed that this attack is
optimal for ` = 2. Ghoshal and Komargodski [17] showed that this attack is
optimal for all constant values of ` and Akshima, Guo, and Liu [2] almost proved
the tightness of the bound for all `s by showing that the best possible attack
has advantage O(ST`/2n · (1 + ST 2/2n) + T 2/2n). For a single-block Merkle-
Damg̊ard (i.e., just a compressing random oracle), Dodis, Guo, and Katz [14]
showed that including a random key (optimally) defeats preprocessing attacks.

For Sponge [8,7], Coretti, Dodis, and Guo [10] stated a related attack with
advantage Ω(ST 2/2κ+T 2/2r) (with r being a “rate” parameter of the scheme).
Again, this attack resulted in very long collisions. The attack was formalized and
extended to `-block collisions with advantage Ω(ST`/2κ + T 2/2r) by Freitag,
Ghoshal and Komargodski [16]. Freitag et al. also proved several upper bounds
on the advantage of any attacker, but their bounds are not known to be tight.

Indifferentiability. Our work focuses on collision resistance, but there are other
security properties of interest (such as inversion, second preimage resistance,
pseudo-randomness, and unpredictability). In the uniform security setting there
is a well-known framework called indifferentiability (due to Maurer, Renner, and
Holenstein [22]) that is used to show that a (wide) class of security goals are si-
multaneously met. This allows to modularly transition to a (simpler) hybrid
world where a complicated hash function construction is replaced with a mono-
lithic random oracle (see, for example, [12]). Such transitions are known to work
for all single-stage games but not for multi-stage games [26]. Our non-uniform
security model is fundamentally a two-stage model and therefore the indifferen-
tiability framework (as is) does not apply. It is an interesting open problem to
find an analogue in the non-uniform setting.

2 Technical Overview

In this section, we give a high level overview of our main techniques. Recall, our
goal is to construction a variable-input length, keyed, hash functionHh : {0, 1}κ×
{0, 1}∗ → {0, 1}n from an idealized, fixed-input length hash function h : {0, 1}a →
{0, 1}n.

Non-uniform security in the AI-ROM. We consider non-uniform (S, T)-
attackersA = (A1,A2) in the auxiliary-input random oracle model (AI-ROM) [27]
with the following structure. First, h is randomly sampled from the space of all
a-bit to n-bit functions. Then, in the preprocessing phase, A1 has unbounded ac-
cess to h and outputs an advice string σ such that |σ| ≤ S. The online phase A2

receives auxiliary input σ and a random key key← {0, 1}κ as input, and then has
to find two distinct messages msg,msg′ such that Hh(key,msg) = Hh(key,msg′)
while making at most T queries to h. Our goal is to give constructions Hh

such that no (S, T)-attacker as above can find a collision with better than
O(S/2κ + T 2/2n) probability. This is “optimal” in the sense that this matches
a naive attack against a purely random H: the preprocessing attacker stores

13

collisions for Ω(S) keys, and the online attacker either gets “lucky” and receives
one of those keys as input or performs a standard birthday-style attack.

Merkle-Damg̊ard framework with a keyed inner hash. We consider a
general framework based on the Merkle-Damg̊ard (MD) transformation where
we instantiate the inner hash function with a keyed one. Let s ∈ N be the
desired message block size. Then, given a function g : {0, 1}κ+n+s → {0, 1}n,
we can build a function Hg where any attack on the collision resistance of Hg

implies an attack on g. The idea behind Hg is as follows. We first break our
message up into blocks m1, . . . ,m` of size a − κ − n. We initialize the value
y0 = 0n, and for i = 1, 2, . . . , ` we compute yi = g(key‖yi−1‖mi). Finally, we
output y`. It is known (e.g. see Section 8.5 of [19]) that if you can find a collision
in the MD construction Hg for a keyed g in the uniform setting, then this implies
you can find a collision in g. Indeed, this reasoning extends to the non-uniform
setting with (S, T)-attackers in the AI-ROM. Hence, this shows that Hg is as
secure as g. So, our new goal is to construct such a g with “optimal security”
given an idealized hash function h : {0, 1}a → {0, 1}n.

Our first observation is that if a ≥ κ+ n+ s, then we can simply use g = h.
Furthermore, h has optimal security O(S/2κ + T 2/2n) (first formalized by [14]
in the AI-ROM), so we are done! So our next goal is to try to use an h from
minimal assumptions. Namely, can we get a keyed hash function with arbitrary
length input from any h : {0, 1}a → {0, 1}n where a is much smaller, i.e. even
a = n + 1? This will allow us to focus on building as simple a primitive as
possible which we can bootstrap to a full variable-input length hash function
with optimal security.

Next, we note that for any a > max(κ, n), we can always do the standard
Merkle-Damg̊ard transformation using h to construct g, where key is not fed
into every invocation of h. For standard MD, it makes sense to set κ = n since
we use the key key as the initialization vector. Recall, the MDh construction
sets y0 = key, computes yi = h(yi−1‖mi) for i = 1, . . . , `, and outputs y`. This
approach has a major downside in that instantiating MD without inserting key
into each invocation of h suffers non-trivial time-space tradeoffs. In general, there
is an attack on the general MDh construction with advantage Ω(ST 2/2n). This
is strictly worse than the optimal bound of O(S/2n + T 2/2n) for any setting
of parameters with S, T � 1. However, this attack finds very large—roughly
length T—collisions. In our setting, we only care about using MDh to get a
function g with inputs of size 2n + s. Thus, we leverage a recent line of work
(see [11,1,9,17,2]) that shows that if you only use MDh on `-block messages, then
the best known attack has advantage at most O(ST`/2n + T 2/2n) (and further
this is provably tight for constant ` [1,17] and, when ST 2 ≤ 2n, is provably tight
for all ` [2]).

So, if we instantiate g in our framework with a fixed-length MDh construction
where we set κ and s to be equal to the output length n, we get a construction for
Hh where any (S, T)-attacker has advantage at most O(ST/2n + T 2/2n) (up to
poly(n) factors). This is only “optimal,” however, under the (strong) assumption
that S ≤ T .

14

Our main technical contribution is instantiating g in the framework above
using a new keyed Merkle tree approach, which does not require the assumption
that S ≤ T .

2.1 Keyed Merkle Tree Analysis

For the rest of this technical overview, we focus on our analysis of the keyed
Merkle tree construction.

Construction. We start by defining the 2-level construction. We want a keyed
function g : {0, 1}κ × {0, 1}n+s → {0, 1}n from a hash function h : {0, 1}a →
{0, 1}n where a ≥ 2n. To do so, we split the (n+s)-bit input into two parts, call
them mL,mR, of size at most a−κ (hence we require here that a−κ ≥ (n+s)/2,
or a ≥ κ+ n/2 + s/2). We concatenate each part with the key key and compute
yL ← h(key‖mL) and yR ← h(key‖mR). We then concatenate yL with yR and
feed the resulting string into h to get the output z ← h(yL‖yR) (we require here
that a ≥ 2n). For technical purposes, we “domain separate” each call to h, so
yL = h1(key‖mL), yR = h2(key‖mR), and z = h3(yL‖yR).

Analysis. We want to bound the probability that any (S, T)-attacker can find
a collision in this keyed Merkle tree construction of g. To simplify the analysis
here, we consider the case where κ and s are equal to n. Hence, each call to h
takes two n-bit inputs and has one n-bit output. We also assume from the start
that ST 2 ≤ 2n.

We start with the following observation. The probability that any (S, T)-
attacker finds a collision at the leaves, corresponding to the calls to h1, h2, is at
most O(S/2n +T 2/2n). Because these calls include the key key, if such an event
happened, we could reduce to finding a collision in h directly. So, the challenge
is to reason about the advantage of an (S, T)-attacker finding a collision at the
second level of the Merkle tree, which is only implicitly related to the key key
in the Merkle tree construction. We have to somehow characterize all possible
ways that an (S, T)-attack can encode information about h in its advice string
from the preprocessing phase.

One of the first tools one often turns to in such analysis is to use the pre-
sampling technique from [27,11]. We note that if we were to use the presampling
technique, we would obtain a term of the form ST/2n in out bound, which is
optimally secure only in the range S ≤ T . Our main technical contribution is get-
ting an optimally secure protocol for the range S � T , which therefore requires
techniques other than presampling.

The AGL [2] framework: reducing to multi-instance games. To make our
lives significantly easier, we use the multi-instance framework of [2], previously
used in somewhat different forms in [21,1,9,17]. At a very high level, this frame-
work gives a way to reason about (S, T)-attackers using an average-case advice
string rather than a worst-case one. In more detail, they show how to bound the
advantage that any (S, T)-attacker A finds a collision in gh by the advantage
of a (uniform) attacker B in the following game. First, a random function h is

15

sampled. Then, B has to win the following game for all i = 1, . . . , S sequentially,
where it is allowed to maintain arbitrary state (that it generates) between each
successive game. In each game i, the attacker B receives a random key keyi,
its state from the previous games, and has to come up with a pair of messages
msgi,msg′i such that gh(keyi,msgi) = gh(keyi,msg′i) using at most T queries to
h. [9,2] show that if the advantage of B is at most δS , then the advantage of
the (S, T)-attacker A is at most 2δ. The magic of this framework is that we can
analyze the advantage of B in each game i only given its state from the previous
games, instead of having to reason about arbitrary advice strings as in the case
of (S, T)-attackers. Namely, we can lazily sample h on any point that B has not
queried, in a way that is independent of B’s current state.

Note that it suffices to show that the advantage of B “in game i” is at
most δ given it has won all previous games. Let Wi be the event that B wins
game i and W<i be the event that B wins all games before i. This follows since
Pr[W1 ∧ . . . ∧WS] =

∏S
i=1 Pr[Wi|W<i] ≤ δS if Pr[Wi|W<i] ≤ δ for all i ∈ [S].

Hence, our goal is to show that Pr[Wi|W<i] ≤ O(S/2n + T 2/2n), up to poly(n)
factors.

Knowledge gaining event: bounding “hitting” queries. Now, to even
further simplify the analysis of Pr[Wi|W<i], we define a key “knowledge gaining
event” (based on the techniques of [2]) representing the kind of information that
B may have encoded into its state based on the queries it made to h before game
i has started. At a high level, this is an event that we show happens with very
small probability (technically at most 2−2i·n) for an average-case advice string
for B at the start of game i. Then, assuming this event does not occur, we can
more easily characterize the strategies of B.

To define this event, we introduce some notation to characterize B’s queries.
We refer to all (i− 1) · T queries B makes before the start of game i as “offline”
queries, and we refer to the T queries made in game i as “online” queries. An
offline query is said to be “hitting” if its output is equal to an output or either
of the two inputs to some prior query, i.e. it “hits” a previous query. We are now
ready to state our key knowledge gaining event.

– We say that Eihit holds if there are more than i·poly(n) hitting queries among
the (i− 1) · T offline queries.

Briefly, we justify why Eihit holds with very small probability. The output for
each query is uniformly sampled, and there are at most 3 · (i − 1) · T values
to hit across inputs/outputs in the previous (i − 1) · T offline queries. So the
probability each offline query is a hitting query is at most 3iT/2n, meaning we
expect at most 3i2T 2/2n hitting queries accounting for all (i−1)·T offline queries.
Furthermore, we show using a Chernoff bound that there will not be more than
i · poly(n) · max(1, iT 2/2n) = O(i) hitting queries (assuming ST 2 ≤ 2n) with
high probability (recall that we ignore poly(n) terms).

A case analysis based on collision queries. Now, assuming there are at most
i · poly(n) hitting queries, we are ready to show that Pr[Wi|W<i] ≤ O(S/2n +

16

T 2/2n). To do so, we look at the following “collision” queries corresponding to
the valid collision msgi = (mL,mR) 6= msg′i = (m′L,m

′
R) that B outputs in game

i (we assume that B makes all of these queries at some point during or before
game i).

– Q1, Q2, Q3 are the queries yL ← h1(keyi‖mL), yR ← h2(keyi‖mR), z ←
h3(yL‖yR), respectively.

– Q′1, Q
′
2, Q

′
3 are the queries y′L ← h1(keyi‖m′L), y′R ← h2(keyi‖m′R), z ←

h3(y′L‖y′R), respectively.

Recall that we assumed the collision occurs among Q3, Q
′
3 (not at the leaves),

so it must be the case that (yL, yR) 6= (y′L, y
′
R) and queries Q3, Q

′
3 are distinct.

If all of these collision queries are online (were first made during game i),
then clearly Pr[Wi|W<i] ≤ O(T 2/2n). Specifically, as Q3 and Q′3 are online (and
distinct by assumption) and form a collision, this follows by a birthday bound
on at most T online—and hence lazily sampled—queries that B makes during
game i. The challenge comes when analyzing the cases where B may have made
some of these queries before game i, so it could have encoded information about
these queries in its state. To do so, we consider the following remaining cases,
which cover all possible strategies that B may employ.

As we already considered when both Q3, Q
′
3 are online queries, it must be

the case that one of Q3, Q
′
3 must be an offline query. Assume without loss of

generality that Q3 is offline. Then either (A) both Q1, Q2 are online, (B) exactly
one of Q1, Q2 are online, or Q1, Q2 are both offline. The latter case implies that
Q1, Q2, Q3 are all offline. Then either is the case that (C) Q′3 is online, or Q′3 is
also offline. If Q′3 is also offline, then either we reduce to case (A) or (B) above
by symmetry, or it holds that (D) all Q1, Q2, Q3, Q

′
1, Q

′
2, Q

′
3 are offline. So, it

suffices to show in cases (A-D) that Pr[Wi|W<i] ≤ δ ≤ O(S/2n + T 2/2n), at
least assuming ST 2 ≤ 2n. We proceed to give the main ideas behind each of
these cases.

(A) Q3 is offline but Q1, Q2 are online.
There are at most (i − 1) · T options for the offline query Q3. Both online
queries Q1 and Q2 have to hit such a query, which happens with at most
(i− 1) · T · (T/2n)2 = O(iT 3/22n) ≤ O(T/2n) when ST 2 ≤ 2n since i ≤ S.

(B) Q1, Q3 are offline but Q2 is online (symmetrically for Q1 online and Q2

offline).
In this case, we claim we can “associate” the key keyi in game i to the query
Q3 since both Q1 and Q3 are offline queries. If we can associate keyi to
at most k possible Q3 queries, then this implies the probability the output
of some online query hits an input of such an associated query is at most
k · T/2n. But how many Q3 queries can we associate to a key keyi?
In the worst case, keyi may be associated to (i − 1) · T many Q3 queries,
but this implies a suboptimal bound of O(iT 2/2n). But this cannot be true
for too many values of key simultaneously. In particular, if a Q3 query is
associated with more than k possible values of key, this means there are k
hitting queries, so each Q3 query can be associated with at most O(i) keys.

17

This implies there are at most O(i2T) pairs of associated key values with
potential Q3 queries, meaning a random keyi value will be associated with
at most O(i2T/2n) potential Q3 values on average. Plugging this average-
case bound into k above, this implies a bound of O(i2T 2/22n) ≤ O(S/2n)
assuming ST 2 ≤ 2n given i ≤ S.

(C) Q1, Q2, Q3 are offline but Q′3 is online.

In this case, Q′3 is a distinct query from Q3 by assumption, but again we
can “associate” Q3 with keyi as above. Then, since Q′3 must share an output
with Q3, the same argument as above gives a bound of O(S/2n) in this case.

(D) All collision queries Q1, Q2, Q3, Q
′
1, Q

′
2, Q

′
3 are offline.

In this case, we show that every full collision structure with respect to some
key among the offline queries leads to a hitting query. Furthermore, two col-
lision structures cannot share the same hitting query. So if there are at most
O(i) hitting queries, the probability Q1, Q2, Q3, Q

′
1, Q

′
2, Q

′
3 are all offline for

a random keyi is at most O(i/2n) ≤ O(S/2n).

Thus, we showed that Pr[Wi|W<i] ≤ O(S/2n + T 2/2n) no matter when
Q1, Q2, Q3, Q

′
1, Q

′
2, Q

′
3 were queried before or during game i. Further, recall the

last case where there is a collision at one of the leaves (corresponding to Q1, Q
′
1

or Q2, Q
′
2), which can happen with at most O(S/2n + T 2/2n) probability since

such a collision directly involves keyi. Thus, in all possible cases, we have shown
Pr[Wi|W<i] ≤ δ ≤ O(S/2n + T 2/2n), at least assuming ST 2 ≤ 2n. Finally, by
the framework of [9,2], this implies the same bound (up to a multiplicative factor
of 2) on the advantage of finding a collision for any (S, T)-attacker.

3 Preliminaries

We let N = {1, 2, 3, . . .} denote the natural numbers. The set of all functions
with domain D and range R is denoted by Fcs(D,R). We let ∗ denote a wildcard
element. For example (∗, z) ∈ L is true if there is an ordered pair in L where z
is the second element (the type of the wildcard element shall be clear from the
context). For a random variable X we use E [X] to denote its expected value.
We use x←$D to denote sampling x uniformly sampling from the elements of
D. All logarithms in this paper are for base 2 unless otherwise specified.

For a bit-string s, we use |s| to denote the number of bits in s. For two strings
s1, s2, we use s1‖s2 to denote the concatenation of two strings. We use standard
regular expression notation where s∗ denotes 0 or more copies of s, s+ denotes
one or more copies of s, and sk denotes k copies of s. Similarly, for a set S, we
use S∗, S+, and Sk to represent 0 or more, 1 or more, of k elements takes from
a set S. In particular, we use {0, 1}∗ to represent any arbitrary string of bits.
We use the notation {0, 1}≤k to represent a string of length at most k.

Chernoff bound. We state a Chernoff bound which we use in the technical
part of the paper.

18

Proposition 1. Let n ∈ N. Let X1, X2, . . . , Xn be independent 0-1 random vari-
ables. Let X =

∑n
i=1Xi. Let µ′ be such that E [X] ≤ µ′. Then we have that

Pr [X ≥ (1 + δ)µ′] ≤ e− δµ
′

3 .

Notice that this version is somewhat non-standard as it even works when we
know only an upper bound on the expectation (usually, in standard formulations
of Chernoff bound, we need to know the expectation exactly). We have a proof
of this Chernoff bound in the full version.

Auxiliary-input Random Oracle Model (AI-ROM). The auxiliary-input
random oracle model, introduced by Unruh [27], captures the power of non-
uniform adversaries against random oracles. An attacker A = (A1,A2) in this
model is formalized as a two stage adversary. In its first stage, which is referred
to as the preprocessing phase, A1 has unbounded access to the random oracle
h, and outputs any arbitrary S-bit advice string or auxiliary input σ. In the
second stage, referred to as the online phase, gets σ as input, A2 can make at
most T queries to its oracle h. Its aim is to accomplish some task involving h,
e.g. find a collision in a construction based on h. We refer to such an adversary
A = (A1,A2) as an (S, T)-attacker.

Collision resistance of gh in AI-ROM. We next formalize the keyed-collision
resistance of an iterated hash function construction g relative to a hash function
h : {0, 1}a → {0, 1}n in the AI-ROM. The construction g has a parameter κ
associated with it, where κ is the bit length of key used in g. It first samples a
random function h : {0, 1}a → {0, 1}n. The adversary A1 gets unbounded access
to h, and it outputs an advice string σ. At this time, A2 is given the auxiliary
input σ, a randomly sampled key from {0, 1}κ, as well as oracle access to h, and
it needs to find msg 6= msg′ such that gh(key,msg) = gh(key,msg′). This game,
denoted Gai-cr

gh is formally defined in Fig. 7.

Definition 1 (AI-CR Advantage). The advantage of an adversary A against
the collision resistance of gh in the AI-ROM is

Advai-crgh (A) = Pr
[
Gai-cr
gh (A) = true

]
.

For parameters S, T ∈ N, we overload notation and denote

Advai-crgh (S, T) = max
A

{
Advai-crgh (A)

}
,

where the maximum is over all (S, T)-attackers.

Throughout the paper, for any (S, T)-attacker A that outputs messages
msg,msg′ that causes Gai-cr

gh (A) to output true on a key key, we assume that

A has fully queried gh(key,msg) and gh(key,msg′). This is true without loss of
generality (up to constant factors in the advantage) as if there exists any (S, T)-
attacker A that does not, you can construct an (S, T + 2`)-attacker B that does,

19

Game Gai-cr
gh (A = (A1,A2))

1. h←$ Fcs({0, 1}a, {0, 1}n)
2. σ←$A1(h)
3. key←$ {0, 1}κ
4. (msg,msg′)←$Ah2 (σ, key)
5. Return true if:

(a) msg 6= msg′, and
(b) gh(key,msg) = gh(key,msg′)

6. Else, return false

Fig. 7: The collision resistance game Gai-cr
gh in AI-ROM for a function gh based

on a random oracle h : {0, 1}a → {0, 1}n. The construction gh has a parameter
κ associated with it, where κ is the bit length of key used in g.

where gh requires at most ` invocations of h to compute either gh(key,msg)
or gh(key,msg′). As ` ≤ T , the resulting attacker will have comparable advan-
tage up to constant factors in T . We note that this is a standard assumption in
existing related works in the AI-ROM.

On padding. The variable-input length hash functions we consider of this work
all act on messages which have been parsed into many fixed size blocks of some
specified size s. We therefore need a padding function that takes arbitrary length
inputs and converts them to a sequence of fixed-size blocks. We need to ensure
that this padding function maintains certain properties like injectivity in order
to guarantee that if an adversary finds a collision on the padded versions of mes-
sages, then it implies a collision with respect to the underlying messages as well.
For the purpose of this paper, we define the following padding function, which
is a slightly simplified version of the padding function used by the SHA family
of hash functions (see [19, Section 8.5] for more discussion on MD-compliant
padding functions). The function pad we use takes in a message msg ∈ {0, 1}∗,
an integer s ∈ N representing the size of each block, and an integer n that
stipulates that |msg| ≤ 2n. The construction is formally defined as follows.

pad(msg, s, n):

1. Let k = s− ((|msg|+ n) mod s+ 1).
2. Interpret |msg| ∈ [2n] as an n-bit string.
3. Output (m1, . . . ,m`) ∈ ({0, 1}s)` where m1‖ . . . ‖m` = msg‖|msg|‖1‖0k.

We formalize the guarantees we use for this padding function in the following
theorem.

Theorem 5 (Padding). Let s, n ∈ N. The function pad(msg, s, n) on messages
msg ∈ {0, 1}2n satisfies the following properties:

1. |pad(msg, s, n)| ∈ ({0, 1}s)` for ` = d(|msg|+ n+ 1)/se.

20

Construction KMDh(key,msg):

1. (m1,m2, . . . ,m`)← pad(msg, s, n) where ` = d(|msg|+n+ 1)/se given by
Theorem 5.

2. Initialize y0 = 0n, and compute yi ← h(key, yi−1‖mi) for i = 1, . . . , `.
3. Output y`.

Fig. 8: The keyed Merkle-Damg̊ard construction KMDh : {0, 1}κ × {0, 1}∗ →
{0, 1}n given any underlying function h : {0, 1}κ × {0, 1}n+s → {0, 1}n, where κ
is the key length, n is the output length, and s is the message block size.

2. There is a unique decoding procedure that outputs msg given pad(msg, s, n),
and outputs ⊥ on invalid padded messages.

3. If pad(msg, s, n) = pad(msg′, s, n), then msg = msg′.
4. If |msg| < |msg′|, then pad(msg, s, n) is not a suffix of pad(msg′, s, n).

We defer the proof of this theorem to the full version.

4 Merkle-Damg̊ard Framework with a Keyed Inner Hash

In this section, we lay out the general framework for our main results, based
on the Merkle-Damg̊ard transform using a keyed inner hash. We note that this
framework has been explicitly considered in the uniform setting in Section 8.5 of
the lecture notes of Goldwasser and Bellare [19].9 We extend this framework to
the preprocessing setting, modeled by the AI-ROM of Unruh [27], noting that
the high level ideas are similar.

For a key length κ, output length n, and message block size s, we assume an
underlying primitive h : {0, 1}κ×{0, 1}n+s → {0, 1}n. In other words, viewing the
primitive h as a function from {0, 1}a to {0, 1}n, this implies that a = κ+n+ s.

Given such a primitive h, we define the following keyed Merkle-Damg̊ard
hash function KMDh : {0, 1}κ × {0, 1}∗ → {0, 1}n. On input key key ∈ {0, 1}κ
and message msg ∈ {0, 1}∗ of length at most 2n, the function KMDh first pads
the message to split it into ` = d(b + n + 1)/se message blocks of size s as
in Theorem 5. It then essentially computes the Merkle-Damg̊ard hash function
using the underlying hash function h, except that the key key is inserted into
every invocation of h. This is formalized in Figure 8.

Since the key key is included in every call to the underlying primitive h, it
follows that any (S, T)-attacker that finds a collision in KMDh with respect to
a key key also finds a collision in h with respect to key. This is formalized via a
reduction, which gives the following theorem. Again, we note that the following

9 The existence of this variant of the Merkle-Damg̊ard transform has gone com-
pletely unnoticed in recent works studying non-uniform security of this transfor-
mation [11,1,17,2].

21

theorem very closely follows the reduction given in [19, Section 8.5], but we give
the full details in the AI-ROM for completeness.

Theorem 6. Let κ, n, s ∈ N. Let h : {0, 1}κ × {0, 1}n+s → {0, 1}n be any func-
tion, and let KMDh : {0, 1}κ × {0, 1}∗ → {0, 1}n. Then, for every S, T ∈ N, it
holds that

Advai-crKMDh(S, T) ≤ Advai-crh (S, T).

The proof of this theorem is a straightforward reduction, and we defer it to the
full version.

Next, we recall that if h is a keyed function modeled as a random oracle (in
the AI-ROM of Unruh [27]), Dodis, Guo, and Katz [14] give the following bound
on the success probability that any (S, T)-attacker can find a collision in h with
respect to a random key.

Theorem 7 ([14]). Let h : {0, 1}κ×{0, 1}b → {0, 1}n be modeled as a random
oracle in the AI-ROM. Then, for any S, T ∈ N,

Advai-crh (S, T) ≤ 2S + 2κ

2κ
+

50T 2

2n
.

Combining Theorems 6 and 7, we get the following result.

Theorem 8. Let a, κ, n ∈ N be such that a > κ + n. Let h : {0, 1}a → {0, 1}n
be modeled as a random oracle in the AI-ROM. Then, there is an Hh : {0, 1}κ×
{0, 1}<2n → {0, 1}n such that:

1. For any S, T ∈ N,

Advai-crHh (S, T) ≤ 2S + 2κ

2κ
+

50T 2

2n
.

2. One evaluation of Hh on messages of length b requires d(b+n+1)/se queries
to h, where s = a− κ− n.

Proof. As a > κ + n, we define s = a − κ − n > 0. Then, we view h as a
function from {0, 1}κ×{0, 1}n+s to {0, 1}n and use it in the construction KMDh

of Figure 8 to get the hash function Hh required by the theorem.

The bound on the advantage immediately follows as a corollary of Theorems 6
and 7. As for efficiency, we note that padding a message msg ∈ {0, 1}b via
Theorem 5 results in a message consisting of ` blocks each of length s, where
` = d(b+ n+ 1)/se. Each block of the message requires a single invocation of h,
so evaluating KMDh on msg requires ` = d(b+n+1)/se queries to h as required.

22

Construction FMDhb (key,msg):

1. Parse msg into ` blocks (m1,m2, . . . ,m`) each of size s where ` = db/se
and m` is padded with 0s if needed.

2. Initialize y0 = key, and compute yi ← h(yi−1,mi) for i = 1, . . . , `.
3. Output y`.

Fig. 9: The standard Merkle-Damg̊ard construction with fixed input message
length b FMDhb : {0, 1}n × {0, 1}b → {0, 1}n given any underlying function
h : {0, 1}n × {0, 1}s → {0, 1}n, where n is the key and output length, and s
is the message block size.

5 Instantiating the Inner Hash: Standard MD

We next consider instantiating the Merkle-Damg̊ard framework of Section 4
whenever the underlying hash function h : {0, 1}a → {0, 1}n has input length
a such that n < a < κ + n + s, where κ is the key length, n is the output
length, and s is the desired message block size. Specifically, our goal is to use
such a primitive h : {0, 1}a×{0, 1}n to build a larger (fixed-length) hash function

gh : {0, 1}κ × {0, 1}n+s that can be plugged into the construction KMDg
h

.

The first approach we consider is by simply building g from h using the
standard Merkle-Damg̊ard construction where h is not keyed in every invocation.
We emphasize that in the standard version of MD, a random initialization vector/
key is still included in the first invocation of h. However, it is not included in
the subsequent invocations of h, allowing h to take in smaller inputs overall.

Given an underlying hash function h : {0, 1}a → {0, 1}n where a > max(κ, n),
we define the standard Merkle-Damg̊ard hash function with fixed input message
length b FMDhb : {0, 1}κ×{0, 1}b → {0, 1}n as follows. For sake of simplicity and
due to the nature of the MD construction, we will assume that the key length κ
is equal to the output length n. Let s = a− n be the message block size we will
include in each invocation of the underlying h. On input a key key ∈ {0, 1}n and a
message msg ∈ {0, 1}b, the function FMDhb splits the message msg into ` = db/se
message blocks of size s (adding 0s to the last block if needed). It initializes
y0 = key, and for i = 1, . . . , `, computes yi as the hash of yi−1 concatenated with
mi using h. The output of FMDhb is then y`. This is formalized in Figure 9.

If we instantiate gh := FMDhb only on input messages of size at most b = n+s

as required to instantiate it inside KMDg
h

, then we only need to worry about
`-block collisions for ` = d(n+ s)/(a−n)e. Akshima, Guo, and Liu [2] currently
show the best known upper bound on the advantage of finding general `-block
collisions in MDh, given by the following theorem.

Theorem 9 ([2]). Let b, n, s ∈ N such that b > s, and set ` = db/se. Let
h : {0, 1}n × {0, 1}s → {0, 1}n be modeled as a random oracle in the AI-ROM.

23

Then, for any S, T ∈ N,

Advai-crFMDhb
(S, T) ≤


200n·(ST+T 2)

2n if ` = 2, and

34n·ST`
2n ·max

(
1, ST

2

2n

)
+ 2·T 2

2n if ` > 2.

We note that Ghoshal and Komargodski [17] give a bound of O(ST/2n+T 2/2n)
whenever ` is a constant, which doesn’t require the assumption that ST 2 ≤ 2n.
However, their bound does not extend to super constant `.

Combined with Theorem 6, we get the following result.

Theorem 10. Let a, n, s ∈ N be such that a > n. Let ` = d(n + s)/(a − n)e.
Let h : {0, 1}a → {0, 1}n be modeled as a random oracle in the AI-ROM. Then,
there is an Hh : {0, 1}κ × {0, 1}<2n → {0, 1}n such that:

1. For any S, T ∈ N,

Advai-crHh (S, T) ≤


200n·(ST+T 2)

2n if ` = 2, and

34n·ST`
2n ·max

(
1, ST

2

2n

)
+ 2·T 2

2n if ` > 2.

2. One evaluation of Hh on messages of length b requires ` · d(b + n + 1)/se
queries to h.

Proof. As a > n, we parse h : {0, 1}n × {0, 1}a−n → {0, 1}n and use it to
construct FMDhn+s as defined in Figure 9. We then use FMDhn+s as the primitive
underlying our MD-based hash function of Figure 8. So, we set

Hh := KMDFMDhn+s .

The bound on the advantage follows as a corollary to Theorems 6 and 9,
where the message length required for the FMDhn+s construction is only n + s.

Furthermore, this implies that FMDhn+s requires ` = d(n + s)/(a − n)e invoca-

tions of h per invocation of FMDhn+s, and KMDFMDhn+s requires d(b + n + 1)/se
invocations of FMDhn+s, giving the resulting efficiency bound.

We emphasize that because our reduction in Theorem 6 is generic, any im-
provement on the bound of [2,17] for finding an `-block collision in MD will
immediately imply an improved bound in Theorem 10.

We next state a corollary of Theorem 10 where we restrict to using ` = 2
invocations of h in the underlying FMDhn+s construction. For this setting, the
bound of [2] above is optimal (up to poly(n) factors), and we observe that the
resulting bound matches our desired bound of O(S/2n+T 2/2n) whenever S ≤ T .

Corollary 1. Let a, n, s ∈ N be such that a ≥ 3n/2 + s/2. Let h : {0, 1}a →
{0, 1}n be modeled as a random oracle in the AI-ROM. Then, there is an Hh : {0, 1}κ×
{0, 1}<2n → {0, 1}n such that:

24

Game Gmi-cr
g,S (B)

1. h←$ Fcs({0, 1}a, {0, 1}n)
2. key1, . . . , keyS ←$ {0, 1}κ
3. st← ⊥
4. For i = 1 to S

(a) (msg,msg′, st)←$ Bh(st, keyi)
(b) Output false if:

i. msg = msg′, or,
ii. gh(keyi,msg) 6= gh(keyi,msg′)

5. Otherwise, output true

Fig. 10: The multi-instance game Gmi-cr
gh,S , where B is a uniform adversary with

oracle access to the function h.

1. For any S, T ∈ N,

Advai-crHh (S, T) ≤ 200n · (ST + T 2)

2n

2. One evaluation of Hh on messages of length b requires 2 · d(b + n + 1)/se
queries to h.

Proof. Restricting to ` = 2 in Theorem 10, we require that ` = d(n + s)/(a −
n)e ≤ 2. This holds as long as a ≥ 3n/2 + s/2, as required.

6 Instantiating the Inner Hash: Two-Level Merkle Tree

In this section, we instantiate the Merkle-Damg̊ard framework of Section 4,
that uses a keyed inner hash, in the setting where the underlying hash function
h : {0, 1}a → {0, 1}n satisfies a ≥ max(2n+ 2, κ+ dn/2e+ 3).

The compression function in this instantiation of the MD-based framework,
is a Merkle tree with two leaves, where we additionally input the key into each
leaf. We describe next the framework introduced in [2] that we use to analyze
the collision-resistance of this construction in AI-ROM.

6.1 The AGL [2] Framework

In this section, we briefly introduce the framework given by [2] which is useful
in analyzing non-uniform security. An earlier version of this framework was in-
troduced by [9,1] inspired by techniques used in proving constructive Chernoff
bounds in [21] and later refined by [1,17,2] to upper bound Advai-crgh (S, T). This
framework involves upper bounding the advantage of an (S, T)-attacker using
the advantage of a uniform adversary for a multi-instance game that has to find
collisions for S randomly chosen values of key.

25

We define the “multi-instance” game Gmi-cr
gh,S (B) in Fig. 10. We refer an adver-

sary playing Gmi-cr
gh,S and making at most T queries for each key as a (S, T)-MI

adversary. For any (S, T)-MI adversary, define

Advmi-cr
gh (B) = Pr

[
Gmi-cr
gh,S (B) = true

]
.

Further,

Advmi-cr
gh (S, T) = max

B
Advmi-cr

gh (B) ,

where the maximum is taken over all (S, T)-MI adversaries. The following key
lemma relates Advai-crgh (S, T) to Advmi-cr

gh (S, T), which is proven in [2].

Lemma 1 ([2]). Fix S, T ∈ N and 0 ≤ δ ≤ 1, if Advmi-cr
gh (S, T) ≤ δS, then

Advai-crgh (S, T) ≤ 2δ.

Offline and Online queries. Since the adversary in the multi-instance game
is stateful, we can assume without loss of generality that it does not repeat
queries since they can simply remember the answers. Additionally, [2] formalized
the notion of “offline” and “online” queries during a particular instance of the
game. When running the adversary on keyi, the queries that were made while
the adversary was run on key1, . . . , keyi−1 are collectively known as the “offline”
queries, and the queries made while running on keyi are “online queries”.

6.2 Two-Level Merkle Tree

In this section, we present our construction of a keyed Merkle tree and analyze its
collision resistance in the AI-ROM using the framework in the previous section.
Specifically, given an underlying hash function h : {0, 1}a → {0, 1}n where a ≥
max(2n + 2, κ + dn/2e + 3), we define a keyed, 2-level Merkle tree 2MThb for
message length b ≤ 2a− 2κ− 4.

Before we define 2MThb , we introduce notation that allows use to “domain-
separate” h into three separate functions. Given a fixed hash function h : {0, 1}a →
{0, 1}n, we define three domain-separated functions h1, h2, h3 : {0, 1}a−2 → {0, 1}n,
where hi(x) outputs h(̂i‖x) where î ∈ {0, 1}2 is the 2-bit binary representation
of i. Moreover, we refer to a query h(̂i‖∗) as a query to the function hi (which
is also clearly a query to h).

To construct 2MThb : {0, 1}κ × {0, 1}b → {0, 1}n, we use h1 and h2 above to
process the two leaves of the depth-2 Merkle tree, where we include key ∈ {0, 1}κ
in each leaf. We then feed those outputs as input to h3 to get the output of 2MThb .
This construction is formalized in Figure 11.

Our main result of this section is the following theorem, which bounds the
probability that any (S, T)-attacker finds a collision in 2MThb .

Theorem 11. Let a, κ, n ∈ N be such that a ≥ max(κ+ dn/2e+ 3, 2n+ 2). Let
h : {0, 1}a → {0, 1}n be modeled as a random oracle in the AI-ROM. Then, for
s = 2a− 2κ− n− 4, the construction 2MThn+s : {0, 1}κ × {0, 1}n+s → {0, 1}n of
Figure 11 satisfies the following.

26

2MThb (key,msg)

1. Parse msg ∈ {0, 1}2a−2κ−4 as msgL‖msgR where
msgL,msgR ∈ {0, 1}a−κ−2.

2. Compute yL ← h1(key‖msgL).
3. Compute yR ← h2(key‖msgR).
4. Output z ← h3(yL‖yR).

Fig. 11: The two-level, keyed Merkle tree construction 2MThb : {0, 1}κ×{0, 1}b →
{0, 1}n with fixed input message length b given any underlying function
h : {0, 1}a → {0, 1}n, where a ≥ max(2n + 2, κ + 3) and b ≤ 2a − 2κ − 4.
h1, h2, h3 are all domain-separated using the first two bits of h to encode 1, 2, 3,
respectively.

– For any S, T ∈ N,

Advai-crgh (S, T) ≤
(
S

2κ
·
(
14n+ 42nγ + 42nγ2

)
+
T 2

2n
·
(

2 +
2γ

T
+

2

T 2

))
,

where γ = ST 2/2n.

We prove this theorem using the framework described in Section 6.1. So, by
Lemma 1, it suffices to prove the following lemma which bounds the advantage
of an (S, T)-MI adversary.

Lemma 2. Let S, T ∈ N. Then

Advmi-cr
gh (S, T) ≤

(
S

2κ
·
(
7n+ 21n · γ + 21n · γ2

)
+
T 2

2n
·
(

1 +
γ

T
+

1

T 2

))S
,

where γ = ST 2/2n.

Proof. Following the techniques of [2], we reduce the task of bounding Advmi-cr
gh (S, T)

to that of bounding any T -query adversaries advantage of succeeding in itera-
tion i given that it has succeeded in all previous iterations. Fix any (S, T)-MI
attacker A. Let Wi be the indicator random variable that A wins on keyi in
Gmi-cr
gh,S . Define the random variable W<i := W1 ∧ . . . ∧Wi−1. We have that

Advmi-cr
gh (A) = Pr [W1 ∧W2 ∧ . . . ∧WS] =

S∏
i=1

Pr [Wi|W<i] .

We prove in the full version that for every A and each i ∈ [S], Pr [W<i+1] ≤ (δS)i

where

δS =
T 2

2n
+ 7n · S

2κ
+ 21n · S

2T 2

2n+κ
+
ST 3

22n
+ 21n · S

3T 4

22n+κ
+

1

2n
.

27

It follows that for any (S, T)-MI attacker A,

Advmi-cr
gh (A) = Pr [W<S+1] =

S∏
i=1

Pr [Wi|W<i] ≤ (δS)S .

As this holds for any such A, it follows that Advmi-cr
gh (S, T) ≤ (δS)S , as required

by the lemma statement. This completes the proof of Lemma 2.

6.3 Variable-Input Length Hash from Two-Level Merkle Trees

We combine the construction of Section 6.2 with the framework of Section 4 to
get a variable-input length hash function. This construction is optimally secure
as long as ST 2 ≤ 2n and requires an underlying function h : {0, 1}a → {0, 1}n
where a ≥ max(κ+ dn/2e+ 3, 2n+ 2). This results in the following theorem.

We note if we modify values of κ, n by additive constant factors, we can
get the same result as below with only O(1) multiplicative loss in security. In
this sense, we can achieve the theorem below assuming a function h : {0, 1}2n →
{0, 1}n, i.e. a = 2n so only compressing by a factor exactly two.

Theorem 12. Let a, κ, n ∈ N be such that a ≥ max(κ+ dn/2e+ 3, 2n+ 2). Let
h : {0, 1}a → {0, 1}n be modeled as a random oracle in the AI-ROM. Then, there
is an Hh : {0, 1}κ × {0, 1}<2n → {0, 1}n such that:

1. For any S, T ∈ N,

Advai-crHh (S, T) ≤
(
S

2κ
·
(
14n+ 42nγ + 42nγ2

)
+
T 2

2n
·
(

2 +
2γ

T
+

2

T 2

))
,

where γ = ST 2/2n.
2. One evaluation of Hh on a message b bits long requires 3 · d(b + n + 1)/se

queries to h where s = 2a− 2κ− n− 4.

Proof. We defineH := KMD2MThn+s where 2MThn+s is defined in Figure 11. From

Theorem 6, we have that Advai-crHh (S, T) is upper bounded by Advai-cr2MThn+s
(S, T).

Therefore, the bound on the advantage of any (S, T)-attacker on Hh follows from
Theorem 11.

We have that 2MThn+s{0, 1}κ ×{0, 1}n+s → {0, 1}n, for s = 2a− 2κ− n− 4.
A b bit message, after padding, will result in d(b + n + 1)/se message blocks
that are fed into 2MThn+s. For each call of 2MThn+s, we need 3 calls to h, which
implies the bound on the efficiency of Hh.

Acknowledgements

Ashrujit Ghoshal’s work was partially supported by NSF grants CNS-2026774,
CNS-2154174, a JP Morgan Faculty Award, a CISCO Faculty Award, and a gift

28

from Microsoft. Part of Ashrujit Ghoshal’s work was done during an internship
at NTT Research. Cody Freitag is supported in part by the National Science
Foundation Graduate Research Fellowship under Grant No. DGE–2139899 and
DARPA Award HR00110C0086. Any opinion, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation or the Defense
Advanced Research Projects Agency (DARPA). Ilan Komargodski is the incum-
bent of the Harry & Abe Sherman Senior Lectureship at the School of Computer
Science and Engineering at the Hebrew University, supported in part by an Alon
Young Faculty Fellowship, by a grant from the Israel Science Foundation (ISF
Grant No. 1774/20), and by a grant from the US-Israel Binational Science Foun-
dation and the US National Science Foundation (BSF-NSF Grant No. 2020643).

References

1. Akshima, Cash, D., Drucker, A., Wee, H.: Time-space tradeoffs and short collisions
in merkle-damg̊ard hash functions. In: Advances in Cryptology - CRYPTO. pp.
157–186 (2020). https://doi.org/10.1007/978-3-030-56784-2_6

2. Akshima, Guo, S., Liu, Q.: Time-space lower bounds for finding collisions in
Merkle-Damg̊ard hash functions. CRYPTO (2022). https://doi.org/10.1007/

978-3-031-15982-4_7

3. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE.
Submission to NIST 92 (2008)

4. Aumasson, J., Meier, W., Phan, R.C., Henzen, L.: The Hash Function BLAKE.
Information Security and Cryptography (2014). https://doi.org/10.1007/

978-3-662-44757-4

5. Aviram, N., Schinzel, S., Somorovsky, J., Heninger, N., Dankel, M., Steube, J.,
Valenta, L., Adrian, D., Halderman, J.A., Dukhovni, V., Käsper, E., Cohney, S.,
Engels, S., Paar, C., Shavitt, Y.: DROWN: breaking TLS using sslv2. In: USENIX.
pp. 689–706 (2016). https://doi.org/10.5555/3241094.3241148

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: CCS. pp. 62–73 (1993). https://doi.org/10.1145/168588.
168596

7. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the indifferentiability of
the sponge construction. In: Advances in Cryptology - EUROCRYPT. pp. 181–197
(2008). https://doi.org/10.1007/978-3-540-78967-3_11

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In:
ECRYPT hash workshop. vol. 2007. Citeseer (2007)

9. Chung, K., Guo, S., Liu, Q., Qian, L.: Tight quantum time-space tradeoffs for
function inversion. In: FOCS. pp. 673–684 (2020). https://doi.org/10.1109/

FOCS46700.2020.00068

10. Coretti, S., Dodis, Y., Guo, S.: Non-uniform bounds in the random-permutation,
ideal-cipher, and generic-group models. In: Advances in Cryptology - CRYPTO.
pp. 693–721 (2018). https://doi.org/10.1007/978-3-319-96884-1_23

11. Coretti, S., Dodis, Y., Guo, S., Steinberger, J.P.: Random oracles and non-
uniformity. In: Advances in Cryptology - EUROCRYPT. pp. 227–258 (2018).
https://doi.org/10.1007/978-3-319-78381-9_9

29

https://doi.org/10.1007/978-3-030-56784-2_6
https://doi.org/10.1007/978-3-030-56784-2_6
https://doi.org/10.1007/978-3-031-15982-4_7
https://doi.org/10.1007/978-3-031-15982-4_7
https://doi.org/10.1007/978-3-031-15982-4_7
https://doi.org/10.1007/978-3-031-15982-4_7
https://doi.org/10.1007/978-3-662-44757-4
https://doi.org/10.1007/978-3-662-44757-4
https://doi.org/10.1007/978-3-662-44757-4
https://doi.org/10.1007/978-3-662-44757-4
https://doi.org/10.5555/3241094.3241148
https://doi.org/10.5555/3241094.3241148
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1109/FOCS46700.2020.00068
https://doi.org/10.1109/FOCS46700.2020.00068
https://doi.org/10.1109/FOCS46700.2020.00068
https://doi.org/10.1109/FOCS46700.2020.00068
https://doi.org/10.1007/978-3-319-96884-1_23
https://doi.org/10.1007/978-3-319-96884-1_23
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1007/978-3-319-78381-9_9

12. Coron, J., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damg̊ard revisited: How to
construct a hash function. In: CRYPTO. pp. 430–448 (2005). https://doi.org/
10.1007/11535218_26

13. Damg̊ard, I.: A design principle for hash functions. In: Advances in Cryptology -
CRYPTO. pp. 416–427 (1989). https://doi.org/10.1007/0-387-34805-0_39

14. Dodis, Y., Guo, S., Katz, J.: Fixing cracks in the concrete: Random oracles with
auxiliary input, revisited. In: Advances in Cryptology - EUROCRYPT. pp. 473–
495 (2017). https://doi.org/10.1007/978-3-319-56614-6_16

15. Fiat, A., Naor, M.: Rigorous time/space trade-offs for inverting functions. SIAM J.
Comput. 29(3), 790–803 (1999). https://doi.org/10.1137/S0097539795280512

16. Freitag, C., Ghoshal, A., Komargodski, I.: Time-space tradeoffs for sponge hashing:
Attacks and limitations for short collisions. In: Advances in Cryptology - CRYPTO
(2022). https://doi.org/10.1007/978-3-031-15982-4_5

17. Ghoshal, A., Komargodski, I.: On time-space tradeoffs for bounded-length colli-
sions in Merkle-Damg̊ard hashing. In: Advances in Cryptology - CRYPTO (2022).
https://doi.org/10.1007/978-3-031-15982-4_6

18. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof sys-
tems. SIAM J. Comput. 25(1), 169–192 (1996). https://doi.org/10.1137/

S0097539791220688

19. Goldwasser, S., Bellare, M.: Lecture notes on cryptography (2008), https://

cseweb.ucsd.edu/~mihir/papers/gb.pdf

20. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory
26(4), 401–406 (1980). https://doi.org/10.1109/TIT.1980.1056220

21. Impagliazzo, R., Kabanets, V.: Constructive proofs of concentration bounds. In:
APPROX, pp. 617–631 (2010). https://doi.org/10.1007/978-3-642-15369-3_
46

22. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: TCC (2004).
https://doi.org/10.1007/978-3-540-24638-1_2

23. Merkle, R.C.: A digital signature based on a conventional encryption function. In:
Advances in Cryptology - CRYPTO. pp. 369–378 (1987). https://doi.org/10.
1007/3-540-48184-2_32

24. Merkle, R.C.: A certified digital signature. In: Advances in Cryptology - CRYPTO.
pp. 218–238 (1989). https://doi.org/10.1007/0-387-34805-0_21

25. Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In: Ad-
vances in Cryptology - CRYPTO. pp. 617–630 (2003). https://doi.org/10.1007/
978-3-540-45146-4_36

26. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limitations
of the indifferentiability framework. In: EUROCRYPT. pp. 487–506 (2011). https:
//doi.org/10.1007/978-3-642-20465-4_27

27. Unruh, D.: Random oracles and auxiliary input. In: Advances in Cryptology -
CRYPTO. pp. 205–223 (2007). https://doi.org/10.1007/978-3-540-74143-5_
12

28. Yao, A.C.: Coherent functions and program checkers (extended abstract). In:
STOC. pp. 84–94 (1990). https://doi.org/10.1145/100216.100226

30

https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1137/S0097539795280512
https://doi.org/10.1137/S0097539795280512
https://doi.org/10.1007/978-3-031-15982-4_5
https://doi.org/10.1007/978-3-031-15982-4_5
https://doi.org/10.1007/978-3-031-15982-4_6
https://doi.org/10.1007/978-3-031-15982-4_6
https://doi.org/10.1137/S0097539791220688
https://doi.org/10.1137/S0097539791220688
https://doi.org/10.1137/S0097539791220688
https://doi.org/10.1137/S0097539791220688
https://cseweb.ucsd.edu/~mihir/papers/gb.pdf
https://cseweb.ucsd.edu/~mihir/papers/gb.pdf
https://doi.org/10.1109/TIT.1980.1056220
https://doi.org/10.1109/TIT.1980.1056220
https://doi.org/10.1007/978-3-642-15369-3_46
https://doi.org/10.1007/978-3-642-15369-3_46
https://doi.org/10.1007/978-3-642-15369-3_46
https://doi.org/10.1007/978-3-642-15369-3_46
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-540-45146-4_36
https://doi.org/10.1007/978-3-540-45146-4_36
https://doi.org/10.1007/978-3-540-45146-4_36
https://doi.org/10.1007/978-3-540-45146-4_36
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1145/100216.100226
https://doi.org/10.1145/100216.100226

	Optimal Security for Keyed Hash Functions: Avoiding Time-Space Tradeoffs for Finding Collisions

