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Abstract. This paper presents a code-based signature scheme based on
the well-known syndrome decoding (SD) problem. The scheme builds
upon a recent line of research which uses the Multi-Party-Computation-
in-the-Head (MPCitH) approach to construct efficient zero-knowledge
proofs, such as Syndrome Decoding in the Head (SDitH), and builds sig-
nature schemes from them using the Fiat-Shamir transform.
At the heart of our proposal is a new approach, Hypercube-MPCitH,
to amplify the soundness of any MPC protocol that uses additive se-
cret sharing. An MPCitH protocol with N parties can be repeated D
times using parallel composition to reach the same soundness as a pro-
tocol run with ND parties. However, the former comes with D times
higher communication costs, often mainly contributed by the usage of D
‘auxiliary’ states (which in general have a significantly bigger impact on
size than random states). Instead of that, we begin by generating ND

shares, arranged into a D-dimensional hypercube of side N containing
only one ‘auxiliary’ state. We derive from this hypercube D sharings of
size N which are used to run D instances of an N party MPC protocol.
Hypercube-MPCitH leads to a protocol with 1/ND soundness error, re-
quiring ND offline computation, but with only N ·D online computation,
and only 1 ‘auxiliary’. As the (potentially offline) share generation phase
is generally inexpensive, this leads to trade-offs that are superior to just
using parallel composition.
Our novel method of share generation and aggregation not only im-
proves certain MPCitH protocols in general but also shows in concrete
improvements of signature schemes. Specifically, we apply it to the work
of Feneuil, Joux, and Rivain (CRYPTO’22) on code-based signatures,
and obtain a new signature scheme that achieves a 8.1x improvement in
global runtime and a 30x improvement in online runtime for their short-
est signatures size (8,481 Bytes). It is also possible to leverage the fact
that most computations are offline to define parameter sets leading to
smaller signatures: 6,784 Bytes for 26 ms offline and 5,689 Bytes for 320
ms offline. For NIST security level 1, online signature cost is around 3
million cycles (<1 ms on commodity processors), regardless of signature
size.
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1 Introduction
Zero Knowledge (ZK) proofs of knowledge have become a fundamental crypto-
graphic tool for modern privacy-preserving technologies and have many appli-
cations which range from authentication to online voting to machine learning.
The idea of ZK proofs is that one party (a prover) can convince another party
(a verifier) of the truth of a statement without revealing any other information
about the statement itself.

A method for constructing efficient ZK proofs is to use the so-called MPC-
in-the-Head (MPCitH) paradigm [IKO+07], in which semi-honest Multi-Party
Computation (MPC) protocols are used as a basis. These protocols do not reveal
any information on the secret used to prove a statement, even if some of the par-
ties internal execution is revealed to an attacker. At a high-level, the MPCitH
protocol has a prover which (i) secretly splits its secret input into shares, (ii)
simulates “in their head” parties using said shares for the execution of a MPC
protocol, and (iii) commits to this execution and partially reveals the internal
execution of a subset of the parties to a verifier given some challenge. These in-
ternal executions can then be checked for consistency by the verifier. To ensure
that the prover has a very low probability to cheat, the verifier runs this proto-
col multiple times. The zero-knowledge aspect of the overall protocol naturally
inherits from a resilience to semi-honest adversaries of the underlying MPC pro-
tocol, as the verifier will only get to see a subset of the internal executions and
the protocol will not reveal anything other than the correctness of the statement.

A recent proposal by Feneuil, Joux, and Rivain [FJR22] used this MPCitH
idea to improve signature schemes based on the syndrome decoding (SD) prob-
lem; we refer to this work as SDitH. Previous proposals to make a signature
scheme based on SD, such as those by Stern [Ste94], suffered from a high sound-
ness error, which aligns to a malicious prover’s probability of cheating. Protocols
with a higher soundness error require many more repetitions, compared to a pro-
tocol with a smaller soundness error, in order to achieve a target security level.
Utilizing MPCitH in [FJR22] has enabled a low soundness error of 1/N , for a
party size N , whilst also being able to use a conservative code-based hardness as-
sumption. At the time of writing, this approach makes the signature scheme the
most performant code-based signature scheme of the common “signature size
+ public key size” metric. Twisting the more traditional permute-and-mask-
the-witness approach using MPCitH has also led to new interesting signature
schemes [BG22] under other metrics (rank-metric) or for other problems (the
Permuted Kernel Problem).

Another reason for this work is the NIST PQC standardization process. None
of the code-based signatures were accepted by NIST into round 2, however, at the
time of writing, we have many promising KEM candidates in the fourth round.
An MPCitH-based signature, Picnic [ZCD+20], was apart of the NIST PQC
process, but NIST ultimately decided to standardize SPHINCS+ due to some
security concerns with Picnic’s use of LowMC, but also because “future cryp-
tosystems that evolve out of the multi-party-computation-in-the-head paradigm
may eventually prove significantly superior to the third-round Picnic design”.
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These two reasons are the motivation for this research; improving and op-
timizing a promising MPCitH-based signature scheme, which utilizes a well-
established and conservative code-based hardness assumption.

1.1 Contributions
– We propose Hypercube-MPCitH, a general geometrical hypercube approach

for MPCitH that allows, from a state that was generated and committed for
N parties, to obtain the same soundness as in a classical MPC-in-the-head
by simulating the work of only log2(N) parties instead of N .

– This approach runs multiple linked instances of MPCitH with only one
masked auxiliary state, which significantly reduces the communication of
the ZK protocol (and thus signature size) with respect to running indepen-
dent instances of MPCitH with one auxiliary state for each of them.

– Applying these optimizations to SDitH, we observe a reduction of one third
in signature size, for similar computational costs and security.

– As for SDitH, the signature resulting from our construction can be split in an
offline and an online phase. But, unlike in SDitH, most of the computational
cost is associated to the offline phase. Thus the online part of the signature
is extremely fast in comparison, even for much smaller signatures.

2 Preliminaries
In this section we describe some standard cryptographic preliminaries which are
similar to those in [FJR22]. For the entirety of this paper we will denote F as a
finite field. The Hamming weight of a vector x ∈ Fm, denoted as wt(x), is the
number of non-zero coordinates of x. We define the concatenation of two vectors
x1 ∈ Fm1 and x2 ∈ Fm2 as (x1|x2) ∈ Fm1+m2 . For any m ∈ N>0, the integer
set {1, 2, . . . ,m} is denoted as [m]. For a probability distribution D, we use the
notation d← D to denote the value d is sampled from D. For a finite set S, the
notation s← S denotes that the value s has been uniformly sampled at random
from S. For an algorithm A, out← A(in) further means that out is obtained by
a call to A on input in, using uniform random coins whenever A is probabilistic.
We also abbreviate probabilistic polynomial time as PPT.

For ease of reference we provide Table 1 for a complete list of all the param-
eters and notations used in this work, with some helpful descriptions.

2.1 Basic Cryptographic Definitions and Lemmas
Definition 1 (Indistinguishability). Two distributions X,Y are (t, ϵ)-indisting-
uishable if for an algorithm running in time t, and D : {0, 1}m → {0, 1}, Pr[D(X) =
1]−Pr[D(Y ) = 1]| ≤ ϵ(λ). The distributions are: computationally distinguishable
when t = poly(λ) and ϵ is a negligible function in λ; and statistically indistin-
guishable when ϵ is a negligible function in λ for unbounded t.
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Table 1: Descriptions of the notation and parameters used in our scheme.

Indices:
i Index of a leaf party, in [ND].
i∗ Index of challenge party, which remains hidden.
(i1, . . . , iD) Representation of i on dimension D hypercube with side N .
(k, j) Index of a main party in [D]× [N ], where k indexes the hypercube dimension.
Fpoly Field extension of FSD from which S,Q, P, F coefficients are drawn.
Fpoints Field from which α,β,v, r, ϵ are drawn.

Multi-Party Computation:
Main party Party using an aggregated share and for which we actually run the MPC protocol.
Π The MPC computation, described in Algorithm 2
a, b, c Elements of the Beaver triplet such that a · b = c.
α,β,v Communications output, drawn from Fpoints.JXKi ith secret share of X.
{JXK} A full sharing, such that all shares add up to give X.
t Number of random evaluation points.
p False positive probability.

Syndrome Decoding:
S,Q,P,F Polynomials in Fpoly which encode the syndrome decoding proof.
aux Uncompressed secret shares of leaf party i = ND, JSK|JQK|JP K|JaK|JbK|JcK.
(statei, ρi)

State and commitment randomness of a leaf party. For i ̸= ND,
statei is a pseudorandom seed, and stateND = (seedND ||aux).

q Syndrome decoding instance.
m Code length.
k Vector dimension.
w Hamming weight bound.
d For the d-splitting variant.

Signature Parameters:
λ The security parameter.
ϵ The soundness parameter.
D The dimension of the hypercube.
ND The number of secret shares.
τ The number of repetitions.

Definition 2 (Pseudorandom generation (PRG)). Let G : {0, 1}∗ →
{0, 1}∗ and let ℓ(·) be a polynomial such that for any input s ∈ {0, 1}λ we have
G(s) ∈ {0, 1}ℓ(λ). Then, G is a (t, ϵ)-secure pseudorandom generator if (i) Expan-
sion: ℓ(λ) > λ and (ii) Pseudorandomness: the distributions {G(s)|s← {0, 1}λ}
and {r|r ← {0, 1}ℓ(λ)} are (t, ϵ)-indistinguishable.

The standard cryptographic notion of tree PRG (TreePRG), initially pro-
posed by Goldreich, Goldwasser, and Micali [GGM84], is used extensively in our
construction. The general idea is to extend a length-doubling PRG and consider
it over a tree structure: we start with a master seed (mseed) which is used to
label the root node of a tree and expanded using a PRG into N sub-seeds in a
structured way. For each node, its label is used as the seed of the PRG function,
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which generates two seeds that label the two children of the node. By proceed-
ing iteratively at each level, over ⌈log2(N)⌉ levels, we construct a binary tree
with at least N leaves, labeled with PRG seeds that we denote (seedi)i∈[N ]. For
any index i∗, we can get the list of the N − 1 seeds (seedi)i∈[N ],i ̸=i∗ out of the
sibling path of seedi∗, which contains just ⌈log2(N)⌉ seeds. This becomes a key
component to efficiently generate the witness shares in Section 3.2.

In our security proofs, we make use of the following lemma, which in essence
says that a large subset A of a product space X × Y has many large areas.

Lemma 1 (Splitting Lemma [PS00]). Let A ⊂ X × Y , and Pr[(x, y) ∈
A] ≥ κ. Then for any α ∈ [0, 1), let

B = {(x, y) ∈ X × Y |Pry′∈Y [(x, y
′) ∈ A] ≥ (1− α) · κ}, (1)

Then the following are true: Pr[B] ≥ α · κ and Pr[B|A] ≥ α.

Lemma 2 (Forking Lemma for 5-pass protocols [DGV+16]). Let S be
an 5-pass signature scheme with security parameter k. Let A be a PPT al-
gorithm given only the public data as input. Assume that A, after querying
the 2 random oracles O1,O2 polynomially often in k, outputs a valid signa-
ture (σ0, σ1, σ2, h1, h2) for message m with a non-negligible probability. Let us
consider a replay of this machine A with the same random tape (as a Turing
machine), the same response to the query corresponding to O1 but a differ-
ent output to O2. Then running A and its reply results in two valid signatures
(σ0, σ1, σ2, h1, h2) and (σ0, σ1, σ

′
2, h1, h

′
2) for the same message m and h2 ̸= h′

2

with a non-negligible probability.

While proving equality of polynomials can be inefficient, we can say some-
thing about the likelihood that two polynomials are different and yet are equal
at certain points. This enables us to reduce the checking of polynomial relations
to instead checking simple integer arithmetic relations, up to some well defined
probabilistic error.

Lemma 3 (Multi-point Schwarz-Zippel lemma). Let P ∈ F[x] be a non
zero polynomial in one variable of degree at most d and S ⊆ F a non empty set
of size at least t. For R ⊆ S drawn uniformly from size t subsets of S,

Pr[P (r) = 0, ∀r ∈ R] ≤
(
d
t

)(|S|
t

) . (2)

Proof. Let D ⊆ Fq denote the roots of P . Clearly |D| ≤ d, since a non-zero
polynomial in one variable over a field has at most as many roots as its degree.
The lemma follows since R is chosen uniformly from the

(|S|
t

)
size t subsets of S

and there are at most
(
d
t

)
size t subsets of D.
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2.2 Zero-Knowledge Proofs
We define below the required properties for a zero-knowledge proof of knowledge.
A proof of knowledge for some language L ∈ NP is a two-party protocol between
prover P and verifier V, denoted ⟨P ,V⟩ that should satisfy certain properties.
The intention is for P to prove to V that their common input belongs to the
language, i.e. w ∈ L.

Definition 3 ((Perfect) Completeness). A proof of knowledge ⟨P ,V⟩ is
complete if, when both prover and verifier follow the protocol honestly, and the
prover has knowledge of a legitimate witness w, then for every witness w ∈ L
the verifier accepts with probability 1:

Pr[⟨P ,V⟩(w) = 1] = 1. (3)

Definition 4 (Soundness). A proof of knowledge is sound, with soundness
error κ, if for a probabilistic polynomial time adversary, A, with w /∈ L, the
probability of an honest verifier accepting is less than κ:

Pr[⟨A,V⟩(w) = 1] ≤ κ. (4)

Put differently, this means that a prover without a valid witness w cannot
convince the verifier to accept with probability greater than κ.

Definition 5 (Honest Verifier Zero-Knowledge (HVZK)). A proof of
knowledge is HVZK if there exists a probabilistic polynomial time simulator
S that, without knowing a witness, outputs transcripts such that its output dis-
tribution is computationally indistinguishable from the distribution of transcripts
derived from honest executions of the protocol ⟨P ,V⟩.

This means that running the protocol does not reveal any information about
the witness to an honest observer. We use zero-knowledge proof as a shorthand
for HVZK proof of knowledge.

The main protocol in this paper is a zero-knowledge proof. This protocol is
built with the MPC-in-the-Head construction, which allows to transform a multi-
party computation protocol into a zero-knowledge proof. Before introducing the
MPC-in-the-Head construction, we will first present some building tools needed
for that construction: commitments, and additive secret sharing, a simple but
efficient tool to build some MPC protocols.

2.3 Commitments
A commitment scheme is a cryptographic primitive that allows one to publish
a value C, called commitment, associated to some other hidden value which
can be revealed at a later stage through a procedure called opening using a
decommitment value D. Once a party has committed to a hidden value, they
should not be able to change the value, and no other party should be able to
glean any knowledge of the value that has been committed, until the committing
party opens the commitment.
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Definition 6 (Commitment scheme). A commitment scheme consists of
two PPT algorithms, com,open, where

– com(M) - on input M ∈ {0, 1}∗ the commitment algorithm outputs (C,D)←
com(M,ρ) where ρ is the commitment randomness.

– open(C,D) outputs M or ⊥.

Definition 7 (Correctness). If com(M)→ (C,D), then open(C,D)→M .

A secure commitment scheme has the following two properties:

Definition 8 (Binding). A commitment scheme is perfectly binding if, for
all probabilistic polynomial time (in security parameter κ) algorithm A, the
probability of finding C,D,D′ such that open(C,D) = M , open(C,D′) = M ′,
and M ̸= M ′ is zero, and computationally binding if the probability is a negligible
function in κ.

Definition 9 (Hiding). A commitment scheme is perfectly, statistically, or
computationally (respectively) hiding if, for any two messages M,M ′, the dis-
tributions {C : (C,D) ← com(M)}κ∈N, and {C : (C,D) ← com(M ′)}κ∈N are
perfectly, statistically, or computationally indistinguishable.

A commitment scheme cannot be both perfectly hiding and perfectly binding
simultaneously. In order to see this, suppose first that the scheme is perfectly
binding, and one publishes the commitment comk(open, x), therefore no other
pair (open, x) outputs comk(open, x). Then a computationally unbounded ad-
versary can try inputs (open′, x′) until they find the correct inputs (open, x),
which uniquely give the correct output.

2.4 Additive Secret Sharing and Computing on Shares
In order to perform multi-party computations, it is necessary to break up and
then distribute the input data of the function to be evaluated amongst multiple
parties. In this work, we use an approach to break and use this data called
additive secret sharing. It is defined by the following two routines:

– Share(x): The Share routine randomly samples the (N − 1)-tuple (JxK1,JxK2,. . ., JxKN−1) ← (Fm)N−1, and then computes JxKN ← x −
∑N−1

i=1 JxKi.
The final output is a tuple of N shares JxK← (JxK1, JxK2, . . . , JxKN ).

– Reconstruct(JxK): The Reconstruct routine combines all N shares together
by summation to obtain the original value x←

∑N
i=1JxKi.

In practice, one can compress the output of Share(x) by expanding shares
(JxK1, JxK2, . . . , JxKN−1) from random seeds, however most of the terms in the
final share JxKN must be communicated in full, without compression. We call
this final share aux, which is defined explicitly in Algorithm 1.

A secret value x can thus be distributed to N parties in a MPC scenario.
Each party i in the MPC protocol receives share JxKi. It is important to observe
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that the parties cannot learn anything of x unless they have all N shares. The
parties are able to perform the following computations and obtain valid shares
of a new secret-shared value:

– Addition of shares: Let JxAK, JxBK be two sets of shares distributed among
parties. JxA + xBKi := JxAKi + JxBKi.

– Addition with a constant: Jx + cK := JxK1 + c, JxK2, . . . , JxKN .
– Multiplication with a constant: Jc · xKi := c · JxKi.
– Multiplication of shares: Multiplication is possible using Beaver triples [Bea92]

with additional communication between parties (where the parties are given
as additional input a secret-shared triplet JaK, JbK, JcK where a, b are unknown
to all players and c = ab). This additional triplet is sacrificed in order to
validate another triplet, which is defined in the following.

One can evaluate an arbitrary function f over additive shares by decomposing
f into an arithmetic circuit using the four types of computation listed above.

2.5 MPC-in-the-Head paradigm
The MPC-in-the-Head (MPCitH) paradigm originated from the work of Ishai,
Kushilevitz, and Ostrovsky [IKO+07] and provides a path towards building ZK
proofs for arbitrary circuits from secure multi-party computation (MPC) proto-
cols. In this work, we use a semi-honest MPC protocol with additive shares that
evaluates a Boolean decision function. The protocol has the following properties:

– N -party decision function evaluation: The N parties P1, . . . ,PN each possess
an additive share JxKi of the input x. The parties jointly evaluate a decision
function f : Zm → {0, 1} on x.

– Semi-honest (N − 1)-Security: Assuming the parties adhere to the protocol,
the additive shares guarantee that any N − 1 parties cannot recover any
information about the secret x.

One can efficiently build a ZK proof of knowledge of a secret value x for which
f(x) = 1, for a predicate f that has either a unique solution, or is hard to fulfill.
The prover proceeds as follows:

– Generate shares of the secret JxK ← Share(x) and distribute the shares
among N imaginary parties.

– Simulate the decision function evaluation procedure among the N imaginary
parties “in the head”.

– Commit to the view (initial share, secret random tape, and inbound/out-
bound communications) of each party and send commitment to the verifier.

– Send the shares of the final computed result Jf(x)K to the verifier, which
should reconstruct to 1.

The verifier performs the following steps to verify the proof:

– Randomly choose N − 1 parties, then ask the prover to reveal the views of
those parties.
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– Upon receiving the views, verify whether the views are consistent with an
honest execution of the MPC protocol and agree with the commitments.

– The verifier accepts if the views are consistent and the final shares Jf(x)K
indeed reconstruct to 1.

Some challenge randomness of the decision function f can be provided by the
verifier. Therefore, the views of each party (input shares, random tape, initial
message from preprocessing phase) prior to the joint function evaluation must
be committed before the prover receives the randomness to prevent cheating.

The verifier does not learn any information about the secret value because
they only see N − 1 shares. The random selection of N − 1 parties results in a
soundness error of 1

N for the MPCitH protocol.

2.6 Syndrome Decoding
The zero-knowledge proof protocol we propose in this paper uses MPC-in-the-
Head to prove a solution is known to a syndrome decoding problem. Syndrome
decoding (SD) is a problem that is central to many code-based cryptosystems. A
syndrome is the result of multiplying a vector with a parity-check matrix, which
implies that being a codeword is equivalent to having syndrome 0. The Coset
Weights flavor of the SD problem [BMT78] can be expressed as follows:

– Challenge: Parity-check matrix H← F(m−k)×m
q , syndrome y ∈ Fm−k

q .
– Required Output: Vector x ∈ Fm

q with wt(x) ≤ w and Hx = y.

During challenge generation, H and x (with wt(x) = w) are drawn uniformly at
random, and then y = Hx is calculated. For cryptographically relevant param-
eters, with overwhelming probability there exists only one solution x′ such that
wt(x′) ≤ w, and that is x′ = x which has weight w.

The two most significant approaches to solving the syndrome decoding prob-
lem are information-set decoding and birthday algorithms. In order for a SD-
based cryptosystem to achieve security level λ it is necessary to select parameters
such that each approach takes more than 2λ operations to solve the underlying
syndrome decoding instance.

2.7 Syndrome Decoding in the Head
In this section we describe the methodology of generating zero-knowledge proofs
(ZKP) from MPCitH applied to the syndrome decoding problem, as laid out in
[FJR22]. For efficiency, we assume that H is in standard form H = (H′|Im−k),
where H′ ∈ F

(m−k)×k
q . This enables us to express

y = Hx = H′xA + xB, (5)

so we only need to send xA to reveal the solution. The MPC protocol defined
divides up xA into shares JxAK, from which parties can reconstruct shares ofJxK. The protocol then verifies that y = Hx and that x has weight less than or
equal to w by proving polynomial relations.
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2.7.1 Polynomial construction

Let FSD be the finite field over which the syndrome decoding problem is defined.
Let Fpoly ⊇ FSD with |Fpoly| > m. Let ϕ : FSD → Fpoly define the inclusion of
FSD in Fpoly. We take a bijection, f , between {1, . . . , |Fpoly|} and Fpoly and for
ease of notation we denote fi instead of f(i).

The prover builds three polynomials, S,Q, and P in order to prove the weight
constraint. Polynomial S ∈ Fpoly[X] is the interpolation over the point (fi, xi),
with S(fi) = ϕ(xi), deg(S) ≤ m− 1, and Q[X] ∈ Fpoly[X] is Q =

∏
E(X − fi),

where E is a subset of [m] of order |E| = w, such that the non-zero coordinates
of x are contained in E. Accordingly, Q has degree w. Polynomial P is defined
as P = S ·Q/F,where F =

∏
[m](X − fi). Ultimately, the polynomial relation

S ·Q = P · F, (6)

must be satisfied in order to prove that wt(x) ≤ w. The left-hand side is designed
so that SQ(fi) = 0 for all fi ∈ [m]. This is because S is zero everywhere that x
is zero (by construction, as S is interpolated over x), and Q is zero everywhere
that x is not zero. Polynomial S has degree m− 1 and Q has degree w.

On the right-hand side, by construction the public polynomial F is zero over
f1, f2, . . . , fm, and polynomial P is required because F has degree m, whereas
m < deg(SQ) ≤ m + w − 1. If the prover can convince the verifier that they
know P,Q such that S ·Q = P ·F = 0 at all points fi ∈ [m], then at each point
fi, either S(fi) = ϕ(xi) = 0, or Q(fi) = 0. But since Q has degree w, it can be
zero at at most w points, therefore S is non-zero in at most w points fi, and so
x has weight of at most w.

In order to verify the polynomial relation of Equation 6, the polynomial S·Q−
P·F is evaluated at a series of points to check that it evaluates to zero everywhere.
This is because, by the Schwartz-Zippel lemma (Lemma 3), it is unlikely that the
relation of Equation 6 holds true at a random point, if the polynomial relation is
not true in general. Picking t points at random to test the relation amplifies this
result. Therefore the probability that the relation is satisfied at points {rk}k∈[t]

without Equation 6 being true becomes some sufficiently small probability we call
p. This event is referred to as a false positive, which we denote F . False positives
affect the soundness of a ZKP, as they represent a way to be accepted by a
verifier, but without knowledge of a valid witness. Consequently, the soundness
error of an MPCitH protocol based on syndrome decoding would be

1−
(
1− 1

N

)
(1− p) =

1

N
+ p− 1

N
· p. (7)

2.7.2 Polynomial relation proof via MPC-in-the-Head

The shares that are distributed to parties are shares of xA ∈ Fk
SD, the coefficients

of Q ∈ Fw
poly, and coefficients of P ∈ Fw+1

poly , as well as the shares of t Beaver
triplets (ak, bk, ck = akbk) ∈ F3

points. A party’s share is denoted with double
square brackets and an index, e.g., JxKi. Shares of polynomials are shares of the
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polynomial’s coefficients. For Q, only the last w−1 coefficients are shared due to
Q being monic. Instead of evaluating the full relation of Equation 6, we validate
the relation holds true at t randomly selected points r ∈ Ft

points, as explained in
the previous section to reduce the probability of F . In order to further reduce
p, the points ri are sampled from a larger space Fpoints ⊃ Fpoly as this makes
it more unlikely that an untrue polynomial relation looks correct at a given
point ri. In order to verify the multiplication triple S(rk) · Q(rk) = P · F(rk),
we sacrifice a Beaver triple ak · bk = ck. The protocol proceeds as follows:

1. Sample H ∈ F(m−k)×m
q ,x ∈ Fm

q uniformly and compute Hx = y ∈ F(m−k)
q .

2. Sample r, ϵ ∈ Ft
points × Ft

points uniformly at random.
3. Construct JxK and express it over Fpoly.
4. Interpolate the shares JS(rk)K and construct JQ(rk)K, and JF ·P(rk)K.
5. Run MPC protocol to verify the triple (JS(rk)K, JQ(rk)K, JP · F(rk)K) with

sacrificed triple (JakK, JbkK, JckK).
(a) Set JαkK = ϵk · JQ(rk)K + JakK and set JβkK = JS(rk)K + JbkK.
(b) Parties open JαkK and JβkK on bulletin board to construct αk and βk.
(c) Parties set JvkK = ϵk · JF ·P(rk)K− JckK + αk · JbkK + βk · JakK− αk · βk.
(d) Parties open JvkK to obtain vk and check that it encodes zero.

2.7.3 False-positive probability

To evaluate the false positive probability, necessary (along with N) to compute
the soundness in Equation 7, consider that at each point rk, either S(rk)·Q(rk)−
P · F(rk) = 0 or is non-zero, so for i of the t challenge points to satisfy the
relation (equivalently, to be roots of S ·Q−P · F), there are

maxl≤m+w−1

(
l
i

)(|Fpoints|−l
t−i

)(|Fpoints|
t

) , (8)

ways this can happen by Lemma 3, since S ·Q−P ·F has degree less than m+w,
thus it has at most m + w − 1 roots, from which i of t challenge points could
be selected. For the i points being roots of the polynomial, having ck = akbk
makes the MPC protocol pass with probability 1; for the t − i cases where the
challenge points are not roots, S(rk) ·Q(rk) ̸= P(rk) ·F(rk). In these cases, the
MPC protocol will pass if and only if ck = ak · bk + ϵk(SQ−PF)(rk), which
depends linearly on ϵk and thus can only be guessed correctly with probability
1/Fpoints. Since it needs to occur for all non-root positions, this gives a proba-
bility (1/|Fpoints|)t−i. Combining the above reasoning, the probability Pr[F ] = p
of F , is

p ≤
t∑

i=0

maxl≤m+w−1

(
l
i

)(|Fpoints|−l
t−i

)(|Fpoints|
t

) ·
( 1

|Fpoints|

)t−i

. (9)

A less tight but more intuitive bound can be given by considering that each
of the t challenge points is either a root of S · Q − P · F which occurs with
probability ≤ m+w−1

|Fpoints| , else it is not a root, and only satisfies the relation if ϵk was
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guessed correctly, with probability ≤ 1
|Fpoints| . Summing these two probabilities

(for a given challenge point), and considering that this must happen for all t
challenge points, we arrive at the loose bound p ≤ ( m+w

|Fpoints| )
t. It is necessary that

p be comfortably smaller than 1/N which is the target soundness error of the
MPCitH protocol in order to preserve zero-knowledge for a ZKP.

3 Batch MPCitH on a hypercube for ZK proofs

Here we describe how to reduce computational costs while preserving the sound-
ness in MPCitH. We do this by arranging shares onto a hypercube, then per-
forming MPCitH executions on various combinations of the shares. In Section
3.1, we introduce a (standalone) parameter, n, for the party size, as this will
make comparisons with SDith (using n = N) and our scheme (using n = ND).

3.1 High-Level Description

In the MPCitH setup described in Section 2.5, the initial commitment boils down
to PRNG expansion from seeds for the first n − 1 input shares, subtraction to
the plaintext for the last share, and commitments. Using this initial commit-
ment the prover would then, in a traditional MPCitH protocol, simulate the
MPC algorithm on each of these n parties to be able to produce the relevant
communications. Once the n − 1 commitments would be opened, the verifier
would also need to replay those n − 1 computations for the consistency check.
Instead of following that approach, we propose here a geometric method, when
n = 2D is a power of two, using the same initial commitment, where the prover
and the verifier only need to evaluate log2(n) + 1 of these evaluations, for the
exact same soundness error than the original protocol.

An MPCitH computation based on an additive secret sharing relies on shares
of the MPC parties adding up to the witness for which we want a ZK proof.
Additive secret sharing correctness does not depend on how these shares are
sampled: they can be uniform samples, additions of uniform samples, etc. As long
as the shares add up to the witness, the result of the computation is correct. Our
hypercube approach proposes a way to re-express one instance of the protocol
over n = ND parties into D instances of N parties, and how to obtain shares for
the N parties on each of the D instances. For each of these instances the shares
of the N parties add up to the original witness, thus each of these instances will
be correct no matter the additive scheme or the functionality computed.

We first explain the construction on a two dimensional toy example, shown in
Figure 1. Let’s suppose we consider a traditional 4-party protocol with shares s1,
s2, s3, aux that sum up to the witness. If we distribute them in a 2-dimensional
hypercube of side 2 (i.e., a two-by-two square) we obtain:
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n1 = s1 + s3

n2 = s2 + aux

s1

s3

s2

aux

m1 = s1 + s2

m2 = s3 + aux

n1 n2

Fig. 1: A simple 2-dimensional example of our hypercube construction.

Per construction we have s1 + s2 + s3 + aux = Witness. The hypercube
approach leads to an MPC execution for two parties holding m1 = (s1+ s2) and
m2 = (s3 + aux) on one side, and an MPC execution for two parties holding
n1 = (s1 + s3) and n2 = (s2 + aux) on the other side. By associativity and
commutativity, in both cases the sum of the shares is equal to the witness, and
both MPCitH executions will lead to a correct result. Just as the traditional
4-party protocol would have. The non-trivial part is to prove that by doing this,
the soundness error in the presence of a dishonest prover is the same in the
hypercube splitting as it is in the original protocol; it will be the target of the
next sections.

From a performance standpoint, using a 2-dimensional hypercube of side 2
provides no advantage. In the traditional approach we would: generate 4 states,
commit to 4 states, and compute with 4 MPC parties. In our approach we also
generate a state, commit, and do an MPC computation 2+2 = 4 times. However,
when the dimension D increases we see an advantage appear. For instance, if an
MPCitH protocol does a 256 party protocol, as in SDitH, it requires 256 state
generations and commitments. By using an 8-dimensional hypercube of side 2
we will then do only do 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 = 16 MPC computations
instead of 256, originally. We reveal exactly the same information: we open 255
initial states and give the communications that would have resulted from the
unopened state, so we keep the same proof size, but we reduce the MPC cost
by a factor of more than 10. For any functionality. As the computational costs
become smaller, it is of course also possible to increase the number of parties to
compensate, and get smaller proofs.

Finally, an additional benefit of Hypercube-MPCitH is that we can avoid,
for most of the D executions, running the MPC protocol for all the parties.
Indeed, each of the D executions corresponds to a given aggregation of the same
hypercube shares. Thus each secret shared variable that occurs throughout a run
of the MPC algorithm corresponds to the same plaintext when the shares are
summed up. Therefore the prover only needs to compute these plaintext values
once, for instance by evaluating the first N parties, and then, for the remaining
D − 1 runs, the last share is simply deduced by the difference to the plaintext
value. Consequently, only N − 1 parties need to be evaluated instead of N per
run, 1 + (N − 1)D in total. On the previous example of a 256 parties protocol,
with this improvement, the prover needs only to do 2+1+1+1+1+1+1+1 = 9
MPC computations instead of 16 in the last paragraph, and of 256 in the original
protocol.
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For functionalities for which the MPC computation part is significantly more
expensive than the initial state generation and commitment phase (which is in
general the case) this allows to balance out the two phases, by increasing n, which
only has a logarithmic impact in the amount of dimensions, until both costs are
comparable, which can lead for such functionalities to completely unreachable
parameters with the traditional approach. The more complex the functionality
is, the larger the gap closed, and the hypercube improvement, will be.

For the sake of generality, we will in the next sections consider a general
hypercube of side N and dimension D. The n = ND original parties (also
called leaf-parties) are indexed on the D dimensions by coordinates (i1, . . . , iD) ∈
[1, N ]D. For each dimension k ∈ [1, D], we have one MPC run between N main
parties, and by convention, for each index j ∈ [1, N ], the main party of index
(k, j) regroups the contributions of the leaf-party shares whose k-th coordinate
is j. Hence, for each axis k ∈ [1, D], the main parties (k, 1), . . . , (k,N) form a
partition of the leaf parties. With this partitioning, whenever we disclose the
values of ND − 1 leaf shares and keep a single one hidden, it automatically dis-
closes the value of exactly N − 1 out of N main-parties shares on each of the D
axes. As in Table 1, we define a main party as a party using an aggregated share
and for which we actually run the MPC protocol.

3.2 Leaf witness share generation
For SDitH [FJR22] the master seed is expanded into N party seeds. The witness
shares for parties 1, . . . , N − 1 are then generated by expanding these seeds into
random JxK, JQK, and JPK in their respective domains. And the shares for party
N are defined to be the difference between the sum of the random shares for
parties 1, . . . , N − 1, and the witness x,Q,P.

In our protocol, it is necessary to generate ND leaf seeds, from which the
polynomial shares and other randomness (e.g., Beaver triple shares) are gener-
ated. In practice, this part is done identically to in [FJR22], whereby TreePRG
is used to recursively expand the master seed until one has ND leaf seeds.

As depicted in Figure 2, the master seed is expanded to generate the leaf party
seeds, which are then expanded into the leaf witness shares in the canonical way.
The leaf parties are indexed by i′ ∈ [1, . . . , ND].

3.3 Leaf witness shares on a hypercube
A geometric mapping is necessary in order to manipulate the results in the
hypercube setting described in Section 3.1. Section 3.2 explained how to output
ND leaf parties and their witness shares. To arrange them on a hypercube, we
rewrite the index i′ ∈ [1, . . . , ND] equivalently as i′ = (i1, . . . iD) where each
ik ∈ [1, . . . , N ]. To reveal the entire hypercube, except for a single leaf party, it
is enough to reveal the sibling path of the hidden leaf party. The verifier (who will
eventually receive ND − 1 leaf nodes) can reconstruct the hypercube geometry
themselves, using the same indexing convention as the signer.
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Algorithm 1 ZK proof from Syndrome Decoding on a hypercube in the head
Input: Both parties have H = (H ′|Im−k) ∈ F(m−k)×m

SD and the syndrome y ∈ F(m−k)
SD .

The prover knows x ∈ Fm
SD with y = Hx and wt(x) ≤ w.

Round 1 (Computation of witness):
1. Choose E ⊂ [m] such that |E| = w and the non-zero coordinates of x are in E.
2. Compute Q(X) =

∏
i∈E(X − fi) ∈ Fpoly(X).

3. Compute S(X) ∈ Fpoly(X) by interpolation over the coordinates of x s.t. S(fi) = xi.
4. Compute P (X) = S(X)·Q(X)/F (X) with F (X) ∈ Fpoly(X) s.t. F (X) =

∏m
i=1(X−fi).

5. Sample a root seed: seed← {0, 1}λ.
6. Expand root seed seedi recursively using TreePRG to obtain ND leafs and (seedi′ , ρi′)
7. Initialize each main party share to zero: The index of a party is (k, j) ∈ [1, . . . , D] ×
[1, . . . , N ] and contains all leaf parties whose k-th coordinate is j
for each party (k, j) ∈ [1, . . . , D]× [1, . . . , N ] do

Set JxAK(k,j), JQK(k,j), JPK(k,j), JaK(k,j), JbK(k,j), and JcK(k,j) to zero.
8. Generate polynomial shares (at leaf level):
for each leaf i′ ∈ [1, . . . , ND] do

if i′ ̸= ND then
{JaKi′ , JbKi′ , JcKi′} ← PRG(seedi′), (JxAKi′ , JQKi′ , JPKi′)← PRG(seedi′)
statei′ = seedi′

elseJaKND , JbKND ← PRG(seedND ), JcKND = ⟨a,b⟩ −
∑

i′ ̸=ND JcKi′JxAKND = xA −
∑

i′ ̸=ND JxAKi′JQKND = Q−
∑

i′ ̸=ND JQKi′ , JPKND = P−
∑

i′ ̸=ND JPKi′ ,
aux = (JxAKND , JQKND , JPKND , JcKND ), and stateND = seedND ||aux

// Add the leaf party’s shares to the corresponding main party share and represent
the leaf party by its index on the hypercube i′ = (i1 . . . iD), where ik ∈ [1, . . . , N ].

for each main party index p in {(1, i1), (2, i2), ..., (D, iD)} doJxAKp += JxAKi′ , JQKp += JQKi′ , and JPKp += JPKi′JaKp += JaKi′ , JbKp += JbKi′ , and JcKp += JcKi′
9. Leaf parties commit to their state comi′ = Com(statei′ , ρi′).
10. Compute h = Hash(com1, . . . , comND ) and send to the verifier

Round 2 (Get evaluation points):
The verifier picks t challenge points, which we denote as vectors r ∈ Ft

points and
ϵ ∈ Ft

points, and sends (r, ϵ) to the prover.

Round 3: For each axis k ∈ [1, . . . , D] execute Algorithm 2 between the main parties
(k, 1), . . . , (k,N)→ (JαKk, JβKk, JvKk). Prover builds hash h′ = Hash(H1, . . . , HD) where
Hk ← Algorithm2(JxAK, JQK, JPK, JaK, JbK, JcK, r, ϵ) and sends h′ to the verifier.

Round 4: Verifier uniformly picks (i∗1, . . . , i
∗
D)← [1, . . . , N ]D and sends it to prover.

Round 5: Prover sends (statei1,...,iD , ρi1,...,iD ) ∀ (i1, . . . , iD) ̸= (i∗1, . . . , i
∗
D), i.e., the

sibling path, using TreePRG. Prover also sends com(i∗1 ,...,i
∗
D

), JαK(i∗1 ,...,i∗D), JβK(i∗1 ,...,i∗D)

Verification: Verifier accepts if and only if:
1. For each i′ ̸= i∗, expand all states to get leaf party states (they have D logN seeds

in the sibling path, and each of these is expanded down to the leaf party level, giving
ND− 1 leaves), and use comi∗ provided. Then compute h and verify that it is equal
to the one from Step 11, where h = Hash(com1, . . . , comi∗ , . . . comND )

2. For k ∈ [1, . . . , D] : Run Alg. 3 to get JαK, JβK, JvK, and each Hk and check that:
(a) α,β,v is the same for all D runs of Algorithm 3.
(b) H = Hash(H1, . . . , HD) agrees with h′ provided in Round 3.
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Algorithm 2 Execute Π on a full set of parties
Input: JxAK, JQK, JPK, JaK, JbK, JcK, r, ϵ.
Output: JαK, JβK, JvK, H

Parties locally set JxBK = y −H′JxAK.
Parties locally compute JSK via interpolation of JxK = (JxAK | JxBK).
// Compute JαK, JβK, JvK coordinate-wise:
for l ∈ [t] do

Parties locally evaluate JS(rl)K, JQ(rl)K, JP(rl)K.
Parties set JαlK = ϵlJQ(rl)K + JalK.
Parties set JβlK = JS(rl)K + JblK.
Parties open JαlK and JβlK to get αl, βl.
Parties locally set

JvlK = −JclK + ⟨ϵlF (rl) · JP (rl)K⟩+ ⟨αl, JblK⟩+ ⟨βl, JalK⟩ − ⟨αl, βl⟩.

Compute H = Hash(JαK, JβK, JvK)
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Fig. 2: Witness generation via seed expansion for a depth 3 tree. The ND leaf
party witness shares are derived directly from their seeds, but the N · D main
party witness shares are defined as the sum of their leaf party shares. Subse-
quently, to open all the leaf seeds except one, we reveal only the log(ND) sibling
nodes along the hidden path (which requires log(ND) space).
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Algorithm 3 Verify a partition of parties
Input: Secret-shares JxAK, JQK, JPK, JaK, JbK, JcK, r, ϵ. The Party that contains the hid-

den leaf party i∗ (hereafter partially-disclosed Party) uses as shares the partial aggre-
gation from its disclosed leaf parties. The other Parties use fully aggregated shares.
Index i∗ and communication α,β,v of the hidden leaf party i∗.

Output: JαK, JβK, JvK, H
Parties locally set JxBK = y −H′JxAK.
Parties locally compute JSK via interpolation of JxK = (JxAK | JxBK).
for l ∈ [t] do // Compute JαK, JβK, JvK coordinate-wise.

Parties locally evaluate JS(rl)K, JQ(rl)K, JP(rl)K.
Parties set JαlK = ϵlJQ(rl)K + JalK. and JβlK = JS(rl)K + JblK.
The Partially-disclosed Party adds i∗ communications to JαlK and JβlK.
Parties open JαlK and JβlK to get αl, βl.
All Parties but the partially-disclosed one locally set

JvlK = −JclK + ⟨ϵlF (rl) · JP (rl)K⟩+ ⟨αl, JblK⟩+ ⟨βl, JalK⟩ − ⟨αl, βl⟩.

The local share JvlK of the partially-disclosed Party is set so that vl = 0

Compute H = Hash(JαK, JβK, JvK)

3.4 Main party witness shares
To construct the witness shares of the main parties in dimension k, one aggre-
gates the shares of all leaf parties (i1, . . . , iD) which share the same index ik. For
example, in dimension 1, the share of Q of the jth main party, denoted (1, j),
would be JQK(1,j) =

∑
i′2,...,i

′
D

JQK(j,i′2,...,i′D), which is a sum over ND−1 of the
leaf party shares of Q. One can consider that the following high-level flow is
used to generate and ultimately aggregate the shares in order to generate the
main party shares. On the left hand side the TreePRG is used as a compression
technique; in the middle, the leaf seeds are expanded into shares and arranged
in a hypercube geometry; on the right the shares are aggregated in order to
provide the MPCitH inputs. It is helpful to think of the TreePRG compression
and the hypercube arrangement/aggregation as separate techniques, which are
combined here for the purposes of generating efficient signatures.

seed
TreePRG−−−−−−→ {seedi′}i′∈[ND]

PRG−−−→ {JxKi′ , JPKi′ , JQKi′}i′∈[ND]

∑
−→ JxKk, JPKk, JQKk,

3.5 Proofs of security
The proofs in this section closely follow [FJR22] due to similarities in underlying
hardness assumptions. Protocol 1 implicitly defines the interaction between an
honest prover executing the odd rounds 1, 3, 5 and an honest verifier executing
the even rounds 2, 4. Throughout the security proof, a general prover, not nec-
essarily knowing the secret, is a party that reads and produces the same type of
messages as the honest prover, without necessarily following the algorithm.
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We first show that an honest prover is accepted with certainty, and con-
versely, any prover who commits to a bad witness that does not encode the SD
secret in the first round has probability lower than ϵ ≈ 1/ND of being accepted.
Consequently, any prover that has a higher rate of acceptance necessarily knows
the secret. Then, we prove that the protocol is zero knowledge, since its tran-
script distribution can be simulated without the secret.

Theorem 1 ((Perfect) Completeness). Protocol 1 is perfectly complete.
That is to say, a prover with knowledge of a witness w (contained in sk) who
performs P(sk) correctly, will be accepted by a verifier V(pk) with probability 1.

Proof. Proof of Theorem 1 For any choice of randomness for P,V, the compu-
tations of P pass all of the the verification checks of V by construction.

Lemma 4. A prover P̃ that commits to a bad witness s.t. S ·Q ̸= P ·F in Round
1 of Protocol 1 and is unable to find a commitment/hash collision has probability
≤ ϵ = (p+ (1− p)/ND) of being accepted by an honest verifier V.

Proof. For V to accept, given S ·Q ̸= P · F, one of two scenarios must occur:

1. the random value JvK encodes is zero with probability p, or otherwise,
2. P̃ must cheat on the communications they send, which correspond to the

MPCitH protocols on the main parties, so that it appears that the resulting
v is the zero vector.

After the initial commitment, V sends the challenge points r, ϵ. In the first sce-
nario, with probability p, the plaintext vector v generated by the MPC pro-
tocol is the zero vector (i.e., on all t points, it happens to be the case that
δ = (S ·Q−P ·F)(r) is zero, and/or that the beaver triplets committed in round
1 satisfy c− ab = ϵδ.)

However, with probability (1 − p), at at least one of the challenge points,
S ·Q(ri) ̸= P ·F(ri), meaning at least one of the coordinates of v = c−ab−ϵδ is
non zero. In this case, the communications JαK, JβK, JvK resulting from an honest
execution will not be accepted therefore P̃ must alter some communications so
that the resultant v is the zero vector.

In Round 3, P̃ commits to his communications to D independent SDitH runs
(one for each dimension on the hypercube). Let us assume that he needs to cheat
on the communications of a single run (out of D), and without loss of generality,
this can be cheating on the shares of α (cheating on β or v) are equally valid).

The JαK in this dimension consists of N main party shares JαKi. So P̃ must
pick one to cheat on, having 1/N chance of success. Each of the main party
shares consists of the sum of N (D−1) leaf shares in that particular slice, and all
but one of the leaf shares will be opened. Therefore P̃ must cheat on the shareJαK of a single leaf party s, shifting its value by δ ̸= 0. Cheating on more than
one leaf party means certain detection as all but one leaf parties are opened, and
cheating on none means that v is not the zero vector so won’t be accepted.

However, leaf party s belongs to a single main share for each run of SDitH
(one for each dimension of the hypercube). In each of these other main shares,
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their value for JαK must be shifted by the same δ, as they cannot offset this value
using other leaf parties, as all but one leaf party is revealed in Round 5 so this
would mean certain detection. Thus each main share to which s belongs must
cheat in their respective SDitH. No other cheating pattern is possible, because
all leaf parties bar one are revealed in Round 5, so only one leaf party can cheat
by δ, and this is exhibited in one main party for each dimension.

The only way to avoid detection using this method, is if the (uniformly
random) challenge i∗ in Round 4 gives the exact coordinates of s, as this means
the main party to which s belongs in each dimension is the one that remains
hidden. This has probability (1/N)D, and is equivalent to the challenge leaving
hidden the exact leaf party s out of ND leaf parties. Hence, in a non-false positive
scenario, P̃ has ≤ 1/ND chance of cheating. This yields the bound p+(1−p)/ND

for the prover to be accepted using a bad witness in round 1.

Theorem 2 (Soundness). If an efficient prover P̃ with knowledge of only
(H,y) can convince verifier V with probability

ϵ̃ = Pr[⟨P̃,V⟩ → 1] > ϵ = (p+ (1− p)
1

ND
), (10)

where p is bounded in Equation 9, then there exists an extraction function E that
produces a commitment collision, or a good witness x′ such that Hx′ = y and
wt(x′) < w by making an average number of calls to P̃ is bounded from above:

4

ϵ̃− ϵ
·
(
1 +

2ϵ̃ ln 2

ϵ̃− ϵ

)
(11)

Should a prover P̃ cheat with probability p ≤ ϵ then this is not an issue, as
it corresponds to ordinary vanilla cheating, i.e. cheating on a particular node,
hoping that node does not have to be revealed at challenge time, or by hoping to
guess some polynomials S,Q,P,F which do not satisfy S ·Q = P · F in general,
but which are equal at the challenge points which are subsequently selected.

Sketch of the proof of Theorem 2: The proof largely follows the soundness
proof for the original SDitH [FJR22] scheme. The main difference lies in the
details of witness extraction. More specifically, in the argument why we can
extract. In our case, we are running D instances of SDitH in parallel. For each
instance, the state of each party is secret shared. These secret shares are arranged
in a hypercube, so every share is used as a secret share of D different instances.
The first message contains a commitment to each of these secret shares.

Regarding extraction we prove (as for SDitH) that we can extract a candidate
witness (an x s.t. Hx = y) as soon as we see two accepting transcripts that
agree on the commitments, i.e., the first message, but disagree on the second
challenge. As we always open all but one commitment, and this second challenge
that decides which commitment not to open differs for the two transcripts, we
learn the openings of all commitments (assuming that the commitment scheme
is binding). It remains to argue that this is sufficient for extraction.

The soundness proof for the original SDitH protocol also shows that a can-
didate witness can be extracted from two accepting transcripts that share the
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same commitments but differ in the second challenge. This does not immediately
imply extraction in our case as we committed to secret shares of the state and
communications of the parties. However, we can rephrase the extraction condi-
tion shown for SDitH as the following; extraction is possible given the opened
state and communication for all parties, so long as each party is verified in at
least one accepting transcript. As only one commitment is not opened per tran-
script, there is the state and communication of exactly one party per SDitH proof
that is not verified in each transcript. As the second challenges differ between
the two transcripts per assumption, there has to be at least one dimension, in
which the unopened leaf party secret shares belong to different main parties. In
this dimension, we have obtained the openings of all main parties. Furthermore,
in this dimension, the state and communication of each main party was verified
during the verification of at least one of the transcripts. Therefore, we can apply
the extraction argument of the original SDitH protocol. Equivalently, one now
has knowledge of all leaf parties which together represent a complete sharing of
the witness, and by the argument above, all leaf parties have been verified in
at least one transcript. It remains to show that the candidate witness is a good
witness, i.e., has wt(x) < w. This follows the same argument from SDitH proof.

Proof. Assume the commitment scheme is perfectly binding (as opposed to com-
putationally binding), as per Definition 8. For two sets of transcripts with the
same initial commitment h = Hash(com1, . . . comND ), but different challenge
leaf parties i∗ ̸= j∗, either:

– JxK, JQK, JPK differ and one finds a collision in the commitment hash, or
– the openings are equal in both transcripts, and therefore the shares JxK, JQK,

and JPK are also equal in both transcripts.

In the second case, the witness can be recovered from two transcripts with i∗ ̸=
j∗ where i∗, j∗ ∈ [1, . . . ND] are the challenge indices in the first and second
transcripts respectively. This is because in the first case the verifier receives the
ND − 1 leaf parties which are not i∗, and in the second transcript they receive
the ND−1 leaf parties which are not j∗. Thus with both transcripts, the verifier
knows the full set of witness shares and so can reconstruct the full witness by
summing all of the ND leaf party shares.

Now we explain why this means the extractor function is able to learn a good
witness. Consider the hypercube geometry: i∗ ̸= j∗ means that their coordinates
in the hypercube are not equal in at least one position (i∗1, . . . , i

∗
D) ̸= (j∗1 , . . . , j

∗
D).

Let the first coordinate in which they differ be i∗k ̸= j∗k . Then for the MPCitH
protocol for dimension k, one has two transcripts with different hidden (main)
parties, where the sum of witness shares for both runs has been successfully
verified. This scenario almost identically resembles the protocol of [FJR22], thus
the remainder of the proof of soundness proceeds in the same manner.

In the following we demonstrate that to generate two such accepted tran-
scripts with the same initial commitment but different challenge points, the
witness must be good. Call JxK, JQK, and JPK a good witness if S ·Q = F · P.
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Rh is the random variable for the randomness used to generate the initial com-
mitment, with rh being a given value of Rh.

The extractor works by simple application of the Forking lemma, Lemma 2:
P̃ is run with honest V until successful transcript T1 is found, having second
challenge i∗. Then rewind P̃, using the same randomness rh as in T1 until one
gets a successful transcript T2 with different second challenge j∗. Then extract
the witness. If the witness is bad, start over.

Next we estimate how many calls to P̃ the extractor E makes. Let α ∈ (0, 1)
such that (1 − α) · ϵ̃ > ϵ. We say rh is ‘good’ if Pr[succP̃ |rh] ≥ (1 − α) · ϵ̃.
By the splitting lemma (Lemma 1), Pr[rh is good|succP̃ ] ≥ α, which implies
that a good randomness can be found after gathering roughly 1/α successful
transcripts. Also, by (the converse of) Lemma 4, when rh is good, since the
probability (1 − α)ϵ̃ > ϵ, then the initial commitment provided by the tran-
script necessarily encodes a good witness, that can be extracted from any other
successful transcript that starts from rh.

Given a good transcript T1 (i.e. a success in the outer loop) we now provide
a lower bound on the number of iterations of the inner loop in order to find
another good transcript T2 with the same randomness rh such that i∗ ̸= j∗.

Pr[succP̃ ∩ i∗ ̸= j∗|rh good] = Pr[succP̃ |rh good]− Pr[succP̃ ∩ i∗ = j∗|rh good]

≥ Pr[succP̃ |rh good]− 1

ND

≥ (1− α)ϵ̃− 1

ND

≥ (1− α)ϵ̃− ϵ. (12)

Then by running P̃ for L repetitions one has a probability greater than 1/2
of obtaining a second transcript T2 with a different challenge leaf party to T1,
where both T1 and T2 are generated using the same (good) randomness rh, where

L >
ln 2

ln 1
1−((1−α)ϵ̃−ϵ)

≃ ln 2

(1− α)ϵ̃− ϵ
. (13)

Denote the expected number of calls to P̃ as E(P̃). Then E(P̃) can be written
as a recursive formula; as a function of firstly the probability of succeeding in
the outer loop to obtain T1, and secondly the probability of obtaining T2 with
L calls once one has found a successful transcript T1. Step by step, this is

1. Make an initial call to P̃.
2. If we do not find T1, with probability (1 − Pr[succP̃ ])), then repeat the

procedure from Step 1.
3. If we find a successful T1, then rh is good with probability α by the splitting

lemma (Lemma 1). Then make L calls to P̃, after which there is probability
above 1/2 of success. If successful, terminate, else return to Step 1.
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4. The probability that rh is bad is 1 − α. Thus, there is no guarantee on the
probability of finding T2. Make L calls to P̃ (because we do not yet know
that rh is bad), then when unsuccessful, return to Step 1.

Consequently, if a call in Step 1 to P̃ does not yield T1, then repeat Step
1. If Step 1 is successful, giving T1, then we perform L further calls seeking to
obtain T2, because we do not know a priori whether rh is good or bad. If rh is
good (with probability α), then there is 1/2 probability that we find T2 and the
algorithm terminates. With rh good, there is also 1/2 probability that we do
not find T2. If rh is bad (with probability (1 − α), there is no guarantee about
finding T2 so to provide an upper bound for the number of calls to P̃ we say
that this part is always unsuccessful at finding T2. Thus

Pr[no T2|succP̃ ] = Pr[no T2|rh good] + Pr[no T2|rh bad] = α/2 + (1− α),

and in this case return to Step 1. So the expression for E(P̃) can be written

E(P̃) ≤ 1 + (1− Pr[succP̃ ])E(P̃)︸ ︷︷ ︸
Do not find T1

+Pr[succP̃ ]
(
L+

(
1− α

2

)
E(P̃)

)
︸ ︷︷ ︸

Find T1

, (14)

which reduces to

E(P̃) ≤ 2

αϵ̃

(
1 + ϵ̃L

)
=

2

αϵ̃

(
1 +

ϵ̃ ln 2

(1− α)ϵ̃− ϵ

)
. (15)

Define (1− α)ϵ̃ = 1
2 (ϵ+ ϵ̃) , i.e., halfway between ϵ and ϵ̃ in order to obtain

a formula in terms of just ϵ and ϵ̃. Then we arrive at the upper bound

E(P̃) ≤ 4

ϵ̃− ϵ

(
1 +

2ϵ̃ ln 2

ϵ̃− ϵ

)
. (16)

We now prove that the protocol is zero-knowledge. The main intuition is
that any prover who learns the challenge points r, ϵ from Round 2 challenge
before committing to the state on Round 1 can update c in the aux to force a
false positive. Similarily any prover who learns the challenge coordinates i∗ from
Round 4 before committing to the MPC communications on Round 3 can alter
the communication of the hidden party such that v becomes the zero vector.
The following simulator exploits the second option.

Theorem 3 (Honest-Verifier Zero Knowledge (HVZK)). If the PRG of
Algorithm 1 and commitment Com are indistinguishable from the uniform ran-
dom distribution, then Algorithm 1 is Honest-Verifier Zero Knowledge.

Proof. To prove the HVZK property, we construct a simulator S which outputs
transcripts of Algorithm 1 which are computationally indistinguishable from
real transcripts. For this we assume that the PRG of Algorithm 1 is (t, ϵPRG)-
secure and the commitment Com is (t, ϵCom)-hiding. For ease of reading, in the
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Algorithm 4 HVZK Simulator
Sample seed←$ {0, 1}λ.
Generate (seedi′ , ρi′) for all leaf parties via TreePRG(seed).
Step 1 (Sample Challenges):
Where CH1 = {r, ϵ} ← Ft

points × Ft
points and CH2 = i∗ ← [1, . . . , ND]

Step 2 (Generate ND Leaf Party States):
Expand root seedi recursively via TreePRG to get ND leaf states and (seedi′ , ρi′)
Step 3 (Generate Leaf Party Commitments and Witness Shares):
for i′ ̸= i∗ do

Compute comi′ = Hash(statei′ , ρi′)
if i′ ̸= ND then

Expand the leaf party seeds into witness shares
else

Generate aux for the last leaf party, i′ = ND, randomly draw JxAKND , JQKND ,JPKND , and JcKND .
for i′ = i∗ do

Draw comi∗ at random
Compute initial commitment COM = Hash(com1, . . . , comi∗ , . . . , comND )
Step 4 (Generate Party Communications):
Draw JαKi∗ and JβKi∗ uniformly at random from their respective domains.
for k ∈ [1, . . . , D] do

if ik ̸= i∗k then
Get communications {JαKik , JβKik , JvKik} as stated in Algorithms 1, 2

if i∗k then
Compute party communication shares JαKi∗

k
, JβKi∗

k
, JvKi∗

k
by running Π on the

sum of the witnesses of the N − 1 revealed leaf parties in their respective slices, as
described in Algorithm 1, then add on JαKi∗ and JβKi∗

Set JvKi∗ = −
∑

i′ ̸=i∗JvK.
Step 5 (Output transcript):
RSP1 = h′ = Hash(H1, ..., HD) where Hk ← Alg. 2(JxAK, JQK, JPK, JaK, JbK, JcK, r, ϵ)
RSP2 = comi∗ , JαKi∗ , JβKi∗ , {(statei1,...,iD , ρi1,...,iD ) ∀ (i1, . . . , iD) ̸= (i∗1, . . . , i

∗
D)}.

Output (COM, CH1, RSP1, CH2, RSP2)

following, we sometimes denote general leaf party indices (ik1
, . . . , ikD

) by i′,
and the challenge party index (i∗1, . . . , i

∗
D) as simply i∗. First consider a sim-

ulator, S, described in Algorithm 4 which produces the transcript responses
(COM,CH1,RSP1,CH2,RSP2). Next we demonstrate that this simulator pro-
duces indistinguishable transcripts from the distribution of real transcripts by
starting with a simulator that produces ‘true’ transcripts, and altering the out-
puts section-by-section until arriving at S defined above. At each simulator al-
teration we argue why the distribution remains unchanged.

True transcripts (v0): This takes as input a witness xA as well as the
honest verifier’s challenges (r, ϵ, i∗). It then executes Algorithm 1 correctly, hence
its output distribution is the ‘correct’ distribution.

Simulator v1: In this simulator, the only difference versus v0 is that ran-
domness in leaf party i∗ is replaced with true randomness. If i∗ = (N, . . . , N)
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then JxAKND , JQKND , and JPKND are generated in the usual way. So the wit-
ness shares of all leaf parties still sum to give the input witness (and by exten-
sion, all parties for each MPCitH run in [1, . . . , D]), therefore only JaKND andJbKND are random (and by extension, so are the shares JaK, JbK for the D par-
ties [(1, N), . . . , (D,N)] which contain challenge leaf party i∗ = ND). We can
see that the difficulty in distinguishing the output of Simulator v1 from the real
distribution is equal to distinguishing ϵPRG from true randomness.

Simulator v2: Replace JxAKND , JQKND , JPKND , and JcKND with true ran-
domness (i.e. sample these shares randomly, and not via the protocol). This
means that JxAK, JQK, and JPK are now independent of input witness, so the
inputs to S are reduced to the challenges (ch1, ch2).

For i∗ = ND this means that only JαKi∗ , JβKi∗ are affected because in this
scenario aux is not sent in RSP2. These shares do not change in distribution
from Simulator v1 to Simulator v2 because we already have in Simulator v1 theJαKi∗ and JβKi∗ which appear to be uniformly distributed and are unaffected by
the other parties, and JvKi∗ = −

∑
i ̸=i∗JvKi.

For i∗ ̸= ND only aux is affected in the transcript. In Simulator v1, aux
is computed via the sum of true uniform randomness of leaf party i∗, and ev-
ery other leaf party’s pseudo-randomness, also generating aux via true uniform
randomness does not alter the distribution between Simulators v1 and v2.

Simulator v3: Here, JαKi∗ , JβKi∗ are also drawn via true randomness (af-
fecting communications of party i∗). But these already appear to be uniformly
distributed in Simulator v2, thus the output distribution does not change be-
tween Simulator v2 and v3. The outputs of Simulator v3 (RSP1, RSP2) are thus
indistinguishable from those of an honest execution of Algorithm 1. To obtain a
global HVZK simulator we take the simulator described in Algorithm 4, apply
the hiding property of comi∗ , with the final simulator performing as follows:

1. Generate random challenges ch1, ch2.
2. Run Simulator v3 to get RSP1, RSP2.
3. For initial leaf party commitments i′ ̸= i∗ compute comi′ = Com(statei′ , ρi′).
4. For leaf party i∗, draw comi∗ at random.
5. Set initial commitment to Com = Hash(com1, ..., comND ).

The output of the global HVZK simulator is (t, ϵPRG + ϵCom)-indistinguishable
from the real distribution.

4 A Signature Scheme Based on Syndrome De-
coding with Hypercube-MPCitH

In order to transform our ZK proof into a signature we use a classical Fiat-
Shamir transform [FS87]. Both the transform and the associated proof closely
follow the proof provided in the original SDitH proposal [FJR22], which in turn
is similar in nature to the Picnic proof [ZCD+20]. For this section, the reader is
referred to the full version of this paper [AMGH+22, Section 4].
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5 Performance and Analysis
In this section we analyse the protocol with respect to the communication cost.
We provide costs for the ZK protocol, in order to compare with the others us-
ing syndrome decoding, and then provide parameters and costs for the signature
scheme. In the original SDitH work, the authors present a variant of the underly-
ing SD problem known as the d−split problem, and explain how their signature
scheme can be adapted to be based on this variant of the SD problem. We do not
present the same adaptations to this problem for our signature scheme. How-
ever, the difference presented by the d−split problem affects only the underlying
hardness assumptions, and so it is still instructive to present parameter sets for
the d−split variants for comparison with the previous signature schemes.

There are a few points in the protocol which we do not include as their impact
is arbitrarily small compared to the main communication cost, these being the
challenges from the verifier. The communication cost is then calculated from:

– Com: the hash, h, of the ND commitments.
– Res1: the hash, h′, of the D hashes output from the MPC simulation.
– Res2: the (statei1,...,iD , ρi1,...,iD ) ∀ (i1, . . . , iD) ̸= (i∗1, . . . , i

∗
D), com(i∗1 ,...i

∗
D),JαK(i∗1 ,...,i∗D), JβK(i∗1 ,...,i∗D).

If we consider each leaf (i′ = (i1, · · · , iD) ∈ {1, · · · , ND}) of the hypercube,
for all but the final leaf (i′ ̸= ND) the cost of each statei′ is the size of a seed of
λ bits. For the case of the final leaf (i′ = ND), the statei′ consists of seedND and
the auxiliary which consists of (i) the plaintext share JxAKND , (ii) the sharesJQKND , JPKND being two polynomials of degree w−1, and (iii) the shares JcKND

of the t points of Fpoints.
The only parts within the commitment and responses that are affected by

the hypercube component, D, is the number of, and thus size of, the seed and
commitment randomness. This in essence becomes a sibling path, of length D,
from (statei∗1 ,...,i∗D , ρi∗1 ,...,i∗D ) to the tree root, which will cost at most D·λ·log2(N)
bits. For the remaining costs, we have the commitment com(i∗1 ,...i

∗
D) of 2λ bits

and JαK(i∗1 ,...,i∗D), JβK(i∗1 ,...,i∗D) are elements of Fpoints. We then calculate the size
of the communication cost (in bits) of a single round of the protocol as:

Total Size = 4λ size of h and h′.
+ k · log2(|FSD|) size of JxAKND .
+ 2w · log2(|Fpoly|) sizes of JQKND and JPKND .
+ (2 · d+ 1) · t · log2(|Fpoints|) sizes of JαK(i∗1 ,...,i∗D), JβK(i∗1 ,...,i∗D), JcKND .
+D · λ · log2(N) size of the seeds.
+ 2λ size of com(i∗1 ,...i

∗
D).

In order to achieve the target security level and soundness, 2−λ, we perform
τ parallel repetitions. Using the definition of the forgery cost in Equation 17
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in [AMGH+22] and predefined values for false positivity, we find the minimum
number of repetitions, τ , that satisfies Equation 17. Also, we do not need to
repeat this process for the entire communication costs, the values for h and h′

can be merged for each τ . Thus, the total communication cost (in bits) of the
scheme with τ repetitions is:

Size = 4λ+ τ · (k · log2(|FSD|) + 2w · log2(|Fpoly|)
+(2d+ 1) · t · log2(|Fpoints|) +D · λ · log2(N) + 2λ).

Using Equation 10 we have the obtained soundness error as (p+ (1− p) 1
ND )τ .

5.1 Comparing Code-Based Zero-Knowledge Protocols
The SDitH protocol is not the first proposal for a zero-knowledge protocol using
syndrome decoding. There have been other proposals for identity schemes and
signature schemes, we can compare these protocols on different instances of syn-
drome decoding for 128-bit security. Table 2 shows this comparison which is also
given in [FJR22], which also provides further calculation costs and parameters.
Each scheme in Table 2 utilizes the same parameters (m, k,w); either Instance
1 [FJR21] which is SD on F2 for (1280, 640, 132) or Instance 2 [CVE11] which is
SD on F28 for (208, 104, 78), for the given communication costs.

In order to directly compare with [FJR22], we utilize the same parameters for
(N , τ , |Fpoly|, |Fpoints|, t), which only differ in (N, τ), in which our protocol opti-
mizes. Our protocol also differs slightly in the calculation of the soundness error,
ε, which affects the security level being attained; with SDitH using (p+ 1

N −p·
1
N )

whereas we use (p+ 1
ND − p · 1

ND ).

SDitH ZKP parameters:
Instance 1:
Short: (256, 16, 211, 222, 2); ετ = 2−128

Fast: (32, 26, 211, 222, 1); ετ = 2−129.6

Instance 2:
Short: (256, 16, 28, 224, 2); ετ = 2−128

Fast: (32, 26, 28, 224, 1); ετ = 2−130.0

Our ZKP parameters:
Instance 1:
Shorter: (212, 11, 211, 222, 2); ετ = 2−132

Shortest: (216, 8, 211, 222, 2); ετ = 2−128

Instance 2:
Shorter: (212, 11, 28, 224, 2); ετ = 2−132

Shortest: (216, 8, 28, 224, 2); ετ = 2−128

For Instance 1 and Instance 2, and using a target soundness of 2−128, Table
2 provides the corresponding communication costs for the different ZK protocols
using syndrome decoding. We reuse the parameters used in SDitH for the Fast
and Short variants, thus we achieve similar costs for these. We also extended
these parameters for a large number of simulated parties to achieve Shorter and
Shortest variants. This means the Fast parameters for SDitH are also the fastest
parameters for our scheme, with the speed monotonically decreasing as go from
Short, Shorter, and Shortest. Details on the communication costs for the other
protocols can be found in the full version of [FJR22, Appendix B]. Also, it is
worth noting that there are some differences between the proved statements; i.e.
either proving the equality or inequality for the Hamming weight of w.
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Table 2: Communication sizes of ZK protocols using syndrome decoding.

Scheme Year Instance 1 Instance 2 Proved Statement

Stern [Ste94] 1993 37.4 KB 46.1 KB y = Hx,wt(x) = w

Véron [Vér97] 1997 31.7 KB 38.7 KB message decoding
CVE11 [CVE11] 2010 - 37.4 KB y = Hx,wt(x) = w

AGS11 [AGS11] 2011 24.8 KB - y = Hx,wt(x) = w

GPS22 [GPS22] (Short) 2021 - 15.2 KB y = Hx,wt(x) = w

GPS22 [GPS22] (Fast) 2021 - 19.9 KB y = Hx,wt(x) = w

FJR21 [FJR21] (Short) 2021 12.9 KB 15.6 KB y = Hx,wt(x) = w

FJR21 [FJR21] (Fast) 2021 20.0 KB 24.7 KB y = Hx,wt(x) = w

SDitH [FJR22] (Short) 2022 9.7 KB 6.9 KB y = Hx,wt(x) ≤ w

SDitH [FJR22] (Fast) 2022 14.4 KB 9.7 KB y = Hx,wt(x) ≤ w

Ours (shortest) 2022 6.0 KB 4.5 KB y = Hx,wt(x) ≤ w

Ours (shorter) 2022 7.5 KB 5.5 KB y = Hx,wt(x) ≤ w

Ours (short) 2022 9.7 KB 6.9 KB y = Hx,wt(x) ≤ w

Ours (fast) 2022 14.4 KB 9.7 KB y = Hx,wt(x) ≤ w

5.2 Parameter Selection
Here we derive the parameters we use for our proposed signature scheme. Due to
similarities with SDitH we utilize the same values for many of the parameters;
this also makes it simpler to compare the two protocols in terms of efficiency and
communication costs. As with SDitH, the parameters chosen are for attaining
at least 128 bits of security, equivalent to the NIST Level 1 security level.

5.2.1 Syndrome Decoding and MPC Parameters

To estimate the security of cryptographic schemes based on the hardness of
solving a syndrome decoding instance for a random linear code over F2 we use
algorithms which perform the best practical attacks. Currently this is a version of
the Information-Set Decoding (ISD) algorithm [MMT11], based on previous work
by Finiasz and Sendrier [FS09]. Recently an argument was made that the lower
bound cost of the attack can be calculated by considering the cost of its topmost
recursion step [FJR21]. The details of the algorithm will be omitted since the
SD parameters will be reused from [FJR22], but we provide a description of each
parameter set (or variant) and their differences below. Each variant listed will
have associated parameters for (q,m, k, w, d) which define its hardness.

– Variant 1: based on the standard binary syndrome decoding problem with
some parameters used from [FJR21].

– Variant 2: based on the d-split binary syndrome decoding problem, where d
is chosen such that m/d ≤ 28, meaning that Fpoly = F28 .

– Variant 3: based on the syndrome decoding problem defined over F28 with
some parameters used from [CVE11].
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Table 3: The SD and MPC parameters for our protocol, originally from [FJR22].

Scheme SD Parameters MPC Parameters

q m k w d |Fpoly| |Fpoints| t p

Variant 1 2 1280 640 132 1 211 222 6 ≈ 2−69

Variant 2 2 1536 888 120 6 28 224 5 ≈ 2−79

Variant 3 28 256 128 80 1 28 224 5 ≈ 2−78

Table 4: SDitH [FJR22] parameters with key and signature sizes for λ = 128.

Scheme Aim Parameters Sizes (in bytes)

N τ pk sk Sign (Max)

Variant 1 Fast 32 27 96 16 16 422
Short 256 17 96 16 11 193

Variant 2 Fast 32 27 97 16 17 866
Short 256 17 97 16 12 102

Variant 3 Fast 32 27 144 16 12 115
Short 256 17 144 16 8 481

The MPC parameters (which follow from [FJR22]) are chosen so the result-
ing communication cost is small, thus the smallest possible field for Fpoly is
used as the communication includes polynomials in this field. The SD and MPC
parameters for the three variants are provided in Table 3.

5.2.2 Signature Scheme Parameters

With SD and MPC parameters we can propose parameters for our signature
scheme and provide costs. The signature parameters that primarily contribute
to the communication cost are (N,D, τ, |Fpoly|, |Fpoints|, t). We fix many of these
parameters for comparison, these being those shown in Table 3.

Table 4 shows the parameters proposed for SDitH. The parameters are de-
rived using the three different variations, as well as having two different values
for the party size, N , with the aim of producing a fast computation version, for
N = 32, and a short communication cost version, for N = 256. Once the party
size is defined, the number of repetitions, τ can thus be calculated such that they
gain the target security level, which in this work is at least 128 bits of security.

The parameters in which our protocol primarily optimizes over SDitH are the
party size, being N or in our case ND, and the resulting repetitions required, τ .
A large part of the signature scheme in SDitH is the auxiliary, being made up
of (JxAKN , JQKN , JPKN , JcKN ), which is then repeated for each τ . Being able to
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significantly reduce τ means we drastically reduce this cost. In Figure 3, we show
the relationship between τ and D and how this affects the size of the signature.

In our parameter selection, we fix the value for N = 2 and adapt for different
dimension sizes, D. It is possible for parameters to become equivalent, e.g., (N =
216, τ = 9) produces the same communication costs and computations as (N =
2562, τ = 9), however the former parameters require significantly less (potentially
expensive) MPC computations and in turn require (probably less expensive) hash
calculations. This quality in the flexibility we gain with parameters is particularly
coveted when its applications on a variety of hardware is considered; which range
from CPUs with dedicated instructions for field arithmetic, to mid-range devices
with AES-NI and SHA extension support, to low-end constrained devices with
limited ISA support for cryptographic operations.

A list of our scheme’s parameters are given in Table 5. Similarly to SDitH we
provide parameters for the three SD and MPC variants, and those parameters
with the aim of having short communication costs (for N = 216 and N = 212)
and fast computations (N = 28 and N = 25). The associated public-key and
secret-key values are unchanged compared to SDitH, the major differences are
seen in the signature sizes and computation costs. We use similar nomenclature
to SDitH, but due to the savings we make in performance, we ‘upgrade’ their
previous parameters from Fast and Short, to Faster and Fast, respectively. The
latter parameters we propose increase the dimension size, thus the party size in
the MPC protocol, which finally results in Short and Shorter parameters.
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Fig. 3: The relationship between the dimension, D, and the repetitions rate, τ ,
using N = 2. Parameters and signature sizes provided for Variant 3.

Table 6 provides a comparison between SDitH and our scheme, with an
overview of their similarities and differences. The major differences are in the
online costs of the signature schemes, which is also the most computationally
expensive part of SDitH and is thus the reason we see these significant improve-
ments. In SDitH, there is one MPC computation per secret share, meaning N
MPC computations are required. However, in our proposal, by placing the secret
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Table 5: Our parameters with key and signature sizes in bytes for λ = 128.

Scheme Aim Parameters Sizes (in bytes)

N D τ pk sk Sign (Max)

Variant 1

Fast 2 5 27 96 16 16 422
Short 2 8 17 96 16 11 193

Shorter 2 12 12 96 16 8 698
Shortest 2 16 9 96 16 7 125

Variant 2

Fast 2 5 27 97 16 17 866
Short 2 8 17 97 16 12 102

Shorter 2 12 12 97 16 9 340
Shortest 2 16 9 97 16 7 606

Variant 3

Fast 2 5 27 144 16 12 115
Short 2 8 17 144 16 8 481

Shorter 2 12 12 144 16 6 784
Shortest 2 16 9 144 16 5 689

shares onto a hypercube, we only need MPC computations for all-but-the-final
row (N − 1) per dimension (D), with an additional computation for the auxil-
iary; thus requiring (N − 1) ·D+1 MPC computations in total. This is achieved
while maintaining the same number of secret shares in both signature schemes;
thus for equivalent signature sizes we achieve a much faster signature runtime,
and conversely for similar runtimes (i.e., 5.96 vs 7.17 ms) we achieve a much
smaller signature size. We also see the similarities between the two schemes in
Table 6, those being specifically their offline costs.

5.3 Implementation
We focus on the implementation of Variant 3 parameters, since these are the most
interesting as they provide the fastest and smallest signatures. The Hypercube-
MPCitH approach does not affect key generation; the secret and public keys
are identical, both seeded and expanded. We provide benchmarks for signature
and verification runtimes of our scheme compared to SDitH in Table 7. For fair
comparison, the same processor is used, and the SDitH authors kindly shared
their code for the benchmarks. We also ran the SDitH implementation for the
Shorter parameter set, however the Shortest parameters gave issues and have
thus been omitted.

In both implementations, the offline phase uses the AES native instructions
for seed expansion and SHAKE for hash and commitments purposes. Both im-
plementations also rely on a fast gf256 library3, which utilizes AVX2 instruc-
3 https://github.com/catid/gf256.

https://github.com/catid/gf256
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Table 6: Variant 3 signature generation costs for SDitH vs our scheme. Our MPC
computation costs are calculated as (N−1) ·D+1 for signing, (N−1) ·D for ver-
ifying. Thus, (i) for equivalent signature sizes our scheme is significantly faster,
(ii) for similar runtimes (i.e., 2.87 vs 5.96 ms) are signatures are significantly
smaller. Both ran on a single CPU core of a 3.1 GHz Intel Core i9-9990K.

Scheme Secret
Shares

Offline Costs Online Costs Signature Costs

State
Gen. Commits MPC

Comps
Size

(Bytes)
Time
(ms)

Ours (N = 2, D = 5) 32 32 32 6 12 115 1.30
SDitH (N = 32) 32 32 32 32 12 115 5.96

Ours (N = 2, D = 8) 256 256 256 9 8 481 2.87
SDitH (N = 256) 256 256 256 256 8 481 23.56

Ours (N = 2, D = 12) 4096 4096 4096 12 6 784 26.43
SDitH (N = 212) 4096 4096 4096 4096 6 784 313.70

Table 7: Reference implementation benchmarks of SDitH [FJR22] vs our scheme
for λ = 128. Both ran on a single CPU core of a 3.1 GHz Intel Core i9-9990K.

Scheme Aim Signature
Size

Parameters Sign Time (in ms) Verify Time

N D τ Offline Online Total (in ms) Total

SDitH
[FJR22]

(Variant 3)

Fast 12 115 32 - 27 0.87 5.03 5.96 4.74
Short 8 481 256 - 17 4.33 18.95 23.56 20.80

Shorter 6 784 212 - 12 59.24 251.14 313.70 244.30
Shortest 5 689 216 - 9 - - - -

Fast 12 115 2 5 27 0.47 0.83 1.30 0.98
Ours Short 8 481 2 8 17 2.26 0.61 2.87 2.59

(Variant 3) Shorter 6 784 2 12 12 25.93 0.50 26.43 25.79
Shortest 5 689 2 16 9 320.24 0.42 320.66 312.67

tions. Our processor does not support the newer Galois Field New Instructions
(GFNI) opcodes. For the same number of leaf shares, N for SDitH and ND for
our protocol, the performance of both signature schemes in the offline phase are
more or less the same as the one in their implementation, which confirms our
expectations, and highlights that both software implementations are equivalent
in performance, the performance differences observed come from the protocol
differences. Our online phase however is largely accelerated compared to the ref-
erence implementation, which confirms the expected ND → N · D algorithmic
speedup. Again, we can verify that the gain is roughly N ·D/ND as we would
expect from comparable implementations. In fact, our online costs are more-or-
less constant for a given security level as they are in N ·D · τ and the security
is roughly in log2 N ·D · τ (and N is constant). Besides being roughly constant,
they are also very small, less than 1 ms, and can probably be further optimized.
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