Unique-Path Identity Based Encryption
With Applications to Strongly Secure Messaging

Paul Résler!™, Daniel Slamanig?”, and Christoph Striecks?

! FAU Erlangen-Niirnberg paul.roesler@fau.de
2 AIT Austrian Institute of Technology
{daniel.slamanig,christoph.striecks}@ait.ac.at

Abstract. Hierarchical Identity Based Encryption (HIBE) is a well stud-
ied, versatile tool used in many cryptographic protocols. Yet, since the
performance of all known HIBE constructions is broadly considered pro-
hibitive, some real-world applications avoid relying on HIBE at the ex-
pense of security. A prominent example for this is secure messaging:
Strongly secure messaging protocols are provably equivalent to Key-Up-
datable Key Encapsulation Mechanisms (KU-KEMs; Balli et al., Asi-
acrypt 2020); so far, all KU-KEM constructions rely on adaptive un-
bounded-depth HIBE (Poettering and Rosler, Jaeger and Stepanovs, both
CRYPTO 2018). By weakening security requirements for better effi-
ciency, many messaging protocols dispense with using HIBE.

In this work, we aim to gain better efficiency without sacrificing
security. For this, we observe that applications like messaging only need
a restricted variant of HIBE for strong security. This variant, that we
call Unique-Path Identity Based Encryption (UPIBE), restricts HIBE by
requiring that each secret key can delegate at most one subordinate secret
key. However, in contrast to fixed secret key delegation in Forward-Secure
Public Key Encryption, the delegation in UPIBE, as in HIBE, is uniquely
determined by variable identity strings from an exponentially large space.
We investigate this mild but surprisingly effective restriction and show
that it offers substantial complexity and performance advantages.

More concretely, we generically build bounded-depth UPIBE from
only bounded-collusion IBE in the standard model; and we generically
build adaptive unbounded-depth UPIBE from only selective bounded-
depth HIBE in the random oracle model. These results significantly ex-
tend the range of underlying assumptions and efficient instantiations. We
conclude with a rigorous performance evaluation of our UPIBE design.
Beyond solving challenging open problems by reducing complexity and
improving efficiency of KU-KEM and strongly secure messaging proto-
cols, we offer a new definitional perspective on the bounded-collusion
setting.

The full version [38] of this article is available in the IACR eprint archive as article
2023/248, at https://eprint.iacr.org/2023/248.

http://orcid.org/0000-0002-2324-5671
http://orcid.org/0000-0002-4181-2561
http://orcid.org/0000-0003-4724-8022
https://eprint.iacr.org/2023/248
https://eprint.iacr.org/2023/248

1 Introduction

Traditionally, Hierarchical Identity Based Encryption (HIBE) [29, 21] is mo-
tivated by a real-world scenario in which a sender wants to securely encrypt
a message to a receiver without knowing their individual public key. Using a
global main public key as well as a string that identifies the receiver (e.g., their
email address bob@pc.2023.ec.iacr.org), the sender can encrypt the message
via (H)IBE. To decrypt a ciphertext, the receiver can obtain their individual
secret key by requesting delegation from the global main secret key. The hi-
erarchy in HIBE provides a fine grained, leveled delegation: the secret key of
bob@pc.2023.ec.iacr.org is delegated from secret key of pc.2023.ec.iacr.
org which proceeds up to delegation from secret key of org. Thereby, each secret
key can only delegate secret keys of subordinate identities. For the specific case
of Identity Based Encryption (IBE) [41, 7], only the global main secret key can
delegate identity-specific secret keys, which reduces the level depth to 1.

HIBE As A POWERFUL BUILDING BLOCK. Independent of this real-world use
case, HIBE turns out to be a versatile, powerful tool in the design of larger
cryptographic protocols. For example, HIBE is used as the main component
in designs of Broadcast Encryption (BE) [13], Forward-Secure Public Key En-
cryption (FS-PKE) [8], Puncturable FS-PKE [25], 0-RTT Key Exchange with
Forward Secrecy [27, 12], and Key-Updatable Key Encapsulation Mechanisms
(KU-KEM) for Ratcheted Key Exchange (RKE) [37]. In most of these cases,
the reason for relying on HIBE is rather the strength of HIBE secret key del-
egation than the traditional motivation of encrypting messages to an identity
whose individual public key is unknown.

Notably, not all of these constructions utilize the full power of standard
HIBE. For instance, FS-PKE can be based on relaxed Binary-Tree Encryption
(BTE) [8, 33]. Furthermore, KU-KEM constructions [37, 30, 32, 3] only delegate
secret keys along a single path of identities.

INTRODUCING UNIQUE-PATH IBE. Motivated by such restricted delegations,
we introduce the notion of Unique-Path Identity Based Encryption (UPIBE).
As in HIBE, UPIBE allows a sender to encrypt messages to a receiver whose
individual public key is unknown by using only a string that specifies the re-
ceiver’s identity as well as a global main public key. On the receiver side, UPIBE
assumes that a secret key in one level delegates at most one secret key of the
subjacent level. In contrast to FS-PKE, unique-path delegation in UPIBE still
respects identity (sub-)strings from an exponential size string space on each level.
Consequently, a receiver with email address bob@pc.2023.ec.iacr.org cannot
decrypt ciphertexts encrypted to identity charlie@pc.2023.ec.iacr.org. Be-
yond the cryptographic utility, there are real-world examples for such a unique-
path delegation behavior in linear vertical or horizontal hierarchies.?

3 E.g., the chronological succession of presidents in a particular state or a ranking list
that results from a competition.

One perspective on UPIBE could be that it lifts the bounded-collusion setting
from IBE [15] to HIBE by restricting adversaries in corrupting at most one
delegated secret key in the identity hierarchy. Instead, we view the characteristic
of UPIBE complementary or even orthogonal to the bounded-collusion setting:
While bounded collusion means that the overall number of corrupted secret keys
is limited, UPIBE limits the number of delegations—and, hence, corruptions—
structurally per delegated secret key. In the specific case of UPIBE, we permit one
delegation per secret key, but this can be extended to two or more delegations
per secret key. Indeed, one of our results motivates research on HIBE with at
most two delegations per secret key (see Section 4), which we leave as a question
for future work and concentrate on UPIBE here.

UPIBE As AN ABSTRACTION OF KU-KEM. In the context of strongly se-
cure messaging, many cryptographic protocols use a building block called Key-
Updatable Key Encapsulation Mechanism (KU-KEM) [37, 30, 32, 3]. This ex-
tended form of standard KEM provides an update mechanism with which public
keys and secret keys can be updated independently with respect to arbitrary
bit strings. In addition to the security guarantees of a standard KEM, updates
in KU-KEM are required to achieve forward-secrecy and effective divergence.
This means that an updated secret key cannot decrypt ciphertexts directed to
prior versions of the secret key; and an incompatibly updated secret key cannot
decrypt ciphertexts produced with a corresponding (incompatible) public key.

The only known construction of KU-KEM relies on black-box HIBE with un-
bounded hierarchy depth secure against adaptive adversaries [37, 30, 32, 3]. This
induces a significant performance penalty and limits the choice of underlying as-
sumptions (e.g., no practical* unbounded-depth HIBE from lattices is known).
Intuitively, KU-KEM secret key updates are realized via sequential HIBE del-
egations. Replacing black-box HIBE in this construction by black-box UPIBE
is trivial. Thus, using a black-box HIBE scheme to realize UPIBE is henceforth
referred to as trivial UPIBE construction. By introducing UPIBE as a more gen-
eral notion for KU-KEM, we are the first to lift this specific tool to a suitable
abstraction and reduce the power of (underlying) HIBE to the essential. As we
will see, this also allows for a substantial gain in efficiency.

DEFINITIONS AND CONSTRUCTIONS OF SECURE MESSAGING. KU-KEM was
developed as a building block for constructions of secure messaging protocols.
Interestingly, the impractical performance of prior KU-KEM constructions even
affected security definitions in the messaging literature. These definitions can
be divided into two categories: (1) those that require full security with respect
to the modeled threats and (2) those that relax the security requirements by
limiting adversarial power. Generally, relaxed definitions allow for more efficient
constructions. Specifically, the majority of fully secure messaging protocols relies
on KU-KEM [37, 30, 32, 3], whereas the main motivation for relaxing security

4 We stress that the construction of selective-secure HIBE with unbounded delegations
from CDH [17] or from any fully secure IBE [16] is an impressive, yet rather theoretic
result.

definitions was to analyze or develop practical protocols that can dispense with
employing KU-KEM for better efficiency [31, 2, 18]. To emphasize and sub-
stantiate this partition of the literature, Balli et al. [3] proved that KU-KEM
is equivalent to fully secure messaging under weak randomness. We conclude
that KU-KEM and, therefore, UPIBE play a central role in (strongly) secure
messaging.

ErriciENCcYy OF UPIBE AND KU-KEM. The inefficiency of the trivial KU-
KEM construction from black-box HIBE leads to two questions that were posed
as open problems in prior work [37, 30, 3] and which we will address via the
UPIBE approach:

(1) Can we build (KU-KEM from) UPIBE based on weaker assumptions?
(2) Can we build (KU-KEM from) UPIBE with better efficiency?

We are the first to affirm both questions in three steps. But instead of only
giving answers for the specific case of KU-KEM, we generalize it to the UPIBE
setting which highlights the reasons for our improvements.

First, we consider bounded-depth UPIBE, which means that the maximal
number of secret-key delegation levels is bounded a priori. Our generic construc-
tion of bounded-depth UPIBE is based on bounded-collusion IBE, for which
we have practical instantiations from standard assumptions like DDH or QR
in the standard model [15, 23, 42].° In a second step, we extend the design of
our bounded-depth UPIBE construction to obtain an unbounded-depth UPIBE
scheme. This unbounded-depth UPIBE construction with adaptive security can
be based on bounded-depth HIBE with only selective security in the random or-
acle model. Finally, we prove that KU-KEM can be based on UPIBE, where
the number of key updates in KU-KEM is proportionate to the number of key
delegations in UPIBE.

Instantiating our unbounded-depth UPIBE construction with the bounded-
depth HIBE by Boneh et al. [5] reveals the strengths of our approach. We com-
pare this instantiation to the best known instantiation of ¢rivial unbounded-
depth UPIBE via the unbounded-depth HIBE by Gong et al. [24]. This com-
parison shows that our construction is significantly more efficient by most rel-
evant measures. In particular, it outperforms the trivial approach substantially
in terms of performance, ciphertext sizes, and encryption key sizes.

A notable feature of our unbounded-depth UPIBE construction is that its
efficiency can be dynamically configured via a parameter €. Roughly, € trades
ciphertext size against secret key size. Depending on the performance priorities
in a setting (bandwidth, algorithm runtime, etc.) and depending on the expected
user behavior (average length of identity strings, average number of encryptions
per identity, etc.), this parameter can optimize our construction for deployment
under various conditions. Setting the parameter ¢ to infinity yields the known

5 An alternative approach from standard assumptions would be to rely on the fully
secure IBE from CDH by Garg and Déttling [17]. Unfortunately, this will not yield
a practical instantiation.

trivial UPIBE construction [37, 30]; consequently, there always exists an e for
which our new UPIBE construction is indeed the best known one.

CONTRIBUTIONS. Our first contribution is to abstract the tools in KU-KEM
constructions to the more general field of Identity Based Encryption by, simulta-
neously, reducing the power of standard HIBE to the essential: Unique-Path IBE.
Our definition from Section 2 shows that this new perspective on structurally
limited delegation and collusion is seamlessly embedded in existing (H)IBE no-
tions.

For comprehensibility, we start with building the simpler bounded-depth UP-
IBE construction in Section 3, which is secure in the standard model (StM):

Adaptive Bounded-Collusion IBE = gy Adaptive Bounded-Depth UPIBE

This construction shows that UPIBE can be based on significantly reduced com-
plexity assumptions with a practically* relevant design. We also give a concrete
instantiation with small ciphertexts (two group elements) and secret keys (six
group elements and one symmetric key) from DDH that takes advantage of con-
struction internals of a bounded-collusion IBE by Dodis et al. [15].

By developing two powerful extensions on top of our first generic UPIBE
construction, we are ultimately able to build unbounded-depth UPIBE:
Adaptive Bounded-Depth HIBE — g Adaptive Unbounded-Depth UPIBE

While conceptually inheriting core ideas of our bounded-depth UPIBE, this sec-
ond unbounded-depth UPIBE construction in Section 4 unfolds the full strength
of our approach. Its efficiency is dynamically configurable for different deploy-
ment settings and, instantiated with the most suitable bounded-depth selective
HIBE [5], it reaches the best performance results compared to existing work.
Along the way, inspired by techniques that turn selective secure bounded-depth
HIBEs adaptive secure [4, 5], we develop a guessing technique which allows for
a significantly broader choice of underlying assumptions and more efficient in-
stantiations in the random oracle model (ROM):

Selective Bounded-Depth HIBE = goy Adaptive Unbounded-Depth UPIBE

We note that when instantiating our construction with lattice HIBEs [1, 10], we
obtain the first KU-KEM secure under conjectured post-quantum assumptions.

We systematically analyze the performance of our approach when being used
to instantiate KU-KEM in Section 7. It is notable that all prior KU-KEM con-
structions are a trivial special case of our new techniques. This means that
our new constructions always offer the best (known) performance. For clarity,
we first present semantically secure constructions of UPIBE. Using techniques
known from KEM combiners [22], we show in Section 5 that our constructions can
also be made secure against chosen-ciphertext attacks if the underlying (H)IBE
schemes are.

1.1 Technical Overview

To understand the core idea of our UPIBE constructions, we briefly discuss the
subtle difference between the security definitions of standard HIBE and UPIBE.

Although these definitions are conceptually identical, the crucial limitation of
UPIBE is that at most one delegation per secret key is permitted. This means
that the large tree of delegated secret keys in HIBE is reduced to a unique
delegation path in UPIBE. Consequently, adversaries will essentially expose at
most one UPIBE secret key—all descendant UPIBE keys can be obtained via
delegation by the adversary itself. Consider the identity string that corresponds
to this exposed UPIBE secret key. In relation to this identity string, our natural
security definition requires only two types of challenge ciphertexts to remain
secure: (1) those that are encrypted to true prefiz identity strings and (2) those
that are encrypted to identity strings branching off the exposed key’s identity
string. All remaining challenges can be solved trivially with the exposed secret
key. Our UPIBE constructions exploit this fact to turn all prefix identity strings
(case 1) into branched off identity strings (case 2) by adding a special suffix at
the end of every UPIBE identity string.

CoMBINED HIBE EXPOSURE. Having the definitional difference in mind, we
will see that multiple colluding exposures in HIBE can be significantly more
damaging than the single permitted exposure in UPIBE. More concretely, HIBE
constructions have to make sure that challenge ciphertexts remain secure under
any combination of (non-trivial) secret key exposures in the delegation hierarchy.
Since the unique-path delegation in UPIBE permits at most one exposure, UP-
IBE constructions have to protect challenge ciphertexts only against the single
most damaging secret key exposure. We illustrate this gap by considering the
effect of a specific combination of HIBE secret key exposures.

For this we let two exposed HIBE secret keys have identities ideyx1 = (id})
and idey 2 = (idy, idy), and a single HIBE challenge have identity id., = (idy, ids),
such that idy, id}, ids, id, € {0,1}*, where X is the bit-length per delegated sub-
identity string. This means, idcx,2 and ide, branch in delegation level 2 with
idy # ids, and idex,1 branches off the former two identity strings in level 1
with id] # id;. Observe that the exposed key with identity idex 1 still con-
tains information for delegating subordinate keys to the second level, e.g., to
sub-identity idy which results in full identity id* = (id}, id2). In contrast, the
exposed key with identity idex 2 does not (need to) contain this information
anymore as it is delegated to level 2 already. However, exposed key with iden-
tity idex,2 may contain information about its own delegation path along the first
level with sub-identity string id;, which differs from the information contained in
exposed key with identity idex 1 = (id}). One major difficulty for building HIBE
is to make sure that the information about delegation along id; from exposed
key idex,2 cannot be combined harmfully with the secrets available for delega-
tion to level 2 from exposed key idcx 1. In particular, this combination should
not suffice to obtain a secret key for identity (idy, ids) = id., because this would
solve the challenge. Since the single permitted exposure in UPIBE prevents such
combined exposures, we can simplify the design of our UPIBE constructions,
which makes them more efficient. We stress that this difference between HIBE
and UPIBE is an inevitable implication of our natural definition.

Trivial UPIBE Bounded-Depth UPIBE

1 1 2 3 4 5 6 7 8 .. ©e

2

3 m

4 Unbounded-Depth UPIBE §j§_

5 Epoch-Progression . £ E

. ¢

6 e
‘

7 ! gE

8 P gr
R) &

Fig.1: Conceptual illustration of delegations in the trivial, bounded-depth, and
unbounded-depth UPIBE constructions (here with ¢ = 2). The black (path of) arrows
realize delegation of a UPIBE identity string with level depth 8. Light gray arrows
indicate alternative and further delegations. White circles represent the (composed)
main public key(s) and filled dots represent the (composed) delegated secret key(s).

BouNDED-DEPTH UPIBE. One interpretation of the above observation is that
our constructions can assume key material for lower level delegations to be per se
harmless. Using this guarantee, our bounded-depth UPIBE construction imple-
ments each UPIBE delegation level with an individual IBE instance. Intuitively,
this turns the vertical delegation path into a horizontal delegation sequence,
as illustrated in Figure 1. Our construction’s UPIBE main public and secret
key consist of all underlying IBE instances’ main public and secret keys, re-
spectively. For encryption, the UPIBE identity string is split into multiple IBE
sub-strings. The UPIBE ciphertext is then obtained by executing IBE encryp-
tion for each level’s sub-string and concatenating the resulting IBE ciphertexts.
On UPIBE delegation, the respective level’s IBE main secret key is removed
after delegating an identity-specific secret key for that level. To prove security
of this construction, we use the fact that every challenge identity branches off
the exposed key’s identity in one of it’s passed delegation levels. Our reduction
embeds an underlying IBE challenge in this branching level, which turns a suc-
cessful UPIBE adversary into a successful IBE adversary. The above description
of our scheme is highly simplified and neglects subtle enhancements that lead to
better performance. Although conceptually simple in the bounded-depth case,
this construction does not extend (trivially) to the unbounded-depth setting.

UNBOUNDED-DEPTH UPIBE. Therefore, we develop two crucial extensions:
First, we replace each delegation level by an e-level delegation epoch. In ev-
ery such epoch, £ many sequential delegations can be processed. (See Figure 1
where € = 2.) This reduces the number of concatenated ciphertexts by a factor
of 1/e. Then, we add an epoch-progression mechanism on top of our construc-
tion. With this mechanism, delegation from a fully-delegated epoch progresses
dynamically to the next fresh epoch. This allows us to dispose of the static list
of IBE instances from our bounded-depth construction. One can think of the
epoch-progression mechanism as a Forward-Secure PKE scheme that generates

at every step a fresh starting point for a multi-level epoch in which the actual
UPIBE delegations are conducted. The security proof for our unbounded-depth
UPIBE follows the same idea as the one for our bounded-depth construction,
only that it reduces to bounded-depth HIBE. To rely on only selective bounded-
depth HIBE, we develop a special guessing technique that avoids the exponen-
tial loss factor induced by known techniques [4, 5] for turning selective HIBE
adaptive secure. We believe that the solid design—in addition to its enhanced
performance—makes our construction attractive for practical applications (such
as secure Imessengers).

CHOSEN-CIPHERTEXT SECURITY. We investigate the options to obtain CCA
security for UPIBE. Unfortunately, the well known generic BCHK (often also
called CHK) compiler for HIBEs [9, 6] is not applicable to UPIBE. While opting
for a form of verification-by-re-encryption akin to the Fujisaki-Okamoto (FO)
transform [19] is applicable, one introduces significant computational overhead
as well as is bound to the ROM. Instead, we leverage chosen-ciphertext security
of the underlying building blocks by effectively tying together the concatenated
ciphertexts in every UPIBE ciphertext. For simplicity, we referred to UPIBE as
a Message Encryption primitive so far, but all our results actually consider Key
Encapsulation. Therefore, in the case of bounded-depth UPIBE we can make use
of techniques developed in the context of KEM combiners [22]. These versatile
techniques only change the final computation of the encapsulated UPIBE key
instead of explicitly authenticating the concatenated ciphertext. A similar idea,
though in the ROM, can be applied in the case of unbounded-depth UPIBE
where the underlying HIBE instances can be efficiently made CCA secure via
the BCHK compiler. As a result, our chosen-ciphertext secure constructions are
only minimally less efficient than our semantically secure ones.

2 UPIBE Definition

For clarity, we consider Identity Based Key FEncapsulation primitives instead
of Identity Based Message Encryption in this work. In line with this, we call
public and secret keys encapsulation and decapsulation keys, respectively. Since
Unique-Path IBE is a special case of Hierarchical IBE, we introduce all relevant
IBE notions modularly at once.

Syntaz. All of the considered Identity Based Encapsulation (IBE) schemes are
quadruples IE = (IE.gen, IE.enc, IE.dec, IE.del) of algorithms with encapsulation
and decapsulation key spaces EK and DI, respectively, symmetric key space IC,
and ciphertext space C.

We specify the considered types of IBE via parameters L, A\, and D. L fixes
the maximal number of sequential delegations (i.e., the maximal number of levels
aka. the depth), X fixes the bit-length of identity strings for each delegation, and
D fixes the maximal number of delegations per decapsulation key. That means,
for unbounded-depth HIBE we have (L, D) = (00, 2"), for bounded-depth HIBE
we have (L, D) = (L, 2*) for some fixed value L, for unbounded-depth UPIBE we

have (L, D) = (00, 1), and for bounded-depth UPIBE we have (L,D) = (L, 1) for

some fixed value L. We treat bounded-collusion IBE as a bounded-depth HIBE

with L = 1 such that the number of colluding users is encoded as the number of

maximal delegations for the main decapsulation key D = D for some constant D.
The four IBE algorithms’ syntax is defined as follows:

— IE.gen:) —¢ EK x DK

— IE.enc: EL x {0,1}'* =4 C x K, where 0 < 1 < L
IE.dec: DK xC — K

IE.del : DK x {0,1}* —4 DK

For efficiency reasons, we add derivation algorithm IE.der : EK x {0, 1} —g
EK that computes (compact) identity-specific encapsulation keys. This allows
for reducing the combined size of a main encapsulation key ek and a multi-
level identity string id = (idy,...,4d;), such that IE.enc(ek, (idy,...,id;)) can
be turned into IE.enc(IE.der(...IE.der(ek, idy) ..., id;), €).

Correctness. For correctness of all considered types of IBE with parameters L,
A, and D, we require for all (ek, dky) <g IE.gen, all id = (idy,...,14d;) with
id; € {0,1}*,0 < i <1 < L, all dk; g IE.del(dk;_1,1d;), and all (c, k) ¢g
IE.enc(ek, id), that IE.dec(dk;, ¢) = k.

Security. We define experiment INDY;(A),b € {0,1} that models multi-instance
key indistinguishability. For all considered types of IBE schemes IE, this exper-
iment provides the following oracles to adversary A for which we provide a full
pseudo-code specification in the full version [38]:

— Gen: Generates a fresh main key pair (ek, dk) <3 IE.gen and returns ek

— Del(i, id, id"): Delegates decapsulation key dk; (iq,ia+) <s IE.del(dk; iq, id")
from dk; ;q with identity string id* € {0,1}*, unless dk; ;4 results from L
sequential delegations from a main decapsulation key, or D delegations from
dk; ;q were already queried

— Chall(, id): Issues a challenge encapsulation (c, ko) <g IE.enc(ek;, id) to
main encapsulation key ek; and identity string id € {0,1}** 0 <[< L and
returns ¢ as well as key ky, where k1 <—g KC, unless an exposed decapsulation
key was delegated from ek;’s main decapsulation key dk; with an identity
string that equals or is a prefix of id

— Exp(i, id): Exposes decapsulation key dk; ;q, generated or delegated from
main decapsulation key dk; and identity string id, unless a challenge encap-
sulation to ek; and identity string id’ was queried, such that (ek;, dk;) form
a main key pair and id equals or is a prefix of id’

Eventually, the adversary terminates by outputting a guess o’ and wins iff b = ¥’.
If adversary A specifies the challenge(s) at the beginning of the game without
adaptively seeing the return values of other queries, we call A selective and
otherwise adaptive.
With the above adversarial oracles, we capture chosen-plaintext attacks.
Selective chosen-plaintext attacks is a rather weak adversary model that helps us

focusing on the core of our novel ideas when presenting our constructions. Yet, we
also present adaptive chosen-ciphertext secure constructions. An adversary,
attacking such constructions, can additionally query the following oracle:

— Dec(i, id, c): Decapsulates k < IE.dec(dk; ;q,c) of ciphertext ¢ under dk; ;4
and returns k, unless ¢ was given to A as a challenge encapsulation to
ek; and id, dk; ;4 was (sequentially) delegated from dk; with respect to id,
and (ek;, dk;) form a main key pair

Definition 1. The advantage of adversary A in winning INDYg is Advin (A) =
|Pr[IND(A) = 1] — Pr[INDjg(A) = 1]|.

Compared to standard (bounded-depth) (H)IBE security experiments, the
only difference is our restriction to at most D delegation queries per decapsulation
key. Yet, challenges can be queried without limiting the choice of identity strings,
even for UPIBE.

3 Bounded-Depth UPIBE from Bounded-Collusion IBE

We present our bounded-depth UPIBE construction in Figure 2 by explaining its
components one after another, starting with decapsulation keys and ciphertexts.

Structure of Keys and Ciphertexts. The core idea behind our UPIBE construc-
tions is that delegations along the unique ‘vertical’ path of identity levels are
realized ‘horizontally’. That means, for each delegation level in our UPIBE con-
struction from Figure 2 with bounded-depth L, we use a separate bounded-
collusion IBE instance. Think of these IBE instances being placed horizontally
next to one another from left to right as shown in Figure 1.

To understand this idea, we describe the structure of UPIBE decapsulation
keys. A UPIBE decapsulation key delegated to level [contains three different
types of keys, two of which are IBE decapsulation keys: (1) One ordinary del-
egated IBE decapsulation key for each of the first [levels, (2) an additional
special delegated IBE decapsulation key for only level [, and (3) a symmetric
forwarding key from which (un-delegated) IBE main decapsulation keys for all
remaining L — levels are computed. See Figure 2 lines 02-06 for UPIBE key gen-
eration that consists of generating all IBE main encapsulation keys and sampling
the initial symmetric forwarding key.

A UPIBE ciphertext, encapsulated to level I (i.e., to identity id € {0,1}),
consists of one IBE ciphertext for each of the first [— 1 levels encoded with
suffix 1 (lines 23-25) and one additional IBE ciphertext that targets the special
delegated IBE decapsulation key at level | encoded with suffix 0 (line 26). To
decapsulate the former [— 1 ciphertexts (lines 33-34), the receiver needs to be in
possession of the first [— 1 ordinary delegated IBE decapsulation keys. Hence,
successful decapsulation shows that the receiver holds a UPIBE decapsulation
key that was correctly delegated along the first [— 1 levels of the identity path.
By also being able to decapsulate the special ith IBE ciphertext (lines 35-36), the

10

Proc IE.gen Proc IE.enc(ek, id)

00 E[]+ L; D[]+ L 21 Require id € {0,1}'*,0 <1 <L

01 fky s {0,1}* 22 E < ek

02 Forl=0toL—1: 23 ido|| . .. ||idi—1 < id with id; € {0,1}*
03 (fkiyq,8) < G(fk;) 24 For j=0tol—2:

04 (ek',dk') < IE.gen'(s) 25 (c},k}) < IE.enc’(E[j], id;||1)

05 E[l] + ek 26 (¢j_y,ki_1) s IE.enc’(E[l — 1], id;—1]0)
06 ek« E; dk + (0,1, fky) 27 C <« gl |lei_1

07 Return (ek, dk) 28 K« W(kp,..., ki_1,0)

Proc IE.del(dk, id) 29 Return (C, K)

08 Require id € {0, 1} Proc IE.dec(dk, C)

09 (I, D, fk) < dk 30 (I, D, fk) « dk

10 Require [< L 31 ¢o|...||ler—1 < C with ¢; € C

11 Ifl > 0: 32 Require [=1’

12 (dky, dk}) < D[l —1] 33 Forj=0tol—2:

13 D[l —1] + dk} 34 kj g IE.dec’(D[i], ¢;)

14 (fK,5) « G(fk) 35 (dk), dk}) < D[l — 1]

15 (ek’, dk') + IE.gen’(s) 36 kj_y <+ IE.dec’(dko, ci—1)
16 dk{ <5 IE.del’(dk’, id||0) 37 K + W(ko,...,k_1,C)
17 dk} < IE.del’(dK,id||1) 38 Return K

18 D[I] + (dkj, dk})

19 dk <+ (I1+1,D, fk")

20 Return dk

Fig. 2: Construction of bounded-depth UPIBE IE with parameters (L, \,D = 1) from
PRG G and bounded-collusion IBE scheme IE’ with parameters (L', \",D") = (1, A +
1,2) and ciphertext space C. Core function W is realized as XOR-sum @i:o Kk} and
ignores input C'. In our chosen-ciphertext secure instantiation, we additionally generate
a dummy ciphertext ¢ <—g C and key k +s K in IE.gen, which is included into ek and
W to pad all unused indices ¢ < L with ¢ and k respectively.

receiver additionally shows that it holds the full UPIBE decapsulation key that
was delegated along all [levels—and particularly not a UPIBE decapsulation
key that was delegated along an extended identity path.

While a UPIBE ciphertext is a concatenation of all [IBE ciphertexts, the
encapsulated UPIBE key is an XOR-sum of all [encapsulated IBE keys (lines 27-
28). We generalize the computation of the encapsulated key via core function W
to simplify the description of our chosen-ciphertext secure construction in Sec-
tion 5.

Delegation of a UPIBE decapsulation key is in line with the above ideas by
conducting four steps: (a) Removing the special IBE decapsulation key at current
level I, yet keeping all ordinary IBE decapsulation keys until level [(lines 11-13),
(b) computing the next forwarding key as well as a seed by evaluating a PRG on
the current forwarding key (line 14), (c) generating the main IBE decapsulation
key at level [+1 from the obtained seed (line 15), and delegating both the special
delegated IBE decapsulation key for level I + 1 (line 16) as well as the ordinary
delegated IBE decapsulation key for level I + 1 (line 17) from this new main
IBE decapsulation key, and, lastly, (d) removing the just obtained main IBE
decapsulation key at level [+ 1 as well as the old forwarding key.

11

Intuition for Security. The security argument for this construction uses the fact
that adversaries can expose at most one UPIBE decapsulation key per instance
during the security experiment.® This single exposure reveals precisely one spe-
cial delegated IBE decapsulation key—the current one—, the chain of ordinary
IBE decapsulation keys that were delegated along the exposed UPIBE key’s
identity path, and the current symmetric forwarding key from which future lev-
els’ IBE main decapsulation keys can be obtained. After such an exposure, two
types of UPIBE ciphertexts must remain secure: Those that target true pre-
fizes of the exposed key’s identity string, and those that target identity strings
branching off the exposed key’s identity string.” Ciphertexts targeting a true
prefix identity string, indeed, remain secure because their decapsulation requires
the use of a higher level special delegated IBE decapsulation key. Such prior
level special IBE keys were removed before the exposure and are, therefore, not
contained in the exposed UPIBE key. Similarly, the decapsulation of ciphertexts
that target a branched off identity string require the use of an inaccessible IBE
decapsulation key—namely, an ordinary IBE decapsulation key that was dele-
gated along this branch. Consequently, exposed UPIBE decapsulation keys do
not affect ciphertexts that are required to remain secure. Finally, we note that
at most two delegated decapsulation keys per IBE instance are leaked at an ex-
posure of a UPIBE decapsulation key. Thus, relying on bounded-collusion IBE
suffices, where the number of colluding users is at most 2.

Performance. Bounded-depth UPIBE (and bounded-depth KU-KEM) actually
often suffice for secure messaging protocols.® So far, the only known instantia-
tion of bounded-depth UPIBE is trivially derived from bounded-depth HIBE.
With our bounded-depth UPIBE construction we demonstrate a significant re-
duction in complexity of the underlying hardness assumption: bounded-collusion
IBE instead of bounded-depth HIBE. Furthermore, we use this construction to
make the reader familiar with the core ideas of our unbounded-depth UPIBE
construction in Section 4.

Without any additional assumptions on the underlying bounded-collusion
IBE, the size of UPIBE encapsulation keys in our construction is linear in the
maximal level depth L, UPIBE decapsulation keys grow with the number of
conducted delegations, and UPIBE ciphertexts grow in the bit-length of their
corresponding identity string.

When instantiating our construction with the DDH-based bounded-collusion
IBE by Dodis et al. [15], we can take advantage of the group structure to aggre-
gate and shrink encapsulation keys, decapsulation keys, and ciphertexts. We give
the concrete instantiation in the full version [38] in which a UPIBE decapsulation

5 With the exposed UPIBE decapsulation key, the adversary can compute all subse-
quent delegations and decapsulations itself, so further exposures are meaningless.

" Branching here means that for two identity strings id, id* with £* = min(|4d|, |id*|),
strings ¢d and id* differ in at least one of the first £ bits.

8 E.g., the number of conducted key delegations in the bidirectional messaging protocol
in [36, see page 22] is upper-bounded by the maximal number of ciphertexts that
cross the wire during a round-trip time (i.e., at most a few dozens).

12

key consists of 6 exponents and 1 symmetric key, a UPIBE ciphertext consists of
2 group elements, and a UPIBE encapsulation key consists of 24+ 3(L —) group
elements, where [is the level for which the current encapsulation key is derived
via algorithm IE.der. This is highly efficient for settings in which distribution
and storage of large encapsulation keys is cheap.? Enhancing this construction
to also obtain a compact, constant size encapsulation key remains an interesting
open problem.

Security. For clarity, we first consider chosen-plaintext security IND%’E of our
UPIBE construction:

Theorem 1. Bounded-depth UPIBE protocol IE from Figure 2 offers adaptive
key indistinguishability in the standard model. More precisely, for every adaptive
chosen-plaintext adversary A attacking protocol IE in games IND}I’E according
to Definition 1 with parameters (L,A\,D = 1), there exists an adversary Bg
attacking PRG G and an adaptive chosen-plaintext adversary Big attacking
bounded-collusion IBE IE' in games IND%E, according to Definition 1 with pa-
rameters (L', N, D') = (1, \4+1,2) such that Advis'(A) < qgen-L2- Advii4(Bg) +
qGenl " qChan L~Advif;3c;(BIE/), where qgen and qcnan are the number of queries to
oracles Gen and Chall by adversary A, respectively, and the running time of Bg
and Bigs is about that of A.

Security Proof Overview. For clarity in notation, we refer to oracles in game IND%
by adding the scheme’s identifier X as a subscript to the oracle names (i.e.,
Geny, Chally, etc). Also, we first sketch our proof by focusing on a reduction
from single-instance security of UPIBE to multi-instance security of IBE.

Using the PRG, we begin with a hybrid argument that replaces all unex-
posed symmetric forwarding keys and IBE main key pairs with independently
sampled ones. Our reduction Bigs then almost directly passes oracle queries
from adversary A against our UPIBE construction IE in game INDg to oracles
of game IND;p/ against the underlying bounded-collusion IBE scheme IE’. The
responses of oracles in game INDjg/ can then be used almost directly to answer
adversary A’s oracle queries in game INDyg. That means, A’s queries to oracle
Geng can be answered by using responses of simple queries to oracle Genpg;
the same holds for queries to oracle Delig.

However, embedding challenges from game INDyg in challenges of game IND g
is non-trivial. To understand this, we observe that the hardness of a challenge
in game INDyg depends on the delegation path of the first (and w.l.o.g. only)
exposed UPIBE decapsulation key in game IND;g. More precisely, let id™ be
the identity string that corresponds to the delegation path of the first exposure
via oracle Exprp. A challenge directed to identity string id is only considered
hard if id is a true prefix of id*, or if id and id™ differ in at least one of their

9 Consider asymmetric communication for which ciphertexts should be small and en-
capsulation keys can be large: E.g., sending large encapsulation keys on hardware
memory from time to time via resupply flights to the International Space Station,
and sending ciphertexts over the air back to earth.

13

first £* bits, where ¢£* = min(]id|, |¢d"|). On a query to oracle Challjg with iden-
tity string ¢d, our reduction Big/ splits id into its A-long sub-strings and then
identifies in which of these sub-strings the first difference between id and id*
occurs. For this branching sub-string, reduction Bigs queries an IBE challenge
via oracle Challig/. The resulting IBE challenge-ciphertext and IBE challenge-
key are then embedded in the corresponding UPIBE challenge-ciphertext and
UPIBE challenge-key output of oracle Challjg. However, reduction Bygs learns
string id* only as soon as adversary A calls oracle Expg. Hence, for each chal-
lenge issued before this first exposure query, reduction Brgs has to guess in which
sub-string the identities branch. Embedding this guessing step in a hybrid argu-
ment introduces a loss factor of at most ¢gen * ¢cnan - L, where ggen and gcpan
are the numbers of queries to oracles Genig and Challig by adversary A, resp.,
and L is the maximal number of delegation levels for our UPIBE construction.
We provide our formal proof for multi-instance security in the full version [39].

4 Unbounded-Depth UPIBE from Bounded-Depth HIBE

Our unbounded-depth UPIBE construction extends our bounded-depth con-
struction from Section 3 twofold: Horizontally, it replaces each level—realized
by an IBE instance in our bounded-depth construction—by a multi-level epoch.
Each epoch can internally handle up to € sub-identity levels/delegations. The
second extension replaces the static list of IBE main keys at the top of our
bounded-depth UPIBE construction by a dynamic epoch-progression mecha-
nism. This mechanism realizes a dynamic progression from one epoch to an-
other and, thereby, eliminates the a-priori bounded number of sub-identity lev-
els/delegations; see Figure 1 for a schematic illustration.

The only component used to build our unbounded-depth UPIBE construction
is a single bounded-depth HIBE scheme. To understand how the (unbounded
number of) UPIBE delegations are processed by this bounded-depth HIBE, we
invite the reader to look at the tree of identities/delegations in this HIBE that
is indicated by gray (dotted) lines and arrows in Figure 1.

Epoch-Progression via Forward-Secure PKE Technique. In the top « levels of
the HIBE tree, we implement the epoch-progression mechanism, where a =
[log(2"/e)] and & is the security parameter. Of these a top HIBE delegation
levels, we only make use of a binary delegation (sub-)tree. Each path in this bi-
nary tree part of the HIBE tree is the binary-encoding of an epoch number, where
first epoch 0 is encoded as the left-most path and last epoch 2% /e — 1 is encoded
as the right-most path. The lowest nodes in this top binary tree part (i.e., nodes
in level «) represent epoch starting nodes. The first epoch starts at the left-most
node which corresponds to the identity string that binary-encodes 0 (i.e., 0N
where X is the bit-length of HIBE identity sub-strings per level/delegation). We
defer the explanation of how UPIBE delegations are realized within epochs to
the next paragraph. As soon as an epoch is completed, the next epoch starts at
the adjacent binary-tree node to the right in level a. (That is, starting nodes of

14

epochs 2 and 3 correspond to identity strings 0°* ~1[[1 and 0@~ =1||1]j0*,
respectively, where each level’s identity sub-string contains a (A" — 1)-long 0-bit
padding prefix.)

Progression from one epoch starting node to the next one follows the well
known idea of Forward-Secure PKE from Binary Tree Encryption [8].1° Roughly,
the epoch-progression mechanism iteratively delegates HIBE decapsulation keys
along the a-long path from the root to the current epoch starting node. During
this path delegation, also decapsulation keys of (binary-tree) siblings along this
path are delegated. After each delegation on this path, the respective parent
node’s key from which the two sibling keys were delegated is deleted. Only the
first epoch progression starts at the root of the HIBE tree. All following epoch
progressions start from the lowest level for which a delegated sibling key exists.
This mechanism ensures that only starting nodes of future epochs but not of
previous epochs are accessible.

Multi-Level Epochs. Our UPIBE construction splits identity strings of length - A
into € - A-long epoch sub-strings. Each individual epoch sub-string is delegated
in € steps vertically in the HIBE tree under its epoch starting node (i.e., each
epoch contains € delegation levels). Hence, every epoch sub-string in the HIBE
tree looks exactly the same as its UPIBE identity sub-string counterpart (see
Figure 1). However, instead of being concatenated vertically in the HIBE tree,
one can think of the vertical epoch sub-strings hanging next to one another from
left to right under their epoch starting nodes in level a.

Structure of Keys and Ciphertexrts. Despite these two crucial extensions, the
overall idea of our unbounded-depth UPIBE construction is very close to its
bounded-depth counterpart from Section 3. This becomes evident when looking
at the structure of UPIBE decapsulation keys and ciphertexts.

A UPIBE decapsulation key at delegation level [contains three types of del-
egated HIBE decapsulation keys: (1) up to « epoch-progression decapsulation
keys, (2) one ordinary decapsulation key for each of the previous [1/e] —1 epochs
and, potentially, one ordinary decapsulation key for the current epoch, and (3) a
special decapsulation key for the current epoch. The epoch-progression decapsu-
lation keys replace the single symmetric forwarding key from our bounded-depth
construction. This allows for efficient delegation of future epochs’ initial decapsu-
lation keys, yet preventing access to previous epochs’ initial decapsulation keys.
Ordinary and special decapsulation keys are used for the actual decapsulation
of UPIBE ciphertexts (almost) as in our bounded-depth construction.

The concrete components of a UPIBE decapsulation key are as follows. One
ordinary HIBE decapsulation key, delegated to the lowest HIBE tree level o +
g, is stored for each finished epoch. All remaining HIBE decapsulation keys,
ever delegated in these prior epochs, are removed from the (delegated) UPIBE

10 For clarity in our explanation, we slightly deviate from the original BTE-to-FS-PKE

idea by Canetti et al. [8]: We do not use all nodes in the BTE tree as epoch starting
points but only nodes in the lowest level of this BTE component.

15

decapsulation key. For the current epoch, a special decapsulation key delegated
to HIBE level a+ (I mod ¢) in that epoch is stored in the UPIBE decapsulation
key, where [is the overall number of UPIBE delegations so far. When delegating
the UPIBE decapsulation key, this special HIBE decapsulation key is replaced
by a new one for the next level. Only in the last level a+ € of the current epoch
where (I = =1 mod ¢), the UPIBE decapsulation key contains two HIBE keys:
a special and an ordinary HIBE decapsulation key.

A UPIBE ciphertext for level [consists of one HIBE ciphertext per existing
epoch, where [l/e] is the number of existing epochs. Each of the first [I/e] — 1
ciphertexts is directed to its epoch’s ordinary decapsulation key, and the last
ciphertext is directed to the current epoch’s special decapsulation key.

All UPIBE delegations within an epoch delegate a new special HIBE de-
capsulation key from the previous level’s special HIBE decapsulation key. After
each delegation, this previous special HIBE decapsulation key is removed. In
the lowest level of an epoch—in HIBE tree level o + e—an additional ordinary
HIBE decapsulation key is delegated the from previous level’s special HIBE de-
capsulation key. This ordinary HIBE decapsulation key is never removed from
the UPIBE decapsulation key.

Intuition for Security. The intuitive security argument for this construction
resembles the one from Section 3. Recall that, on exposure of a UPIBE de-
capsulation key, only those UPIBE encapsulations must remain secure whose
targeted identity string either is a true prefiz of the exposed key’s identity string
or branches off the exposed key’s identity string.” Encapsulations to true prefix
identity strings have their last HIBE encapsulation directed to an earlier special
HIBE decapsulation key. This special key is not stored in the exposed UPIBE
decapsulation key anymore, since the latter only contains the current level’s
special HIBE decapsulation key. Encapsulations to branched off identity strings
have the HIBE encapsulation of the branching epoch directed to an ordinary
HIBE decapsulation key that was never stored in the exposed UPIBE decap-
sulation key. Finally, all exposed decapsulation keys of the epoch-progression
mechanism only reveal parts of the HIBE tree from which future epochs can be
delegated. Thus, UPIBE encapsulations of our unbounded-depth construction
remain secure under non-trivial exposures of UPIBE decapsulation keys.

Construction. We specify our unbounded-depth UPIBE construction formally
in Figure 3. This construction uses a bounded-depth HIBE with maximal level
depth L = a+ ¢ = [log(2"/¢)] + €, where & is the security parameter.

The UPIBE encapsulation key consists solely of the main HIBE encapsulation
key. The initial UPIBE decapsulation key is generated by executing the epoch-
progression mechanism with the main HIBE decapsulation key to derive the first
epoch’s starting decapsulation key (Figure 3, lines 02-06). More concretely, this
mechanism delegates one ephemeral and one stored decapsulation key in each
of the first « HIBE levels (lines 03-04). Ephemeral key dkj is replaced after
delegating the two decapsulation keys of the next level. Stored key dk} will be
used for future epoch progressions. In level «, ephemeral key dkj is set as the

16

Proc IE.gen Proc IE.dec(dk, C)

00 B[] < L; Dep|] ¢ L; Dp[] + L 31 (I, Dgs, Dop) dk
01 (ek', dky) <5 IE.gen’ 32 d< 1 mode; e« [l/e]
02 For j=0toa—1: 33 ¢ol|...[|cer—1 + C with ¢; € C
03 dkf < IE.del’ (dkj, 0) 34 Require e = ¢’
04 dky < IE.del’(dkj, 0*||1) 35 For j=0toe—2
05 dkj dkl; Dp[s] — dk/ 36 K, g IE.dec’ (Doylj], c;)
06 Dep[0] < dkg 37 If d#e—1: dk}y Deple — 1]
07 ek « ek’ dk < (0, Dys, Dep) 38 Else: (dkp, dk}) < Deple — 1]
08 Return (ek, dk) 39 ki_, <s IE.dec’(dk},ce—1)

40 K «+ W(kg,...,ki._1,0C)

Proc IE.enc(ek, id)
09 Require id € {0,1}"*,1 € N*
10 idol| ... ||idi—1 + id with id; € {0,1}* Proc IE.del(dk, id)

41 Return K

11 d+ 1 mod¢; e + [l/e] 42 Require 4d € {0,1}*

12 Fore' =0toe—2: 43 (I, Dygs, Dep) + dk

13 id ¢ 44 d <1 mod ¢g; e + [l/e]

14 (ep,...,eqn_1) < € with e} € {0,1} 45 Ifd=0Ae > 0:

15 Forj=0toa—1: 46 (dkg, dk}) < Deple — 1]

16 id' <~ 0*|é} 47 Deple — 1] + dkj

17 Ford =0toe—2: 48 j < msdb(e—1,¢)

18 id < ider g |1 49 dky + Dylj]; Dglj] < L

19 did < idereieq]|0 50 For];/to a—1: o

20 (cl/,k.) + IE.enc'(ek, id") 51 dkg s IE.del'(dkp, 0" ")

o1 id e 52 dkY g TE.del’(dk), 0*||1)

22 (... €h_1) + e—1 with ¢} € {0,1} 93 dk qu? Dp[j] = dkY

23 For j =0to a— 1: 54 Ide;z’[e]idkO

24 id' <& 0Me) o9 e

25 For d — 0 L‘Old_ 1. 56 Deyle] < IE.del’(Deple], id| 1)
57 Else:

26 id < id(e—l)-s+d’ Hl

27 (chy,ki_y) < IE.enc’(ek, id")
26 Ce bl s

29 K+ W(kg, ..., kl_1,C)

30 Return (C, K)

58 dky < IE.del (Dyle], id||0)
59 dk} < IE.del'(Dgyle], id||1)
60 Deple] + (dky, dk})

61 dk < (141, Dgs, Dep)

62 Return dk

Fig. 3: Generic construction of unbounded-depth UPIBE IE from bounded-depth
HIBE scheme IE’ with ciphertext space C. Function msdb(z,y) computes the most
significant bit in which the bit-representations of x and y differ and core function W
is realized as XOR-sum @j;é k; and ignores input C'. In our chosen-ciphertext secure
instantiation we instantiate W with random oracle H*.

first epoch’s starting decapsulation key. We explain the specific encoding- and
padding-scheme for identity strings at the end of this paragraph.

UPIBE encapsulation splits the targeted identity string id into - \-long epoch
sub-strings. Our pseudo-code separates the processing of the first e — 1 epoch
sub-strings (lines 12-20) from the last epoch’s sub-string (lines 21-27). Roughly,
each epoch sub-string (composed in lines 17-19 resp. 25-26) is prepended with
a binary encoding of the corresponding epoch number (lines 14-16 resp. 22-
24). The binary encoding prefix represents the epoch-progression path to the
epoch’s starting node. For every epoch, an HIBE encapsulation directed to the
concatenated string of binary-encoded epoch number and epoch identity sub-
string is executed (line 20 resp. 27). The final UPIBE ciphertext is a simple

17

concatenation of all epoch HIBE ciphertexts; the output UPIBE key is an XOR-
sum of all encapsulated epoch HIBE keys.

On UPIBE decapsulation, the input ciphertext is decomposed, and each of
the resulting HIBE ciphertexts is decapsulated. For all previous epochs, the
stored lowest level ordinary decapsulation key is used for decapsulation (lines 35-
36). In the current epoch, the special decapsulation key is used for this (line 39).
Depending on whether the current epoch reached its lowest level or not, the spe-
cial decapsulation key is stored solitarily (line 37) or together with the ordinary
decapsulation key (line 38).

In most cases, UPIBE delegation simply uses the current epoch’s special
HIBE decapsulation key together with input identity string id to delegate a new
special HIBE decapsulation key that replaces the prior one (lines 56). Only if the
lowest level of the current epoch is reached, an additional ordinary HIBE decap-
sulation key is delegated and stored (line 58-60). A subsequent delegation starts
a new epoch and, therefore, uses the epoch-progression mechanism (lines 45-54).
This mechanism starts by deleting the previous epoch’s special decapsulation
key (lines 46-47). Then, it identifies the lowest existing decapsulation key in the
underlying binary-tree structure (line 48) with which the next epoch starting
node is delegated (lines 50-54). This subsequent starting node—basically the
immediate neighbor node in the binary tree—is used as the new epoch’s initial
decapsulation key.

We elaborate on some implementation details. To realize a binary tree in the
epoch-progression mechanism, the binary encoding of epoch numbers is padded
with (M — 1 = X) leading 0-bits in every level (lines 03-04, 16, 24, 51-52). For
the composition of epoch sub-strings, each level’s identity sub-string is appended
with a 1-bit (lines 18, 26) except for the last level in any previous epoch; previous
epochs’ last level sub-strings have an appended 0-bit (lines 19). This corresponds
to the use and delegation of special and ordinary decapsulation keys (lines 56,
58-59).

Depth of Multi-Level Epochs. Our unbounded-depth UPIBE construction is pa-
rameterized by variable ¢ that determines the number of delegations per epoch.
We note that for ¢ = oo, our UPIBE construction reduces to the known trivial
delegation design via unbounded-depth HIBE [37, 30, 3]. Thus, there is always
an ¢ for which our construction is at least as efficient as the previous approach.
Beyond that, using the flexibility of parameter €, our construction’s performance
can be adapted to different use cases. For example, depending on whether ci-
phertexts or decapsulation keys should be small, and depending on the expected
number of delegations in a setting, an optimal value € can be configured. Our
full evaluation is in Section 7.

2-Delegation HIBE. We want to note that each HIBE decapsulation key in
our construction from Figure 3 delegates at most two child decapsulation keys.
Thus, while reducing the level depth parameter L substantially from infinity in
UPIBE to a bounded value in the underlying HIBE, parameter D only grows
from 1 delegation per secret key in UPIBE to 2 in the underlying HIBE. With

18

our definition framework from Section 2 and our new perspective on delegation-
restricted HIBE, we lay the foundation for future work that may investigate
whether bounded-depth HIBE with limited delegation of D = 2 can be built
more efficiently than general bounded-depth HIBE.

Security. To support comprehensibility and avoid idealized assumptions, we first
reduce adaptive chosen-plaintext security IND{’E of our UPIBE construction to
adaptive security of the underlying HIBE in the standard model. In Section 4.1,
we augment our reduction with a new guessing technique that allows us to
trade the strength of the underlying HIBE (only selective security instead of
adaptive security) against idealized assumptions (random oracle model instead of
standard model). Relying only on selective secure HIBEs for adaptive security of
our UPIBE significantly extends the class of available HIBE constructions from
the literature. For full security against chosen-ciphertext attacks, we consider
different generic and direct techniques in Section 5.

Theorem 2. Unbounded-depth UPIBE protocol IE from Figure 3 offers adaptive
key indistinguishability in the standard model. More precisely, for every adaptive
chosen-plaintext adversary A attacking protocol IE in games IND?E according
to Definition 1 with parameters (L = oo, A\,D = 1), there exists an adaptive
chosen-plaintext adversary B attacking bounded-depth HIBE IE' in games IND?E/
according to Definition 1 with parameters (L', X, D) = ([log(2"/e)] +¢,A+1,2)
such that Advi% (A) < qGen - ¢Cnall - [liong/€] - AdVIsH (B), where & is the security
parameter, € is the construction’s epoch-depth parameter, qchan and qchan are
the numbers of queries to oracles Gen and Chall by adversary A, respectively,
liong 15 the level-depth of the longest identity string queried to oracle Chall by
adversary A, and the running time of B is about that of A.

Security Proof Overview. Our security proof for Theorem 2 is very similar to the
one for Theorem 1. The major technical difference is that here the security of each
UPIBE instance is reduced to only one bounded-depth HIBE instance’s security.
Reduction B, again, simulates all oracle queries of adversary A in game INDg
via queries to oracles in game INDg/. As in our proof from Section 3, for certain
UPIBE challenge queries to oracle Challjg, the reduction has to guess where to
embed underlying HIBE challenges of game INDg/. A hybrid argument that
implements theses guesses cause the loss factor in our advantage bound. The
general strategy for embedding challenges is to determine where the identity
string input of oracle Challjg branches off the delegation path of (potentially)
exposed UPIBE decapsulation keys. In contrast to our proof of Theorem 1,
reduction B here only needs to guess the epoch of the sub-string in which the
identity strings of challenge and exposure branch lie. We provide our formal
proof in the full version [38].

4.1 Relaxing Assumptions: Adaptive UPIBE from Selective HIBE

The above outlined standard model proof for our unbounded-depth UPIBE con-
struction from Figure 3 relies on adaptive secure bounded-depth HIBE. Yet,

19

the most suitable bounded-depth HIBEs (e.g., [5]) are only selective secure.
Generic techniques for turning selective secure schemes adaptive secure, as done
in [4, 5, 1, 10], rely on the random oracle model and induce an exponential loss
factor in the HIBE’s maximal level depth L. The simple idea of these techniques
is to replace each identity sub-string in the construction by the output of a ran-
dom oracle evaluated on this identity sub-string (i.e., idg|| ... ||id; is replaced by
H(idp)|| ... ||H(4d;)). The reduction then embeds sub-strings of the selective chal-
lenge identity in randomly chosen random-oracle-outputs. A reduction succeeds
if it embeds the selective challenge sub-strings in those random-oracle-outputs
whose input identity sub-strings form the adaptive challenge. This induces an
exponential loss in the maximal number of identity sub-strings per adaptive chal-
lenge. This is problematic because our UPIBE construction relies on an adaptive
secure bounded-depth HIBE with parameter L = a+e = [log(2"/¢)]+e¢, which is
linear in the security parameter . Thus, the loss factor would be exponential in x
when following the generic approach of turning the underlying HIBE adaptive
secure [4, 5, 1, 10] before using this HIBE to instantiate our unbounded-depth
UPIBE construction.

Solution: Guessing Essentials Only. Due to the way our construction makes use
of the underlying bounded-depth HIBE, we can carefully change the generic ap-
proach from [4, 5] in order to relax the assumption on the HIBE from adaptive
to selective security. Our main observation is that the two (virtual) compo-
nents in our UPIBE construction—epoch-progression mechanism and multi-level
epochs—encode information of different density. For this, consider an HIBE iden-
tity string to which our UPIBE encapsulation internally issues an HIBE encap-
sulation. The first part of such an HIBE identity string encodes an integer that
represents the epoch number in the upper epoch-progression mechanism. The
second part encodes a sub-string of the actual UPIBE identity string (i.e., the
identity sub-string for one epoch).

In order to embed a selective HIBE challenge in the adaptive UPIBE chal-
lenge, our reduction has to predict the branching epoch’s full HIBE identity
string in advance. In this epoch, the UPIBE challenge identity branches off the
delegated identity of the corresponding (exposed) UPIBE decapsulation key. To
predict this epoch’s full HIBE identity string, we treat the two parts—epoch
number and sub-string of UPIBE identity—differently. The branching epoch
number can simply be guessed with high probability. The reason is that poly-
nomially bounded users (and adversaries) only issue UPIBE identity strings of
polynomial length. Thus, also the number of epochs used to represent a UPIBE
identity string is polynomially bounded. To predict the second part of the HIBE
identity string—the branching epoch’s sub-string of the actual UPIBE identity
string—we employ the generic technique [4, 5] based on the random oracle model.
Since the depth of each multi-level epoch is bounded by constant parameter ¢,
the loss induced by this technique is only polynomial (not exponential) in .

Concrete Adjustments. We interpose a random oracle H in the following lines of
our construction in Figure 3: 18: id’ <~ H(ider.c1a/]|1); 19: 4d’ - H(ider.c1e—1][0);

20

26: id" <~ H(id(c_1).c+a[|1); 56: Deple] <—g IE.del'(Deple], H(id||1)); 58: dkj <
IE.del'(D.ple], H(id||0)); 59: dk} «g IE.del’(Deyple], H(id||1)). However, we leave
the identity sub-strings of the upper epoch-progression mechanism untouched.
Thus, lines 03-04, 16, 24, and 51-52 remain the same. A full proof of following
Theorem 3 is given in the full version [39)].

Theorem 3. Adjusting unbounded-depth UPIBE protocol IE from Figure 8 of-
fers adaptive key indistinguishability in the random oracle model. More pre-
cisely, let H be a random oracle, then for every adaptive chosen-plaintext ad-
versary A attacking protocol IE in games IND%E according to Definition 1 with
parameters (L = oo, A\,D = 1), there exists a selective chosen-plaintext adver-
sary B attacking bounded-depth HIBE IE' in games INDII)E/ according to Def-
inition 1 with parameters (L', N,D") = ([log(2%/e)] + &, A + 1,2) such that
AdviE(A) < qaen - qonan - ((hong)? - (1)) - AdVII (B), where k is the security
parameter, € is the construction’s epoch-depth parameter, qGen, qChal, ond qug
are the number of queries to oracles Gen, Chall and the random oracle by adver-
sary A, respectively, liong s the level-depth of the longest identily string queried
to oracle Chall by adversary A, and the running time of B is about that of A.

5 CCA Secure UPIBE

Now we turn our focus on the task of achieving chosen-ciphertext security for
bounded- and unbounded-depth UPIBE. While it might be tempting to think
that similar to HIBEs one could generically convert CPA-secure UPIBE into
CCA-secure ones using the BCHK (often also called CHK) compiler [9, 6], this
unfortunately does not work: BCHK needs one delegation per decapsulation
from the same decapsulation key, but UPIBE only offers one delegation for each
decapsulation key in total. Thus, we need to adopt different strategies for con-
structing CCA-secure UPIBE.

5.1 Bounded-depth UPIBE

FO-Transform. Having in mind that we construct bounded-depth UPIBE from
(bounded-collusion) IBE, a natural choice is to apply the Fujisaki-Okamoto (FO)
transform [19] and in particular one of its modular variants [28]. FO typically
considers single instances, but in our construction of UPIBE one has to deal
with multiple parallel IBE ciphertexts and this requires some care. Recently,
Cini et al. in [11] considered this issue of parallel ciphertexts in FO for reducing
decryption errors as well as constructing Bloom-Filter KEMs (BFKEMs) from
IBE. Though [11] relies on a single IBE instance, it is quite straightforward to
adapt their approach to UPIBE.!! Unfortunately, using FO in this way, besides
being bound to the random oracle model (ROM), requires an overhead of I
encryptions of the underlying IBE during decapsulation, which can be significant.

' We would sample a random key k and derive (ro, . ..,r—1,k") = G(k) from a random
oracle G and encapsulate k; with randomness r; for the i’th instance such that
K=ko®...®k_1 and then use k" as the overall encapsulation key.

21

Split-Key PRF. An alternative, more efficient, and more flexible approach is
made possible when we view our UPIBE construction in Section 3 as parallel
bounded-collusion IBE and take inspiration from Giacon et al. [22]. In partic-
ular, recall that our overall ciphertext C' = cp|...|l¢;_; is the concatenation
of I ciphertexts of independent IBEs and the encapsulation key is computed
as K + W(kg,...,kj_;,C), where W represents what is called a core function
by Giacon et al. [22]. We note that [22] focuses on parallel KEM combiners,
and show that if W is a split-key pseudorandom function (skPRF), it yields
a CCA-secure KEM if at least one of the | KEMs is CCA secure. Various in-
stantiations of skPRFs in the ROM and standard model with different types of
trade-offs are discussed in [22]. For instance the PRF-then-XOR composition
W(kb, ..., k1, C) == @'} Fi(k],C), where F;’s are PRFs, is a skPRF in the
standard model. Our focus now is not on combiners and as the use of our in-
stances is dynamic (i.e., the depth can vary), this does not work for UPIBE.
Here we need to require that all instances are CCA secure. Nevertheless, as
we discuss below, the use of an skPRF still gives advantages when it comes to
standard model constructions.

Achieving CCA-secure IBE. While CCA security can be easily achieved in the
ROM by starting from a CPA-secure (bounded-collusion) IBE and applying the
FO transform, the overall overhead due to the FO is identical when directly ap-
plying FO (as discussed above). However, we can obtain CCA-secure bounded-
depth UPIBE in the standard model when relying on an IBE scheme that directly
provides CCA security in the standard model (e.g,. [20] or the CCA-secure ver-
sion of the bounded-collusion IBE in [15]). Alternatively, if one accepts that the
IBEs are replaced by CPA-secure depth 2 HIBEs, one can simply use the BCHK
compiler [9, 6].

Now, we will show that the bounded-depth UPIBE protocol from Figure 2
is CCA-secure when the underlying bounded-collusion IBE IE’ is CCA-secure
(e.g., [15]) and the core function W is based on a split-key pseudorandom function
F with n = L (cf. the full version [38] for the definition). For reasons that we
will discuss below, we include a special KEM key k and a special ciphertext é
into ek of the UPIBE protocol IE in order to “pad” calls to W to always take L
inputs (for all cases where depth I < L).

Theorem 4. Bounded-depth UPIBE protocol IE from Figure 2 offers adaptive
key indistinguishability under chosen-ciphertext attacks in the standard model.
More precisely, for every adaptive chosen-ciphertext adversary A attacking pro-
tocol IE in games IND?E according to Definition 1 with parameters (L,A\,D = 1),
there exists an adversary Bg attacking PRG G, an adversary Bw against the
split-key pseudorandomness of W, and an adaptive chosen-ciphertext adver-
sary Brg: attacking bounded-collusion IBE IE' in games IND%E, according to Def-
inition 1 with parameters (L', X', D') = (1, A\+1,2) such that Advis'(A) < ggenl?-
(QGchIChanL Advgd(Be) + 1)+QQGcn(JChan|—' (QChau Adv, (BW)ﬂLAdViIIﬁ]q(BIE/)))
where qonan and qgen are the number of queries to oracle Chall and Gen by ad-
versary A, and the running times of Ba, Bw, and Big is about that of A.

22

Security Proof Overview. The strategy for the proof is analogous to that of
Theorem 1, but we will proceed in a sequence of Games moving from the game
IND{; to IND{, which allows us to follow the strategy by Giacon et al. [22].
In contrast to their proof, in our case all instances are required to be CCA
secure. This is since we require CCA security of the underlying IBE IE’ at the
branching positions of identities that are asked to the challenge oracle, which
can be placed at any of the L positions adaptively. We need to take some care
when using the pseudorandomness of the split-key pseudorandom function for
W, as we use n = L but the number of required inputs vary with the actual
depth of the identities I. Therefore, we always use L inputs for calls to W where
for the L — [rightmost inputs we simply use a fixed key k and ciphertext é (we
will not make this fact explicit in the proof). We provide a formal proof in the
full version [38].

5.2 Unbounded-depth UPIBE

For the same reasons as discussed in Section 5.1 we prefer to avoid a generic use
of the FO transform for proving CCA security of our unbounded-depth UPIBE.
Unfortunately, the generic skPRF approach pursued in Section 5.1 requires an a
priori bound on the depth, which is not the case for unbounded-depth UPIBE.

Consequently, although we follow the same overall idea, as already mentioned
in Figure 3, we instantiate the core function W directly by a random oracle H*,
i.e., derive the overall key as K <« H*(ki,..., ki, ¢1,...,¢) where (k;,c;) are
the encapsulation outputs of the chosen-ciphertext secure bounded HIBE. Since
our focus is on efficiency, and the strategy to prove Theorem 3 already requires
the ROM, this seems to be a meaningful choice. For CCA security of the single
ciphertexts of the underlying bounded-depth HIBE, the most efficient approach
is a use of the BCHK compiler [9, 6]. This yields a very flexible approach as due
to the choice of the required strongly secure signature scheme there are many
performance and bandwidth trade-offs available (see also Section 7). Using this
strategy we can show the following for our unbounded-depth UPIBE. The proof
of Theorem 5 is provided in the full version [38].

Theorem 5. Adjusting unbounded-depth UPIBE protocol 1IE from Figure 3 as
described in Section 4.1 offers adaptive key indistinguishability under chosen-
ciphertext attacks in the random oracle model. More precisely, let H and H*
be random oracles, then for every adaptive chosen-ciphertext adversary A at-
tacking protocol IE in games IND%E according to Definition 1 with parame-
ters (L = o0, \,D = 1), there exists a selective chosen-ciphertext adversary B
attacking bounded-depth HIBE IE' in games IND?E/ according to Definition 1
with parameters (L', X', D') = ([log(2%/¢)] + &, A + 1,2) such that Advig(A) <
qGen * qchan + ((long)? * (qu)°) - (Adv}%‘:}(B) + %) where k is the security
parameter, € is the construction’s epoch-depth parameter, qchal, Gen, qu and
qu~ are queries to oracles Chall, Gen and random oracles H and H* by adver-
sary A, respectively, liong s the level-depth of the longest identity string queried
to oracle Chall by adversary A, and the running time of B is about that of A.

23

6 Key-Updatable KEM from UPIBE

A Key-Updatable Key Encapsulation Mechanism (KU-KEM) [30, 37] is a KEM
K = (K.gen,K.enc,K.dec, K.up) with additional update algorithms K.up for
encapsulation keys and decapsulation keys. The computation of each update
ek’ +¢ K.up(ek, ad) resp. dk’ <—g K.up(dk, ad) is determined by a bit string ad
that is arbitrarily chosen by the user. One can think of these update bit strings
as new information (aka. associated data) that is added to the context of the
ongoing session. Updates of encapsulation keys and decapsulation keys can be
conducted independently without information being transmitted between hold-
ers of encapsulation and decapsulation key. The feature of independent updates
with respect to bit strings constitutes the crucial difference to significantly weaker
notions like Updatable PKE [31, 14] that offer more efficient instantiations. We
refer the interested reader to a discussion by Balli et al. [3] who elaborate on the
shortcomings of Updatable PKE in the context of strongly secure messaging.

As long as both components of a KU-KEM key pair are updated with re-
spect to the same bit strings—meaning, their context is updated compatibly—,
the key pair remains compatible. More precisely, a generated pair consisting of
encapsulation key and decapsulation key remains compatible if the list of bit
strings for updates applied on the encapsulation key equals the list of bit strings
for updates applied on the decapsulation key. We follow the slightly stronger
variant of KU-KEM by Balli et al. [3] that furthermore requires for compatibil-
ity of a key pair that the list of bit strings for updates together with the list of
sent and received encapsulation ciphertexts equals on both sides.

For security of KU-KEM, two goals beyond pure key-indistinguishability are
required: (1) Forward-secrecy, meaning that an updated future version of the
current decapsulation key can be exposed to an adversary without harming con-
fidentiality of ciphertexts produced with a current or previous (compatible) ver-
sion of the corresponding encapsulation key—in short, old ciphertexts remain
secure if future decapsulation keys are exposed; (2) Effective divergence, mean-
ing that an incompatible decapsulation key can be exposed to an adversary
without harming confidentiality of ciphertexts produced with the corresponding
(incompatible) encapsulation key—in short, any difference in update bit strings
makes encapsulation key and decapsulation key fully independent.

KU-KEM is a special form of UPIBE where KU-KEM update bit strings
are implemented via UPIBE identity sub-strings, KU-KEM decapsulation key
updates are realized via UPIBE delegations, and KU-KEM encapsulation key
updates are realized via UPIBE derivations. The construction of KU-KEM from
UPIBE is, therefore, straight forward: K.gen := IE.gen; K.up(ek, ad) := IE.der(ek,
ad = id) resp. K.up(dk, ad) = IE.del(dk, ad = id); K.enc(ek) executes IE.enc(ek,
€) and updates ek via IE.der(ek, ad = c); K.dec(dk, ¢) executes IE.dec(dk, c) and
updates dk via IE.del(dk, ad = ¢). (Pseudo-code is given in the full version [38].)
This construction was first proposed by Poettering and Rosler [37] and slightly
adapted in other works [30, 3]. Yet, we are the first to reduce the underlying
assumption from general unbounded-depth HIBE to unbounded-depth UPIBE.
For space reasons, we defer the formal definition of KU-KEM by Balli et al. [3]

24

as well as our proof of Theorem 6 to the full version [38]. This proof tightly
reduces the security of the KU-KEM construction to adaptive chosen-ciphertext
security of the underlying unbounded-depth UPIBE scheme.

Theorem 6. KU-KEM protocol K offers one-wayness of encapsulated keys. More
precisely, for every adaptive chosen-ciphertext adversary A attacking protocol K,

there exists an adaptive chosen-ciphertext adversary B attacking unbounded-

depth HIBE TE in games IND%E according to Definition 1 with parameters (L', X',

D) = (00, A, 1) such that Adv® (A) < AdviE (B), where the running time of B

is about that of A.

7 Evaluation

Our evaluation considers (asymptotic and concrete) parameter sizes of one-way
CCA (formally, KUOW) secure KU-KEMSs built ¢rivially from unbounded-depth
HIBESs on the one side and KU-KEMs based on our UPIBE construction that re-
lies on bounded-depth HIBEs from Section 5.2 on the other side. Before starting
the concrete analysis, we note that CCA security of (un)bounded-depth HIBEs
can be generically achieved efficiently via the BCHK transform [9, 6] using a
strongly secure one-time-signature scheme.'?

Since we have applicability and performance in mind for our application to-
wards optimally secure messaging protocols, we include bounded-depth HIBE
schemes that are secure in the random-oracle model (ROM). Moreover, we
looked at all applicable unbounded-depth HIBEs and selected three construc-
tions [35, 34, 24] that suit the application we have in mind best. Depending on
the concrete bounded-depth HIBE scheme, it is a common technique to reduce
public parameter sizes in the ROM [5]. This, however, does not work generi-
cally. Particularly, in the HIBE scheme by Gong et al. (GCTC) [24], the un-
derlying encapsulation key structure seemingly prevents this form of parameter
compression. The same seems to be the case for Langrehr-Pan (LP) [34], while
Lewko (L) [35] already has compact encapsulation keys (however, with a large
constant).

For our KU-KEM construction via the UPIBE paradigm (where we only re-
quire a selectively secure HIBE with polynomially bounded depth), the strongest
candidate is the Boneh-Boyen-Goh (BBG) HIBE [5]. Here, encapsulation key size
is only two group elements using the ROM. However, we cannot utilize the ROM
to reduce the size of BBG decapsulation keys since these keys require a certain
structure. Hence, the BBG HIBE has linear-size decapsulation keys, but enjoys
constant-size encapsulation keys and ciphertexts (all in the maximal depth).

By considering the most efficient (un)bounded-depth HIBE schemes, we con-
duct a fair comparison between KU-KEMs from trivial UPIBE via unbounded-
depth HIBE and KU-KEMs from our novel UPIBE construction. In Table 1, we
list CCA secure KU-KEMs from CCA secure (un)bounded-depth HIBEs with
relevant size and performance parameters.

12 Tn our concrete setting, for standard-model HIBEs, we use Groth’s pairing-free sig-
nature scheme [26] while for HIBEs in the ROM, we use Schnorr signatures [40].

25

UPIBE‘Via HIBE ‘ Encapsulation key size Ciphertext size Decapsulation key size ‘Modcl‘

Triv. |L [35] 60/G1| +2|Gr| + 1A (100 + 12)|G4 | (100 + 60)|Go| StM
Triv. |LP [34] (27 +4)|G1| + (27 + 6)|Ga| + X (71 +11)|G:| (71 + 2)|G2| StM
Triv. |GCTC [24]| (Bn+9+ [I/n])|G1] + 3|Gr| [(9[(l +1)/n]+ 2)|G1]|((9 + 3n)[l/n] 4+ 3n+ 9 — 31)|G2|| StM
Ours BBG [5] (L+ [1/e])|Ga| + 1|G2| (3[1/e])|Ga| (O(a- (a+¢€)) + [I/e] + @)|G2| | ROM
UPIBE‘Via HIBE ‘ Key generation (# exp.) Encapsulation (# exp.) |Decapsulation (# exp., # pairings)‘ Ass. ‘
Triv. |L [35] 60 (G1), 80 (G2), 2 (Gr) 601 + 62 (G1), 2 (Gr) (611 (G2), 101 +1) DLIN

Triv. [LP [34] |27 +4) (G1), 2y +6) (G2)| (TL+11) (Ga), 2 (Gr) | ((T(L+1) +2) (Ga), (Tl +2) +1) |SXDH
Triv. |GCTC [24]| 6(n+3) (G2), 1 (Gr) |(15[1/n] +31) (G1), 3 (Gr)| (15[1/n] + 31 (Gz2), 9[l/n] +1) |SXDH
Ours [BBG [5] i (@), 1 () ((Ti/€] + 5) (G1), 1 (Gr) (e +afe+2) (G2), 2[l/]) |BDHE

Table 1: Comparison of CCA secure KU-KEMs with parameter sizes and performance
instantiated from the standard-model unbounded-depth HIBEs L [35], LP [34], and
GCTC [24] (trivially) and the bounded-depth HIBE BBG [5] (via our KU-KEM-from-
UPIBE approach from Section 6). Here, « + € is the maximum level (and « can be
considered linear in the security parameter), [is the current number of key updates, v
is the output bit length of a collision-resistant hash function, and ¢ is the epoch-depth
in our UPIBE. n > 1 is the performance parameter of GCTC [24]. We use the type-3
pairing setting with e : G1 x G2 — Gr for prime-order groups G1,G2, and Gr. Here,
we do not consider the tightness of the reductions to the underlying assumptions.

We see that all but one known trivial KU-KEM instantiations via [35, 24, 34]
have ciphertext and decapsulation-key sizes that scale linearly in the number of
delegations (which corresponds to KU-KEM key updates). Only GCTC [24] has
a trade-off for ciphertext and key sizes via their performance parameter n. With
our non-trivial UPIBE approach from bounded-depth HIBEs, taking the BBG
scheme [5] as instantiation, we obtain ciphertext sizes that only scale linearly
in the number of epochs, which can be adjusted by the depth-parameter ¢ as
described in Section 4. Moreover, our KU-KEM approach via BBG enjoys very
short encapsulation keys. This yields a significant reduction in encapsulation key
and ciphertext sizes for KU-KEMs compared to other approaches (see Table 1).

Detailed Analysis. For our following analysis concerning parameter sizes and per-
formance, from the three trivial standard-model KU-KEMs based on unbounded-
depth HIBEs [35, 24, 34], we chose GCTC [24] which outperforms the other
two—particularly because of their scalability parameter n that allows to trade-
off ciphertext and encapsulation/decapsulation key sizes.'® Hence, the GCTC
scheme is the best suitable reference instantiation of KU-KEM via the trivial
UPIBE construction for a concrete comparison regarding the applications we
have in mind.

Application Requirements. Our focus is on short ciphertexts and encapsulations
keys (for bandwidth reasons) while on the sender and the receiver sides, we

13 Essentially, GCTC [24] improves Lewko [35] towards shorter ciphertext sizes and
LP [34] deals with tightness of the Lewko scheme [35], at the expense of rather large
encapsulation keys (see vy-factor).

26

T T T T 20 F—T T T T]
sl —A— Ours via BBG e =6 B —A— Ours via BBG, e =6 <
o —&— Ours via BBG € = 40 —&— Ours via BBG, ¢ = 40 {:
b —4— Triv. via GCTC, n = 6 & 15| | Tiiv. via GCTC, n =6 | _—~ |
i‘ 61 Triv. via GCTC, n = 40 B R Triv. via GCTC, n =40 |-
S] —
@ & o .
A @ E
g RSt 510 o~ .
4 s n - =
S g 8 +
E —] = A
= A 2 50 = A i
Z oof PECL S =3 £ A
g AT ¢ — A
] A AT K B &
A A oy =
= & 5 o0 000009 | ol = o oo o0 oo o®
| I | | I | I I I I | |
0 50 100 150 200 250 0 50 100 150 200 250
Number of key updates Number of key updates
T T T T T T
—A— Ours via BBG,e =6 &0
) 600 —&— Ours via BBG, € = 40 i
= —4 Triv. via GCTC, n = 6
= Triv. via GOTC, n = 40
o
N
TS |
i)
=
8
=
= 200 .
Z
2
&
g
A SN Y A
[e e i
I I | | I |
0 50 100 150 200 250

Number of key updates

Fig. 4: Comparison of CCA secure KU-KEM encapsulation and decapsulation key as
well as ciphertext sizes in kilobytes (KB) from (un)bounded-depth HIBEs. For the
pairing group, we chose BLS12-381 (which gives around 128 bit security); this means
per element in G1, G2, and Gr, we have 382, 764, 4572 bits.

want fast encapsulation and fast decapsulation, respectively. As we argue now,
our non-trivial UPIBE approach with BBG outperforms the trivial KU-KEM
construction with GCTC in all of the metrics mentioned above. We recall that
our KU-KEM decapsulation is based on the actual ciphertext decapsulation
and an additional key delegation of the underlying HIBE. Moreover, we can
compress the identity string via algorithm IE.der to compute an identity-specific
encapsulation key for BBG and GCTC. We currently do not see how to perform
this compression for [35, 34].

Bandwidth Comparison. We observe that the performance parameter n in GCTC
plays a similar role as our depth parameter € in UPIBE; hence, we compare it at
the same level. As illustrative examples, we choose ¢ = n = 6 and ¢ = n = 40.
From the graphs in Figures 4 and 5, we see that the encapsulation key for the
BBG-based KU-KEM is very short. The ciphertext size of all KU-KEMs scales
with € and n. Our BBG-based approach has the shortest ciphertext sizes of all.
For decapsulation key sizes, the GCTC approach is more efficient; however, as
we argued with the application of secure messaging in mind, this is tolerable.
Hence, concerning parameter sizes, we conclude that the BBG approach has
shorter ciphertexts and smaller encapsulation key at the expense of slightly larger
decapsulation keys compared to the trivial GCTC-based KU-KEM approach.

27

T T T T T
—A— Ours via BBG, e =6 ©
~©— Ours via BBG, € = 40 —
—+— Triv. via GCTC, n =6 —

400 |- Triv. via GCTC, n =40 [~ -

1,500 F— T T T (—
. —A— Ours via BBG, € = x

—&— Ours via BBG, € = 40
—*— Triv. via GCTC, n =6

1,000 |- Triv. via GCTC, n =40 | B

2

\‘)‘»

Encapsulation [in # exp.]
=

e
-
oL - oo oo aboo0 8 |

| ! | | | | ! | | !
0 50 100 150 200 250 0 50 100 150 200 250

Number of key updates Number of key updates

Decapsulation [in # of pairing equivalents]
bl

Fig. 5: Comparison of CCA secure KU-KEM key generation, encapsulation, and de-
capsulation performance from un-/bounded-depth HIBEs. We estimate that a G1 ex-
ponentiation is 10 times more efficient than a pairing.

Computation Comparison. In terms of computation complexity (Figure 5), we
see that the BBG approach significantly outperforms the GCTC-based approach
for encapsulation and decapsulation. The (initial) key generation for the BBG-
based and for GCTC-based approaches are comparable efficiency-wise and con-
stant in the number of key updates; our approach needs o many exponentiations
while GCTC’s number of exponentiations scales linearly in their performance
parameter n. For encapsulation and decapsulation (where latter uses key del-
egation and decryption of the underlying HIBE), the BBG-based KU-KEM is
more efficient; particularly, in situations when a large number of key updates
is needed. See that the larger e, the more efficient is the decapsulation of the
BBG-based KU-KEM approach. The reason is that the BBG HIBE ciphertexts
are of constant size and need only a constant number of pairings per ciphertext
for decryption.

Summary. In conclusion, a KU-KEM via our unbounded-depth UPIBE construc-

tion, instantiated with the BBG HIBE, has shorter ciphertext and encapsulation-

key sizes compared to the GCTC-based solution with analogous parameter choices
(being the most efficient unbounded-depth HIBE known for trivial UPIBE) at

the expense of a slightly larger decapsulation key. Additionally, the decapsulation

and, particularly, the encapsulation of the BBG-based KU-KEM are significantly

more efficient compared to the GCTC-based trivial KU-KEM. Hence, for our en-

visioned application of strongly secure messaging, we can tolerate slightly larger

decapsulation keys while achieving more efficient decapsulation and encapsula-

tion as those operations happen rather often in KU-KEMs.

Acknowledgements. This work was supported by the ECSEL Joint Under-
taking (JU) under grant agreement No 826610 (COMP4DRONES) and by the
Austrian Science Fund (FWF) and netidee SCIENCE under grant agreement
P31621-N38 (PROFET).

28

References

10.

11.

12.

13.

14.

Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553-572. Springer,
Heidelberg (May / Jun 2010). https://doi.org/10.1007/978-3-642-13190-5_ 28
Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: Security notions, proofs, and
modularization for the Signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 129-158. Springer, Heidelberg (May
2019). https://doi.org/10.1007/978-3-030-17653-2_5

Balli, F., Rosler, P., Vaudenay, S.: Determining the core primitive for opti-
mally secure ratcheting. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020,
Part III. LNCS, vol. 12493, pp. 621-650. Springer, Heidelberg (Dec 2020).
https://doi.org/10.1007/978-3-030-64840-4 21

Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryp-
tion without random oracles. In: Cachin, C., Camenisch, J. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 223-238. Springer, Heidelberg (May 2004).
https://doi.org/10.1007/978-3-540-24676-3 14

Boneh, D., Boyen, X., Goh, E.J.: Hierarchical identity based encryption
with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, wvol. 3494, pp. 440-456. Springer, Heidelberg (May 2005).
https://doi.org/10.1007/11426639_ 26

Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM Journal on Computing 36(5), 1301-1328 (2007)
Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213-229. Springer, Heidelberg
(Aug 2001). https://doi.org/10.1007/3-540-44647-8 13

Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255-271. Springer,
Heidelberg (May 2003). https://doi.org/10.1007/3-540-39200-9 16

Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. In: Cachin, C., Camenisch, J. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 207—222. Springer, Heidelberg (May
2004). https://doi.org/10.1007/978-3-540-24676-3__13

Cash, D., Hotheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523-552. Springer, Heidelberg (May / Jun 2010). https://doi.org/10.1007/978-3-
642-13190-5_ 27

Cini, V., Ramacher, S., Slamanig, D., Striecks, C.: CCA-secure (puncturable)
KEMs from encryption with non-negligible decryption errors. In: Moriai, S., Wang,
H. (eds.) ASTACRYPT 2020, Part I. LNCS, vol. 12491, pp. 159-190. Springer, Hei-
delberg (Dec 2020). https://doi.org/10.1007/978-3-030-64837-4_ 6

Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and appli-
cations to efficient forward-secret O-RTT key exchange. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 425-455. Springer,
Heidelberg (Apr / May 2018). https://doi.org/10.1007/978-3-319-78372-7_ 14
Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In:
Feigenbaum, J. (ed.) ACM CCS-9 DRM Workshop 2002 (2002)

Dodis, Y., Karthikeyan, H., Wichs, D.: Updatable public key encryption in the
standard model. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part III (2021)

29

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-64840-4_21
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-030-64837-4_6
https://doi.org/10.1007/978-3-319-78372-7_14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65-82. Springer,
Heidelberg (Apr / May 2002). https://doi.org/10.1007/3-540-46035-7_5
Dottling, N., Garg, S.: From selective IBE to full IBE and selective HIBE. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 372-408.
Springer, Heidelberg (Nov 2017). https://doi.org/10.1007/978-3-319-70500-2_ 13
Dottling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401,
pp. 537-569. Springer, Heidelberg (Aug 2017). https://doi.org/10.1007/978-3-319-
63688-7_18

Durak, F.B., Vaudenay, S.: Bidirectional asynchronous ratcheted key agreement
with linear complexity. In: Attrapadung, N., Yagi, T. (eds.) IWSEC 19. LNCS, vol.
11689, pp. 343-362. Springer, Heidelberg (Aug 2019). https://doi.org/10.1007/978-
3-030-26834-3_20

Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M.J. (ed.) CRYPTO’99. LNCS, vol. 1666, pp. 537-554.
Springer, Heidelberg (Aug 1999). https://doi.org/10.1007/3-540-48405-1_ 34
Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445-464. Springer, Hei-
delberg (May / Jun 2006). https://doi.org/10.1007/11761679_ 27

Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASTACRYPT 2002. LNCS, vol. 2501, pp. 548-566. Springer, Heidelberg (Dec 2002).
https://doi.org/10.1007/3-540-36178-2_ 34

Giacon, F., Heuer, F., Poettering, B.: KEM combiners. In: Abdalla, M., Dahab,
R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 190-218. Springer, Heidelberg
(Mar 2018). https://doi.org/10.1007/978-3-319-76578-5_7

Goldwasser, S., Lewko, A.B., Wilson, D.A.: Bounded-collusion IBE from key homo-
morphism. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 564-581. Springer,
Heidelberg (Mar 2012). https://doi.org/10.1007/978-3-642-28914-9 32

Gong, J., Cao, Z., Tang, S., Chen, J.: Extended dual system group and shorter un-
bounded hierarchical identity based encryption. Des. Codes Cryptogr. 2016 80(3),
525-559 (2016)

Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable
encryption. In: 2015 IEEE Symposium on Security and Privacy. pp. 305-320. IEEE
Computer Society Press (May 2015). https://doi.org/10.1109/SP.2015.26

Groth, J.: Simulation-sound NIZK proofs for a practical language
and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASI-
ACRYPT 2006. LNCS, vol. 4284, pp. 444-459. Springer, Heidelberg (Dec
2006). https://doi.org/10.1007/11935230_ 29

Gunther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full for-
ward secrecy. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III.
LNCS, vol. 10212, pp. 519-548. Springer, Heidelberg (Apr / May 2017).
https://doi.org/10.1007/978-3-319-56617-7_18

Hoftheinz, D., Hoévelmanns, K., Kiltz, E.: A modular analysis of the
Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017,
Part I. LNCS, vol. 10677, pp. 341-371. Springer, Heidelberg (Nov 2017).
https://doi.org/10.1007/978-3-319-70500-2_ 12

Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466-481. Springer, Heidelberg
(Apr / May 2002). https://doi.org/10.1007/3-540-46035-7__31

30

https://doi.org/10.1007/3-540-46035-7_5
https://doi.org/10.1007/978-3-319-70500-2_13
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/11761679_27
https://doi.org/10.1007/3-540-36178-2_34
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1007/978-3-642-28914-9_32
https://doi.org/10.1109/SP.2015.26
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/3-540-46035-7_31

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state
compromise: The safety of messaging. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 33—-62. Springer, Heidelberg (Aug
2018). https://doi.org/10.1007/978-3-319-96884-1_ 2

Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: Almost-optimal guaran-
tees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019,
Part I. LNCS, vol. 11476, pp. 159-188. Springer, Heidelberg (May 2019).
https://doi.org/10.1007/978-3-030-17653-2_6

Jost, D., Maurer, U., Mularczyk, M.: A unified and composable take on ratcheting.
In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 180—
210. Springer, Heidelberg (Dec 2019). https://doi.org/10.1007/978-3-030-36033-
T

Katz, J.: Binary tree encryption: Constructions and applications. In: Lim, J.I., Lee,
D.H. (eds.) ICISC 03. LNCS, vol. 2971, pp. 1-11. Springer, Heidelberg (Nov 2004)
Langrehr, R., Pan, J.: Unbounded HIBE with tight security. In: Moriai, S., Wang,
H. (eds.) ASTACRYPT 2020, Part II. LNCS, vol. 12492, pp. 129-159. Springer,
Heidelberg (Dec 2020). https://doi.org/10.1007/978-3-030-64834-3 5

Lewko, A.B.: Tools for simulating features of composite order bilinear groups
in the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 318-335. Springer, Heidelberg (Apr 2012).
https://doi.org/10.1007/978-3-642-29011-4_ 20

Poettering, B., Résler, P.: Asynchronous ratcheted key exchange. Cryptology
ePrint Archive, Report 2018/296 (2018), https://eprint.iacr.org/2018/296
Poettering, B., Rosler, P.: Towards bidirectional ratcheted key exchange. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp.
3-32. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-96884-
1.1

Rosler, P., Slamanig, D., Striecks, C.: Unique-path identity based encryption
with applications to strongly secure messaging. Cryptology ePrint Archive, Paper
2023/248 (2023), https://eprint.iacr.org/2023/248, https://eprint.iacr.
org/2023/248

Rosler, P., Slamanig, D., Striecks, C.: Unique-path identity based encryption with
applications to strongly secure messaging. In: Advances in Cryptology - EURO-
CRYPT 2023 - 42th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, 2023 Proceedings. Lecture Notes in Computer
Science, Springer (2023)

Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO’89. LNCS, vol. 435, pp. 239-252. Springer, Heidelberg (Aug
1990). https://doi.org/10.1007/0-387-34805-0_ 22

Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196, pp. 47-53. Springer, Heidelberg
(Aug 1984)

Tessaro, S., Wilson, D.A.: Bounded-collusion identity-based encryption from
semantically-secure public-key encryption: Generic constructions with short cipher-
texts. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 257—274. Springer,
Heidelberg (Mar 2014). https://doi.org/10.1007/978-3-642-54631-0_15

31

https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-36033-7_7
https://doi.org/10.1007/978-3-030-36033-7_7
https://doi.org/10.1007/978-3-030-64834-3_5
https://doi.org/10.1007/978-3-642-29011-4_20
https://eprint.iacr.org/2018/296
https://doi.org/10.1007/978-3-319-96884-1_1
https://doi.org/10.1007/978-3-319-96884-1_1
https://eprint.iacr.org/2023/248
https://eprint.iacr.org/2023/248
https://eprint.iacr.org/2023/248
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-642-54631-0_15

	Unique-Path Identity Based Encryption With Applications to Strongly Secure Messaging

