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Abstract. The goal of the bounded storage model (BSM) is to construct
unconditionally secure cryptographic protocols, by only restricting the
storage capacity of the adversary, but otherwise giving it unbounded
computational power. Here, we consider a streaming variant of the BSM,
where honest parties can stream huge amounts of data to each other so
as to overwhelm the adversary’s storage, even while their own storage
capacity is significantly smaller than that of the adversary. Prior works
showed several impressive results in this model, including key agreement
and oblivious transfer, but only as long as adversary’s storage m = O(n2)
is at most quadratically larger than the honest user storage n. Moreover,
the work of Dziembowski and Maurer (DM) also gave a seemingly match-
ing lower bound, showing that key agreement in the BSM is impossible
when m > n2.
In this work, we observe that the DM lower bound only applies to a
significantly more restricted version of the BSM, and does not apply
to the streaming variant. Surprisingly, we show that it is possible to
construct key agreement and oblivious transfer protocols in the streaming
BSM, where the adversary’s storage can be significantly larger, and even
exponential m = 2O(n). The only price of accommodating larger values
of m is that the round and communication complexities of our protocols
grow accordingly, and we provide lower bounds to show that an increase
in rounds and communication is necessary.
As an added benefit of our work, we also show that our oblivious transfer
(OT) protocol in the BSM satisfies a simulation-based notion of security.
In contrast, even for the restricted case of m = O(n2), prior solutions only
satisfied a weaker indistinguishability based definition. As an application
of our OT protocol, we get general multiparty computation (MPC) in
the BSM that allows for up to exponentially large gaps between m and
n, while also achieving simulation-based security.
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1 Introduction

It is well known that Alice and Bob cannot agree on a shared secret by com-
municating over public (authentic) channel, when the eavesdropper Eve has un-
bounded computational resources. Thus, traditional cryptography assumes that
Eve is “resource bounded”, and most commonly, bounds her run time. Many
key agreement schemes have been constructed in this setting, starting with the
seminal work of Diffie and Hellman [8], under various computational hardness as-
sumptions. Of course, the dream of cryptography is to construct unconditionally
secure protocols, without relying on any unproven assumptions, but unfortu-
nately, this is currently beyond our reach, as it easily implies P 6= NP .

In contrast, the Bounded Storage Model (BSM), introduced in the pioneering
work of Maurer [29], only assumes that Eve has bounded space rather than
time. A long series of works [5, 4, 9, 21, 11, 1, 15, 28, 39, 10, 35, 26, 36, 17, 19]
showed that it is possible to construct many kinds of unconditionally secure
cryptographic schemes in this model, including key agreement and oblivious
transfer over a public channel, provided that Eve’s storage is not too large.

It turns out that there are several related-but-different variants of the BSM.
In this work, we focus on a natural variant, which we refer to as the “streaming
BSM”. We first discuss this model, which will be the default throughout the
paper. We will compare the streaming BSM model to other variants from the
literature further below.

“Streaming” BSM. In this model, parties can generate and send huge amounts
of data to each other, but only have limited local memory. The model is pa-
rameterized by two parameters: the honest parties’ space capacity n, and the
attacker’s space capacity m, where m � n. We assume parties operate in the
streaming model: they generate/receive communication one bit at a time, while
only maintaining a small local memory throughout. The total communication
k can be huge, say k � m � n, and can occur over multiple back-and-forth
rounds.

For example, Alice can stream a huge random string X of length k to Bob by
sampling it one bit at a time; both Alice and Bob can store some small subset
of n physical locations of X, or they can store the parity of X computed in a
streaming manner, but neither of them can remember all of X. The attacker Eve
is also streaming, just like Alice and Bob, but has much larger memory capacity
m� n. We call the resulting model the (n,m)-BSM, and it will be the default
throughout the paper; sometimes, we will explicitly refer to it as the “streaming
BSM” to disambiguate from other variants.

Prior Results. As with computational cryptography, in the BSM we can consider
a symmetric-key setting, where honest parties can share a short secret key that
can be used to encrypt arbitrarily many messages over time, or a public-key
setting, where no shared key is available. In both cases the parties can freely
communicate over a public channel, and the goal is to achieve unconditional,
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information-theoretic (IT) security, without making any additional computa-
tional assumptions.

In the symmetric-key setting, a series of beautiful papers [29, 11, 1, 15, 28, 39,
35, 26, 36, 17] showed that it is possible to achieve arbitrarily large gaps between
the space of the attacker and that of the honest parties, up to exponential: m =
2O(n). (Of course, the price of allowing large values of m is that the ciphertext
size has to grow proportionally, to ensure that we eventually overwhelm the
adversary’s storage capacity to overcome the Shannon lower bound. Therefore,
if we want to limit ourselves to schemes with polynomial ciphertext size, then
m is limited to some arbitrarily large polynomial.)

Amazingly, it is even possible to construct unconditionally secure public-key
schemes in the BSM, and prior works [5, 4, 9, 21, 10, 19] constructed BSM
schemes for key agreement (KA) and oblivious transfer (OT), which is then
complete for all multi-party computation (MPC) [25, 23]. However, all of the
prior works in the public-key setting allowed at most a quadratic gap between
the adversarial and the honest users storage: m = O(n2). In fact, the work of
Dziembowski and Maurer [16] seemed to suggest that this limitation is inherent,
by showing there is no KA protocol in the BSM when m > n2. Since OT directly
implies KA, the same lower bound also extends to OT. So it may have appeared
that the question of designing public-key cryptographic primitives in the BSM
had been settled.

Our Question and Main Result. However, as we observe in this work, and discuss
in Section 1.1, the lower bound of [16] was only shown in a restricted version
of the BSM model, and does not apply to the more general “streaming” BSM.
Most significantly, the authors critically assumed that there is at most one “long”
communication round in the key agreement protocol, where the length k of the
streamed message overwhelms the storage capacity m of the attacker. While
this restriction was satisfied by many prior work in the BSM (see Section 1.1),
this opens the possibility that it might be possible to break the quadratic barrier
of [16] when parties use the full streaming power of the BSM, including the ability
to stream several “long” messages to each other. This is the main question of
this work:

Main Question: Do there exist unconditionally secure key agreement (KA)
and oblivious trasnfer (OT) protocols in the streaming (n,m)-BSM, when m is

allowed to be much larger than n2?

We answer this question in the affirmative, and show that we can allow
arbitrarily large gaps between m and n, up to exponential m = 2O(n). Surpris-
ingly, this shows that unlike time-bounded public-key cryptography, — where we
must rely on additional computational assumptions, — space-bounded public-
key cryptography can be proven unconditionally, while supporting arbitrary gaps
between the powers of honest parties and the attacker. The price of allowing large
values of m is that the round and communication complexities of the protocols
grow correspondingly and we also provide a lower bound to show that this is



4 Y. Dodis, W. Quach, and D. Wichs

inherent. In particular, this means that if we want limit ourselves to protocols
with polynomial (round/communication) efficiency, then m is limited to be some
arbitrarily large polynomial.

Before describing our results in detail, we start by describing the different
variants of the BSM, to understand the gap that we crucially exploit between
the model used in the lower bound of [16] and the model for our upper bounds.

1.1 Modeling Gap: Breaking the Quadratic Barrier

Many of the prior works in the BSM, including the original work of [29] and
the lower bound of Dziembowski and Maurer [16], considered a more restricted
model, that we refer to as the “traditional BSM” to disambiguate from the
“streaming BSM”. In particular, they consider a variant where a single long
random string X is broadcast by a third party, and the honest users can store a
small subset of n physical locations of X (chosen non-adaptively). The adversary
can store arbitrary information about X, as long as the amount of information
is bounded by m bits. After this occurs, the adversary’s storage becomes un-
bounded, and the honest parties can run some additional protocol, whose overall
space and communication complexity is bounded by n. Protocols in the tradi-
tional BSM readily translate into the streaming BSM, by having one of the users
stream X as the first message of the protocol.4

Compared to the streaming BSM, the traditional BSM can be seen as im-
posing additional restrictions on the honest parties Alice and Bob, and giving
more power to the space-bounded attacker Eve, as follows:

(a) Restricting Number of “Long” Rounds. We make a distinction between “long”
rounds, in which one of the parties streams a long message consisting of more
than m bits of data, versus “short” rounds, consisting of fewer than m bits
of data. Note that Eve can store the entire message in a short round. The
traditional BSM allows only a single “long” round — the very first round of
the protocol.

(b) Uniformly Random “Long Rounds”. The traditional BSM requires that a
“long” round should simply stream a uniformly random string X. When
true, such X is called a randomizer string [29], and can also come externally
(e.g., from nature) rather than being sampled by the parties.

(c) Local Computability for Alice/Bob. In the streaming BSM, when a party
Alice streams a long string X to an honest party Bob, then Bob is allowed
to arbitrarily process all of X in a streaming manner, as long as not using
more than n bits of space. The traditional BSM demands a stricter property
of n-Local Computatibility (LC) [39]: The honest parties can only access at

4 This holds generically in the case of KA. In the case of OT, where the participants
can be malicious, it may not be generically safe to allow one of the parties to chose
X instead of having it sampled by a trusted third party. However, it was safe to do
so for all the protocols in the literature.
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most n (a-prori non-adaptively chosen) physical locations of each string X
sent during a “long” round. 5

(d) Unlimited Short-term Memory for Eve. In the streaming BSM, the adversary
Eve is streaming and only has m bits of memory throughout the execution
of the protocol. In the traditional BSM, we only require that Eve stores at
most m bits immediately after observing each “long” round, but we allow
her to use unlimited short-term memory to process the round, and do not
restrict her memory during “short” rounds.

Clearly, enforcing any of the restrictions (a)-(d) makes any upper bound
stronger, and hence all protocols in the traditional BSM model also apply to
the streaming BSM. Indeed, most previous constructions in the traditional BSM
satisfied all of these additional properties. For example, the symmetric-key re-
sults of [1, 15, 28, 39] satisfied all of (a)-(d), as did the public-key results for key
agreement and oblivious transfer of [5, 4, 10]. However, there were exceptions,
pointing to the fact that these restrictions were not all seen as crucial. For ex-
ample, the work of [9] required two “long” rounds, and therefore did not satisfy
(a). Moreover, if one wanted to use OT as a sub-protocol in general MPC, then
this would require running many sequential copies, meaning that even if the OT
protocol satisfied (a), the resulting MPC would not.

More recently, the ground-breaking work of Raz et al. [35, 26, 36, 17] (pre-
sented in terms of time-space tradeoffs for learning parity), constructed elegant
symmetric-key encryption schemes in the streaming BSM that crucially do not
satisfy (b)-(d); see Section 1.4. The work of [19], then lifted the techniques of
Raz et al. [35, 26, 36, 17] to build key agreement, oblivious transfer and bit
commitment protocols in the streaming BSM, without satisfying (b)-(d). Nev-
ertheless, the protocols of [19] have some advantages over prior works in the
traditional BSM, such as smaller number of communication rounds, and perfect
correctness.

Overall, looking at the literature, it appears that many works implicitly
viewed the streaming BSM as the real conceptual goal, but ended up satisfy-
ing additional properties (a)-(d) that they incorporated into their formal model.
This view seems to be shared by the more recent works of [35, 26, 36, 17, 19]
that did not satisfy the additional properties, but still continued to refer to
their model as the BSM, without carefully distinguishing between the variants.
We continue in this vein, and view the streaming BSM as the main notion to
strive for, while achieving the additional restrictions (a)-(d) can be seen as a
nice bonus, but is not essential.

Moving to the lower bound of Dziembowski and Maurer [16], it turns out
it critically used restriction (a), namely that there is only a single long round
having large communication. Hence, to overcome the quadratic barrier imposed
by [16], our protocols must use multiple long rounds.

Interestingly, we will be able to do so while still satisfying the additional
restrictions (b)-(d). In particular, our protocols contains many long rounds, each

5 For example, if local computability is demanded, parties cannot compute the parity
of all the bits of X.
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of which involves generating a long uniformly random string X, while the honest
parties store some small set of at most n physical locations of X. The adversary
is only restricted to storing at most m bits of information about each X sent in
a long round, but gets unlimited memory otherwise (i.e. during the short rounds
and for computing the functions that compresses each X into m bits). However,
we will mostly view these additional features as secondary, and focus most of our
discussion on the fully unrestricted streaming BSM. If follow-up works manage
to get further improvements by also dropping the restrictions (b)-(d), much like
the works of [35, 26, 36, 17, 19], this would be “fair game” and satisfy the main
goal from our point of view.

To sum up, even though many prior works already departed from the tradi-
tional BSM and considered the streaming BSM as the main model, when it comes
to public-key schemes, all prior works in the BSM were stuck at the quadratic
gap between honest and adversarial storage. On the other hand, the quadratic
lower bound of [16] does not extend to the streaming BSM, which opens the
door for our results.

1.2 Our Results

As our main positive results, we design protocols for key agreement (KA), obliv-
ious transfer (OT) and general multiparty computation (MPC) in the (n,m)-
BSM, supporting up to an exponential gap between the honest user and adver-
sary storage: m = 2O(n). This qualitatively matches the positive results in the
space-bounded symmetric-key setting, albeit in (substantially) more rounds. In
fact, we also show that large number of long rounds (and also overall large com-
munication complexity) is essential when m � n2, by non-trivially extending
the lower bound of [16] to general BSM protocols. Details follow.

Key Agreement in BSM. Recall, the goal of a KA protocol is for Alice and Bob
agree on a `-bit key while talking over an authenticated-but-public channel. In
Section 5, we show the following result in the (n,m)-BSM:

Theorem 1 (informal). For any m,λ, there exists some nmin = O(logm+λ)
such that for all n ≥ nmin there is an unconditionally secure key agreement
protocol in the (n,m)-BSM that outputs an Ω(n)-bit key and achieves security
2−Ω(λ). Furthermore:

– The number of rounds is Õ(dm/n2e · λ).

– The communication complexity is Õ(mdm/n2e · λ).

Note that, although the adversary’s storage bound m can even be exponentially
larger than n, this comes at the cost of increasing the number of rounds and bits
of communication. If we want the overall protocol to be polynomially efficient,
then we must restrict m to be some arbitrarily large polynomial.



Title Suppressed Due to Excessive Length 7

Oblivious Transfer and Beyond. As our second main result, we build an OT-
protocol in (n,m)-BSM, achieving nearly the same parameters as our KA pro-
tocol from Theorem 1. Recall, in an OT protocol, sender Alice has two `-bit
messages (msg0,msg1), and receiver Bob has a single choice bit c ∈ {0, 1}. At
the end of the protocol, Alice should learn nothing, while Bob should learn msgc,
and get no information about msg1−c. When ported to (n,m)-BSM, (1) honest
Alice and Bob should use space at most n, (2) the privacy of choice bit c should
hold even against malicious Alice with storage m, and (3) the privacy of m1−c
should hold even against malicious Bob with storage m.

In our work we will achieve receiver privacy guarantee (2) even against un-
bounded space sender, so we only rely on the BSM for sender privacy (3). More-
over, our protocol satisfies simulation-based security, with an efficient simulator.
This means that our simulator only uses the attacker as a black-box and is ef-
ficient relative to the corresponding attacker. In contrast, prior OT works in
the BSM [4, 9, 10, 19] all satisfied a weaker indistinguishability-based variant of
sender-privacy, which roughly corresponds to inefficient simulation. The prob-
lem of having an efficient simulator was explicitly stated as an interesting and
challenging open problem in [10]. Our result, formally proven in Section 6, is
summarized below:

Theorem 2 (informal). For any m,λ, there exists some nmin = O(logm+λ)
such that for all n ≥ nmin there is an unconditionally secure OT protocol with
efficient simulator in the (n,m)-BSM with message size Ω(n) and security (and
correctness) errors 2−Ω(λ). Furthermore:

– The number of rounds is Õ(dm/n2e · poly(λ)).

– The communication complexity is Õ(m · dm/n2e · poly(λ)).
– Receiver security holds even against a malicious sender with unbounded space.

To generalize our result to general MPC, recall that OT is information-theoretically
complete for general MPC [25, 23]. In Section 6.4, we observe that this result
also extends to the (n,m)-BSM, provided we allow the honest parties’ storage
n, round complexity R, and communication complexity C to also polynomially-
depend on the circuit size of the corresponding MPC functionality. Note that
these parameters are completely independent of the adversary’s storage bound
m, which can still be arbitrarily (up to exponentially) larger than n. A similar
observation that OT implies MPC in the BSM was already made in [10] and
expanded on in [27], albeit in the setting where both the OT and the MPC only
satisfy inefficient simulation.

We emphasize that the efficient simulation of our OT protocol is critical to
achieve efficient simulation of the resulting MPC. If we apply our MPC to the
special case of the zero-knowledge (ZK) functionality, we get the first ZK protocol
in (n,m)-BSM with an efficient simulator and arbitrary gap between m and n. In
contrast, if we only had indistinguishability-based OT, we would get ZK with an
inefficient simulator (which is equivalent to witness indistinguishability), which is
insufficient/uninteresting in many situations when the witness is unique. Indeed
the prior works of [37, 2] constructed (non-interactive) witness indistinguishable



8 Y. Dodis, W. Quach, and D. Wichs

proofs in the BSM, and explicitly left zero-knowledge as an open problem, which
we resolve here in the interactive setting.

Round and Communication Lower Bound. As we already mentioned, circum-
venting the lower bound [16] requires more than one long round. Also, any pro-
tocol in the (n,m)-BSM clearly requires more than m bits of communication.
However, our protocols in Theorems 1 and 2 are noticeably less efficient: they
use Ω(m/n2) rounds and Ω(m2/n2) communication. This begs the question of
whether large round and communication complexities of our protocols are inher-
ent. In particular, when m � n2, should the number of rounds R grow with m
and should the communication C be super-linear in m?

Unfortunately, we show that the answer is affirmative (see Theorem 22).
Specifically, we show that any KA and OT protocols must satifyR ≥ Ω((m/n2)1/2)
and C ≥ Ω(m · (m/n2)1/2). While leaving a non-trivial gap with our upper

bounds R = Õ(m/n2) and C = Õ(m2/n2) when m� n2, it still shows that the
number of rounds grows with m, and the communication must be super-linear
in m. It is an interesting open question to close this quantitative gap between
our lower and upper bounds.

Our basic lower bound above only holds for BSM protocols where the attacker
Eve is allowed unlimited short-term memory, and is only subject to keeping
an m-bit state in between rounds (i.e., condition (d)). However, we also non-
trivially extend our lower bound to show that it can even handle fully streaming
adversaries that are restricted to m-bits of memory throughout the protocol
execution, at the cost of a weaker quantitative bound: R ≥ Ω((m/n2)1/3), C ≥
Ω(m ·(m/n2)1/3). It is also an interesting open question to close the quantitative
gap between this bound and the previous one.

1.3 Our Techniques

Bit-Entropy Lemma. As a crucial tool in our KA and OT constructions, we rely
on a new technical lemma for min-entropy (Lemma 12). On a high level, the
lemma says that if a long string X ∈ {0, 1}k has high min-entropy (e.g., because
it was chosen uniformly at random and the adversary could only remember
m � k bits of information about it, in which case X denotes the conditional
distribution), then many individual bits X[i] of X must have non-trivial min-
entropy. Specifically, if H∞(X) ≥ δ · k, we show that

∑
i∈[k] H∞(X[i]) ≥ ρ · k,

where we (optimally) relate ρ to δ. For example, when δ = Ω(1), then ρ =
Ω(1). The technical lemma relates to conceptually similar lemmas in [33, 39, 3],
showing that random subsets of bits in X have a high entropy rates. It also
relates to quasi chain-rules for min-entropy [14, 38]. However, to our knowledge,
the single-bit version does not appear to follow easily from the prior results.

Key Agreement Protocol. The high-level idea for our KA protocol from Sec-
tion 5.2 is surprisingly simple. For readers familiar with prior work on the
bounded storage model, our protocol builds on a core template, introduced in [5]
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and further used in [4, 9, 10], which we adapt and extend to the interactive set-
ting. The protocol consists of many rounds i, where Alice streams a (k = 2m)-bit
random string X to Bob and remembers a single random location in the string
X[a]. Similarly, as Bob receives the string X, he remembers a single random
location X[b]. At the end of each round, Alice and Bob exchange their choice of
locations a, b with each other; if a = b, they set X[a] = X[b] as their shared key
and terminate, else they erase all of their memory so far and go to the next round.
Their storage only consists of a single index and is therefore n = O(logm). The
probability of Alice and Bob agreeing in any round is 1/(2m) and therefore after
O(m) rounds they are likely to terminate. In the round i∗ where they agree, the
attacker can only remember m out of 2m bits of arbitrary information about
the string X that was sent, and the choice of what information to remember is
made before seeing Alice’s and Bob’s locations a, b. Therefore, the agreed upon
location X[a] = X[b] in that round has some constant amount of entropy from
Eve’s point of view.

The simple template above only outputs a 1-bit shared key, only guaran-
tees that it has some low but non-trivial entropy from the point of view of the
attacker (but does not guarantee that it is uniformly random), has a constant
correctness error and and requires O(m) rounds. However, it is easy to address
these deficiencies. First, Alice/Bob can store O(n/ logm) random locations (not
just 1), which means they improve their odds of agreement in a given round
from 1/m to roughly O(n2/m), to get round complexity O(m/n2) and com-
munication complexity O(m2/n2), respectively. Second, we can amplify security
(and correctness) to ensure that the agreed upon key is 2−λ-statistically close to
uniform, while simultaneously making the key longer (say, λ bits), by repeating
the above O(λ) times, and applying a randomness extractor to the O(λ) agreed
upon bit locations. Finally, once the symmetric-key is O(λ) bits long, we amplify
it to be Ω(n) bits, by adding an additional round, and using any of the optimal
symmetric-key BSM protocols (e.g., [39]).

One crucial difference with the template of [5] and any single round in our
interactive protocol is that, in our case, Alice and Bob agree on bits in a given
round with very small probability O(n2/m) � 1, as opposed to almost always
agreeing in [5]. Our analysis is consequently significantly different, and builds on
our bit-entropy lemma.

We also notice that, while our protocol takes many rounds (which we show
to be inherent) and therefore does not satisfy restriction (a), it does satisfy the
additional restrictions (b)-(d): each long string is truly random, Alice and Bob
are “locally computatable”, and security holds even if Eve has an unrestricted
amount of short-term local memory, as long as she can only remember at most
m bits of information after seeing each string X.

Oblivious Transfer Protocol. In an OT protocol, sender Alice has two messages
(msg0,msg1), and receiver Bob has a single choice bit c ∈ {0, 1}. At the end
of the protocol, Alice should learn nothing, while Bob learns msgc, and gets no
information about msg1−c.
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Our oblivious transfer crucially relies on a tool called interactive hashing
[31, 10]. This tool was also used to construct OT in the BSM by prior works
[4, 9, 10] achieving a quadratic gap between the honest and adversarial storage.
However, our protocol uses it in a substantially different way. In an interactive
hashing protocol, a sender Bob has a random input b ∈ [k], and at the end of
the protocol, Alice can narrow down Bob’s input to one of two possible choices
b0, b1 such that b ∈ {b0, b1}, but Alice does not learn which of them it is; both
options are equally likely. On the other hand, Bob cannot simultaneously control
both of the values b0, b1 that Alice ends up with, and in particular he cannot
cause both of them to land in some sparse subset B ⊆ [k]. Such interactive
hashing protocols can be performed with 4 rounds of interactions and polylog(k)
time/space. The security properties hold information-theoretically, even if the
parties have unbounded computation and memory.

We now describe a simplified version of our OT protocol, which roughly
corresponds to the case where honest users have n = O(logm) storage. We first
rely on a component sub-protocol, which one can think of as an (imperfect) form
of Rabin OT [34]: Alice outputs some bit r, and Bob either also outputs r or
⊥, but Alice does not learn which of these occurred. We set the length of “long
rounds” to k = O(m log(m)):

– Alice and Bob choose random indices a, b← [k] respectively. Alice samples a
random string X ← {0, 1}k and sends it to Bob. Alice stores X[a] and Bob
stores X[b].

– Alice and Bob run interactive hashing where Bob uses his index b. Alice
learns that it is one of b0, b1.

– Alice checks if a ∈ {b0, b1}, and if not, then the parties go back to the
beginning and try again. Else Alice sends a to Bob and outputs r = X[a].
Bob checks if a = b and if so he outputs r = X[b] else he outputs ⊥.

The interactive hashing security ensures that even if Alice is malicious, she does
not learn whether Bob outputs⊥ or r. On the other hand, even if Bob is malicious
and has storagem, there is only a smallO(k/ log k) set of bad indicesB ⊆ [k] that
he “knows” (have very small entropy given his state). The interactive hashing
ensures that it’s unlikely that both b0, b1 are in B, and Alice selects one of them
at random (the one that matches her a). Therefore, in the execution where Alice
accepts, with probability ≈ 1/2, Alice’s index satisfies a 6∈ B and therefore Bob
does not know r = X[a].

To go from the above sub-protocol to full OT, we employ a variant of the
trick of [7] to go from Rabin OT to the more standard 1-out-of-2 OT. The
parties run the above sub-protocol for t = 3λ iterations, where Alice outputs
bits (r1, . . . , rt) ∈ {0, 1}t and Bob outputs (r′1, . . . , r

′
t) ∈ {0, 1,⊥}t such that

r′i ∈ {ri,⊥} and roughly 1/2 of them are ⊥, but Alice does not know which. Bob
selects two disjoint subsets I0, I1 ⊆ [t] of size λ each at random, subject to Ic only
containing values i for which r′i 6= ⊥. Alice applies an extractor on the values
rI0 , rI1 and uses the outputs to one-time-pad her messages msg0,msg1. This
allows Bob to recover msgc. It’s easy to see that the sets I0, I1 look identically
distributed to Alice and so she does not learn Bob’s choice bit c. On the other
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hand, since Bob only knows roughly t
2 = 3λ

2 of the values ri, at least one of

rI0 , rI1 must contain roughly λ
2 values that Bob does not know, and hence the

corresponding extracted string will blind the message.
Note that in our scheme, security against an adversarial Bob (receiver) relies

on him having bounded storage m, but security against an adversarial Alice
(sender) does not impose any restrictions on her storage. The overall protocol

requires Õ(m · λ) rounds to terminate and Õ(m2λ) communication. Our full
protocol generalizes the above to settings where honest users have larger storage
n to get Õ(dm/n2e·λ) rounds and Õ(m·dm/n2e·λ) communication. This requires
additional technical ideas to perform interactive hashing on sets of indices rather
than just a single index; see Section 6.

One issue with the above idea, and indeed all prior constructions of OT in
the BSM [4, 9, 10, 19], is that it only satisfies a weak form of indistinguishability-
based security, which is equivalent to security with an inefficient simulator. In
particular, to simulate an adversarial Bob, we need to figure out his choice bit c,
which requires figuring out which locations X[a] he “knows” and which he does
not. This can be done inefficiently (and non-black-box) by looking at Bob’s state
after processing X and figuring out the conditional entropy of each bit of X given
the state; but there seems to be no hope to make this process efficient. We show
how to overcome this via an efficient rewinding-based simulation strategy. The
simulator forks off many copies of the interactive hashing protocol and figures
out which indices show up as one of Alice’s outputs with high frequency. We
show that this serves as a good proxy for the indices that Bob knows – since
he only knows X[a] for very few locations a, he has to “play” such locations
with high frequency if he wants to have a good chance of Alice selecting them.
Therefore, by using the efficiently computable set of high-frequency indices as
a proxy for the inefficiently computable set of indices that Bob knows, we can
efficiently extract Bob’s choice bit c.

Lower Bound. We prove a lower-bound for KA and, since OT directly gives
KA, this also implies an identical lower bound for OT. Let us first recall the
main intuition of the DM lower bound [16]. Let m > n be the storage size of the
adversary, and suppose the first message of the protocol is some large message M ,
potentially of size |M | � m much larger than the adversary’s storage. In the real
protocol, the honest parties Alice and Bob respectively compute states sA and
sB after processing M . DM shows that there exists some compact information
s∗E of size m, which (1) is publicly-computable given M , and (2) decorrelates
the states sA and sB of Alice and Bob in the following sense: conditioned on
s∗E , the users’ states sA and sB only share a low amount of mutual information,
bounded by n2/m. Therefore, if m = O(n2) is sufficiently large, the information
shared between Alice and Bob conditioned on the adversary’s view becomes too
small (much less than 1 bit) for them to agree on a shared random key.

One obstacle towards extending DM to the interactive setting is that, even
if the mutual information created in each round is very small O(n2/m), with
sufficiently many rounds it can add up. Indeed, this is exactly what our upper
bound exploits, and why one can allow large gaps between m and n with a large
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numbers of rounds! For our lower bound on rounds and communication, we want
to show that this is essentially the best that one can do. There are two main
obstacles. Firstly, the DM approach only works if Alice and Bob do not share
any mutual information in the first place. This is true at the beginning of the
protocol, which results in a candidate adversarial strategy for the first round of
the protocol. But it is not clear whether it extends to any intermediate round
within the protocol execution, where Alice and Bob managed to already get
some, albeit small, amount of mutual information.6 Moreover, a naive attempt
would be to have Eve compute an appropriate s∗E for every round, but then Eve
would need to store all of these values throughout the duration of the protocol,
thus blowing up her storage.

Instead, we approach the DM core idea from a different angle, by thinking of
it as a round reduction step that allows us to convert an R round protocol into
an R − 1 round protocol, with only a small loss in correctness and security. In
particular, instead of having Alice send the long message M to Bob in the first
round, we remove the first round entirely, and have Bob do the following: (1)
sample M as Alice would, (2) (inefficiently) sample s∗E given M as the adversary
in DM, and (3) sample his state sB conditioned on s∗E ; (4) use it to compute
the next message M ′, and (5) send (s∗E ,M

′) as the new message to Alice. Alice
then: (6) samples sA conditioned on s∗E ; and (7) processes M ′ using sA, as she
would have done originally. Note that Alice and Bob are now inefficient, with
unlimited short-term memory to process each round, but only keep short n-bit
states between rounds, similar to feature (d) of Eve.7

We claim that the round reduction step preserves correctness and security up
to some small loss. This holds because the original states sA, sB had small mutual
information conditioned on s∗E , which implies that they are statistically close to
independent. Therefore, the new way of sampling sA, sB truly independently
conditioned on s∗E only introduces a small statistical error. On the other hand,
any attack Eve can perform on the new protocol by observing both of the values
(s∗E ,M

′) sent by Bob at the same time, she could have also performed originally
by computing s∗E from Alice’s original message M , storing s∗E locally in her m-bit
state (here we crucially rely on it being small), and then performing the same
computation on the values (s∗E ,M

′), once Bob sends M ′.

By performing the round-reduction steps iteratively, we eventually get a 0-
round key agreement protocol, which leads to a contradiction. However, each
time we perform the round-reduction step we incur some statistical error

√
n2/m.

The square-root comes from using Pinsker’s inequality to convert from mutual
information to statistical distance. Therefore, we only end up with a secure pro-

6 Indeed, it is not true in general that their mutual information can only increase
by a small amount in each round; once Alice and Bob share even a small amount
of mutual information (e.g., they share a short extractor seed, perhaps even only
with small probability), they may be able to leverage it to derive much more mutual
information in just one additional round (e.g., send a long message and extract).

7 Note that allowing Alice and Bob to be stronger makes the resulting lower bound
stronger as well.



Title Suppressed Due to Excessive Length 13

tocol at the end, if the original protocol has R = O(
√
m/n2) rounds, which

gives our lower bound on rounds R ≥ Ω(
√
m/n2) . Note that this also gives a

lower bound on communication C since C ≥ R. However, we can get a stronger
lower bound of C ≥ Ω(m ·

√
m/n2) by showing how to remove “small” rounds

(i.e., having communication smaller than m) for free, without any loss in cor-
rectness/security. We refer to Section 7.2 for more details.

As mentioned previously, this lower bound only rules out protocols secure
against strong attackers Eve who have access to unbounded short-term memory
to process each round, while storing m bits between rounds. We further adapt
the techniques above to handle fully streaming adversaries, that are restricted
to m bits of memory throughout the protocol. The main observation is that the
only step in the round reduction procedure that requires Eve to have unbounded
short-term memory is sampling s∗E given M . We first observe that this step can
be performed in a streaming manner using small local memory, as long as Alice
and Bob are streaming algorithms with small local memory. However, even if
the latter was the case in the initial protocol, once we start removing rounds,
we required Alice and Bob to have large local memory to run Eve’s attack. This
turns into a recursive analysis, where the memory that Alice and Bob need to
run the protocol after removing R rounds, depends on the memory Eve needs
to attack on the protocol after removing R − 1 rounds, which depends on the
memory Alice and Bob need to run the protocol after removing R−1 rounds etc.
By carefully analyzing this recursion, we show that Eve’s short-term memory can
be bounded to only be a factor of R larger than the previous bound we had on
her long-term memory, which yields our new new quantitatively weaker bounds
of R ≥ Ω((m/n2)1/3) and C ≥ Ω(m · (m/n2)1/3) for the fully streaming model.
We refer to Section 7.4 for more details.

1.4 Related Work

We already extensively mentioned the prior work on the symmetric-key BSM
[29, 1, 15, 28, 39, 35, 26, 36, 17] and the public-key BSM models [5, 4, 9, 21, 10,
19]. In particular, the work of [35, 26, 36, 17] constructed “reusable” n-bit-key
symmetric-key encryption schemes, capable of encrypting exponentially many b-
bit messages, where an individual ciphertext is “only” O(mb/n) bits long.8 When
b � n, this is a huge saving compared to the prior symmetric-key schemes in
the BSM, where each individual ciphertext had size greater than m, irrespective
of message length. Interestingly, these works did not satisfy restrictions (b)-(d),
critically using full features of the streaming BSM.

In the context of proof systems, [37, 2] constructed non-interactive witness
indistinguishable proofs secure against memory-bounded streaming verifiers, al-
lowing arbitrary gap between the values n and m. In contrast, the proofs systems
constructed in this work are full zero-knowledge, with efficient simulation, but

8 This is optimal, as otherwise Eve is capable of storing more than n/b ciphertexts in
its memory, allowing the parties to encrypt more than b ·n/b = n bits of information
using an n-bit key, contradicting Shannon lower bound.
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use many rounds of interaction. In a related vein, a very recent work of [20]
considered the notion of “disappearing cryptography” in the (streaming) BSM.
Here, a component of the scheme (e.g., a ciphertext, signature, proof or program)
is streamed bit by bit. The space-bounded receiver can get the functionality of
the system once, after which the object “disappears” for subsequent use.

The work of [30] designed novel “timestamping” schemes in the (traditional)
BSM. Here space-bounded sender and receiver have access to a long randomizer
string X: the sender will timestamp a given document D at time t, and the
receiver will prepare to verify D (which is yet unknown). The sender can then
prove the timestamping of D to the receiver at a much later time, and the
receiver is guaranteed that the sender is unable to timestamp a “very different”
(i.e., high-entropy) document D′.

Finally, we mention the seminal works of [32, 33] in the context of designing
pseudorandom generators fooling space-bounded distinguishers. Unlike the BSM
setting, the memory n of the generator must be necessarily higher than the
memory m of the the distinguisher, and the works of [32, 33] come very close
to this bound, unconditionally. In a similar vein, the work of [24] constructs
deterministic randomness extractors for space-bounded sources of randomness.

2 Preliminaries

Notation. When X is a distribution, or a random variable following this dis-
tribution, we let x ← X denote the process of sampling x according to the
distribution X. If X is a set, we let x ← X denote sampling x uniformly at
random from X. We use the notation [k] = {1, . . . , k}. If x ∈ {0, 1}k and i ∈ [k]
then we let x[i] denote the i’th bit of x. If s ⊆ [k], we let x[s] denote the list of
values x[i] for i ∈ s.

Statistical Distance. Let X,Y be random variables with supports SX , SY , re-
spectively. We define their statistical difference as

SD(X,Y ) =
1

2

∑
u∈SX∪SY

|Pr[X = u]− Pr[Y = u]| .

We write X ≈ε Y to denote SD(X,Y ) ≤ ε.

Predictability and Entropy. The predictability of a random variableX is Pred(X)
def
= maxx Pr[X = x]. The min-entropy of a random variable X is H∞(X) =
− log(Pred(X)). Following Dodis et al. [12], we define the conditional pre-

dictability of X given Y as Pred(X|Y )
def
= Ey←Y [Pred(X|Y = y)] and the (av-

erage) conditional min-entropy ofX given Y as: H∞(X|Y ) = − log (Pred(X|Y )) .
Note that Pred(X|Y ) is the success probability of the optimal strategy for guess-
ing X given Y .

Lemma 3 ( [12]). For any random variables X,Y, Z where Y is supported
over a set of size T we have H∞(X|Y,Z) ≤ H∞(X|Z)− log T .
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Lemma 4 ( [12]). For any random variables X,Y ,for every ε > 0 we have

Pr
y←Y

[H∞(X|Y = y) ≥ H∞(X|Y )− log(1/ε)] ≥ 1− ε.

Lemma 5. If X and Y are independent conditioned on Z then H∞(X|Y ) ≥
H∞(X|Y,Z) ≥ H∞(X|Z).

Lemma 6. If X and Y are independent conditioned on Z then H∞(X,Y |Z) ≥
H∞(X|Z) + H∞(Y |Z).

Shannon Entropy. The Shannon entropy of a random variable X is H(X)
def
=

Ex←X [− log(Pr[X = x])]. The conditional Shannon entropy of X given Y is

H(X|Y )
def
= Ey←Y H(X|Y = y) = E(x,y)←(X,Y )[− log(Pr[X = x|Y = y])].

For 0 ≤ p ≤ 1 we define the binary entropy function h(p)
def
= H(Bp), where Bp

is a Bernoulli variable that outputs 1 with probability p and 0 with probability
1− p.
Lemma 7. For any random variables X,Y , we have: H∞(X|Y ) ≤ H(X|Y ).

Extractors. We review the notion of randomness extractors and known param-
eters.

Definition 8 ((Strong, Average-Case) Seeded Extractor [33]). We say
that an efficient function Ext : {0, 1}n×{0, 1}d → {0, 1}` is an (α, ε)-extractor
if for all random variables (X,Z) such that X is supported over {0, 1}n and
H∞(X|Z) ≥ α we have SD((Z, S,Ext(X;S)) , (Z, S, U`)) ≤ ε where S,U` are
uniformly random and independent bit-strings of length d, ` respectively.

Theorem 9 ( [22]). There exist an (α, ε)-extractor Ext : {0, 1}n×{0, 1}d →
{0, 1}` as long as α ≥ ` + 2 log(1/ε). Furthermore, such an extractor can be
computed in O(n) time and space.

Definition 10 (BSM Extractor [39]). We say that an efficient function
BSMExt : {0, 1}k × {0, 1}d → {0, 1}` is an (n,m, ε)-BSM extractor if:

– Given seed ∈ {0, 1}d initially stored in memory, it is possible to compute
BSMExt(x; seed) given streaming access to x ∈ {0, 1}k using at most n bits
of total memory. Moreover, it can be done while only accessing at most n
locations (chosen non-adaptively) in the string x.

– BSMExt is an (α, ε)-extractor (Definition 8) for α = k −m.

Note that a BSM Extractor gives a simple one-round protocol (n,m)-BSM
protocol where Alice and Bob start with a uniformly random shared key key0
of some small size d and derive a new shared key key1 ∈ {0, 1}` of a larger size
` > d. Alice just streams a random x ∈ {0, 1}k to Bob and both parties compute
key1 = BSMExt(x; key0). Security holds since the adversary can only store m-bits
of information about x so it has α ≥ k −m bits of entropy conditioned on the
adversary’s view, and key0 acts as a random seed which is a-priori unknown to
the adversary. Therefore key1 = BSMExt(x; key0) is ε-close to uniform given the
adversary’s view of the protocol.
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Theorem 11 ( [39]). For any m ≥ `,λ, there is a (n,m, ε)-BSM extractor
BSMExt : {0, 1}k × {0, 1}d → {0, 1}` with n = O(` + λ + logm), ε = 2−Ω(λ),
k = O(m+ λ log(λ)), d = O(logm+ λ).

3 Bit-Entropy Lemma

We prove a new lemma showing that if X has sufficiently high min-entropy, then
many individual bits X[i] have sufficiently high min-entropy as well.

For q ∈ [0, 1], we define h−1+ (q) to be the unique value p such that .5 ≤ p ≤ 1
and h(p) = q, where h is the binary entropy function defined above.

Lemma 12. Assume X,Y are random variables, where X is distributed over
{0, 1}k. Let X[i] denote the i’th bit of X. If H∞(X|Y ) ≥ δk the following 3
statements hold:

1.
∑
i Pred(X[i] | Y ) ≤ h−1+ (δ)k.

2.
∑
i H∞(X[i] | Y ) ≥ − log(h−1+ (δ))k.

3. If I is uniformly random over [k] and independent of X,Y then H∞(X[I] | Y, I) ≥
− log(h−1+ (δ)).

Proof. We have:

δk ≤ H∞(X|Y ) ≤ H(X|Y ) =
∑
i∈[k]

H(X[i] |X[1], ..., X[i− 1], Y ) ≤
∑
i∈[k]

H(X[i] | Y ).

Therefore
δ ≤ E

i←[k],Y←y
H(X[i] | Y = y).

Since h−1+ is a decreasing and concave function, this means:

h−1+ (δ) ≥ h−1+

(
E

i←{0,1}k,y←Y
H(X[i] | Y = y)

)
≥ E
i←[k],y←Y

h−1+ (H(X[i] | Y = y))

≥ E
i←[k],y←Y

( max
b∈{0,1}

Pr[X[i] = b | Y = y])

≥ E
i←[k]

Pred(X[i]|Y ).

This proves the first part of the theorem. Also the third part of the theo-
rem follows since H∞(X[I] | Y, I) = − log(Ei←I Pred(X[I] | Y, I = i)) =
− log(Ei←[k] Pred(X[i] | Y )). The second part follows since (− log) is a de-
creasing and convex function so

− log(h−1+ (δ)) ≤ − log

(
E

i←[k]
Pred(X[i] | Y )

)
≤ E
i←[k]

− log(Pred(X[i] | Y ))

≤ E
i←[k]

H∞(X[i] | Y )
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Remark 13. To the best of our knowledge, the “bit-prediction” lemma above
is new, as it talks about individual bit prediction; as opposed to “subkey-
predcition” lemma studied in prior BSM literature [33, 39, 3], which talked
about simultaneously predicting a large subset of bits. It also does not appear
to follow directly from quasi chain-rules for min-entropy [14, 38] that have a
large loss in parameters that does not appear to give any non-trivial bounds in
the bit setting. We also remark that our parameters are tight, as can be seen
by taking X to be the uniform distribution over a hamming ball of radius pk,
where p = 1 − h−1+ (δ) ≤ 1/2. The volume of this ball is roughly 2h(p)k = 2δk,
so H∞(X) = δk. Yet, each bit of X can be predicted with probability at least
1− p = h−1+ (δ).

Lemma 14. For any 0 < ε ≤ 1 there is a δ = Ω(ε2) such that − log(h−1+ (1 −
δ)) = (1− ε).

Proof. Given ε we can solve:

− log(h−1+ (1− δ)) = 1− ε
⇒ h−1+ (1− δ) = 2ε/2

⇒ 1− δ = h(2ε/2) = h(1/2 +Θ(ε)) = 1−Θ(ε2).

where we rely on the bound 2ε = (1 + Θ(ε)) and h(1/2 + Θ(ε)) = 1 − Θ(ε2)
(e.g. [6, Theorem 2.2]).

4 Bounded Storage Model

A (n,m)-bounded storage model (BSM) protocol, is parametrized by a bound n
on the memory of the honest parties, and a bound m > n on the memory of the
adversary. Communication between parties occurs in rounds where one party
sends data to another party. Honest parties send and receive data in a streaming
manner, by generating/reading the stream one bit at a time, while only using n
bits of memory overall. The adversary is also a streaming algorithm with m bits
of memory.

For all our constructions, we will satisfy additional properties, corresponding
to properties (b)-(d) discussed in the introduction. The protocol consists of two
types of rounds: “short rounds” are of size is < n, and can be fully generated,
sent, and processed by the honest parties using only n bits bits of memory,
without needing to be streamed one bit at a time, while “long rounds” are of
size > m.9 Our protocols satisfy the following additional properties:

9 We will allow ourselves to split up the protocol into rounds arbitrarily, and may have
two (or more) adjacent rounds where the same party A talks to party B.
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– Uniformly Random “Long Rounds”. Each long round consists of a uniformly
random string x generated by some party A and sent to party B.

– Local Computability for Honest Parties. In each long round, the honest par-
ties only read a small set of < n locations of x and use these to update their
state, while using only n bits of memory in total. Furthermore, the set of
locations accessed is chosen non-adaptively at the beginning of the round,
before seeing any bits of x.

– Unlimited Short-term Memory for Adversary. The adversary can generate
and read the entire long round of communication at once, and can use unlim-
ited amounts of short-term memory during this process, but can only store a
compressed m-bit state immediately after the end of each long round. There
are no restrictions on the adversary’s memory during/after short rounds.

5 Key Agreement

5.1 Definition

A key agreement protocol in the (n,m)-BSM with security ε is a protocol between
two honest users Alice and Bob with memory bound n. At the end of the protocol
Alice and Bob outputs values keyA, keyB ∈ {0, 1}` respectively. For correctness,
we require that when the protocol is executed honestly then Pr[keyA = keyB ] =
1. For security, we consider a passive BSM adversary Eve with memory bound
m. Let viewEve denote Eve’s final state at the end of the protocol execution. We
require that

(viewEve, keyA) ≈ε (viewEve, key
∗)

where key∗ ← {0, 1}` is chosen uniformly at random and independently of the
protocol execution.

5.2 Construction

Theorem 15. For any m ≥ `, λ there is some nmin = O(λ + ` + logm) such
that for all n > nmin there is a key agreement protocol in the (n,m)-BSM that
outputs an `-bit key and has security ε = 2−Ω(λ). The round complexity of the
protocol is O(d(m/n2)e·λ ·polylog(m)) and the communication complexity O(m ·
d(m/n2)e · λ · polylog(m+ λ)).

Proof. We present the key agreement protocol between Alice and Bob. We refer
to the full version [13]for a proof.

Construction. Given m,λ, ` we define additional parameters as follows.

– Let k = 2m.
– Let d1 = O(λ+ logm) and n1 = O(λ+ logm+ `) and k′ = O(m+ λ log(λ))

be some values such that there is a (n1,m, ε = 2−Ω(λ))-BSM extractor
BSMExt : {0, 1}k′ × {0, 1}d1 → {0, 1}` per Theorem 11.
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– Let t = O(λ + logm) and d0 = O(t), n0 = O(t) be some value such that
there is a (t/10, ε = 2−Ω(λ))-extractor Ext : {0, 1}t × {0, 1}d0 → {0, 1}d1
that can be computed using n0 space per Theorem 9.

– Define nmin = max(n0, n1, 2t+ dlog ke+ 1) = O(λ+ logm+ `).
– For any n ≥ nmin, define ñ = b(n− t)/(dlog ke+ 1)c = Ω(n/ logm).

The protocol works as follows.

1. Set i := 0. Repeat the following until i = t:
(a) Alice and Bob select uniformly random subsets sA, sB ⊆ [k] of size |sA| =
|sB | = ñ respectively.
Alice streams a uniformly random string x← {0, 1}k to Bob.
Alice stores x[sA] while Bob stores x[sB ].

(b) Bob sends sB to Alice.
(c) If sA ∩ sB 6= ∅ then Alice selects a random index j ← sA ∩ sB and sends

j to Bob.
Both Alice and Bob set ri = x[j] and increment i := i+ 1.

Else if sA ∩ sB = ∅ then Alice simply sends j = ⊥ to Bob.
2. Alice and Bob set r := (r1, . . . , rt).

Alice sends a random seed0 ← {0, 1}d0 to Bob and both of them compute
seed1 = Ext(r; seed0).

3. Alice streams a uniformly random string x ← {0, 1}k′ to Bob and both
parties compute key = BSMExt(x; seed1).

6 Oblivious Transfer and Multiparty Computation

6.1 Definition of Oblivious Transfer

We define oblivious transfer (OT) in the BSM via a real/ideal framework. In the
ideal model the sender (Alice) gives two messages (msg0,msg1) ∈ ({0, 1}`)2 to an
ideal functionality FOT and the receiver (Bob) gives a bit c ∈ {0, 1}. The ideal
functionality FOT gives msgc to the receiver and gives nothing to the sender.

A protocol Π realizes FOT in the (n,m)-BSM with security ε if:

– Π can be executed by honest parties with n-bit memory.
– There exists an efficient black-box simulator SimA that runs in time poly(n,m,
λ = log(1/ε)) with black-box (rewinding) access to the adversary A, such
that for any (inefficient) BSM-adversaryA with m-bit state corrupting either
the sender or the receiver and for any choice of inputs Z = (msg0,msg1, c)
from the environment, we have

REALA,Π,Z ≈ε IDEALSimA,FOT ,Z

where we define the distributions:
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REALA,Π,Z : denotes the real execution of Π with the adversary A taking on
the role of either the sender or the receiver while the honest party uses the
input specified by Z; the output of the distribution consists of the output of
A together with the inputs/outputs of the honest party.

IDEALSimA,FOT ,Z : denotes the ideal execution of FOT with an ideal-adversary

SimA taking on the same role as A, while the honest party uses the input
specified by Z; the output of the distribution consists of the output of SimA

together with the inputs/outputs of the honest party.

We further say that the protocol is secure against an unbounded-memory
sender (resp. receiver) if we can drop the requirement on the storage of A when
it corrupts the sender (resp. receiver).

We say that the protocol is only secure with inefficient simulation, if we drop
the requirement on the efficiency of the simulator. Our default notion will be
efficient simulation.

On Efficient Simulation. Note that we require efficient simulation even though
the adversary may be computationally unbounded. This may seem strange at
first, but is natural and is analogous to (e.g.,) requiring an efficient simulator
for statistical Zero Knowledge proofs [18] or for information-theoretically secure
MPC protocols. In particular, the definition is agnostic to whether or not the
adversary is efficient, but ensures that the adversary cannot learn anything in
the real world that it could not also learn with only polynomially more computa-
tional power in the ideal world. The need for an efficient simulator is crucial when
leveraging OT to construct other more complex functionalities, as we will do in
Section 6.4. For example, we can use our OT in the BSM to construct zero-
knowledge (ZK) proofs in the BSM. If the OT simulator were inefficient, the
resulting ZK proof would only be inefficiently simulatable (equivalently, would
only be witness indistinguishable), which is completely meaningless in many sce-
narios where the witness is unique; the prover may as well just send the witness
in the clear.

On the other hand, our simulator does not have bounded storage and can use
more memory than the adversary. This naturally corresponds to the idea that
having some a-priori (polynomial) bound on storage is only assumed to be a
limitation in the real world, and is a useful limitation in helping us build secure
protocols, but is not a fundamental restriction that we need to also preserve for
the ideal-world adversary interacting with the ideal functionality.

6.2 Interactive Hashing

Basic Interactive Hashing. In an interactive hashing protocol a sender Bob has
an input u ∈ [k]. The goal of the protocol is for Alice to narrow down Bob’s input
to one of two possible choices u0, u1 such that u = ub for one of b = 0 or b = 1,
but Alice does not learn which. In particular, even if Alice acts maliciously, when
Bob chooses his input u← [k] at random, then both choices of b appear equally
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likely from Alice’s point of view. On the other hand, although Bob can choose
an arbitrary input u and ensures u = ub for some b ∈ {0, 1}, he cannot control
the “other” value u1−b too much. In particular, even if Bob is malicious during
the protocol, for any sufficiently sparse subset B ⊆ [k], it is highly unlikely that
both of u0, u1 are contained in B.

Definition 16. An interactive hashing protocol is a protocol between a public-
coin randomized Alice (receiver) and a deterministic Bob (sender). Alice has no
input and Bob has some input u ∈ [k]. At the end of the protocol, we denote
the transcript (h, v), consisting of all the random messages h sent by Alice and
all the responses v sent by Bob. We can think of h as defining a hash function
that maps Bob’s input u to his set of responses v = h(u). The protocol has the
following properties:

– 2-to-1 Hash: Every possible choice of Alice’s messages results in a hash func-
tion h which is 2-to-1, meaning that for every v in the image of h has exactly
two pre-images: |h−1(v)| = 2.

– (α, β)-Security: For any set B ⊆ [k] of size |B| ≤ β · k, if Alice follows the
protocol honestly and Bob acts arbitrarily resulting in some transcript (h, v)
such that {u0, u1} = h−1(v) then Pr[{u0, u1} ⊆ B] ≤ α.

Note: the 2-to-1 hash property ensures that, if Bob chooses u ← [k] uniformly
at random and acts honestly during the protocol, then even if Alice acts mali-
ciously resulting in some transcript (h, v) at the end of the protocol, if we define
{u0, u1} = h−1(v) such that u = ub, Alice cannot distinguish between b and
1− b.

We have constructions of interactive hashing (with security against arbitrary
Alice and Bob, without any bound on their memory):

Theorem 17 ( [31, 10]). There is an 4-round interactive hashing protocol with
(α, β)-security for any β < 1 with α = O(β log k). Furthermore, the execution of
the protocol and the computation of h−1 can be done in polylogk time and space.

Definition of Set Interactive Hashing. Here, we extend the notion of interactive
hashing to the case where the sender Bob has an entire set of inputs sB ⊆ [k].
Alice has her own set of inputs sA ⊆ [k]. The goal of the protocol is to ensure
that when there is a value in the intersection sA ∩ sB then there is a good
chance that Alice will accept and output some value u ∈ SA, in which case it
then holds with probability 1/2, that u ∈ SB and Bob accepts and outputs it,
while with probability 1/2 Bob rejects. Alice should not learn which of these
two cases occur, even if she acts maliciously. On the other hand, even if Bob is
malicious, he cannot have too much control over the value that Alice outputs:
for any sufficiently sparse set B ⊆ [k], he cannot ensure that the value u that
Alice outputs (conditioned on her accepting) is in the set B with probability
much higher than 1/2.

Definition 18. In a set interactive hashing protocol, Alice and Bob have sets
sA, sB ⊆ [k] of size |sA| = |sB | = n. At the end of the protocol, Alice either rejects
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by sending a special ⊥ message to Bob, or she accepts and sends some u ∈ SA
to Bob. If Alice sends ⊥, then Bob always rejects and outputs ⊥. Otherwise,
Bob can either accept, in which case he outputs the same u as Alice and it must
hold that u ∈ SB, or he rejects. The protocol has (α, β)-security if it satisfies the
following properties:

– Correctness: If Alice and Bob both execute the protocol honestly using random
subsets sA, sB ⊆ [k] of size |sA| = |sB | = n then:

Pr[Alice accepts] ≥ Ω(min(n2/k, 1)) , Pr[Bob accepts | Alice accepts] =
1

2
.

Furthermore whenever Alice accepts with some value u, then it must be the
case that u ∈ SA and if Bob also accepts then it must be the case that
u ∈ SA ∩ SB.

– Security for Honest Bob: If Bob follows the protocol honestly using a random
subset sB ⊆ [k] of size |sB | = n and Alice follows the protocol arbitrarily,
then, even condition on any arbitrary protocol transcript in which Alice ac-
cepts (i.e., does not send ⊥ to Bob as the last message) we have:

Pr[Bob accepts] =
1

2
.

– (α, β)-Security for honest Alice: Let B ⊆ [k] be a set of size |B| ≤ β · k. If
Alice follows the protocol honestly using a random subset sA ⊆ [k] of size
|sA| = n and Bob follows the protocol arbitrarily, then

Pr[Alice outputs u ∈ B | Alice accepts] ≤ 1

2
+ α.

6.3 OT Construction

Theorem 19. For any m ≥ `, λ there is some nmin = Ω(logm + ` + λ) such
that for all n ≥ nmin there is an oblivious transfer protocol in the (n,m)-BSM
with `-bit messages and security ε = 2−Ω(λ). The protocol is secure with efficient
simulation, and it achieves security against an unbounded-memory sender. The
round complexity is O(dm/n2e ·poly(λ, logm)) and the communication complex-
ity O(m · dm/n2e · poly(λ, log(m))).

Proof. We describe the OT protocol between sender Alice and receiver Bob, and
refer to the full version [13] for a proof.

Construction. Given m,λ, ` we define additional parameters as follows:

– Let d1 = O(λ+logm) and n1 = O(λ+logm+`) and k′ = O(m+`+λ log(λ))
be some values such that there is a (n1,m + `, ε = 2−Ω(λ))-BSM extractor
BSMExt : {0, 1}k′ × {0, 1}d1 → {0, 1}` per Theorem 11.

– Let t = O(λ + logm) and d0 = O(t), n0 = O(t) be some value such that
there is a (t/40, ε = 2−Ω(λ))-extractor Ext : {0, 1}t × {0, 1}d0 → {0, 1}d1
that can be computed using n0 space per Theorem 9.
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– Set k = (m+ λ) log3(m+ λ).
– Set α = 1

20 and let β = 1/O(log k) be such that (α, β)-security for interactive
set hashing holds.

– Set δ = Ω(β2) = 1/O(log2 k)) be such that − log(h−1+ (1 − δ)) = (1 − β/2)
by Lemma 14.
This ensures that δk ≥ Ω((m+ λ) log(m+ λ)).

– Let g(k) = poly log k be a parameter associated with set interactive hashing,
such that an execution of the set interactive hashing protocol with parame-
ters n, k can be done in n · g(k) time and space(see the full version [13] for
more details). Assume g(k) ≥ dlog k + 1e.

– Define nmin = max(2n0, 2n1, 3t+ g(k)) = O(λ+ logm+ `).
– For any n ≥ nmin, define ñ = b(n− 2t)/g(k)c = Ω(n/polylog(m+ λ)).
– Let p = Ω(min(ñ2/k, 1)) be the correctness probability of Alice accepting

during an honest execution of the set interactive hashing protocol with pa-
rameters ñ, k ,per Definition 18.
Set Rmax = 2t/p = O(t · dk/ñ2e) = O(dm/n2e · poly(λ, logm).

The protocol works as follows.

Bob has a choice bit c ∈ {0, 1} and Alice has two messages msg0,msg1 ∈ {0, 1}`.

1. Alice and Bob initiate vectors rA ∈ {0, 1}t, rB ∈ {0, 1,⊥}t respectively. They
set i := 0.
Repeat the following until i = t:

(a) Alice and Bob select uniformly random subsets sA, sB ⊆ [k] of size |sA| =
|sB | = ñ respectively.
Alice streams a uniformly random string x← {0, 1}k to Bob.
Alice stores x[sA], and Bob stores x[sB ].

(b) Alice and Bob perform set interactive hashing, with Bob’s input being
sB .
– If Alice rejects, then both parties move to the next iteration.
– Else, if Alice accepts with some value u ∈ sA, then she sets rA[i] =
x[u].
• If Bob also accepts then it must be the case that u ∈ sB and he

sets rB [i] = x[u].
• Else, Bob sets rB [i] = ⊥.

Both parties increment i := i+ 1.

If the number of iterations reaches Rmax before i = t, the parties abort.
2. Bob sets I := {i ∈ [t] : rB [i] 6= ⊥}. If |I| < 2·t

5 then Bob aborts. Else he
chooses two sets I0, I1 of size |I0| = |I1| = 2·t

5 by sub-selecting Ic ⊆ I and
I1−c ⊆ [t] \ Ic uniformly at random.
Bob sends I0, I1 to Alice.

3. Alice checks that |I0| = |I1| = 2·t
5 and I0 ∩ I1 = ∅ and aborts otherwise.

She chooses an extractor seed seed← {0, 1}d0 and sends seed to Bob.
Alice computes seed0 = Ext(rA[I0]; seed), seed1 = Ext(rA[I1]; seed).
Bob computes seedc = Ext(rB [Ic]; seed).
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4. Alice streams a uniformly random string x← {0, 1}k′ to Bob.
Alice computes key0 = BSMExt(x; seed0), key1 = BSMExt(x; seed1).
Bob computes keyc = BSMExt(x; seedc).

5. Alice sends to Bob:

ct0 = key0 ⊕msg0, ct1 = key1 ⊕msg1

and Bob outputs msg = ctc ⊕ keyc.

6.4 Multiparty Computation from OT

It is known that one can use the oblivious transfer (OT) ideal functionality
as a black box to achieve general multi-party computation in the OT-hybrid
model [25, 23]. By plugging in our construction of OT in the BSM, one therefore
gets general multiparty computation in the BSM with efficient simulation. A
similar observation that OT implies MPC in the BSM was already made in [10]
and expanded on in [27], albeit in the setting where both the OT and the MPC
only satisfy inefficient simulation.

We provide some additional details. Assume we want to perform a multiparty
computation of some circuit C with N parties and security parameter λ.

– Honest user storage: If we start with an OT protocol in the (n,m)-BSM
and use it to construct MPC, the honest users need to keep in memory all
of the intermediate state of the external MPC protocol in the OT-hybrid
model. The size of this state is some poly(|C|, N, λ) completely independent
of n,m. Therefore the resulting protocol will be in the (n′,m)-BSM model
with n′ = n+ poly(|C|, N, λ), which can still be arbitrarily smaller than the
adversarial storage m.

– Adversary storage: We note that the MPC protocol only executes copies
of the OT protocol sequentially. When the “outer” simulator of the overall
MPC needs to simulate each OT execution, it can spawn of a fresh copy of
an “inner” OT simulator. Although the outer simulator may need to store
some additional state related to the outer MPC execution, this is completely
unrelated to the inner OT. Therefore, the OT protocol only needs to achieve
security against an OT adversary with the same storage bound m as the
overall MPC adversary.

Summarizing we get the following theorem as a corollary of our OT protocol
(Theorem 19) and the works of [25, 23].

Theorem 20. For any m,λ and any N -party ideal functionality F having cir-
cuit size |F|, there is some nmin = O(logm) + poly(|F|, N, λ) such that for all
n ≥ nmin there is a secure MPC protocol in the (n,m)-BSM with ε = 2−Ω(λ)

security against an adversary that can maliciously corrupt any number of par-
ties. The round complexity is O(dm/n2e·poly(|F|, N, λ)) and the communication
complexity O(m · dm/n2e · poly(|F|, N, λ)).
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7 Lower Bounds on Rounds and Communication

In this section, we prove that achieving large memory gaps between adversaries
and honest parties in the bounded storage model inherently requires large round
complexity and communication. In Section 7.1, we introduce the specific BSM
we use for our lower bound. In Section 7.2, we prove a lower bound on round
complexity and communication in this model. Looking ahead, one drawback of
this lower bound is that it only rules out protocols secure against somewhat
strong, non-streaming adversaries. In Section 7.3, we introduce another variant
of the BSM where adversaries are streaming, and prove an associated lower
bound in Section 7.4.

7.1 Model for the Lower Bound: the Unbounded Processing Model

As mentioned in the introduction, our lower bound holds in a stronger model
than the variant of streaming BSM we use for our positive results in Section 4.
The main conceptual difference is that both the honest parties are only bound
by their storage used between the rounds, but could compute its contents using
unbounded temporary memory. We describe that model, and introduce notation
in more details below. We develop in more details the relation with previously
discussed notions of BSM in Remark 21.

A (n,m)-bounded storage model protocol Π in the unbounded processing
model, is parametrized by a bound n on the storage of honest parties and a
bound m on the storage of the adversary. In the case of two parties, Alice and
Bob send (potentially large) messages to each other at every round. Every round
i consists of one party, say Alice, sending a message to the other, say Bob, as
follows: she computes

(s
(i)
A ,M (i))← send

(i)
A (s

(i−1)
A )

and Bob computes

s
(i)
B ← receive

(i)
B (s

(i−1)
B ,M (i)),

and vice-versa if Bob sends the message in round i. s
(i)
A and s

(i)
B denote the local

states kept by Alice and Bob respectively after round i, and M (i) denotes the

message sent at round i. By convention their starting states are s
(0)
A = s

(0)
B = ∅.

We require the states sA and sB to be of bounded size, namely |s(i)A |, |s
(i)
B | ≤ n

for all i. There are however no restrictions on the complexity of the functions

send
(i)
A , receive

(i)
B in rounds i where Alice sends a message, or send

(i)
B , receive

(i)
A in

rounds i where Bob sends a message. We’ll assume for convenience of notation
that parties speak turn by turn, namely Alice sends messages in odd rounds and
Bob sends messages in even rounds, or vice-versa.

Adversaries Adv in this model are similarly modeled as functions Adv(i) :

(s
(i−1)
E ,M (i))(i) 7→ s

(i)
E , where there are no restrictions on the complexity of

Adv(i), up to the state s
(i)
E having size at most m for all i.
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We will respectively denote by C and R some upper bounds on the total
communication and the number of rounds of Π, which hold over all possible
executions of Π. In the case of key agreement, this is without loss of generality
up to a constant loss in either security (having both parties abort and output
0) or correctness (having both parties abort and output a random value), using
Markov’s inequality.

We will furthermore suppose that the length of the message sent in any fixed
round i is fixed by the protocol, and in particular does not depend on its internal
randomness. We discuss how to relax this requirement in the full version [13].

We now define key agreement (with 1-bit output) in this model. A key agree-
ment protocol Π in the (n,m)-BSM is a protocol with two parties, Alice and

Bob, which results in a single-bit final state s
(R)
A , s

(R)
B ∈ {0, 1}. We require the

following properties:

– δ-correctness: We have

Pr[s
(R)
A = s

(R)
B ] ≥ 1/2 + δ.

for some constant δ ≤ 1/2.
– (m, ε)-Sscurity: No adversary Adv with memory m (with the specifications

above) can guess Alice’s output s
(R)
A at the end of the protocol:

∀Adv,Pr[s
(R)
E = s

(R)
A ] ≤ 1/2 + ε,

for constant ε ≤ 1/2.
– We furthermore require δ − ε = Θ(1).

The last requirement enforces that adversaries have strictly smaller probability
of guessing the output of the honest parties than the other honest party.

Remark 21 (Comparison with previously discussed models). As mentioned be-
fore, this defines a more expressive model than the one in Section 4, as honest
users for the definition above are stronger than in Section 4. The main differ-
ences are (1) there are no restrictions on the computational power of the honest
users to compute their states kept between the rounds of the protocol, who can
in particular use arbitrary large temporary memory, (2) they are neither bound
to send uniformly random “long” messages, nor restricted to have local access
to it. In the terminology we used in the introduction, the lower bound holds for
honest users without restrictions (b), (c), but with the same capability (d) as
Eve. All these capabilities make the resulting lower bound stronger.

However, we only consider strong adversaries with unlimited short-term mem-
ory (restriction (d) in the introduction). This does make our lower bound weaker
than ideal, and leaves open the possibility of a tighter lower bound for more
restricted classes of “streaming” adversaries. Looking ahead, in Sections 7.3
and 7.4, we adapt this model and the subsequent lower bound to restrict adver-
saries to be streaming, albeit at the cost of slightly worse quantitative bounds.

To sum up, in this new model, the honest users have the same capabilities
as the adversary, up to a smaller storage between rounds.
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In terms of key agreement, we relax correctness and security to only be
constants, as long as honest users have some non-trivial advantage in agreeing
on the output bit compared to an adversary; this again makes our lower bound
stronger.

7.2 Lower Bound in the Unbounded Processing Model

Theorem 22. Let Π be a key agreement protocol in the unbounded processing
model (Section 7.1), with honest storage n, satisfying δ-correctness and (m, ε)
security, where δ − ε = Ω(1). Suppose furthermore that for any execution of Π,
the total communication between Alice and Bob is at most C and consists of at

most R rounds. Then C ≥ Ω
(
m3/2

n

)
, and R ≥ Ω

(√
m
n

)
.

Remark 23 (Lower Bound for OT). Because any OT protocol directly induces
a key agreement protocol with identical round complexity and communication,
the theorem directly extends to an identical lower bound for OT.

We refer to the full version [13] for a proof.

7.3 Model for a Lower Bound against Streaming Adversaries

In the unbounded processing model for our lower bounds of Sections 7.1 and 7.2,
the only restriction, both for the honest parties and the adversary, is that their
maintained state between rounds of communications has bounded size. In partic-
ular, they all can process messages from the protocol using potentially unbounded
temporary memory, so long as they compress it to some limited amount of stor-
age afterwards.

One natural setting left open, however, is the case where the adversary has
bounded storage throughout the entire attack and only streaming access to mes-
sages sent. This makes the adversary weaker than in the model of Section 7.1,
and it is not clear whether the subsequent lower bound extends. In this section,
along with Section 7.3, we extend the lower bound of Sections 7.1 and 7.2 to
such adversaries, albeit at the cost of slightly worse parameters. Another differ-
ence is that while Sections 7.1 and 7.2 also rule out protocols with unbounded
processing honest parties, the model of this section and the subsequent lower
bound in Section 7.3 only rule out streaming honest parties.

We first describe our model, that we call the streaming model with CRS .
Honest parties send and receive messages in a streaming manner, using some
bounded memory n, without any other restriction on the messages sent nor
on the receiving algorithm. We will also consider adversaries which are similarly
treating messages sent between the parties in a streaming manner using bounded
memory m > n.

For comparison with Section 4, honest users are still more powerful, as having
general streaming access to messages (as opposed to local access), and are not
required to send uniformly random messages. In other words, honest parties
neither have restriction (b) nor (c), but are still required now to be treating
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messages in a streaming manner. The adversary, however, is weakened to only
have streaming access to the messages of the protocol, similar to honest users.
Doing so makes the resulting lower bound stronger.

Compared with our previous lower bound (Sections 7.1 and 7.2), both the
honest parties and the adversary are weaker, as they are now both streaming,
as opposed to having unbounded preprocessing. As a result, the resulting lower
bounds are technically incomparable. Still, we believe that restricting ourselves
to protocols where honest parties use bounded memory during the whole execu-
tion of the protocol is an extremely natural setting for protocols in the bounded
storage model.

Optionally, we will consider a streaming model in the common reference
string model, where a common reference string is available prior to protocol
execution. The CRS is used to (independently) derive starting states for the
parties of the protocol. We consider these processes (namely, the CRS generation
and the user state generation) to be performed by a trusted party, which can
potentially run in memory larger than n. Honest parties do not require knowledge
of the CRS to execute the remainder protocol, but adversaries do have access
to the CRS to mount attacks. For simplicity, we will only consider CRS that
directly fit in the adversary’s memory.

We define key agreement (with one-bit output) in a very similar way as in
Section 7.1: we refer to that section for our notion of δ-correctness and (m, ε)-
security. We further consider security against non-uniform attacks where adver-
saries obtain some non-uniform advice that can be generated using unbounded
memory.

7.4 Lower Bound against Streaming Adversaries

Theorem 24. Let Π be a key agreement protocol in the streaming model (Sec-
tion 7.3) with honest storage n, satisfying δ-correctness and (m, ε) security
against non-uniform attacks, where δ − ε = Ω(1). Suppose furthermore that
for any execution of Π, the total communication between Alice and Bob is at

most C and consists of at most R rounds. Then C ≥ Ω
(
m ·

(
m
n2

)1/3)
, and

R ≥ Ω
((

m
n2

)1/3)
.

Remark 25 (Lower Bound for OT). Because any OT protocol directly induces
a key agreement protocol with identical round complexity and communication,
the theorem directly extends to an identical lower bound for OT.

We refer to the full version [13] for a proof.
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