HyperPlonk: Plonk with Linear-Time Prover
and High-Degree Custom Gates

Binyi Chen', Benedikt Biinz!'?, Dan Boneh?, and Zhenfei Zhang'

1) Espresso Systems, 2) Stanford University

Abstract. Plonk is a widely used succinct non-interactive proof system
that uses univariate polynomial commitments. Plonk is quite flexible:
it supports circuits with low-degree “custom” gates as well as circuits
with lookup gates (a lookup gate ensures that its input is contained in a
predefined table). For large circuits, the bottleneck in generating a Plonk
proof is the need for computing a large FFT.

We present HyperPlonk, an adaptation of Plonk to the boolean hyper-
cube, using multilinear polynomial commitments. HyperPlonk retains the
flexibility of Plonk but provides several additional benefits. First, it
avoids the need for an FF'T during proof generation. Second, and more
importantly, it supports custom gates of much higher degree than Plonk
without harming the running time of the prover. Both of these can dra-
matically speed up the prover’s running time. Since HyperPlonk relies on
multilinear polynomial commitments, we revisit two elegant construc-
tions: one from Orion and one from Virgo. We show how to reduce the
Orion opening proof size to less than 10kb (an almost factor 1000 im-
provement) and show how to make the Virgo FRI-based opening proof
simpler and shorterﬂ

1 Introduction

Proof systems [31/4] have a long and rich history in cryptography and com-
plexity theory. In recent years, the efficiency of proof systems has dramatically
improved and this has enabled a multitude of new real-world applications that
were not previously possible. In this paper, we focus on succinct non-interactive
arguments of knowledge, also called SNARKSs [I3]. Here, succinct refers to the
fact that the proof is short and verification time is fast, as explained below.
Recent years have seen tremendous progress in improving the efficiency of the
prover [4849I5527743IT7I32/50].

Let us briefly review what a (preprocessing) SNARK is. We give a precise def-
inition in the full version. Fix a finite field F, and consider the relation R(C, x, w)
that is true whenever x € F*, w € F™, and C(x,w) = 0, where C is the de-
scription of an arithmetic circuit over F that takes n + m inputs. A SNARK
enables a prover P to non-interactively and succinctly convince a verifier V that
P knows a witness w € F™ such that R(C,x, w) holds, for some public circuit
C and x € F".

In more detail, a SNARK is a tuple of four algorithms (Setup,Z, P, V), where
Setup(1%) is a randomized algorithm that outputs parameters gp, and Z(gp,C)

! This is an extended abstract. The full version is available on EPRINT[22]

is a deterministic algorithm that pre-processes the circuit C and outputs prover
parameters pp and verifier parameters vp. The prover P(pp, x, w) is a randomized
algorithm that outputs a proof 7, and the verifier V(vp, x,) is a deterministic
algorithm that outputs 0 or 1. The SNARK must be complete, knowledge sound,
and succinct. Here succinct means that if C contains s gates, and x € F", then
the size of the proof should be O, (logs) and the verifier’s running time should
be Ox(n 4 logs). A SNARK is often set in the random oracle model where all
four algorithms can query the oracle. If the Setup algorithm is randomized, then
we say that the SNARK requires a trusted setup; otherwise, the SNARK is said
to be transparent because Setup only has access to public randomness via the
random oracle. Optionally, we might want the SNARK to be zero-knowledge, in
which case it is called a zkSNARK.

Modern SNARKSs are constructed by compiling an information-theoretic ob-
ject called an Interactive Oracle Proof (IOP) [1I] to a SNARK using a suitable
cryptographic commitment scheme. There are several examples of this paradigm.
Some SNARKS use a univariate polynomial commitment scheme to compile a
Polynomial-IOP to a SNARK. Examples include Marlin [24], and Plonk [27].
Other SNARKSs use a multivariate linear (multilinear) commitment scheme to
compile a multilinear-IOP to a SNARK. Examples include Hyrax [48], Libra [49],
Spartan [43], Quarks [44], and Gemini [I7]. Yet other SNARKS use a vector com-
mitment scheme (such as a Merkle tree) to compile a vector-IOP to a SNARK.
The STARK system [§] is the prime example in this category, but other ex-
amples include Aurora [10], Virgo [55], Brakedown [32], and Orion [51]. While
STARKs are post-quantum secure, require no trusted setup, and have an effi-
cient prover, they generate a relatively long proof (tens of kilobytes in practice).
The paradigm of compiling an IOP to a SNARK using a suitable commitment
scheme lets us build universal SNARKs where a single trusted setup can sup-
port many circuits. In earlier SNARKS, such as [34I30/14], every circuit required
a new trusted setup.

The Plonk system. Among the IOP-based SNARKSs that use a Polynomial-IOP,
the Plonk system [27] has emerged as one of the most widely adopted in industry.
This is because Plonk proofs are very short (about 400 bytes in practice) and fast
to verify. Moreover, Plonk supports custom gates, as we will see in a minute. An
extension of Plonk, called PlonKup [1], further extends Plonk to incorporate
lookup gates using the Plookup IOP of [27].

One difficulty with Plonk, compared to some other schemes, is the prover’s
complexity. For a circuit C with s arithmetic gates, the Plonk prover runs in
time Oy (slogs). The primary bottlenecks come from the fact that the prover
must commit to and later open several degree O(s) polynomials. When using
the KZG polynomial commitment scheme [36], the prover must (i) compute a
multi-exponentiation of size O(s) in a pairing-friendly group where discrete log
is hard, and (ii) compute several FFTs and inverse-FFTs of dimension O(s).
When using a FRI-based polynomial commitment scheme [737/55], the prover
computes an O(cs)-sized FFT and O(cs) hashes, where 1/c is the rate of a
certain Reed-Solomon code. The performance further degrades for circuits that

contain high-degree custom gates, as some FFTs and multi-exponentiations have
size proportional to the degree of the custom gates.

In practice, when the circuit size s is bigger than 22°, the FFTs become a
significant part of the running time. This is due to the quasi-linear running time
of the FFT algorithm, while other parts of the prover scale linearly in s. The
reliance on FFT is a direct result of Plonk’s use of univariate polynomials. We
note that some proof systems eliminate the need for an FFT by moving away
from Plonk altogether [43IT7I32I5TI25].

Hyperplonk. In this paper, we introduce HyperPlonk, an adaptation of the Plonk
IOP and its extensions to operate over the boolean hypercube B, := {0,1}*.
We present HyperPlonk as a multilinear-IOP, which means that it can be com-
piled using a suitable multilinear commitment scheme to obtain a SNARK (or
a zkSNARK) with an efficient prover.

HyperPlonk inherits the flexibility of Plonk to support circuits with custom
gates, but presents several additional advantages. First, by moving to the boolean
hypercube we eliminate the need for an FFT during proof generation. We do
so by making use of the classic SumCheck protocol [39], and this reduces the
prover’s running time from Oj(slogs) to Ox(s). The efficiency of SumCheck is
the reason why many of the existing multilinear SNARKSs [48/491431441T7] use
the boolean hypercube. Here we show that Plonk can similarly benefit from the
SumCheck protocol.

Second, and more importantly, we show that the hypercube lets us incorpo-
rate custom gates more efficiently into HyperPlonk. A custom gate is a function
G : F* = T, for some £. An arithmetic circuit C with a custom gate G, denoted
C[G], is a circuit with addition and multiplication gates along with a custom
gate G that can appear many times in the circuit. The circuit may contain mul-
tiple types of custom gates, but for now, we will restrict to one type to simplify
the presentation. These custom gates can greatly reduce the circuit size needed
to compute a function, leading to a faster prover. For example, if one needs to
implement the S-box in a block cipher, it can be more efficient to implement it
as a custom gate.

Custom gates are not free. Let G : F* — F be a custom gate that computes
a multivariate polynomial of total degree d. Let C[G] be a circuit with a total of
s gates. In the Plonk IOP, the circuit C[G] results in a prover that manipulates
univariate polynomials of degree O(s - d). Consequently, when compiling Plonk
using KZG [36], the prover needs to do a group multi-exponentiation of size
O(sd) as well as FFTs of this dimension. This restricts custom gates in Plonk
to gates of low degree.

We show that the prover’s work in HyperPlonk is much lower. Let G : F¢ — F
be a custom gate that can be evaluated using k arithmetic operations. In Hyper-
Plonk, the bulk of the prover’s work when processing C[G] is only O(sklog® k)
field operations. Moreover, when using KZG multilinear commitments [40], the
total number of group exponentiations is only O(s+ dlog s), where d is the total
degree of G. This is much lower than Plonk’s O(sd) group exponentiations. It
lets us use custom gates of much higher degree in HyperPlonk.

Making Plonk and its Plonkup extension work over the hypercube raises
interesting challenges, as discussed in In particular, adapting the
Plookup IOP [27], used to implement table lookups, requires changing the pro-
tocol to make it work over the hypercube (see Section . The resulting version
of HyperPlonk that supports lookup gates is called HyperPlonk+ and is described
in the full version.

Batch openings and commit-and-prove SNARKs. The prover in HyperPlonk
needs to open several multilinear polynomials at random points. We present a
new sum-check-based batch-opening protocol that can batch many
openings into one, significantly reducing the prover time, proof size, and verifier
time. Our protocol takes O(k - 2#) field operations for the prover for batching k
of p-variate polynomials, compared to O(k?ju - 2*) for the previously best pro-
tocol [47]. Under certain conditions, we also obtain a more efficient batching
scheme with complexity O(2#), which yields a very efficient commit-and-prove
protocol.

Improved multilinear commitments. Since HyperPlonk relies on a multilinear
commitment scheme, we revisit two approaches to constructing multilinear com-
mitments and present significant improvements to both.

First, in we use our commit-and-prove protocol to improve the Orion
multilinear commitment scheme [51]. Orion is highly efficient: the prover time is
strictly linear, taking only O(2*) field operations and hashes for a multilinear
polynomial in p variables (no group exponentiations are used). The proof size is
O(Au?) hash and field elements, and the verifier time is proportional to the proof
size. In we describe Orion+, that has the same prover complexity, but
has O(u) proof size and O(u) verifier time, with good constants. In particular,
for security parameter A = 128 and p = 25 the proof size with Orion+ is only
about 7 KBs, compared with 5.5 MB with Orion, a nearly 1000x improvement.
Using Orion+ in HyperPlonk gives a strictly linear time prover.

Second, in the full version, we show how to generically transform a univariate
polynomial commitment scheme into a multilinear commitment scheme using the
tensor-product univariate Polynomial-IOP from [I7]. This yields a new construc-
tion for multilinear commitments from FRI [7] by applying the transformation
to the univariate FRI-based commitment scheme from [37]. This approach leads
to a more efficient FRI-based multilinear commitment scheme compared to the
prior construction in [55], which uses recursive techniques. Using this commit-
ment scheme in HyperPlonk gives a quantum-resistant quasilinear-time prover.

Evaluation results. When optimized and instantiated with the pairing-based
multilinear commitment scheme of [40], the proof size of Hyperplonk is p + 5
group elements and 4p + 29 field elementsﬂ Using BLS12-381 as the pairing
group, we obtain 4.7K B proofs for p = 20 and 5.5K B proofs for u = 25. For

2 The constants depend linearly on the degree of the custom gates. These numbers
are for simple degree 2 arithmetic circuits.

comparison, Kopis [44] and Gemini [I7], which also have linear-time provers,
report proofs of size 39KB and 18KB respectively for y = 20. In Table [I] we
show that our prototype HyperPlonk implementation outperforms an optimized
commercial-strength Plonk system for circuits with more than 2'4 gates. It also
shows the effects of PLONK arithmetization compared to R1CS by comparing
the prover runtime for several important applications. Hyperplonk outperforms
Spartan [43] for these applications by a factor of over 60. We discuss the evalu-
ation further in the full version.

l Application H Rrics ‘SpartanHRpLONKJr‘Jellyﬁsh‘HyperPIonk
3-to-1 Rescue Hash 288 [1] | 422 ms || 144 [45] | 40 ms 88 ms

Zexe's recursive circuit|| 227 [52]| 6 min || 277 [52] | 13.1s 5.1s

Rollup of 50 private tx 2% 39 min || 2%° [@5 110 s 38.2s

Table 1. The prover runtime of Hyperplonk, Spartan [43], and Jellyfish Plonk, for
popular applications. The first column (next to the column of the applications) shows
the number of R1ICS constraints for each application. The third column shows the
corresponding number of constraints in HyperPlonk+. Note that the Zexe and the
Rollup applications are using the BW6-761 curve.

1.1 Technical overview

In this section we give a high level overview of how to make Plonk and its
extensions work over the hybercube. We begin by describing Plonk in a modular
way, breaking it down into a sequence of elementary components. In
we show how to instantiate each component over the hybercube.

Some components of Plonk rely on the simple linear ordering of the elements
of a finite cyclic group induced by the powers of a generator. On the hypercube
there is no natural simple ordering, and this causes a problem in the Plookup
protocol [27] that is used to implement a lookup gate. To address this we modify
the Plookup argument in to make it work over the hypercube. We give an
overview of our approach below.

A review of Plonk. Let us briefly review the Plonk SNARK. Let C[G] : F**™ — F
be a circuit with a total of s gates, where each gate has fan-in two and can be
one of addition, multiplication, or a custom gate G : F2 — F. Let x € F” be
a public input to the circuit. Plonk represents the resulting computation as a
sequence of n + s+ 1 triplesﬂ

N o= {(Li,Ri,Oi) € IF3} . (1)

1=0,...,n+s

3 A more general Plonkish arithmetization [64] supports wider tuples, but triples are
sufficient here.

This M is a matrix with three columns and n + s + 1 rows. The first n rows
encode the n public input; the next s rows represent the left and right inputs
and the output for each gate; and the final row enforces that the final output of
the circuit is zero. We will see how in a minute.

In basic (univariate) Plonk, the prover encodes the cells of M using a cyclic
subgroup 2 C F of order 3(n + s + 1). Specifically, let w € 2 be a generator.
Then the prover interpolates and commits to a polynomial M € F[X] such that

M(W*) = L;, MW =R;, MwW*?) =0; fori=0,...,n+s.
Now the prover needs to convince the verifier that the committed M encodes a
valid computation of the circuit C. This is the bulk of Plonk system.

Hyperplonk. In HyperPlonk we instead use the boolean hypercube to encode M.
From now on, suppose that n+s+1 is a power of two, so that n4+s+1 = 2. The
prover interpolates and commits to a multilinear polynomial M € F[X*+2] =
F[X1,..., X, 42] such that

M(0,0,(i)) = L;, M(0,1,(i)) = R;, M(1,0,(i)) =0O;, fori=0,...,n+s. (2)

Here (i) is the u-bit binary representation of i. Note that a multilinear poly-
nomial on p + 2 variables is defined by a vector of 2#12 = 4 x 2# coefficients.
Hence, it is always possible to find a multilinear polynomial that satisfies the
3 x 2 constraints in . Next, the prover needs to convince the verifier that the
committed M encodes a valid computation of the circuit C. To do so, we need
to adapt Plonk to work over the hypercube.

Let us start with the pre-processing algorithm Z(gp,C) that outputs prover
and verifier parameters pp and vp. The verifier parameters vp encode the cir-
cuit C[G] as a commitment to four multilinear polynomials (51, S2, S3,0), where
51,892,593 € F[X#] and o € F[X#*2]. The first three are called selector polyno-
mials and o is called the wiring polynomial. We will see how they are defined
in a minute. There is one more auxiliary multilinear polynomial I € F[X#]
that encodes the input x € F". This polynomial is defined as I((i)) = x; for
¢ =20,...,n—1, and is zero on the rest of the boolean cube B,,. The verifier, on
its own, computes a commitment to the polynomial I to ensure that the correct
input x € F™ is being used in the proof. Computing a commitment to I can be
done in time Oy (n), which is within the verifier’s time budget.

With this setup, the Plonk prover P convinces the verifier that the committed
M satisfies two polynomial identities:

The gate identity: Let Sy,S2, 53 : F* — {0,1} be the three selector polynomials
that the pre-processing algorithm Z(gp,C) committed to in vp. To prove that all
gates were evaluated correctly, the prover convinces the verifier that the following
identity holds for all x € B, := {0, 1}*:

0:51(X)~(M(O,O,X)+M(O,1,X)) + Sa(x)- M(0,0,x)- M(0,1,%)
N—— N—— N— N——

L Rx) Lix Rx)
(3)
+ Sg(x)-G(M(0,0, %), M(o,l,x)) — M(L,0,x) + I(x)
L R (o)
[x] [x] [x]

where [x] = > 17, ' x;2" is the integer whose binary representation is x € B,..
For each ¢ = 0,...,n + s, the selector polynomials Sy, .52, S5 are defined to do
the “right” thing:

— addition gate: S1((5)) =1, S2((i)) =S3((i)) =0 (Oi=L;+R;)
— multiplication gate: ~ S1((3)) = S5((¢)) =0, S2((z)) =1 (0i=L;-R;y)

— for a G gate: S1((3)) = S2((¢)) =0, Ss((i)) =1 (0, =G(Li, Ri))
—ifi<nori=n+s S51(() = 52((i) = Sa((i)) =0 (0i = 1((3)))

The last bullet ensures that O; is equal to the i-th input for i = 0,...,n — 1,
and that the final output of the circuit, O, 4, is equal to zero.

The wiring identity: Every wire in the circuit C induces an equality constraint
on two cells in the matrix M. In HyperPlonk, the wiring constraints are captured
by a permutation ¢ : B,y — B,42. The prover needs to convince the verifier
that

M(x) = M(6(x)) forall x € B, := {0, 1}/F2 (4)
To do so, the pre-processing algorithm Z(gp,C) commits to a multilinear poly-
nomial o : F*T2 — F that satisfies o(x) = [6(x)] for all x € B, (recall that
[6(x)] is the integer whose binary representation is 6(x) € B42). The prover

then convinces the verifier that the following two sets are equal (both sets are
subsets of F?):

{(bd, M00) }

This equality of sets implies that holds.

Pl M) (5)

XEB +2 {

Proving the gate identity. The prover convinces the verifier that the Gate identity
holds by proving that the polynomial defined by the right hand side of is
zero for all x € By,. This is done using a ZeroCheck IOP, defined in [Section 3.2
If the custom gate G has total degree d and there are s gates in the circuit, then
the total number of terms of the polynomial in (3 is (d 4 1)(s + n + 1) which is
about (d-s). If this were a univariate polynomial, as in Plonk, then a ZeroCheck
would require a multi-exponentiation of dimension (d-s) and an FFT of the same
dimension. When the polynomial is defined over the hypercube, the ZeroCheck
is implemented using the SumCheck protocol in which requires no
FFTs. In that section we describe two optimizations to the SumCheck protocol
for the settings where the multivariate polynomial has a high degree d in every
variable:

— First, in every round of SumCheck the prover sends a polynomial commit-
ment to a univariate polynomial of degree d, instead of sending the poly-
nomial in the clear as in regular SumCheck. This greatly reduces the proof
size.

— Second, in standard SumCheck, the prover opens the univariate polynomial
commitment at three points: at 0, 1, and at a random r € F. We optimize this
step by showing that opening the commitment at a single point is sufficient.
This further shortens the final proof.

The key point is that the resulting ZeroCheck requires the prover to do only
about s+ d - group exponentiations, which is much smaller than d - s in Plonk.
The additional arithmetic work that the prover needs to do depends on the
number of multiplication gates in the circuit implementing the custom gate G,
not on the total degree of G, as in Plonk. As such, we can support much larger
custom gates than Plonk.

In summary, proof generation time is reduced for two reasons: (i) the elimi-
nation of the FFTs, and (ii) the better handling of high-degree custom gates.

Proving the wiring identity. The prover convinces the verifier that the Wiring
identity holds by proving the set equality in . We describe a set equality
protocol over the hypercube in Briefly, we use a technique from
Bayer and Groth [6], that is also used in Plonk, to reduce this problem to a
certain ProductCheck over the hypercube (Section 3.3). We then use an idea
from Quarks [44] to reduce the hypercube ProductCheck to a ZeroCheck, which
then reduces to a SumCheck. Again, no FFTs are needed.

Table lookups. An important extension to Plonk supports circuits with table
lookup gates. The table is represented as a fixed vector t € F2"~1. A table
lookup gate ensures that a specific cell in the matrix M is contained in t. For
example, one can set t to be the field elements in {0,1,..., B} for some B
(padding the vector by 0 as needed). Now, checking that a cell in M is contained
in t is a simple way to implement a range check.

Let f,t : B, — F be two multilinear polynomials. Here the polynomial ¢
encodes the table t, where the table values are t(B,,). The polynomial f encodes
the cells of M that need to be checked. An important step in supporting lookup
gates in Plonk is a way for the prover to convince the verifier that f(B,,) C t(B,),
when the verifier has commitments to f and ¢. The Plookup proof system by
Gabizon and Williamson [27] is a way for the prover to do just that. More
recently preprocessed alternatives to lookup have been developed[53[42]. These
perform better if the table is known, e.g. a range of values but are in general
orthogonal to Plookup.

The problem is that Plookup is designed to work when the polynomials are
defined over a cyclic subgroup G C F* of order ¢ with generator w € G. In
particular, Plookup requires a function next : F — F that induces an ordering of
G. This function must satisfy two properties: (i) the sequence

w, next(w), next(next(w)), ..., next "1 (w) (6)

should traverse all of G, and (ii) the function next should be a linear function.
This is quite easy in a cyclic group: simply define next(z) := wz.

To adapt Plookup to the hypercube we need a linear function next : F# — F#
that traverses all of B, as in @, starting with some element xo € B,,. However,
such an F-linear function does not exist. Nevertheless, we construct in
a quadratic function from F* to F* that traverses B,,. The function simulates B,,
using a binary extension and has a beautiful connection to similar techniques
used in early PCP work[12]. We then show how to linearize the function by

modifying some of the building blocks that Plookup uses. This gives an efficient
Plookup protocol over the hypercube. In the full version we use this hypercube
Plookup protocol to support lookup gates in HyperPlonk. The resulting protocol
is called HyperPlonk—+.

2 Preliminaries

Notation: We use A to denote the security parameter. For n € N let [n] be the set
{1,2,...,n}; for a,b € N let [a,b) denote the set {a,a+1,...b—1}. A function
f(n) is poly (M) (n) if there exists a ¢ € N such that f(n) = O(n®). If for all
c €N, f(n) is o(n™¢), then f(n) is in negl(\) (n) and is said to be negligible.
A probability that is 1 — negl(\) (n) is overwhelming. We use F to denote a
field of prime order p such that log(p) = 2(N).

A multiset is an extension of the concept of a set where every element has
a positive multiplicity. Two finite multisets are equal if they contain the same
elements with the same multiplicities.

A relation is a set of pairs (x,w). An indexed relation is a set of triples
(1,x; w). The index 1 is fixed at setup time.

In defining the syntax of the various protocols, we use the following conven-
tion concerning public values (known to both the prover and the verifier) and
secret ones (known only to the prover). In any list of arguments or returned tu-
ple (a, b, c;d, e), those variables listed before the semicolon are public, and those
listed after it are secret. When there is no secret information, the semicolon is
omitted.

2.1 Proofs and arguments of knowledge.

We refer to the full version for more detailed definitions of proofs, arguments,
and polynomial interactive oracle proofs. We briefly overview the primitives used
and constructed in this paper.

Interactive proofs and arguments of knowledge consist of a non-interactive
preprocessing phase run by an indexer and an interactive online phase between
a prover and a verifier. They satisfy the notions of completeness and knowledge
soundness, as well as optionally zero-knowledge. The protocols described in this
paper are public coin, meaning that the verifier only sends random messages.

PolyIOPs. SNARKs can be constructed from information-theoretic proof sys-
tems that give the verifier oracle access to prover messages. The information-
theoretic proof is then compiled using a cryptographic tool, such as a polynomial
commitment. We now define a specific type of information-theoretic proof system
called polynomial interactive oracle proofs (PIOPs). In a PIOP, the prover sends
oracles to multi-variate polynomials as messages, and the verifier can query these
polynomials at arbitrary points. The statement and the index can also consist
of oracles to polynomials which the verifier can query. See the full version for
formal definitions of PIOPs.

2.2 Multilinear polynomial commitments.

Multilinear polynomial commitments are commitments where the message space
is a multi-linear polynomial. It has the additional property that there exists an
efficient argument of knowledge for convincing a verifier that the committed
polynomial evaluates to a specific value at a given point.

Multi-linear polynomial commitments can be instantiated from random or-
acles using the FRI protocol [55], bilinear groups [40], groups of unknown order
[19/3] and discrete logarithm groups[I8/48]. We give a table of polynomial com-
mitments with their different properties in Table

Prover time:
Scheme Commit+ Eval Verifier time Proof size |n = 22%| Setup |Add.
KZG-based [40] ||BL n Gy log(n) P log(n) G1 0.8KB | Univ. | Yes
Dory [38] BL nGi1+ /nP log(n) Gr 6log(n) Gr | 30KB |Trans.| Yes
Bulletproofs [18]|| DL n G n G 2log(n) G | 1.6KB |Trans.| Yes
FRI-based ([22])||RO|nlog(n)/pF + n/pH |log?(n) _légp H|log?(n) _@gp H|250KB |Trans.| No
Orion RO| nH + % + k rec. Mog? nH Mog®n H |5.5MB |Trans.| No
. n/kGy +nH+ .
Orion + (%gl) BL (kAH + ™F) rec. log(n)P 4logn Gq 7KB | Univ. | No

Table 2. Multi-linear polynomial commitment schemes for p-variate linear polynomials
and n = 2¥. The prover time measures the complexity of committing to a polynomial
and evaluating it once. The commitment size is constant for all protocols. Unless con-
stants are mentioned, the metrics are assumed to be asymptotic. In the 4th row, p
denotes the rate of Reed-Solomon codes. In the 5th and 6th rows, k denotes the num-
ber of rows of the matrix that represents the polynomial coefficients. The 6th column
measures the concrete proof size for n = 2%° i.e. u = 25 and 128-bit security. Legend:
BL=Bilinear Group, DL=Discrete Logarithm, RO=Random Oracle, H= Hashes, P=
pairings, G= group scalar multiplications, rec.= Recursive circuit size, univ.= universal
setup, trans.= transparent setup, Add.=Additive

Virtual oracles and commitments. Given multiple polynomial oracles, we can
construct virtual oracles to the functions of these polynomials. An oracle to
g([[f1]]s - - [[fx]]) for some function g is simply the list of oracles {[[f1]], - -, [f&]]}
as well as a description of g. In order to evaluate g([[f1]],..-,[[fx]]) at some
point x we compute y; = f;(x)Vi € [k] and output g(y1,...yr). Equivalently
given commitments to polynomials, we can construct a virtual commitment to
a function of these polynomials similarly. If g is an additive function and the
polynomial commitment is additively homomorphic, then we can use the homo-
morphism to evaluate.

2.3 PIOP Compilation

PIOP compilation transforms the interactive oracle proof into an interactive
argument of knowledge (without oracles) IT. The compilation replaces the oracles

10

with polynomial commitments. Every query by the verifier is replaced with an
invocation of the Eval protocol at the query point z. The compiled verifier accepts
if the PIOP verifier accepts and if the output of all Eval invocations is 1. If IT
is public-coin, it can further be compiled into a non-interactive argument of
knowledge (or NARK) using the Fiat-Shamir transform.

Theorem 2.1 (PIOP Compilation [19424]). If the polynomial commitment
scheme I' has witness-extended emulation, and if the t-round Polynomial IOP for
R has negligible knowledge error, then II, the output of the PIOP compilation,
is a secure (non-oracle) argument of knowledge for R. The compilation also pre-
serves zero knowledge. If I' is hiding and Eval is honest-verifier zero-knowledge,
then II is honest-verifier zero-knowledge. The efficiency of the resulting argu-
ment of knowledge II depends on the efficiency of both the PIOP and I':
— Prover time The prover time is equal to the prover time of the PIOP plus
the oracle length times the commitment time plus the query complexity times
the prover time of I.
— Verifier time The verifier time is equal to the verifier time of the PIOP plus
the verifier time for I' times the query complexity of the PIOP.
— Proof size The proof size is equal to the message complezity of the PIOP
times the commitment size plus the query complexity times the proof size of
I'. We say the proof is succinct if the proof size is O(log®(|w|)).

Batching. The prover time, verifier time, and proof size can be significantly
reduced using batch openings of the polynomial commitments. For example, the
proof size only depends on the number of oracles plus a single batch opening.

3 A toolbox for multivariate polynomials

We begin by reviewing several important PolylOPs that will serve as building
blocks for HyperPlonk. Some are well-known, and some are new.

Notation. From here on, we let B, := {0,1}* C F* be the boolean hypercube.
We use]-';(;d) to denote the set of multivariate polynomials in F[X,...,X,]
where the degree in each variable is at most d; moreover, we require that each
polynomial in]-"l(;d) can be expressed as a virtual oracle to ¢ = O(1) multilinear
polynomials. that is, with the form f(X) := g(h1(X),...,h.(X)) where h; €
]-'F(Lgl) (1 < i < ¢) is multilinear and g is a c-variate polynomial of total degree
at most d. Looking ahead, we restrict ourselves to this kind of polynomials so

that we can have sumchecks for the polynomials with linear-time provers.

For polynomials f,g €]-'l(LSd), we denote merge(f,g) €]-'EL? as

merge(f, g) := h(Xo, ..., Xyu) == (1 = Xo) - f(X1,..., Xp) + Xo - g(Xq,...,Xu) (7)
so that h(0,X) = f(X) and h(1,X) (X). In the following definitions, we

=9
omit the public parameters gp := (F, u,d) when the context is clear. We use

11

5gh‘éck to denote the soundness error of the PolyIOP for relation Rcpeck with

public parameter (F,d, i), where check € {sum, zero, prod, mset, perm, lkup}.
We defer all proofs to the full version[22].

Scheme P time |V time|Num of queries|Num of rounds|Proof oracle size|Witness size
SumCheck [[O(2”dlog” d)| O(u) p+1 w dp o(2*)
ZeroCheck ||O(2"dlog® d)| O(u) p+1 H dp o(2")
ProdCheck ||O(2#dlog? d)| O(u) uw+2 w1 o(2") o(2")
MsetEqChk||O(2*dlog? d)| O(u) o+ 2 p+1 o2") O(k2")
PermCheck||O(2#dlog? d)| O(u) o+ 2 p+1 o2") o(2")

Plookup [|O(2*dlog? d)| O(p) n+3 w2 o2") o(2")
BatchEval O(2%k) | O(kp) 1 w+logk O(p + logk) O(k2")

Table 3. The complexity of PIOPs. d and p denote the degree and the number of
variables of the multivariate polynomials; £ in MsetCheck is the length of each element
in the multisets; k in BatchEval is the number of evaluations.

3.1 SumCheck PIOP for high degree polynomials

In this section, we describe a PIOP for the sumcheck relation using the classic
sumcheck protocol [39]. However, we modify the protocol and adapt it to our
setting of high-degree polynomials.

Definition 3.1 (SumCheck relation). The relation Rgyy is the set of all
tuples (x;w) = ((v, [[f]]); f) where f €]:P(Lgd) and ZbeBu fb)=v

Construction. The classic SumCheck protocol [39] is a PolyIOP for the relation
Rsum. When applying the protocol to a polynomial f €]:P(Lgd), the protocol
runs in pu rounds where in every round, the prover sends a univariate polynomial
of degree at most d to the verifier. The verifier then sends a random challenge
point for the univariate polynomial. At the end of the protocol, the verifier
checks the consistency between the univariate polynomials and the multi-variate
polynomial using a single query to f.
Given a tuple (x;w) = (v, [[f]]; f) for p-variate degree d polynomial f such that
ZbeB f(b) =
—Fori=p,p—1,...,1:
e The prover computes 7i(X) == > pep,_, f(b, X, @it1,. ..,) and sends
the oracle [[r;]] to the verifier. r; is univariate and of degree at most d.
e The verifier checks that v = r;(0) + 7;(1), samples a; < F, sends «; to

the prover, and sets v « 7;(;).
— Finally, the verifier accepts if f(a,...,a,) =v.

Theorem 3.2. The PIOP for Rsyn is perfectly complete and has knowledge
error §%1 = du/|F|.

sum

We refer to [47] for the proof of the theorem.

12

Sending r as an oracle. Unlike in the classic sumcheck protocol, we send an or-
acle to r;, in each round, instead of the actual polynomial. This does not change
the soundness analysis, as the soundness is still proportional to the degree of
the univariate polynomials sent in each round. However, it reduces the commu-
nication and verifier complexity, especially if the degree of r is large, as in our
application of Hyperplonk with custom gates.

Moreover, the verifier has to evaluate r; at three points: 0, 1, and «;. As a
useful optimization, the prover can instead send an oracle for the degree d — 2
polynomial
ri(X) — (1 —X)-ri(0) = X - (1)

X-(1-X) ’
along with r;(0). The verifier then computes r;(1) < v — r;(0) and
Ti(az) — Ti(1) (1 - 0‘1) oy + (1 - O‘Z) 1(0) + oy 'Tz‘(l)-
This requires only one query to the oracle of 7} at «; and one field element per
round.

ri(X) =

(3

Computing sumcheck for high-degree polynomials. Consider a multi-variate poly-
nomial f(X) := h(g1(X),...,9.(X)) such that h is degree d and can be evalu-
ated through an arithmetic circuit with O(d) gates. In the sumcheck protocol,
the prover has to compute a univariate polynomial 7;(X) in each round using
the previous verifier messages a1, ..., a;—1. We adapt the algorithm by [46l49]
that showed how the sumcheck prover can be run in time linear in 2* using
dynamic programming. The algorithm takes as input a description of f as well
as the sumcheck round challenges a1, ..., a,. It outputs the round polynomials
r1,...,7,. The sumcheck prover runs the algorithm in parallel to the sumcheck
protocol, taking each computed r; as that rounds message:

Algorithm 1 Computing r1,...,7, [46/49)]

1: procedure SUMCHECK PROVER(h, g1(X), ..., g.(X))

2: For each g; build table A; : {0,1}' — F of all evaluations over B,

for i< p...1do
For each b € B;_; and each j € [¢], define 7% (X) := (1 — X)A;[b, 0] + X A;[b, 1
Compute r® (X) « h(r®(X),...,r® (X)) for all b € B;_; using Algorithm [2].
Tl(X) < ZbGBi,l rb(X).
Send r;(X) to V.
Receive o; from V.

9: Set A;[b] + 7Y (a;) for each b e B;_;.

10: end for

11: end procedure

In [46149], r®)(X) := h(rEO(X),...,r(@®(X)) is computed by evaluating
h on d distinct values for X, e.g. X € {0,...,d} and interpolating the output.
This works as h is a degree d polynomial and each 77 is linear. Evaluating r7:®
on d points can be done in d steps. So the total time to evaluate all r7-® for

13

J € [c] is ¢ - d. Furthermore, the circuit has O(d) gates, and evaluating it on d
inputs, takes time O(d?). Assuming that ¢ ~ d the total time to compute 7®)
with this algorithm is O(d?) and the time to run Algorithm [1|is O(2~d?).

We show how this can be reduced to O(2# - dlog® d) for certain low depth
circuits, such as h := J[.7.(X). The core idea is that evaluating the circuit
for h symbolically, instead of at d individual points, is faster if fast polynomial
multiplication algorithms are used.

We will present the algorithm for computing h(X) := H;lzl r;(X), then we
will discuss how to extend this for more general h. Assume w.l.o.g. that d is a
power of 2.

Algorithm 2 Evaluating h := Hd

j=1Tj

Require: r1,...,r4 are linear functions
1: procedure h(ri(X),...,rqe(X))
2: t1,; < r; for all j € [d].

return h = ti5g,(4),1
end procedure

3: for i+ 1...logd do

4: for j € [d/2Y] do

5: tiv1,5(X) ti2j—1(X) - ti,2;(X) > Using fast polynomial multiplication
6: end for

7 end for

8:

9:

In round i there are d/2¢ polynomial multiplications for polynomials of degree
21, In FFT-friendly{Y|fields, polynomial multiplication can be performed in time
o(d log(d))The total running time of the algorithm is therefore Ziozgf(d) 49i-1]og(271) =
S5 0(d i) = O(dlog*(d)).

Algorithm [2| naturally extends to more complicated, low-depth circuits. Ad-
dition gates are performed directly through polynomial addition, which takes
O(d) time for degree d polynomials. As long as the circuit is low-depth and has
O(d) multiplication gates, the complexity remains O(d log?(d)). Furthermore, we
can compute r*(X) for k < d using only a single FFT of length deg(r) - k for
an input polynomial r. The FFT evaluates r at deg(r) - k points. Then we raise
each point to the power of k. This takes time O(deg(r) - k(log(deg(r)) +log(k)))
and saves a factor of log(k) over a repeated squaring implementation.

Batching. Multiple sumcheck instances, e.g. (s, [[f]]) and (&', [[g]]) can easily be
batched together. This is done using a random-linear combination, i.e. showing

4 These are fields where there exists an element that has a smooth order of at least d.
5 Recent breakthrough results have shown that polynomial multiplication is
O(dlog(d)) over arbitrary finite fields [35] and there have been efforts toward building
practical, fast multiplication algorithms for arbitrary fields [9]. In practice, and es-
pecially for low-degree polynomials, using Karatsuba multiplication might be faster.

14

that (s+as’, [[f]] + a[lg]]) € L(Rsum) for a random verifier-generated o [48123].

The batching step has soundness %.

3.2 ZeroCheck PIOP

In this section, we describe a PIOP showing that a multivariate polynomial
evaluates to zero everywhere on the boolean hypercube. The PIOP builds upon
the sumcheck PIOP in and is a key building block for product-check
PIOP in The zerocheck PIOP is also helpful in HyperPlonk for
proving the gate identity.

Definition 3.3 (ZeroCheck relation). The relation Rzgro is the set of all
tuples (x;w) = (([[f]]); f) where f €]-';(Fd) and f(x) =0 for all x € B,,.

We use an idea from [43] to reduce a ZeroCheck to a SumCheck.

Construction. Given a tuple (x;w) = (([[f]]); f), the protocol is the following:

— V sends P a random vector r < e
— Let f(X) = f(X) - eq(X,r) where eq(x,y) := [T}_; (ziyi + (1 — @) (1 — 1)) -
— Run a sumcheck PolyIOP to convince the verifier that ((0, [f]]); f) € Rsum-

Batching. It is possible to batch two instances (([f]]); f) € Rzrro and (([[g]]); 9)
Rzero by running a zerocheck on (([[f + agl]); f + ag) for a random a € F.
The soundness error of the batching protocol %.

Theorem 3.4. The PIOP for Rzgro is perfectly complete and has knowledge
error §L1 = du/|F| + 0451+ = O(du/|F|).

ZETO0 sum

3.3 ProductCheck PIOP

We describe a PIOP for the product check relation, that is, for a rational poly-
nomial (where both the nominator and the denominator are multivariate poly-
nomials), the product of the evaluations on the boolean hypercube is a claimed
value s. The PIOP uses the idea from the Quark system [44] §5], we adapt it
to build upon the zerocheck PIOP in Product check PIOP is a key
building block for the multiset equality check PIOP in

Definition 3.5 (ProductCheck relation). The relation Rprop is the set

of all tuples (x;w) = (s, [LAa]), [Lf2])): frs f2) where fi € FED, fo € FEY,
f2(b) # 0 Vb € By and [[xcp, f/(x) = s, where [’ is the rational polynomial

' = fi/f2. In the case that fo = c is a constant polynomial, we directly set

f = fi/c and write (x;w) = ((3, [[f]]),f)

15

Construction. The Quark system [44], §5] constructs a proof system for the
Rprop relation. The proof system uses an instance of the Rzgrro PolyIOP on
v+ 1 variables. Given a tuple (x;w) = ((s, [[f1]], [[f2]]); f1, f2), we denote by
1" :== f1/f2. The protocol is the following:

— P sends an oracle v € F, P(ill) such that for all x € B,
5(0,%x) = f'(x), 9(1,%x) = 9(x,0) - ¥(x, 1), ¥(1) = 0.
— Define h := merge(f, g) € }'ﬁiﬁnax(zdﬂ)) where
FX) =9(1,X) - 9(X,0)-9(X,1), §(X) = f2(X) - 5(0,X) — f1(X).

Run a ZeroCheck PolyIOP for ([[ﬁ]], il) € RzERO, 1.e., the polynomial ¥ is
computed correctly.

— V queries [[7]] at point (1,...,1,0) € F¥T1 and checks that the evaluation
is s.

Theorem 3.6. Let d' := max(2,d+1). The PIOP for Rprop is perfectly com-
plete and has knowledge error 6% = §&mt1 — O(d'u/|F)).

prod * zero

3.4 Multiset Check PIOP

We describe a multivariate PIOP checking that two multisets are equal. The
PIOP builds upon the product-check PIOP in The multiset check
PIOP is a key building block for the permutation PIOP in and the
lookup PIOP in A similar idea has been proposed in the univariate
polynomial setting by Gabizon in a blogpost [26].

Definition 3.7 (Multiset Check relation). For any k > 1, the relation

Rissmr is the set of all tuples (x;w) = ([l - [[fll, llgnl], - [[g]]); (fro - fios g0, -

where f;,g; € .E(Agd) (1 <4 < k) and the following two multisets of tuples are

equal: {fx = [fi(x), ..., fr(x)] }x = {gx = [g1(x), ..., gr(x)] }

€B, xeB,

Basic construction. We start by describing a PolyIOP for R sgr. The protocol
can be obtained from a protocol for Rprop. Given a tuple (([[f]],[[9]]); (f,9))
the protocol is the following;:

— V samples and sends P a challenge r < F.

—Set f/:=r+fandg =r+g

If g’ # 0Vb € B, run a ProductCheck PolyIOP for ((1,[[f']],[[¢']]); f'.d') €

Rprop.

— Else the prover sends b such that ¢’(b) = 0 and the verifier accepts if g(b) =
—r (this case happens with negligible probability).

Theorem 3.8. The PIOP for Rispr has perfect completeness and has knowl-
edge error Sk, | = 201 /|F| 4+ 544 = O((2¢ + dp) /|F|).

mset, pro

16

S 9k))

3.5 Permutation PIOP

We describe a multivariate PIOP showing that for two multivariate polynomials
fig € f,‘Fd), the evaluations of g on the boolean hypercube is a predefined
permutation o of f’s evaluations on the boolean hypercube. The permutation
PIOP is a key building block of HyperPlonk for proving the wiring identity.

Definition 3.9 (Permutation relation). The indezed relation Rpgras is the
set of tuples (i;x;w) = (o5 ([[f]], [[9]]); (f>9)) , where o : B, — By, is a permu-

tation, f,g €]-',(;d), and g(x) = f(o(x)) for all x € B,,.

Construction. Gabizon et. al. [29] construct a permutation argument. We adapt
their scheme into a multivariate PolyIOP. The construction uses a PolyIOP in-
stance for Rysgr. Given a tuple (o3 ([[f]], [[9]]); (f, 9)) where o is the predefined

permutation, the indexer generates two oracles [[sid]], [[S¢]] such that siq € F,Sgl)
maps each x € By, to [x] :== > 1" x;-2071 € F,and s, € F=Y maps each x € B,
to [J(X)]H The PolyIOP is the following:

— Run a Multiset Check PolyIOP for (([[sid]], [1£11s Usall,)]s (sids fs Sg,g)) €
Ritser -

Theorem 3.10. The PIOP for Rpgru is perfectly complete and has knowledge
error 841 = 5?,;5%2 = O((2" + dp)/|F|).

perm

3.6 Lookup PIOP

This section describes a multivariate PIOP checking the table lookup relation.
The PIOP builds upon the multiset check PIOP (Section 3.4) and is a key
building block for HyperPlonk+. Our construction is inspired by a univariate
PIOP for the table lookup relation called Plookup [27]. However, it is non-trivial
to adapt Plookup to the multivariate setting because their scheme requires the
existence of a subdomain of the polynomial that is a cyclic subgroup G with
a generator w € G. Translating to the multilinear case, we need to build an
efficient function g that generates the entire boolean hypercube; moreover, g has
to be linear so that the degree of the polynomial does not blow up. However,
such a linear function does not exist. Fortunately, we can construct a quadratic
function from F# to F# that traverses B,. We then show how to linearize it by
modifying some of the building blocks that Plookup uses. This gives an efficient
Plookup protocol over the hypercube.

Definition 3.11 (Lookup relation). The indexed relation Rpookup is the
set of tuples (i;x;w) = (t;[[f]]; (f,addr)) where t € F2"~1, f € }";(Fd), and
addr: B, — [1,2") is a map such that f(X) = tadar(x) for all x € By,.

Before presenting the PIOP for Riookup, we first show how to build a
quadratic function that generates the entire boolean hypercube.

5 Here we further require |F| > 2* so that [x] never overflow.

17

A quadratic generator in Fou. For every p € N, we fix a primitive polynomial
pu € Fo[X] where p,, == XH# 4+ 3 o X° + 1 for some set S C [u — 1], so that
Fo[X]/(p.) = F5[X] = Fou. By definition of primitive polynomials, X € F5[X]
is a generator of F4[X]\ {0}. This naturally defines a generator function g, :
B, — By as gu(by, ..., by) = (by,by,...,b,_1), where b, =b; b, (i <1< p)
if i € S, and b} = b; otherwise. Essentially, for a polynomial f € F5[X] with
coefficients b, g,(b) is the coefficient vector of X - f(X). Hence the following
lemma is straightforward.

Lemma 3.12. Let g, : B, — B, be the generator function defined above. For
every x € B, \ {0"}, it holds that {g,(f) (%) }iepen—1) = By \ {0"}, where gff)(o)
denotes i repeated application of g,,.

Directly composing a polynomial f with the generator g will blow up the
degree of the resulting polynomial; moreover, the prover needs to send the com-
posed oracle f(g(+)). Both of which affect the efficiency of the PIOP. We address
the issue by describing a trick that manipulates f in a way that simulates the
behavior of f(g(-)) on the boolean hypercube, but without blowing up the degree.

Linearizing the generator. For a multivariate polynomial f € fﬁgd)

fa, €]-",(Fd) as

we define

fa,(Xy,...,X,) = Xu-f(LX'l,A.WXL,l)—l— 1-X,) f(0,Xq,...,X,-1)

where X/ :=1-X, (1 <1< p)ifie€ S, and X} := X, otherwise.

Lemma 3.13. For every u € N, let g, : B, — B, be the generator function

defined in For every d € N and polynomial f € .E(Lgd), it holds that

fa, (%) = f(gu(x)) for every x € B,,. Moreover, fa, has individual degree d and
one can evaluate fa, from 2 evaluations of f.

Proof. By definition, fa, has individual degree d and an evaluation of fa, can
be derived from 2 evaluations of f. Next, we argue that fa,(x) = f(g.(x)) for
every x € B,,.

First, fa,(0") = f(g.(0")) because fa,(0*) = f(0*) and g, (0*) = 0" by
definition of fa,,g,. Second, for every x € B, \ {0"}, by definition of g,,,

f(g,u(xlv ce 7X#)) = f(x,uvxllv ce 7X,Iu71)a
where x; = x; @ x, (1 < 1 < p) for every ¢ in the fixed set S, and x| = x;
otherwise. We observe that x; ® x, = 1 — x; when x, = 1 and x; ® X, = X;
when x, = 0, thus we can rewrite
F, X1, x,) =% fLXT, %)+ (1 =%) - f(0,x0,.0,%,01)

= fa,(x1,...,%,)
where x7 = 1—x; (1 <1 < p) for every 4 in the fixed set S, and x} = x; otherwise.
The last equality holds by definition of fa,. In summary, f(g,(x1,...,X,)) =
fa,(x1,...,x,) for every B, and the lemma holds.

18

Construction. Now we are ready to present the PIOP for Riookup, which is
an adaptation of Plookup [27] in the multivariate setting. The PIOP invokes
a protocol for R%jqpr. We introduce a notation that embeds a vector to the
hypercube while still preserving the vector order with respect to the genera-
tor function. For a vector t € F2"~1 we denote by t < emb(t) € .7:;(;1) the
multilinear polynomial such that ¢(0*) = 0 and t(g;(f)(l,O”_l)) = t; for every
i€ [2* —1]. By t is well-defined and embeds the entire vector t
onto B, \ {0"}.

For an index t € F , the indexer generates an oracle [[t]] where t «+
emb(t). For a tuple (t; [f]]; (f,addr)) where f(B,) C t(B,)\{0},let (ai,...,am_1)
be the vector where a; € N is the number of appearance of t; in f(B,). Note

that 32 " a; = 2. Denote by h € F2*"' =1 the vector

20 —1

h:= (t17. R SN VRN S PRI YN 7S IRNP T, TR, S T, YT DR .tgufl) .
———— —_——— —_——
1+a; 14+a; 14agp 1

‘We present the protocol below:

— P sends V oracles [[h]], where h < emb(h) €]:;5511)-

— Define g1 := merge(f,t) € }",(full) and go := merge(f,ta,) € f(écf), where
merge is defined in equation (7). Run a multiset check PIOP (Section 3.4))

for (([[ga], [lg2]], [[P]], [[ha, . 1) 5 (f. 8. 1)) € Riyspr -
— V queries h(0#"1) and checks that the answer equals 0.

Theorem 3.14. The PIOP for Rpookup is perfectly complete and has knowl-
edge error 52251) = (5?,15;;12 = O((2" + dp)/|F|).

3.7 Batch openings

This section describes a batching protocol proving the correctness of multiple
multivariate polynomial evaluations. Essentially, the protocol reduces multiple
oracle queries to different polynomials into a single query to a multivariate or-
acle. The batching protocol is helpful for HyperPlonk to enable efficient batch
evaluation openings. In particular, the SNARK prover only needs to compute a
single multilinear PCS evaluation proof, even if there are multiple PCS evalua-
tions.

We note that Thaler [47, §4.5.2] shows how to batch two evaluations of a
single multilinear polynomial. The algorithm can be generalized for multiple
evaluations of different multilinear polynomials. However, the prover time com-
plexity is O(k?j - 2#) where k is the number of evaluations, and y is the number
of variables. In comparison, our algorithm achieves complexity O(k - 2#) which
is ku-factor faster. Note that O(k - 2#) is already optimal as the prover needs to
take O(k - 2#) time to evaluate {fi(z;)}ic(x) before batching.

Definition 3.15 (BatchEval relation). The relation R, 1oy is the set of all
tuples (x;w) = ((2)ieir)> (Wi)iek)» (Hfi]])ie[}g]5(fi)ie[k]) where z; € F*, y; € F,
fi €]:A(Lgd) and fi(z;) = y; for all i € [k].

19

Remark 3.16. The polynomials { f;};c[x are all p-variate. This is without loss
of generality. E.g., suppose one of the evaluated polynomial f]’ has only p —1
variables, we can define f;(Y,X) =Y f{(X)+(1-Y) f}(X) which is essentially
f} but with y variables. The same trick easily extends to f} with arbitrary p < p
variables.

Construction. For ease of exposition, we consider the case where fi,..., fi are
multilinear. We emphasize that the same techniques can be extended for multi-
variate polynomials.

Assume w.lo.g that k = 2¢ is a power of 2. We observe that RE pqy is
essentially a ZeroCheck relation over the set Z := {z;};cry € F#, that is, for
every i € [k|, fi(z;) —y; = 0. Nonetheless, Z is outside the boolean hypercube,
and we cannot directly reuse the ZeroCheck PIOP.

The key idea is to interpret each zero constraint as a sumcheck via multilinear
extension, so that we can work on the boolean hypercube later. In particular,
for every i € [k], we want to constrain f;(z;) —y; = 0. Since f; is multilinear, by
definition of multilinear extension, this is equivalent to constraining that

cii=| Y fi(b)-eq(bzi) | —yi=0. (8)
beB,
Note that equation holds for every ¢ € [k] if and only if the polynomial
Zie[k] eq(Z, (i) - ¢; is identically zero, where (i) is ¢-bit representation of
1 — 1. By the Schwartz Zippel Lemma, it is sufficient to check that for a random
vector t <= ¢, it holds that

S eqlt, (i) i = 3 eqlt, (i) - [(S i) - eql,)) —yi] —0. (9

i€k i€[k] bEB,

Next, we arithmetize equation @ and make it an algebraic formula. For
every (i,b) € [k] x By, we set value g; p := eq(t, (7)) - fi(b), and define an MLE §
for (gib)ic(x], be, such that g({i),b) = g; p¥(i,b) € [k] x B,; similarly, we define
an MLE éq for (eq(b,2:))ic[r), ben, Where éq((i),b) = eq(b,2z;)V(i,b) € [k] x B,,.
Let s := 3,1 ea(t, () - yi, then equation (©) can be rewritten as

> (), b) - eq((i),b) = s.

i€[k],beB,,

This is equivalent to prove a sumcheck claim for the degree-2 polynomial
g = g(Y,X) - é(Y,X) over set Byi,. Hence we obtain the following PIOP
protocol in Algorithm [3] Note that ¢* = g - ég is only with degree 2. Thus we
can run a classic sumcheck without sending any univariate oracles.

Remark 3.17. If the SNARK is using a homomorphic commitment scheme, to
answer query g(ai,as) the prover only needs to provide a single PCS opening
proof for a pi-variate polynomial g'(X) := g(a1, X) = >,y €q((7), a1)-eq(t, (i))-
fi(X) on point ay. The verifier can evaluate {eq((i), a1) - eq(t, (1)) }iep) in time

20

Algorithm 3 Batch evaluation of multi-linear polynomials

1: procedure BATCHEVAL([f; € F,ﬂgl),zi ey € P)
2: V sends P a random vector t < F.
Define sum s := =, eq(t, (i) - vi.
Let g be the MLE for (gi,b)ic[x], be B, Where gi b := eq(t, (7)) - fi(b).
Let éq be the MLE for (eq(b, 2i))ic[x), beB,, such that ég((i), b) = eq(b, z).
P and V run a SumCheck PIOP for (s, [[¢%]];9*) € Rsum, where g* := - éq.
Let (a1,a2) € F*™* be the sumcheck challenge vector. P answers the oracle
query g(ai,az).
8: V evaluates ég(a1, az) herself, and checks that g(a1, az2)- ég(ai, az) is consistent
with the last message of the sumcheck.
9: end procedure

O(k), and homomorphically compute ¢'’s commitment from the commitments
to {fi}ic[x), and checks the opening proof against ¢'’s commitment. Finally, the
verifier checks that g'(a2) matches the claimed evaluation g(ai,as).

Analysis. The PIOP for Rparcu is complete and knowledge-sound given the
completeness and knowledge-soundness of the sumcheck PIOP.

Next, we analyze the complexity of the protocol: The prover time is O(k-2#)
as it runs a sumcheck PIOP for a polynomial ¢* := g - éq of degree 2 and
i + log k variables, where g and ég can both be constructed in time O(k - 2#).
Note that this is already optimal as the prover anyway needs to take O(k - 2#)
time to evaluate {f;(z;)};cx) before batching. The verifier takes time O(u +
log k) in the sumcheck; the sum s can be computed in time O(k); the evaluation
eq(ar,az) = > ,cp ed(ar, (i) - €g((i), az) can be derived from ay and the k
evaluations {ég((i), az) = eq(az,z;)};cx) Where each evaluation eq(as,z;) takes
time O(u). In summary, the verifier time is O(kp).

A more efficient batching scheme in a special setting Sometimes one
only needs to open a single multilinear polynomial at multiple points, where
each point is in the boolean hypercube. In this setting, we provide a more efficient
algorithm with complexity O(2*) which is k times faster than Algorithm [3| We
also note that the technique can be used to construct an efficient Commit-and-
Prove SNARK scheme from multilinear commitments.

4 HyperPlonk: Plonk on the boolean hypercube

Equipped with the building blocks in we now describe the Polyno-
mial IOP for HyperPlonk. In we introduce Rpronk — an indexed
relation on the boolean hypercube that generalizes the vanilla Plonk constraint
system [29]. We present a Polynomial IOP protocol for Rpronk and analyze its

security and efficiency in [Section 4.

21

4.1 Constraint systems

Notation. For any m € Z and i € [0,2™), we use (i), = Vv € By, to denote the
m-bit binary representation of ¢, that is, ¢ = Z;nzl v 271

Definition 4.1 (HyperPlonk indexed relation). Fiz public parameters gp :=
(IF, L, by, Yy, f) where F is the field, £ = 2V is the public input length, n = 2" is
the number of constraints, £,, = 2", ¢, = 2"« are the number of witnesses and
selectors per constminﬂ and f : Flatbe T is an algebraic map with degree d.
The indexed relation Rpronk is the set of all tuples
(135 w) = ((q,0); (p, [w]]); w) ,

where 0 : B4y, — Buyy, 15 a permutation, q € f;iiq, pE fﬁi,lj),
such that

— the wiring identity is satisfied, that is, (o; ([w]], [w]]);w) € Rperm

fition 5.9);
— the gate identity is satisfied, that, is, (([[f]]),f) € Rzero ,

where the virtual polynomial f € .Flsgd) is defined as

(<1)
weF .

f(X) = f(Q(<O>Vq7X)7 oo ?Q(@q - 1>V(17X)?w(<0>l’wvx)? cee 7w(<éw - 1>vax)); (10)

— the public input is consistent with the witness, that is, the public input poly-
<1)

nomial p € .7-'551) is identical to w(0FTe=" X)) € .7—'15—)

RpLoNk is general enough to capture many computational models. In the
introduction, we reviewed how Rpronk captures simple arithmetic circuits.
Rpronk can be used to capture higher degree circuits with higher arity and
more complex gates, including state machine computations.

State machines. Rpronk can model state machine computations, as shown by
Gabizon and Williamson [2§8]. A state machine execution with n — 1 steps starts
with an initial state state, € F* where k is the width of the state vector. In
each step ¢ € [0,n — 1), given input the previous state state; and an online
input inp; € F, the state machine executes a transition function f and outputs
state;,, € . Let T := (state,,...,state, ;) be the execution trace and define
inp,,_; := L, we say that T is valid for input (inpg,...,inp,,_;) if and only if (i)
state,_;[0] = 0%, and (ii) state,, = f(state;, inp;) for all i € [0,n — 1).

We build a HyperPlonk indexed relation that captures the state machine
computation. W.L.o.g we assume that n = 2* for some p € NEI Let v, be
the minimal integer such that 2¥» > 2k. We also assume that there is a low-
depth algebraic predicate f, that captures the transition function f, that is,
f«(state’, state, inp) = 0 if and only if state’ = f(state, inp). For each i € [0,n):

— the online input at the i-th step is inp; := w((0).,, , (¢)u);
— the input state of step i is state;, ; :== [w ((L)y,, (D)p) +-- 5 W (K)vy (D))
— the output state of step i is state = [w (k4 Dy, (Dp)s oy w2k, (@)0)]:

out,i

" We can pad zeroes if the actual number is not a power of two.
8 We can pad with dummy states if the number of steps is not a power of two.

22

— the selector for step 7 is q; 1= q(<i>u);
— the transition and output correctness are jointly captured by a high-degree
algebraic map f’,
f'(inp;, statey, ;, state,; ;;q;) = (1—q;)- fx(state,, ;, state;, ;, inp;)+q;-state;, ;[0].
For all i € [0,n — 1), we set q; = 0 so that state;,; = f;(state;,inp;) if and
only if
f/(inpiv Statein,i’ Stateout,i; ql) = f* (State011t,i7 Statein,iv Inpz) =0 ;
we set g, 1 = 1 so that state;, , ;[0] = 0 if and only if
fl(inpnfh Statein,nfh Stateout,nfl; anl) = statein,nfl [O} =0.

Note that we also need to enforce equality between the i-th input state and the
(i — 1)-th output state for all i € [n — 1]. We achieve it by fixing a permutation
o and constraining that the witness assignment is invariant after applying the
permutation.

Remark 4.2. We can halve the size of the witness and remove the permutation

check by using the polynomial shifting technique in Specifically, we
can remove output state columns state and replace it with state;, ;,, for

every i € [0,n).

out,?

4.2 The PolyIOP protocol

In this Section, we present a multivariate PIOP for Rpr,onk that removes ex-
pensive FFTs.

Construction. Intuitively, the PIOP for Rpr,onk builds on a zero-check PIOP
(Section 3.2)) for custom algebraic gates and a permutation-check PIOP
tion 3.5) for copy constraints; consistency between the public input and the
online witness is achieved via a random evaluation check between the public
input polynomial and the witness polynomial.

Let gp := (IF, ln, éw,fq,f) be the public parameters and let d := deg(f).

For a tuple (1;x;w) = ((q, o); (p, [[w]); w), we describe the protocol in

Theorem 4.3. Letgp := (]F,E, N, Ly, g, f) be the public parameters where £y, £ =
O(1) are some constants. Let d := deg(f). The construction in|Figure 1|is a mul-
tivariate PolyIOP for relation Rpronk dDeﬁnition 4.1) with soundness error

O(WM#) and the following complexity:

— the prover time is tpi?onk = O(nd log2 d) ;
— the verifier time is v, . = O(u +£);
— the query complezity is qf)?onk =2u+4+logt,,, that is, 2u + log l,, univari-

ate oracle queries, 3 multilinear oracle queries, and 1 query to the virtual
polynomial f.
— the round complexity and the number of proof oracles is rci?onk =2u+1+vy;

— the number of field elements sent by the prover is nff}?@nk =2u;

23

Indexer. Z(q, o) calls the permutation PIOP indexer ([[sia]], [Ss]]) = Zperm (o). The
oracle output is ([[q]], [[sia]], [[s5]]), where q € F\5,) | sia, 55 € Figr), -

The protocol. P(gp,1,p, w) and V(gp,, [[¢]], [[sia]], [[s-]]) run the following proto-
col.

1. P sends V the witness oracle [[w]] where w € Fﬁf_,lj?w.

2. P and V run a PIOP for the gate identity, which is a zero-check PIOP (Sec-|
for ([[ﬂ], f) € Rzpro where f € (=% is as defined in Equation

3. P and V run a PIOP for the wiring identity, which is a permutation PIOP
(Section 3.5) for (o ([[w]], [[w]]); (w,w)) € ReErM.

4. V checks the consistency between witness and public input. It samples r <> F”,

queries [[w]] on input ({(0)u+v,—v,r), and checks p(r) < W({0) ytvy—v,T)-

Fig. 1. PIOP for RPLONK-

gp —

— the size of the proof oracles is plpl(m,C =

O(n) ; the size of the witness is nl,,.

Remark 4.4. Two separate sumcheck PIOPs are underlying the HyperPlonk
PIOP. We can batch the two sumchecks into one by random linear combination.
The optimized protocol has round complexity u + 1 + log¥,,, and the number
of field elements sent by the prover is . The query complexity p + 3 + log €y,
that is, p + log £,, univariate queries, 2 multilinear queries, and 1 queries to the
virtual polynomial f.

5 Orion+: a linear-time multilinear PCS with constant
proof size

Recently, Xie et al. [50] introduced a highly efficient multilinear polynomial com-
mitment scheme called Orion. The prover time is strictly linear, that is, O(2*)
field operations and hashes where u is the number of variables. For y = 27, it
takes only 115 seconds to commit to a polynomial and compute an evaluation
proof using a single thread on a consumer-grade desktop. The verifier time and
proof size is Oy (u?), which also improves the state-of-the-art [T6/32]. However,
the concrete proof size is still unsatisfactory, e.g., for u = 27, the proof size is
6 MBs. In this section, we describe a variant of Orion PCS that enjoys similar
proving complexity but has O(u) proof size and verifier time, with good con-
stants. In particular, for security parameter A = 128 and p = 27, the proof size
is less than 10KBs, which is 600x smaller than Orion for p = 27.

In this section, we first review the linear-code-based PCS that Orion builds
upon. Then we show how Orion+ shrinks the proof size and verifier time. For
more details see the full version.

Linear-time PCS from tensor-product argument [16/32]. Bootle, Chiesa, and
Groth [I6] propose an elegant scheme for building PCS with strictly linear-time

24

provers. Golovnev et al. [32] later further simplify the scheme. Let f € Fﬁgl) be
a multilinear polynomial where f, € F is the coefficient of Xp := X5 - - XZ“ for
every b € B,. Denote by n = 2#, k = 2" < 2* and m = n/k, one can view the
evaluation of f as a tensor product, that is,

FX) = (W, to @ t1) (11)

where w = (f<0>, ey f(n,w), to = (X<0>,X<1>, o aX(k71>) and t, = (X<1(\)/}’ X(k)
Here (i) denotes the p-bit binary representation of i. Let E : F™ — F* be a
linear encoding scheme, that is, a linear function whose image is a linear code.
Golovnev et al. [32], §4.2] construct a PCS scheme as follows:

— Commitment: To commit a multilinear polynomial f with coefficients w €
", the prover P interprets w as a k x m matrix, namely w € FFX™ encodes
w’s rows, and obtains matrix W € F¥*M guch that Wi,:] = E(wl[i,:]) for
every i € [k]. Then P computes a Merkle tree commitment for each column
of W and builds another Merkle tree T" on top of the column commitments.
The polynomial commitment C'y is the Merkle root of T'.

— Evaluation proof: To prove that f(z) = y for some point z € F# and value
y € I, the prover P translates z to vectors to € F¥ and t; € F™ as above
and proves that (w,tg ® t1) = y (where w € FF¥*™ is the message encoded
and committed in C). To do so, P does two things:

e Proximity check: The prover shows that the matrix W € FF*M com-
mitted by Cy is close to k codewords. Specifically, the verifier sends a
random vector r € F*, the prover replies with a vector y, :==r-w € F™
which is the linear combination of w’s rows according to r. The verifier
checks that the encoding of y,, namely E(y,) € FM_ is close to r- W,
the linear combination of W’s rows. This implies that the k rows of W
are all close to codewords [32], §4.2].

e Consistency check: The prover shows that (w,to®t1) = y where
w € FFX™ is the k error-decoded messages from W € F committed in
C¢. The scheme is similar to the proximity check except that we replace
the random vector r with to. After receiving the linearly combined vector
yo € F™, the verifier further checks that (yo,t1) = y.

We describe the concrete PCS evaluation protocol below.
Protocol 1 (PCS evaluation [32]): The goal is to check that (w,to®@t1) = y
Fkxm

(where w € is the message encoded and committed in Cy).

1. V sends a random vector r € F¥.

2. P sends vector y,yg € F™ where y, = Zle r;-wli,:], and yo = Zle to,; -
wli,:], where w € F¥*™ is the message matrix being encoded and commit-
ted.

3. V sends P a random subset I C [M] with size |I| = O()).

4. P opens the entire columns {W7:, j|};er using Merkle proofs, where W €
FFXM g the row-wise encoded matrix. That is, P outputs the column com-
mitment h; for every column j € I, and provide the Merkle proof for h;
w.r.t. to Merkle root C'.

5. V checks that (i) the Merkle openings are correct w.r.t. C'y, and (ii) for all
J € I, it holds that E(y,); = (r, W[, j]) and E(yo); = (to, W[, j]) -

25

P

X ((m-1)k))-

6. V checks that (yo,t1) = y.

Note that by sampling a subset I with size ©(\) and checking that r-W, to-W are
consistent with the encodings E(y,), E(yo) on set I, the verifier is confident that
r-W, to-W are indeed close to the encodings E(y,), E(yo) with high probability.
By setting k = \/n, the prover takes O(n) F-ops and hashes; the verifier time and
proof size are both O, (y/n). Orion describes an elegant code-switching scheme
that reduces the proof size and verifier time down to O, (log?(n)). However,
the concrete proof size is still large. Next, we describe a scheme that has much
smaller proof.

Linear-time PCS with small proofs. Similar to Orion (and more generally, the
proof composition technique [IBIT6l32]), instead of letting the verifier check
the correctness of y,, yo and the openings of the columns W{:, j]Vj € I, the
prover can compute another (succinct) outer proof validating the correctness of
Ve, Yo, W[, j]. However, we need to minimize the outer proof’s circuit complex-
ity, which is non-trivial. Orion builds an efficient SNARK circuit that removes all
of the hashing gadgets, with the tradeoff of larger proof size. We describe a vari-
ant of their scheme that minimizes the proof size without significantly increasing
the circuit complexity.

Specifically, after receiving challenge vector r € F* P instead sends V
commitments Cy, Cy to the messages y,,yo; after receiving V’s random subset
I C [M], P computes a SNARK proof for the following statement:

Statement 1 (PCS Eval verification):

— Witness: yr, yo € F™, {WT]:, jl}jer-
— Circuit statements:
e (., Cy are the commitments to y,, yo respectively.
e For all j € I, it holds that
* h; = H(W]:, j]) where H is a fast hashing scheme;
* E(Yr)j = <I’,W[Z,j]> and E(YO)j = <t0aW[:7j]>'
e (yo,t1) =y.
— Public output: {h;};cr, and C, Cp.

Besides the SNARK proof, the prover also provides the openings of {h;};cr with
respect to the commitments Cy. Intuitively, the new protocol is “equivalent”
to because the SNARK witness {W:, j]};jer and yy, yo are identical
to those committed in C'¢, Cy, Cy by the binding property of the commitments;
and the SNARK does all of the verifier checks. Unfortunately, the scheme has
the following drawbacks:

— Instantiating the commitments with Merkle trees leads to a large overhead
on the proof size. In particular, the proof contains |I| Merkle proofs, each
with length O(logn). For 128-bit security, we need to set |I| = 1568, and the
proof size is at least 1 MBs for p = 20.

— The random subset I varies for different evaluation instances. It is non-trivial
to efficiently lookup the witness { E(yy);, E(yo0);};er in the circuit if the set
I is dynamic (i.e. we need an efficient random access gadget).

26

— The circuit complexity is huge. In particular, the circuit is dominated by the
commitments to yy, yo and the hash commitments to {W7:, j]};er. This leads
to 2m + k|I| hash gadgets in the circuit. Note that we can’t use algebraic
hash functions like Rescue [I] or Poseidon [33], which are circuit-friendly,
but have slow running times. For u = 26, k = m = /n and 128-bit security
(where |I| = 1568), this leads to 13 million hash gadgets where each hash
takes hundreds to thousands of constraints, which is unaffordable.

We resolve the above issues via the following observations.

First, a large portion of the multilinear PCS evaluation proof is Merkle open-
ing paths. We can shrink the proof size by replacing Merkle trees with multilinear
PCS that enable efficient batch openings . Specifically, in the com-
mitting phase, after computing the hashes of W’s columns, instead of building
another Merkle tree T of size M = O(n/k) and set the Merkle root as the com-
mitment, the prover can commit to the column hashes using a multilinear PCS
(e.g. KZG). Though the KZG committing is more expensive, the problem size has
been reduced to O(n/k), thus for sufficiently large k, the committing complexity
is still approzimately O(n) F-ops. A great advantage is that the batch opening
proof for {h;};ecr consists of only O(logn) group/field elements, with good con-
stant. Even better, when instantiating the outer proof with HyperPlonk(+), the
openings can be batched with those in the outer SNARK and thus incur almost
no extra cost in proof size.

Second, with Plookup, we can efficiently simulate random access in arrays in
the SNARK circuit. For example, to extract witness {Y, ; = E(yy);}jer, we can
build an (online) table T" where each element of the table is a pair (i, E(yy):)
(1 <4 < M). Then for every j € I, we build a lookup gate checking that
(4,Y, ;) is in the table T', thus guarantee that Y, ; is identical to E(y);. The
circuit description is now independent of the random set I and we only need to
preprocess the circuit once in the setup phase.

Third, with the help of Commit-and-Prove-SNARKs (CP-SNARK) [2002T12],
there is no need to check the consistency between commitments Cy, Cy and y, yo
in the circuit. Instead, we can commit (y,,yo) to a multilinear commitment C,
and build a CP-SNARK proof showing that the vector underlying C' is identical
to the witness vector (yr,yo) in the circuit. We further observe that C' can be a
part of the witness polynomials, which further removes the need of an additional
CP-SNARK proof.

After applying previous optimizations, the proof size is dominated by the
|7| field elements {h;};cr. We can altogether remove them by applying the CP-
SNARK trick again. In particular, since {h;};e; are both committed in the
polynomial commitment C'; and the SNARK witness commitment, it is suffi-
cient to construct a CP-SNARK proving that they are consistent in the two
commitments with respect to set I. We refer to the full version for constructing
CP-SNARK proofs from multilinear commitments.

Since the bulk of verification work is delegated to the prover, there is no need
to set k = /n. Instead, we can set an appropriate k = ©(\/logn) to minimize
the outer circuit size. In particular, the circuit is dominated by 2 linear encodings

27

(of length n/k) and |I] hashes (of length k). If we use vanilla HyperPlonk+ as the
outer SNARK scheme and use Reinforced Concrete [5] as the hashing scheme
that has a similar running time to SHA-256, for p = 30, k& = 64 and 128-bit
security (where |I| = 1568), the circuit complexity is only ~ 22¢ constraints.
And we can expect the running time of the outer proof to be Oy(n).

References

10.

11.

12.

Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
symmetric-key primitives for advanced cryptographic protocols. TACR Trans.
Symm. Cryptol. 2020(3), 1-45 (2020). https://doi.org/10.13154/tosc.v2020.
i3.1-45

Aranha, D.F., Bennedsen, E.M., Campanelli, M., Ganesh, C., Orlandi, C., Taka-
hashi, A.: ECLIPSE: Enhanced compiling method for pedersen-committed zk-
SNARK engines. Cryptology ePrint Archive, Report 2021/934 (2021), https:
//eprint.iacr.org/2021/934

Arun, A., Ganesh, C., Lokam, S., Mopuri, T., Sridhar, S.: Dew: Transparent
constant-sized zkSNARKs. Cryptology ePrint Archive, Report 2022/419 (2022),
https://eprint.iacr.org/2022/419

Babai, L., Moran, S.: Arthur-merlin games: A randomized proof system, and a
hierarchy of complexity classes. J. Comput. Syst. Sci. 36(2), 254276 (1988)
Barbara, M., Grassi, L., Khovratovich, D., Lueftenegger, R., Rechberger, C.,
Schofnegger, M., Walch, R.: Reinforced concrete: Fast hash function for zero
knowledge proofs and verifiable computation. Cryptology ePrint Archive, Report
2021/1038 (2021), https://eprint.iacr.org/2021/1038

Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a
shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 263—280. Springer, Heidelberg (Apr 2012). https://doi.org/10.
1007/978-3-642-29011-4_17

Ben-Sasson, E., Bentov, 1., Horesh, Y., Riabzev, M.: Fast reed-solomon interac-
tive oracle proofs of proximity. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D.,
Sannella, D. (eds.) ICALP 2018. LIPIcs, vol. 107, pp. 14:1-14:17. Schloss Dagstuhl
(Jul 2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.14

Ben-Sasson, E., Bentov, 1., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III.
LNCS, vol. 11694, pp. 701-732. Springer, Heidelberg (Aug 2019). https://doi.
org/10.1007/978-3-030-26954-8_23

Ben-Sasson, E., Carmon, D., Kopparty, S., Levit, D.: Elliptic curve fast fourier
transform (ecfft) part ii: Scalable and transparent proofs over all large fields (2022)
Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103-128. Springer, Heidelberg
(May 2019). https://doi.org/10.1007/978-3-030-17653-2_4

Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A.D. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 31-60. Springer,
Heidelberg (Oct / Nov 2016). https://doi.org/10.1007/978-3-662-53644-5_2
Ben-Sasson, E., Sudan, M.: Short pcps with polylog query complexity. STAM Jour-
nal on Computing 38(2), 551-607 (2008)

28

https://doi.org/10.13154/tosc.v2020.i3.1-45
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://eprint.iacr.org/2021/934
https://eprint.iacr.org/2021/934
https://eprint.iacr.org/2022/419
https://eprint.iacr.org/2021/1038
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-53644-5_2

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision re-
sistance to succinct non-interactive arguments of knowledge, and back again. In:
Goldwasser, S. (ed.) ITCS 2012. pp. 326-349. ACM (Jan 2012). https://doi.org/
10.1145/2090236.2090263

Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315-333. Springer, Heidelberg (Mar 2013). https://doi.
org/10.1007/978-3-642-36594-2_18

Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen,
S.K.: Linear-time zero-knowledge proofs for arithmetic circuit satisfiability.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol.
10626, pp. 336-365. Springer, Heidelberg (Dec 2017). https://doi.org/10.1007/
978-3-319-70700-6_12

Bootle, J., Chiesa, A., Groth, J.: Linear-time arguments with sublinear verification
from tensor codes. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol.
12551, pp. 19-46. Springer, Heidelberg (Nov 2020). https://doi.org/10.1007/
978-3-030-64378-2_2

Bootle, J., Chiesa, A., Hu, Y., Orru, M.: Gemini: Elastic SNARKSs for diverse
environments. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022,
Part II. LNCS, vol. 13276, pp. 427-457. Springer, Heidelberg (May / Jun 2022).
https://doi.org/10.1007/978-3-031-07085-3_15

Biinz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy. pp. 315-334. IEEE Computer Society Press (May 2018).
https://doi.org/10.1109/SP.2018.00020

Biinz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compil-
ers. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol.
12105, pp. 677-706. Springer, Heidelberg (May 2020). https://doi.org/10.1007/
978-3-030-45721-1_24

Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodriguez, H.: Lunar: A tool-
box for more efficient universal and updatable zkSNARKs and commit-and-prove
extensions. In: Tibouchi, M., Wang, H. (eds.) ASTACRYPT 2021, Part III. LNCS,
vol. 13092, pp. 3-33. Springer, Heidelberg (Dec 2021). https://doi.org/10.1007/
978-3-030-92078-4_1

Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: Modular design and com-
position of succinct zero-knowledge proofs. In: Cavallaro, L., Kinder, J., Wang,
X., Katz, J. (eds.) ACM CCS 2019. pp. 2075-2092. ACM Press (Nov 2019).
https://doi.org/10.1145/3319535.3339820

Chen, B., Biinz, B., Boneh, D., Zhang, Z.: HyperPlonk: Plonk with linear-
time prover and high-degree custom gates. Cryptology ePrint Archive, Report
2022/1355 (2022), https://eprint.iacr.org/2022/1355

Chiesa, A., Forbes, M.A., Spooner, N.: A zero knowledge sumcheck and its ap-
plications. Cryptology ePrint Archive, Report 2017/305 (2017), https://eprint.
iacr.org/2017/305

Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.P.: Marlin: Pre-
processing zkSNARKSs with universal and updatable SRS. In: Canteaut, A., Ishai,
Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738-768. Springer,
Heidelberg (May 2020). https://doi.org/10.1007/978-3-030-45721-1_26
Drake, J.: Plonk-style SNARKSs without FFTs. link (2019)

Gabizon, A.: Multiset checks in plonk and plookup. https://hackmd.io/@arielg/
ByFgSDA7D

29

https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-030-64378-2_2
https://doi.org/10.1007/978-3-030-64378-2_2
https://doi.org/10.1007/978-3-030-64378-2_2
https://doi.org/10.1007/978-3-030-64378-2_2
https://doi.org/10.1007/978-3-031-07085-3_15
https://doi.org/10.1007/978-3-031-07085-3_15
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1145/3319535.3339820
https://doi.org/10.1145/3319535.3339820
https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2017/305
https://eprint.iacr.org/2017/305
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_26
https://notes.ethereum.org/DLRqK9V7RIOsTZkab8Hm_Q?view
https://hackmd.io/@arielg/ByFgSDA7D
https://hackmd.io/@arielg/ByFgSDA7D

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Gabizon, A., Williamson, Z.J.: plookup: A simplified polynomial protocol for
lookup tables. Cryptology ePrint Archive, Report 2020/315 (2020), https://
eprint.iacr.org/2020/315

Gabizon, A., Williamson, Z.J.: Proposal: The turbo-plonk program syntax
for specifying snark programs. https://docs.zkproof.org/pages/standards/
accepted-workshop3/proposal-turbo_plonk.pdf (2020)

Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953 (2019), https://eprint.iacr.org/2019/953
Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626-645. Springer, Heidelberg (May 2013).
https://doi.org/10.1007/978-3-642-38348-9_37

Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1), 186-208 (1989)

Golovnev, A., Lee, J., Setty, S., Thaler, J., Wahby, R.S.: Brakedown: Linear-
time and post-quantum SNARKSs for R1CS. Cryptology ePrint Archive, Report
2021/1043 (2021), https://eprint.iacr.org/2021/1043

Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon:
A new hash function for zero-knowledge proof systems. In: Bailey, M., Greenstadt,
R. (eds.) USENIX Security 2021. pp. 519-535. USENIX Association (Aug 2021)
Groth, J.: On the size of pairing-based non-interactive arguments. In: Fis-
chlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666,
pp. 305-326. Springer, Heidelberg (May 2016). https://doi.org/10.1007/
978-3-662-49896-5_11

Harvey, D., Van Der Hoeven, J.: Polynomial multiplication over finite fields in
time. Journal of the ACM (JACM) 69(2), 1-40 (2022)

Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to poly-
nomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 177-194. Springer, Heidelberg (Dec 2010). https://doi.org/10.
1007/978-3-642-17373-8_11

Kattis, A.A., Panarin, K., Vlasov, A.: RedShift: Transparent SNARKSs from list
polynomial commitments. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.)
ACM CCS 2022. pp. 1725-1737. ACM Press (Nov 2022). https://doi.org/10.
1145/3548606.3560657

Lee, J.: Dory: Efficient, transparent arguments for generalised inner products and
polynomial commitments. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part II.
LNCS, vol. 13043, pp. 1-34. Springer, Heidelberg (Nov 2021). https://doi.org/
10.1007/978-3-030-90453-1_1

Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive
proof systems. Journal of the ACM (JACM) 39(4), 859-868 (1992)
Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222-242. Springer, Heidelberg
(Mar 2013). https://doi.org/10.1007/978-3-642-36594-2_13

Pearson, L., Fitzgerald, J., Masip, H., Bellés-Mufioz, M., Munoz-Tapia, J.L.:
PlonKup: Reconciling PlonK with plookup. Cryptology ePrint Archive, Report
2022/086 (2022), https://eprint.iacr.org/2022/086

Posen, J., Kattis, A.A.: Caulk+: Table-independent lookup arguments. Cryptology
ePrint Archive, Report 2022/957 (2022), https://eprint.iacr.org/2022/957

30

https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://eprint.iacr.org/2021/1043
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1145/3548606.3560657
https://doi.org/10.1145/3548606.3560657
https://doi.org/10.1145/3548606.3560657
https://doi.org/10.1145/3548606.3560657
https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.1007/978-3-642-36594-2_13
https://doi.org/10.1007/978-3-642-36594-2_13
https://eprint.iacr.org/2022/086
https://eprint.iacr.org/2022/957

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.
55.

Setty, S.: Spartan: Efficient and general-purpose zkSNARKSs without trusted setup.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol.
12172, pp. 704-737. Springer, Heidelberg (Aug 2020). https://doi.org/10.1007/
978-3-030-56877-1_25

Setty, S., Lee, J.: Quarks: Quadruple-efficient transparent zkSNARKSs. Cryptology
ePrint Archive, Report 2020/1275 (2020), https://eprint.iacr.org/2020/1275
System, E.: Jellyfish jellyfish cryptographic library (2022), https://github.
com/EspressoSystems/jellyfish

Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 71-89. Springer,
Heidelberg (Aug 2013). https://doi.org/10.1007/978-3-642-40084-1_5
Thaler, J.: Proofs, arguments, and zero-knowledge (2020)

Wahby, R.S., Tzialla, 1., shelat, a., Thaler, J., Walfish, M.: Doubly-efficient zk-
SNARKSs without trusted setup. In: 2018 IEEE Symposium on Security and Pri-
vacy. pp. 926-943. IEEE Computer Society Press (May 2018). https://doi.org/
10.1109/SP.2018.00060

Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: Succinct zero-
knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 733-764. Springer, Hei-
delberg (Aug 2019). https://doi.org/10.1007/978-3-030-26954-8_24

Xie, T., Zhang, Y., Song, D.: Orion: Zero knowledge proof with linear prover time.
Cryptology ePrint Archive, Report 2022/1010 (2022), https://eprint.iacr.org/
2022/1010

Xie, T., Zhang, Y., Song, D.: Orion: Zero knowledge proof with linear prover
time. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV. LNCS, vol.
13510, pp. 299-328. Springer, Heidelberg (Aug 2022). https://doi.org/10.1007/
978-3-031-15985-5_11

Xiong, A.L., Chen, B., Zhang, Z., Biinz, B., Fisch, B., Krell, F., Camacho, P.:
VERI-ZEXE: Decentralized private computation with universal setup. Cryptology
ePrint Archive, Report 2022/802 (2022), https://eprint.iacr.org/2022/802
Zapico, A., Buterin, V., Khovratovich, D., Maller, M., Nitulescu, A., Simkin, M.:
Caulk: Lookup arguments in sublinear time. In: Yin, H., Stavrou, A., Cremers,
C., Shi, E. (eds.) ACM CCS 2022. pp. 3121-3134. ACM Press (Nov 2022). https:
//doi.org/10.1145/3548606 .3560646

Zcash: PLONKish arithmetization. [link (2022)

Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its
applications to zero knowledge proof. In: 2020 IEEE Symposium on Security and
Privacy. pp. 859-876. IEEE Computer Society Press (May 2020). https://doi.
org/10.1109/SP40000.2020.00052

31

https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://eprint.iacr.org/2020/1275
https://github.com/EspressoSystems/jellyfish
https://github.com/EspressoSystems/jellyfish
https://doi.org/10.1007/978-3-642-40084-1_5
https://doi.org/10.1007/978-3-642-40084-1_5
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1007/978-3-030-26954-8_24
https://eprint.iacr.org/2022/1010
https://eprint.iacr.org/2022/1010
https://doi.org/10.1007/978-3-031-15985-5_11
https://doi.org/10.1007/978-3-031-15985-5_11
https://doi.org/10.1007/978-3-031-15985-5_11
https://doi.org/10.1007/978-3-031-15985-5_11
https://eprint.iacr.org/2022/802
https://doi.org/10.1145/3548606.3560646
https://doi.org/10.1145/3548606.3560646
https://doi.org/10.1145/3548606.3560646
https://doi.org/10.1145/3548606.3560646
https://zcash.github.io/halo2/concepts/arithmetization.html
https://doi.org/10.1109/SP40000.2020.00052
https://doi.org/10.1109/SP40000.2020.00052
https://doi.org/10.1109/SP40000.2020.00052
https://doi.org/10.1109/SP40000.2020.00052

	HyperPlonk: Plonk with Linear-Time Prover and High-Degree Custom Gates

