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Abstract. In his landmark paper at TCC 2008 Paul Valiant introduced
the notion of “incrementally verifiable computation” which enables a
prover to incrementally compute a succinct proof of correct execution of
a (potentially) long running process. The paper later won the 2019 TCC
test of time award. The construction was proven secure in the random
oracle model without any further computational assumptions. However,
the overall proof was given using a non-standard version of the random-
oracle methodology where sometimes the hash function is a random ora-
cle and sometimes it has a short description as a circuit. Valiant clearly
noted that this model is non-standard, but conjectured that the standard
random oracle methodology would not suffice. This conjecture has been
open for 14 years. We prove that if the proof system can receive a long
witness as input in an incremental manner and is also zero-knowledge
then the conjecture is true. Valiant’s original construction does not have
these properties but can easily be extended to have them in his model.
We relate our result to recent possibility and impossibility results for
SNARKs and incrementally verifiable computation.
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1 Introduction

Incrementally Verifiable Computation. In his landmark paper Paul Valiant [21]
introduced the notion of “incrementally verifiable computation” (IVC) which
enables a prover to incrementally compute a succinct proof of correct execution
of a (potentially) long running process. At any time the prover can suspend the
computation and return a proof of correct execution leading up to the present
state. This paper inspired a lot of later constructions, including modern recursive
SNARK constructions, and won the 2019 TCC test-of-time award.
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The methodology applied by Valiant is incremental. The computation applies
the same step function T a number of ℓ times. There is an initial state M0 and
Mi = T (Mi−1). There is also an initial proof π0, the empty string say. To
construct the proof πi that Mi = T i(M0) one constructs a proof of knowledge
of (Mi−1, πi−1) for which it holds that Mi = T (Mi−1) and that πi−1 verifies the
statement Mi−1 = T i−1(M0).

1

The proofs are succinct in the sense that their have a size depend only poly-
logarithmically on the number of steps i. Verification time also depends only
poly-logarithmically on i. So neither the prover nor the verifier can just rerun
the computation from M0. Note that some notion of succinctness must follow
from any reasonable notion of incrementality. Otherwise each new proof could
just be recomputed from M0, which hardly qualifies as “incremental”.

The soundness of the recursive proof system is proven in the random oracle
model without any further computational assumptions. However, Valiant need
to apply a non-standard version of the random oracle model. When proving
soundness of the proof system extending a proof by one step it is assumed that
the hash function is a random oracle. However, when recursively proving that
πℓ−1 verifies it is assumed that the hash function has a short description as a
circuit. This gives a somewhat interesting model where the hash function at
different times has contradicting properties. The paper is very up front about
this and justifies it by the conjecture that it seems that the standard random
oracle methodology is not enough:

. . .When we try to recursively embed this system the recursion breaks
down because, even at the first level of recursion, we are no longer trying
to prove statements about classical computation but rather statements
of the form “M with oracle access to O accepts the following string...”
Thus standard applications of random oracles do not appear to help. [our
emphasis]. . . .

–Paul Valiant[21]

In [8] Chiesa and Liu show impossibility results for proofs in relativized
worlds, i.e., proofs of exactly the form “M with oracle access to O accepts
the following string...” They show that DTIME(t)O ̸⊆ PCP(o(t), o(t))O and
NTIME(t)O ̸⊆ PCP(poly(t), o(t))O, which can informally be interpreted as not
all statements of the form “M with oracle access to O accepts the following
string...” can have a non-trivial proof where not all the oracle queries of M are
checked by the verifier. But if the verifier checks all oracle queries of the prover
and each steps makes just one query then the verifier is not succinct. As noted
in [8] this “gives strong evidence that Valiant’s approach was in some sense jus-
tified.” However, it does not conclusively rule out that Valiant’s approach can
be instantiated in the standard random oracle model. It cannot be ruled out

1 As detailed later this description is oversimplified but will suffice for our discussion.
The real recursive strategy is more involved to tame the complexity of knowledge
extraction.
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that a proof system can be constructed where the verifier is simple enough that
it does not fall prey to the Chiesa-Liu results, as they only prove that not all
statements have such a proof.

And even if we could rule out the explicitly recursive strategy, where we
extend a proof by proving knowledge of an accepting sub-proof, then it might
still be possible to do incremental proofs in the random oracle model using
some other strategy. In particular, the end result of Valiant’s approach is to give
a proof about random oracle devoid computation, which is not ruled out by the
Chiesa-Liu results. As already noted by Valiant:

. . . It remains an interesting question whether the goals of this paper
may be attained in some other way using random oracles. . . .

–Paul Valiant[21]

In the present paper we show that Valiant was correct and that indeed the
standard random oracle model is not sufficient for incremental proofs. We rule
out not just explicitly recursive designs, but general incremental designs. As we
discuss below we do not prove impossibility for the exact setting studied by
Valiant: we need to assume two additional but natural properties of the proof
system, which Valiant’s construction can easily be extended to have.

Non-Deterministic Computation. The first additional assumption we need is that
the ongoing computation can receive a long witness as input in an incremental
manner. The verifier is assumed to only have access to a short instance. In a
modern setting this could be a verifier knowing only the genesis block and a
recent block of a blockchain and the prover wants to succinctly prove that the
blockchain has some property, like the verifier having been paid a certain amount
defined by the overall activity on the blockchain. Here the genesis block plus the
recent block is the short instance and the blockchain is the long witness. It is
a natural question whether the proof can be computed incrementally, say by
consuming the blockchain block-by-block.

The original notion of IVC considers only deterministic computation: the ver-
ifier is provided with a Turing machine and the prover convinces the verifier that
the provided state is reached after executing the Turning machine for some num-
ber of steps. Motivated by “distributed computation” Chiesa and Tromer [10]
subsequently generalized IVC to the powerful notion of “Proof-Carrying Data”
(PCD) in which the correct computation of a function taking multiple inputs
can be proven given proofs of correctness for each of the inputs, e.g., the com-
putation of F (G1(w1), G2(w2)) can be proven given y1 = G1(w1), y1 = G2(w2)
and corresponding proofs-of-knowledge π1, π2 for w1, w2. For our impossibilities
we use the abstraction of “non-deterministic incrementally verifiable computa-
tion”, which is a special case of PCD with “fan-in” 1 with the same function
applied in each step, or equivalently, a generalization of IVC where each step of
the Turning machine may take a witness.
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Zero-Knowledge via Reprogramming the Random Oracle. Our impossibility re-
sults also assume that the incremental proof is zero-knowledge. Succinct argu-
ments already information theoretically hides most of the witness, as the proof
is much shorter than the witness. For general PCD zero-knowledge is even a
natural requirement: different steps of the computation may be performed by
mutually distrustful parties which do not want to share their secrets.

The notion of ZK which we consider is as follows. The simulator is given a
correct state and proof for step i and must then produce a proof for step i + 1
without knowing the corresponding witness. This simulated proof should look
indistinguishable to a PPT adversary. The simulator may inspect and reprogram
the random oracle, but to make its job harder we give the adversary access to
querying the random oracle before the simulation is made. This can be seen as
giving a limited form of auxiliary information on the oracle to the adversary.
It is discussed by Goldreich in [15] why auxiliary information is important for
composability of ZK proofs. As discussed by Unruh in [20] it is also essential
for composability to give the adversary auxiliary information on the random
oracle. Otherwise the security assumption assumes the random oracle appears
magically after the adversary specified its strategy. In this case each proof would
need its own fresh random oracle even for sequential composition. For the case
of IVC this would require that a fresh random oracle appears after each proof
step, which is a very unnatural model.

We note that our impossibilities hold under any computational assumptions,
as long as the ZK simulation proceeds only by reprogramming the random oracle.
It therefore does not, e.g., rule out constructions from common reference strings
where the simulation relies on the trapdoor of the CRS.

In This Paper. In this paper the main result is to show that succinct, zero-
knowledge non-deterministic IVC from random oracles is impossible in the fol-
lowing two cases.

1. There exist collision intractable hash functions and the proof system has
knowledge soundness. Knowledge soundness and zero-knowledge may depend
on standard model computational assumptions including non-falsifiable as-
sumptions.

2. There exist perfectly binding rerandomizable commitments and the proof
system has soundness. Both soundness and zero-knowledge may depend on
standard-model computation assumptions including non-falsifiable assump-
tions.

Universal Knowledge Soundness. For the first result we consider a notion of
knowledge extraction with a universal extractor: we require that there exists
a poly-time extractor which works for all poly-time adversaries. The extractor
is given the code of the adversary as input, so it can still use non-blackbox
extraction. However, quantifying the extractor before the adversary makes it hard
to use for instance knowledge-of-exponent assumptions or any other assumption
of the form “for all adversaries there exists an extractor such that . . .”. We
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note that the first result still stands if one makes knowledge assumptions or, in
general, any non-falsifiable assumptions. The only restriction we make is that
our definition of universal knowledge soundness makes it harder to exploit these
assumptions.

We now give an overview of our proof techniques and discuss the results
in more detail, discuss generalisations, and compare to existing (im)possibility
results for PCDs and SNARKs.

PCD via Recursion. Above we discussed recursive proofs as being simply se-
quential. To avoid confusion let us note that in Valiant’s original paper [21] IVC
is constructed using a tree of linear-time extractable CS proofs [19] in which the
leafs each prove a step of the execution, while the parents (a CS proof) proves
the correct execution of the verifier on the two children (CS proofs) which each
cover half of the computation time. By maintaining just log(T ) such proofs the
computation can be extended in the obvious way. The tree structure is essential
to ensuring polynomial-time extraction, since the linear-time knowledge extrac-
tor need only be applied log(T ) times recursively to extract the entire compu-
tational trace. In later works [4,3] from zk-SNARKS the proofs are composed
iteratively, which implies that the proof as far as we know only is sound for
computation of constant depth. Lately, in practical schemes/deployments, the
efficiency of the recursive extraction is largely ignored: instead showing that a
single level of recursion is extractable [6,5]. Common to all known constructions
is the non-blackbox use of (parts of) the verifier.

Incremental PCD. Our results apply not only to recursive proofs but to succinct
incremental proofs in general. We look at incremental proofs produced by some
ℓ number of succinct steps. By succinct we mean that the state of the prover
passed on from one step to the next has size poly(|R|, λ, log ℓ), where R is the
PPT relation checking that one step was computed correctly, λ is the security
parameter, and ℓ is the number of steps. Each computation of a proof need not
be state bounded, only the state passed on to the next step. We also require
that the verifier has running time poly(|R|, λ, log ℓ).

Technical Overview We sketch the main ideas behind the impossibility results.
For all results the witness for an ℓ-step proof is a long random vector w⃗ =
(w1, . . . , wℓ), where wi is given (only) in step i. Each wi is security parameter
long. We first prove that no adversary (cheating prover) can produce an accepting
proof if there is some index i such that we do not give it the witness wi used in
iteration i. We sketch why this is true.

For the case of collision intractable hash functions the computation computes
a Merkle-Damg̊ard hash of w⃗, consuming one wi per step. If the prover could
succeed in producing an accepting proof without using wi, then we could apply
the knowledge extractor to the accepting proof and recover wi. It is easy to see
that this can be used to violate collision intractability.

For the case of perfectly binding rerandomizable commitments the instance
is a long sequence of commitments c0, c1, . . . where the claim is that the sequence
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was produced as a sequence of rerandomisations of the previous commitment.
Step i of the proof gets as input ci−1 and ci and the witness is the randomness
used to produce ci as a rerandomisation of ci−1. The commitment c0, of step 1,
is a commitment of 0. By perfect binding it follows that for true instances the
commitment cℓ of step ℓ is also a commitment of 0. The missing witness will
now be the randomness used for a rerandomisation in some step i. If the prover
is not given this randomness it cannot distinguish a commitment ci of 0 from a
commitment of 1. Hence we can do a switch from a commitment ci−1 of 0 to a
commitment ci of 1. So if for a true instance the prover could succeed without
wi then it could also succeed for a false instance, breaking soundness.

We then finish the proofs by showing that if the verifier does not make
Θ(ℓ) queries to the random oracle then there exists an adversary producing an
accepting proof and which does not use all witnesses, giving a contradiction.

This proof only uses that there is a zero-knowledge simulator in the random
oracle model: it can simulate a given step if allowed to reprogram the random
oracle. The indistinguishability of the real view and the simulated view may
depend on other computational assumptions. For each step m and each step
n > m we use that the simulator works by programming the oracle to argue
that the verifier of step n must make a check related to the proof of step m. To
see this note that if we simulate step m and the simulator reprograms the points
Sm then the verifier of step n must check a point x ∈ Sm. Namely, if we simulate
step m then we do not need wm. Therefore the proof must reject: we already
argued that all successful provers use all witnesses. But if the verifier of step n
does not query x ∈ Sm, then the reprogrammed random oracle will look like the
real random oracle to this particular verifier and it must therefore accept the
proof (as it accepts the proof when the oracle is reprogrammed, by definition of
zero-knowledge).

Let xm,n denote a query by verifier n related to proof m. This is a random
variable. The instances m and n range from 1 to ℓ, so there are Θ(ℓ2) of the
random variable xm,n. The main challenge of the proof is to prove that they
are disjoint enough that we force some verifier to make Θ(ℓ) queries, which is
not allowed as we assume the verifier has running time in poly(|R|, λ, log ℓ). The
main challenge in proving this is that we cannot make a world where we simulate
all proofs, as some verifier will then surely check some reprogrammed point and
reject. Also, we cannot easily define xm,n in the real world where step m is
run honestly, as there is no notion of Sm. We therefore need to capture xm,n

in the world where step m is simulated using some poly-time observable. The
observable we use is essentially “x was not queried before step m and it got
queried after step m”. We show this captures xm,n when step m is simulated.
The reason is that by our notion of zero-knowledge a reprogrammed point cannot
have been queried before it was reprogrammed. And by arguments from above,
some reprogrammed point must be queried by a verifier in the future. We then
argue that this poly-time observable xm,n must exist in the real world too, or
zero-knowledge was broken. We then argue that the definitions of the poly-time
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observables are such that the θ(ℓ2) points xm,n are disjoint enough. This is done
in Lemma 4.

Generalizations Our results apply directly to schemes which only rely on random
oracles, like that of Valiant [21] (based on CS proofs) and recursive Fractal [9].
However, we emphasise that our results are not oracle separation results. We
do not give the adversary access to for instance an NP oracle which can break
all cryptography except the random oracle. As a result the impossibility results
apply even in presence of additional computational assumptions.

Specifically, the zero-knowledge may depend on computational assumptions,
as long as these are not phrased via relativized worlds extra to the random
oracle model. The results therefore stand also if there exist for instance trapdoor
permutations or indistinguishability obfuscation. Our results do not rule out
constructions where zero-knowledge is proven in for instance the generic group
model, as it is relativized. Similarly, in result 1 knowledge soundness, and in
result 2 the soundness, may depend on computational assumptions, as long as
these are not phrased via relativized worlds extra to the random oracle model.

Although we primarily focus on random oracles, the result can easily be
generalized to O(poly(λ))-local oracles, i.e., where responses to queries might be
dependent in a bounded manner: All queries can be divided into disjoint sets Pi

of size |Pi| = O(poly(λ)) and replies to queries in different sets are independent.
For a given verifier we can simply look at the one which if it queries x ∈ Pi then
it queries all x′ ∈ Pi. This still gives it running time O(poly(|R|, λ, log ℓ)). And
we can now look at the proof system as using a 1-local oracle with larger replies.
And it is easy to see that our results still apply to such 1-local oracles. Note that
for instance oracles like “generic (bilinear) groups” are not O(poly(λ))-local, as
the group law correlates all replies.

1.1 Relation to other results.

The impossibility of Gentry-Wichs [14] for adaptively sound zk-SNARGs ap-
plies also to zero-knowledge, non-deterministic IVC, so one cannot hope to con-
struct non-deterministic IVC from falsifiable assumptions. However, this does
not rule out a construction of IVC in the RO model. In particular, unlike non-
deterministic IVC, there are known constructions of zk-SNARKs in the random
oracle model, e.g., classic CS proofs [19] from PCPs and the compiler of Ben-
Sasson et al. [2] applied to round-by-round sound Holographic IOPs like Frac-
tal [9] and zk-STARKs [1]. Below we compare to other results. The discussion is
summarised in Fig. 1.

We note that while Gentry and Wichs [14] proved the impossibility of a se-
curity reduction, this paper proves impossibility a construction: Gentry-Wichs
shows that any SNARG cannot have a black-box reduction to a game-based
definition, while ours, shows that any construction of a zero-knowledge non-
deterministic IVC in the random oracle model has an efficient adversary breaking
it.
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CRS RO Non-BB RO

IVC (P) ✓ [17] ? ✓

Batch Arguments (NPℓ) ✓ [13] ✓ ✓

Non-Adaptively Secure SNARGs (NP) ✓ [18] ✓ ✓

Adaptively Secure SNARGs (NP) ✗ [14] ✓ [19] ✓

Non-Deterministic IVC (NP) ✗ [14] ✗ [Here] ✓ [21]

Fig. 1. An overview of known constructions (✓), impossibility results (✗) and open
questions ? in the existing literature, in relation to our result (✗). If a cell has no
citation it is implied by the value in another cell in the table, for brevity we only
include one construction per cell. Note that Valiant’s original construction [21] of IVC
can easily be extended to the non-deterministic setting. CRS stands for the model with
a common reference string and no RO. RO stands for the model with a standard RO
and no CRS. Non-BB RO stands for the model with non-standard RO a la Valiant
and no CRS.

Common Reference String. A number of recent results have probed the limits of
the Gentry and Wichs separation [14] of adaptively secure SNARKs from falsifi-
able assumptions: Tauman Kalai, Paneth and Yang constructed [17] a delegation
scheme for P, deterministic IVC, from falsifiable assumptions on bilinear pair-
ings with a CRS. Choudhuri and Jain recently constructed [13] batch arguments
for NP from standard assumptions and CRS. Lastly Lipmaa and Pavlyk [18]
recently resolved an open problem in the Gentry and Wichs paper by proving
that there exists a construction of non-adaptively sound SNARGs from falsifiable
assumptions.

Random Oracle. Adaptively secure (zk)SNARKs has been widely constructed
in the random oracle model (without a CRS) [19,12,9,11,1], including a recent
tight lower bound on the number of random oracle queries [16]. We prove that
similar positive results cannot be obtained for the incremental equivalent of
zkSNARK: non-deterministic IVC in the random oracle model. We tackle the
impossibility of non-deterministic IVC in the random oracle model, since proving
the impossibility of deterministic IVC (in any model) must preclude the trivial
scheme in which the oracle is not used and the poly-log verifier simply decides
membership given a poly-log certificate computed by the prover. Impossibility
of this seems closely related to proving P ̸⊆ NTIME(O(logc n))— which remains
an open problem in complexity.

Non-Blackbox Random Oracle. Constructions of (non-deterministic) IVC rely-
ing on “non-blackbox” use of the random oracle exists in the literature [9,21]:
in such schemes the security proof is in the random oracle model, however, the
construction relies on the oracle having a short description. This is an inter-
esting model where the scheme does not exist in the idealised model in which
it is proven secure. Such use of the random oracle often arises implicitly [9,21]
when a SNARK in the RO model is heuristically converted to a SNARK in the
plain model, by replacing the random oracle with a concrete cryptographic hash
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function, and used to prove the satisfiability of the verification circuit for the
same SNARK.

Non-Deterministic IVC In Relativized Worlds. Non-deterministic IVC trivially
exists in worlds with certain types of oracles, the question is how “complicate”
this oracle needs to be: motivated both by theoretic curiosity and practical desire
to heuristically instantiate the oracle in the standard model. Our results shows
that to allow zero-knowledge, incremental PCD the oracle must be non-local.

As discussed above, Chiesa and Liu [8] showed that it is impossible to con-
struct non-trivial PCPs of random oracle computation (e.g., circuits with RO
gates). This rules out most hope constructing IVC by proving the correct exe-
cution of a verifier in the random oracle model but does not exclude that other
design would allow for IVC in the RO model.

On the positive side, the original construction of Proof-Carrying Data (PCD)
[10] (a generalization of non-deterministic IVC) by Chiesa and Tromer is in a
world with a signed random oracle: a random oracle which additionally returns a
signature on the (query, response) pair, this allows verifying the validity of oracle
queries without need for oracle computation, by simply verifying the signature,
this enables a recursive construction similar to Valiant but without contradic-
tions. This oracle is non-local as all replies are signed with the same key. Recently
Chen, Chiesa and Spooner [7] demonstrated that SNARKs exists for the rela-
tivized world of low-degree polynomial oracles using an accumulation scheme [6]
for oracle query/response pairs. This scheme is non-local as replies are related
by the polynomial.

1.2 Can we Drop the ZK Assumption?

Our impossibility result applies only to the setting where a large witness is
consumed piecemeal and where the proof is zero-knowledge. Since the original
construction of Valiant, and modern uses of recursive proofs in the RO model,
easily generalises to have these properties the result seems pessimistic, but it
keeps open the possibility of getting non-deterministic IVC in the random-oracle
model which is not zero-knowledge. We prove a secondary result showing that
there does not seem to be any easy way to construct this. Namely, the proof
system would have to have an unnatural looking property that the proof system
itself makes queries it cannot “remember” later. More specifically, we can show
that non-deterministic IVC from random oracles is impossible in the following
case:

3. If there exists collision intractable hash functions and the proof system has
blackbox knowledge soundness and the proof system has a property infor-
mally stated as follows: it can with non-negligible probability be predicted
for all queries made by the prover whether they are fresh or it made them
before.

This result shows that even if we drop the assumption of zero-knowledge
one cannot get incremental proofs, but now using an assumption that the fresh-
ness of queries can be determined with non-negligible probability. Note that this
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assumption is non-trivial as the proof system is succinct, so it cannot just re-
member all queries of all previous steps. However, it seems hard to use forgotten
queries in a constructive way. We discuss the assumption further in Section 5.

For result 3 we use a different proof approach. Here we observe that if the
final verifier, of step ℓ, is succinct, then it makes a number of queries to its
oracle essentially independent of ℓ. So by setting ℓ large enough we can create a
polynomially long stretch from step p1 to step p2 such that no fresh query made
by a proof in steps [p1, p2] will be queried by the final verifier. A fresh query is
one which was not also made before the stretch. We then create an adversary
which picks the witnesses used in steps [p1, p2] independent of the witnesses used
outside the interval and independent of all queries made before steps [p1, p2].

During the stretch we let the adversary use a simulated oracle instead of the
real one for all fresh queries. It simply samples the oracle replies itself without
asking the real oracle. This will still give an accepting proof as the final verifier
does not make queries corresponding to fresh queries by the prover during the
stretch. Hence the real oracle and the simulated one will look the same to the
final verifier. Letting the adversary use a simulated oracle Õ during the stretch
ensures that the blackbox extractor gets no information on the stretch witnesses:
the adversary makes no queries to its oracle during the stretch and is therefore
opaque to the blackbox extractor.

Hence all the information that the extractor gets on the stretch witnesses is
via queries made by the adversary to its oracle during the proofs after step p2 in
the main execution. Intuitively this information can be no larger than the state
σ2 of the prover after step p2. We could give σ2 to the extractor and let it finish
the proof itself. If the proof system is succinct then we can pick p2−p1 > |σ2| to
ensure that σ2 information theoretically cannot encode all the stretch witnesses.
This shows that a blackbox extractor cannot compute the stretch witnesses from
blackbox access to the adversary, violating knowledge soundness.

The above argument uses that we could give the state of the prover after the
step p2 to the adversary and let it finish the proof itself. But note that between
steps p1 and p2 we used a simulated oracle Õ. To appeal to correctness of the
proof system when we let the adversary finish the proof it must know Õ and
must be able to determine which queries to send to Õ if they are made again by
later steps in the proof. And we should give the adversary this ability by giving
it concise information, or we might be leaking the stretch witness to it. We can
implement Õ as a pseudo-random oracle and just give the short seed to the
adversary. However, we cannot give it the set of all queries made between p1 and
p2 as the query points themselves might encode information about the stretch
witnesses. This is why we need to assume that there is a concise mechanism to
determine whether or not a query made by a later step in the proof is fresh,
so we know whether to reply with the real random oracle or the simulated
Õ. The mechanism need not be perfect. If it passes on a state which is some
constant fraction shorter than the stretch witness and works with non-negligible
probability we can still get a contradiction to extracting the stretch witnesses
when the mechanism works, by making the stretch long enough.
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2 Definitions

Formally our model of computation is repeated application of a Boolean circuit
T which encodes the “transition function”. Formally, we show impossibility of
O-IVC supporting particular sets of transition functions T , in particular we show
impossibility for schemes supporting all Boolean circuits.

Definition 1 (Transition Functions). Let T be a set of Boolean circuits,
T ∈ T :

T : {0, 1}|M | × {0, 1}|w| → {0, 1}|M |

Definition 2 (Repeated Application of T ). We denote by T ℓ the function
that applies T ℓ-times to a state M0 with witnesses w1, . . . , wℓ. Formally, let
T 0 = id (the identity function) and define T ℓ for ℓ > 0 recursively as:

T ℓ(M0, w⃗ = (w1, . . . , wℓ))

1 : Mℓ−1 ← T ℓ−1(M, (w1, . . . , wℓ−1))

2 : return T (Mℓ−1, wℓ)

We define the relation/language defined by T as follows:

(x, w⃗) ∈ RT ⇐⇒ x = (T,M0,Mℓ, ℓ) ∧Mℓ = T ℓ(M0, w⃗)

x = (T,M0,Mℓ, ℓ) ∈ LT ⇐⇒ ∃w⃗ st. (x, w⃗) ∈ RT

Definition 3 (Non-Deterministic O-IVC.). A non-deterministic O-IVC
scheme for a set of transition functions T consists of two PPT O-algorithms:

PO(xℓ = (T,M0,Mℓ, ℓ), wℓ, πℓ) 7→ πℓ+1. A PPT algorithm taking a description
of the state transition T , the initial stateM0, the current stateMℓ, the length
of the computation ℓ, some additional input wℓ and an accepting proof πℓ of
xℓ ∈ L(T,ℓ). Then outputs a proof πℓ+1 of xℓ+1 = (T,M0,Mℓ+1, ℓ+ 1) ∈ LT
where Mℓ+1 = T (Mℓ, wℓ). Note that the prover is not given the witness for
xℓ ∈ LT .

VO(xℓ = (T,M0,Mℓ, ℓ), πℓ) 7→ {⊤,⊥}. Verifies a proof π of the statement
(T,M0,Mℓ, ℓ) ∈ LT ; i.e., there exists a sequence of witnesses w⃗ such that
Mℓ = T ℓ(M0, w⃗).

We assume for notational convenience (and without loss of generality) that the
proof for the trivial statement x0 = (T,M0,M0, 0) (i.e. application of T zero
times to M0 yields M0) is π0 = ϵ (the empty string). Additionally we require
that PO and VO satisfy completeness:

(Perfect) Completeness: Informally states that if a proof is produced cor-
rectly, it verifies.
Formally, for all (T, w⃗,M0, ℓ):
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Pr

VO(xℓ = (T,M0,Mℓ, ℓ), πℓ) = ⊥

∣∣∣∣∣∣∣∣∣
∀i ∈ [ℓ] :

Mi = T (Mi−1, wi);

xi = (T,M0,Mi, i)

πi ← PO(xi, wi, πi−1)

 = 0

We assume perfect completeness for simplicity, however all our results easily
generalize to the slightly weaker case where the scheme has a negligible prob-
ability of failure. We do not require that the prover can extend any accepting
proof, only those honestly produced.

Remark 1. An alternative definition (similar to [6]) would instead have PO and
VO take a description of an NP relation R rather than a description of a
poly-time computable function T . In which case P proves knowledge of a w
st. (x = (M,M ′), w) ∈ R (rather than M ′ = T (M,w)). We note that these two
definitions are trivially equivalent, but find the definition presented here simpler
notationally: in particular the knowledge extractor does not need to explicitly
extract a sequence of statements.

We employ both standard soundness and knowledge soundness definitions in
different flavors of our impossibility results.

Definition 4 ((Computationally) Sound Non-Deterministic O-IVC).
The probability of any PPT adversary producing an accepting proof of a false
statement is negligible:

∀A(·) : Pr
[
VO(x, π) = ⊤ ∧ x /∈ L

∣∣ (x, π)← AO(1λ);
]
≤ negl(λ)

Many languages are trivial (i.e., every instance is in the language), in which
case knowledge soundness is required for non-deterministic IVC to be non-trivial.
We consider two standard variations: (1) knowledge soundness with a universal
non-blackbox extractor (the weaker definition), in which the extractor is given
access to the code of the adversary. (2) knowledge soundness with a blackbox
extractor (the stronger definition), in which the extractor is given only blackbox
(rewinding) access to the adversary.

Definition 5 (Universal Non-Blackbox Knowledge Soundness Non-
Deterministic O-IVC). There exists a PPT algorithm E st. for all PPT
AO when AO outputs an accepting proof, the extractor given a description of the
adversary, recovers a valid witness (w1, . . . , wℓ) given A(·) except with negligible
probability. Formally:

∃ E st. ∀A(·) :

Pr

[
VO(x, π) = ⊤

∧ T ℓ(M0, w⃗) ̸=Mℓ

∣∣∣∣∣ (x, π)← AO(1λ); w⃗ ← EO(1λ, x,A(·));

x = (T,M0,Mℓ, ℓ)

]
≤ negl(λ)

Definition 6 (Blackbox Knowledge Sound Non-Deterministic O-IVC).
There exists a PPT algorithm E st. for all PPT AO when AO outputs an accept-
ing proof, the extractor given black-box (rewinding) access to the adversary A(·)

recovers a valid witness (w1, . . . , wℓ), except with negligible probability. Formally:
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∃ E st. ∀A(·) :

Pr

[
VO(x, π) = ⊤

∧ T ℓ(M0, w⃗) ̸=Mℓ

∣∣∣∣∣ (x, π)← AO(1λ); w⃗ ← EO,A(·)
(1λ, x);

x = (T,M0,Mℓ, ℓ)

]
≤ negl(λ)

Additionally we may require that the IVC scheme is zero-knowledge, which
informally states that any step can be simulated by programming the oracle
and that simulated proofs are indistinguishable from real proofs. Note that the
statement to be simulated includes an accepting proof of correctness for Mℓ.

Definition 7 ((Computational) Zero-Knowledge Non-Deterministic O-
IVC). There exists a PPT (in λ, |T |, ℓ) algorithm S(·) which for any T ∈ T ,
ℓ = poly(λ), x = (T,M0,Mℓ, ℓ) ∈ LT , w, and accepting π (VO(x, π) = ⊤), SO
outputs an accepting proof and a set of (re)programmings Q = {(Qi, Ri)}i for
the oracle fooling any PPT adversary.

∃SO ∀A = (A1,A2)∀T ∈ T , x = (T,M0,Mℓ, ℓ) ∈ LT , w, π st. VO(x, π) = ⊤ :

Pr


b = b′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Mℓ+1 = T (Mℓ, w)

h← AO
1 (1

λ,Mℓ+1, x, π)

π′
0 ← PO(x, π, w)

(Q, π′
1)← SO(Mℓ+1, x, π)

b←$ {0, 1};
b′ ← AOb

2 (1λ, h, π′
b)


− 1/2 ≤ negl(λ)

Where O0 = O and O1 = [Q,O], where [Q,O] is the oracle mapping q to Ri if
(q, Ri) ∈ Q and O(q) otherwise. The probability is over O, the random tape of
A(·), P and S. We allow the running time of the simulator to depend polynomially
on the running time of the adversary.

Remark 2. An easy observation is that ifA1 queriedO at q in h← AO
1 (1

λ, Mℓ+1,
x, π), then we can assume that, except with negligible probability,O1(q) = O(q),
i.e., the simulator does not reprogram on q. Namely, if O1(q) ̸= O(q) happens
with non-negligible probability the adversary could remember all queries q and
replies made during the first step and redo them in the second step and guess b =
1 when O1(q) ̸= O(q) and b = 0 otherwise. This would break zero-knowledge.
We call the property that the simulator only programs points that were never
queried fresh reprogramming below.

Remark 3. We want to warn that our definitions were tailored for proving nega-
tive results. They might not be strong enough for positive applications. Namely,
our soundness requires only that extension works for honestly generated proofs.
So it might be possible to maliciously generate a proof πi−1 which accepts but
extends into a non-accepting proof πi. That means that in a proof carrying
data context an honest party might end up producing and further extending an
non-accepting proof πi into a proof πi+1. At the same time by our notion of
zero-knowledge the proof πi+1 might not be zero-knowledge as zero-knowledge
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only holds when starting from an accepting proof π = πi. That means an honest
party might end up producing an non-zero-knowledge proof πi+1. However, the
definitions are enough to prove our results. Starting from a weaker definition
makes impossibility proofs stronger. For practical applications stronger defini-
tions should be used.

2.1 Rerandomizable Commitments

Definition 8 (Rerandomizable Bit Commitments). A rerandomizable bit
commitment scheme consists of three algorithms:

Setup : {1}∗ × {0, 1}∗ → P a PPT algorithm which takes a unary representation
of the security parameter 1λ and produces public parameters, i.e., pp ←
Setup(1λ; r) for a random tape r ∈ {0, 1}∗.

Commit : P × {0, 1} → C a deterministic algorithm which sends a bit to the com-
mitment space, i.e., c = Commit(pp, b), b ∈ {0, 1}.

ReRand : P × C × ({0, 1}∗)∗ → C takes a commitment and produces a rerandom-
ization of the same commitment (without knowing the opening).

Note that we do not require the rerandomizable commitments to have succinct
openings, in particular “ Open” can be constructed by simply re-executing all the
rerandomizations of the original commitment, i.e. Open(pp, b, c, r = (r1, . . . , rm))

:= c
?
= ReRandm(pp,Commit(pp, b); r) = ReRand(. . .ReRand(ReRand(pp,Commit(pp, b);

r1); r2), . . . ; rm)

Game
(m)
Hiding(A, λ)

1 : pp← Setup(1λ)

2 : ((v(0), r⃗(0)), (v(1), r⃗(1)), st)← A(find, pp, 1λ)

3 : c(0) = ReRandm(Commit(pp, v(0)); r⃗(0))

4 : c(1) = ReRandm(Commit(pp, v(1)); r⃗(1))

5 : b←$ {0, 1}; c′ ← ReRand(c(b))

6 : b′ ← A(guess, st, pp, c′, 1λ)

7 : return b
?
= b′

We require the rerandomizable commitment scheme to be perfectly binding
and computationally hiding.
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Definition 9 (Perfect Binding). For every pp and number of rerandomiza-
tions m, the set of (rerandomized) commitments to 0 and 1 are disjoint, i.e.

∀m ≥ 0,∀r(0), r(1) : Pr

c0 = c1

∣∣∣∣∣∣∣∣∣
pp← Setup(1λ)

c0 = ReRandm
(
pp,Commit(pp, 0), r(0)

)
c1 = ReRandm

(
pp,Commit(pp, 1), r(1)

)
 = 0

We do not require this to hold if the two commitments are rerandomized a dif-
ferent number of times; which is weaker than the common definition.

Definition 10 (Computational Hiding). For every m ≥ 1 and PPT adver-
sary A, there exists a negligible function negl(λ) such that:

Pr
[
Game

(m)
Hiding(A, λ)

]
− 1/2 ≤ negl(λ)

We do not require the scheme to hide the number (m) of times a commitment
has been rerandomized; which is weaker than the common definition.

Remark 4 (Concrete Assumptions for Perfectly Binding Rerandomizable Com-
mitments). Perfectly binding rerandomizable commitments can be obtained from
decisional Diffie-Hellman using Elgamal encryption: which additionally hides the
number (m) of rerandomizations; a property we do not require.

2.2 Collision Intractable Hashes

Definition 11 (Collision Intractable Hash Functions). A family Hλ =
{Hk}k∈{0,1}λ of a set of PPT computable functions from {0, 1}∗ to {0, 1}λ indexed
by the security λ is collision intractable if for every PPT adversary A, there exist
a negligible function negl(λ) st.

Pr
[
H(x) = H(x′) ∧ x ̸= x′ | H←$Hλ; (x, x

′)← A(H, 1λ)
]
≤ negl(λ) .

2.3 Basic Notation

Definition 12 (Stretch). Let a length ℓ of a proof be fixed, i.e., ℓ is the
number of times the basic step function is run. We call (p, q) with 1 ≤ p, 0 ≤ q
and p+ q ≤ ℓ a stretch of length q with start position p.

Definition 13 (Query Sets). Consider a length ℓ and a run of a proof of
length ℓ, which proceeds as follows. For i = 1, . . . , ℓ compute Mi = T (Mi−1, wi),

let P(i)
↓ be the queries made to O in computing πi = PO(T,Mi−1, πi−1, wi; ρi)

and let V(i)
↓ be the queries made to O in computing VO(T,M0,Mi, πi). For 1 ≤

i ≤ k ≤ ℓ, let V(i,k)
∪ = ∪kj=iV

(j)
↓ and P(i,k)

∪ = ∪kj=iP
(j)
↓ . Define the ‘fresh’ queries

made at step i as V(i)
∆ = V(i)

↓ \V
(1,i−1)
∪ and P(i)

∆ = P(i)
↓ \P

(1,i−1)
∪ . Finally define the

fresh queries during stretches as V(p,q)
∆ = ∪p+q−1

i=p V(i)
∆ and P(p,q)

∆ = ∪p+q−1
i=p P(i)

∆ .
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Definition 14 (Oracle Extension). For a set of queries Q1 and two oracles
O1 and O we define the oracle [Q1 7→ O1,O] as follows. On input q, if q ∈ Q1

then output O1(q). Otherwise output O(q). In general, let

[Q1 7→ O1, . . . ,Qℓ 7→ Oℓ,O] = [Q1 7→ O1, [Q2 7→ O2, . . . ,Qℓ 7→ Oℓ,O]] .

3 Theorem Statements

Having the definitions in place we give the formal theorem statements. For the
statements we use the following step functions. Let TH be the step function for
repeated hashing of the witnesses, i.e., TH := H(M∥w). Let Tpp be the step
function for repeated rerandomization of a commitment using the witness as
randomness, i.e., Tpp(M,w) := ReRand(pp,M ;w). The following statements is
proven in Section 4.

Theorem 1 (Impossibility of Non-Trivial ZK Non-Deterministic O-
IVC). The existence of collision intractable functions or perfectly binding reran-
domizable commitments precludes the existance of (knowledge-sound) non-trivial
zero-knowledge non-deterministic O-IVC, more formally:

– Collision Intractability Precludes Knowledge-Soundness. Assuming
the existence of a family of collision intractable functions Hλ (Definition 11),
there exists a transition function TH such that any zero-knowledge (Defini-
tion 7), knowledge-sound (Definition 5) O-IVC scheme (Definition 3) for
the step function TH must have a verifier with running time linear in the
number of steps ℓ.

– Rerandomizable Commitments Precludes (Regular) Soundness. As-
suming the existence of perfectly binding rerandomizable commitment schemes
(Definition 8), there exists transition functions Tpp such that any zero-knowledge
(Definition 7) and computationally sound (Definition 4) O-IVC scheme (Def-
inition 3) for Tpp must have a verifier with running time linear in the number
of steps ℓ.

For the impossibility for black-box schemes we need to formalize the notion
that one can recognize whether queries are fresh.

Definition 15 (Structured Oracle Queries). We say that a proof system
(T ,P,V) has structured oracle queries if there exists a PPT algorithm used
for which the following holds for all PPT adversaries A. For all T ∈ T , all
lengths ℓ, and all witnesses (w1, . . . , wℓ) let M0 be an initial state, π0 = ϵ,

πi = PO(T,Mi−1, πi−1, wi, ρi), where ρi is the possible random tape of P, P(i)
↓

be the queries made by this i’th run of P, P(1,i)
∪ = ∪ij=1P

(j)
↓ , and let usedi =

used(T,Mi−1, πi−1, wi, ρi) be the description of a PPT predicate. Now compute
(i,q) = AO(T, w⃗,M0, ρ⃗). We say that the adversary wins if usedi(q) = ⊤ and

q ̸∈ P(1,i)
∪ or usedi(q) = ⊥ and q ∈ P(1,i)

∪ . We say that the proof system is
pstruc-SOQ if the probability that the adversary wins is ≤ 1− pstruc.
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Below we will assume that the proof system is 1/λγ-SOQ for some constant
γ > 0. This means we essentially just need a non-negligible probability that the
queries are structured. Note that usedi is computed from the current state of the
prover, so if the proof system is succinct then so is the state needed to compute
usedi which will be basis for our impossibility result. The following theorem is
proven in Section 5.

Theorem 2. If there exist collision intractable hash functions then there does
not exist succinct, non-deterministic IVC for the random oracle model (Defini-
tion 3) with blackbox knowledge soundness (Definition 6) which is 1/λO(1)-SOQ
(Definition 15) for the step function TH. By succinct we mean that the size of a
proof of an ℓ-iteration computation is poly(λ, log ℓ).

4 Impossibility from Zero-Knowledge

In the following section we prove two impossibility results for the case where the
O-IVC is zero-knowledge. One is for the case where the proof system is knowl-
edge sound and collision intractable functions exists. The other is for the case
where the proof system has just soundness but under the assumption of per-
fectly binding rerandomizable commitments. We start by proving some lemmas
and then put them together at the end of the section.

The following lemmas state that for certain transition functions no adversary
can produce an accepting proof without knowing the witness for every step;
without violating (knowledge) soundness of the O-IVC scheme.

Let Uℓ
n = Un× · · ·×Un be the distribution of ℓ iid. uniform n bit strings and

define w⃗(m̄) := (w1, . . . , wm−1,⊥, wm+1, . . . , wℓ) (i.e., a sequence where the m’th
witness is removed) for any sequence of witnesses w⃗. Impossibility of knowledge
soundness follows from collision intractable functions:

Lemma 1 (All Witnesses Are Required for Knowledge Soundness).
For a (randomly sampled) collision intractable hash function H : {0, 1}∗ →
{0, 1}λ, consider the following step function TH(M,w) := H(M∥w). We now
show that for any knowledge-sound O-IVC scheme, PPT adversary Â, ℓ =
O(poly(λ, |TH|)) and m ∈ [ℓ], Â produces an accepting proof π of the T ℓ

H exe-
cution given all witnesses except for step m, with only negligible probability. i.e.,
there exists a negligible function negl(λ) st.

Pr

VO(x, π) = ⊤

∣∣∣∣∣∣∣∣∣∣
H←$Hλ; w⃗ ←$ Uℓ

2λ;

M0 = ϵ; for i ∈ [ℓ] :Mi = TH(Mm−1, wm);

w⃗(m̄) = (w1, . . . , wm−1,⊥, wm+1, . . . , wℓ);

π ← ÂO(x = (TH,M0,Mℓ, ℓ), w⃗
(m̄),Mm)

 ≤ negl(λ)

Proof. Since the O-IVC scheme is (non-blackbox) extractable by assumption,
there exists an extractor E. Now, for any ℓ ≥ 1 and m ∈ [ℓ], consider the
following adversary A for the collision game (see Definition 11):
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(v1, v2)← A(H)
// Run Â to get a proof without the pre-image of Mm

1 : w⃗ ←$ Uℓ
2λ

2 : M0 = ϵ; for i ∈ [ℓ] : Mi = TH(Mi−1, wi);

3 : w⃗(m̄) := (w1, . . . , wm−1,⊥, wm+1, . . . , wℓ)

4 : x = (TH, ϵ,Mℓ, ℓ);π ← ÂO(x, w⃗(m̄),Mm)

// Run E to get preimages for each state.

5 : w⃗′ ← E(x, Â(·)(x, w⃗(m̄),Mm))

6 : M ′
0 = ϵ; for i ∈ [ℓ] : M ′

i = TH(M
′
i−1, w

′
i);

// Look for collision.

7 : for i ∈ [ℓ− 1] :

8 : v1 := Mi∥wi+1; v2 := M ′
i∥w′

i+1

9 : if Mi+1 = Mi+1 ∧ v1 ̸= v2

10 : return (v1, v2)

11 : return ⊥

Let f : {0, 1}2λ → {0, 1}λ be defined as f(y) 7→ H(Mm−1∥y), note that the
probability that there exists ≥ 2 preimages of f(wm) is overwhelming, since wm

is sampled uniformly at random. Hence the extractor given only Mm := f(wm)
recovers w′

m such that wm ̸= w′
m with probability at least 1/2 − negl(λ). This

violates collision intractability of f and in particular of H. ⊓⊔

If we are willing to make the stronger assumption that perfectly binding and
computationally hiding rerandomizable commitments exist we can strengthen
the lemma to violate soundness of the O-IVC scheme:

Lemma 2 (All Witnesses Are Required for Soundness). For a perfectly
binding rerandomizable commitment scheme, consider the following step function
Tpp(M,w) := ReRand(pp,M ;w)—repeated rerandomization of the commitment.
We now show that for any computationally sound O-IVC scheme, PPT adversary
Â, ℓ = O(poly(λ, |Tpp|)) and m ∈ [ℓ], Â produces an accepting proof π of the T ℓ

pp

execution given all witnesses except for step m, with only negligible probability,
i.e., there exists a negligible function negl(λ) st.

Pr


VO(x, π) = ⊤

∣∣∣∣∣∣∣∣∣∣∣∣∣

pp←$ Setup(1λ); w⃗ ←$ Uℓ
poly(λ);

M0 = Commit(pp, 0);

for i ∈ [ℓ] :Mi = Tpp(Mm−1, wm);

w⃗(m̄) = (w1, . . . , wm−1,⊥, wm+1, . . . , wℓ);

π ← ÂO(x = (Tpp,M0,Mℓ, ℓ), w⃗
(m̄),Mm)


≤ negl(λ)

Proof. Let p be the probability that Â outputs an accepting proof (in the original
game), we assume for contradiction that p is non-negligible (in λ). Consider the
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following PPT algorithm which we use to violate soundness of the O-IVC scheme
or break computational hiding of the commitment scheme:

AHiding(find, pp, 1
λ)

// Sample randomness / witnesses for ℓ steps.

1 : r⃗ ←$ Uℓ
poly(λ); st = r⃗

// Get rerandomisation of either 0 or 1.

2 : v(0) = 0; v(1) = 1

3 : r⃗(0) = r⃗(1) = (r1, . . . , rm−1)

4 : return ((v(0), r⃗(0)), (v(1), r⃗(1)), st)

AHiding(guess, st, pp, c
′, 1λ)

1 : r⃗ = st

2 : w⃗(m̄) := (r1, . . . , rm−1,⊥, rm+1, . . . , rℓ)

3 : M0 = Commit(pp, 0);Mm = c′

4 : for i ∈ [m+ 1, ℓ] : Mi = Tpp(Mi−1, wi)

5 : x = (Tpp,M0,Mℓ, ℓ)

6 : π ← ÂO(x, w⃗(m̄),Mm)

7 : if VO(x, π) = 1 return 0

8 : else return 1

Observe that when b = 0 in the Game
(m−1)
Hiding game Mm = c′ is a rerandom-

ization of the 0 commitment and hence Mℓ is as well, therefore x is true and
AHiding correctly returns 0 with probability p by assumption on Â. However,
when b = 1, the commitment c′ is a rerandomization of the 1 commitment and
x is false, hence VO(x, π) = 0 except with negligible probability negl(λ), oth-
erwise computational soundness is violated. This implies that AHiding wins the

Game
(m)
Hiding game with advantage at least p−negl(λ)/2; which is non-negligible, a

contradiction. ⊓⊔

We now show that proof systems with transition functions like the ones in
Lemma 1 and Lemma 2 where all witnesses are needed will have the verifiers
make many queries to the random oracle.

In the below we use some common definitions of honest and simulated exper-
iments. For a given proof system we can define the honest experiment HonExp
as follows.

Experiment HonExp:

1. Let M0 be the start state and π0 = ϵ. Let w⃗ be a vector of witnesses.
2. For i = 1, . . . , ℓ compute Mi = T (Mi−1, wi), πi = PO(T,Mi−1, πi−1, wi),

VO(T,M0,Mi, πi).

Let the query sets be defined as in Definition 13.

For any 1 ≤ m ≤ ℓ we can define a simulation experiment SimExpm where
everything is defined as in the honest experiment except that we simulate in step
m and then use the reprogrammed oracle from then on.
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Experiment SimExpm:

1. Let M0 be the start state and π0 = ϵ. Let w⃗ be a vector of witnesses.
2. For i = 1, . . . ,m − 1 compute Mi = T (Mi−1, wi), πi =

PO(T,Mi−1, πi−1, wi), VO(T,M0,Mi, πi).
3. Compute Mm = T (Mm−1, wm). Compute a simulated proof (Q, πm) ←

SO(T,Mm, πm−1). Let O1 = [Q,O]. Let Sm = {q|∃y ((q, y) ∈ Q)} be the
set of query points on which Q programs. Compute VO1(T,M0,Mm, πm).
Note that we use the reprogrammed oracle from here on.

4. For i = 1, . . . ,m + 1 compute Mi = T (Mi−1, wi), πi =
PO1(T,Mi−1, πi−1, wi), VO1(T,M0,Mi, πi).

We can show that if all steps are run honestly except that step m is simu-
lated then all future verifiers must check one of the points that the simulator
programmed in step m. More formally:

Lemma 3 (Must Check Programmed Points). For transition functions T
as described in Lemma 1 and Lemma 2 and for all m and ℓ with 1 ≤ m ≤ ℓ it

holds that Pr
[
Sm ∩ V(ℓ)

↓ = ∅
]
= negl(λ) for a negligible function negl(λ).

Proof. Towards contradiction, suppose there exists (m, ℓ) such that

Pr
[
Sm ∩ V(ℓ)

↓ = ∅
]
= p where p is non-negligible in λ, then construct an ad-

versary violating Lemma 1 and Lemma 2 as follows:

π ← ÂO(x, w⃗(m̄),Mm); produces a proof without wm.

1 : x = (T,M0,Mℓ, ℓ);π0 = ϵ

2 : w⃗(m̄) = (w1, . . . , wm−1,⊥, wm+1, . . . , wℓ)

// Start execution using first m − 1 witnesses

3 : for j ∈ [1,m− 1] :

4 : Mj ← T (Mj−1, wj)

5 : πj ← PO(T,Mj−1, wj , πj−1)

// Simulate step m

6 : (Qm, πm)← SO(T,Mm, πm−1)

// Finish execution with reprogrammed oracle

7 : for j ∈ [m+ 1, ℓ] :

8 : Mj ← T (Mj−1, wj)

9 : πj ← P[Qm,O](T,Mj−1, wj , πj−1)

10 : return πℓ

Where T,M0 are instantiated as in Lemma 1 and Lemma 2. To reach con-
tradiction we now argue that VO(x, π) = ⊤ with probability p: notice that when

Sm∩V(ℓ)
↓ = ∅, then V[Qm,O](x, π) = VO(x, π) since the verifier makes no queries
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in Qm (Sm). Now, simply observe that V[Qm,O](x, π) = ⊤ follows from zero-
knowledge—otherwise πm could be distinguished from a real proof by extending
it ℓ − m − 1 times and running the verifier. Therefore VO(x, π) accepts with
non-negligible probability contradicting Lemma 1 and Lemma 2. ⊓⊔

The above lemma intuitively implies that some query points “belonging” to
step m must be checked by many future verifiers. If this was true for all m
simultaneously and these query points were distinct then we would be done. Too
many distinct points would need to be checked often in the future, so the query
sets of the verifiers would have to get too big. It is, however, not straight forward
to generalise the above lemma to show that the query sets of the verifiers must be
large. If we simulate at many steps the set of reprogrammed points might grow so
large that we cannot argue that the final verifier will not query a reprogrammed
point and reject the proof. Note that the final verifier has access to the real
random oracle, not the reprogrammed random oracle. And if the verifier rejects,
then we do not get a contradiction to Lemma 1 or Lemma 2. We will therefore
need a slightly more subtle strategy. We show that because Lemma 3 holds in
SimExpm we can carefully compute in HonExp a set of query points uniquely
associated to step m which must be checked often in the future. In HonExp we
can then sum over all m.

Lemma 4 (Too Large Verifier Query Set). For transition functions T

for which the property in Lemma 3 holds there exists i such that the set V(i)
↓

sometimes has size at least ℓ−1
4 in HonExp.

Proof. We describe an adversary B (the “blocking adversary”) which in each
step n computes a set Bn, the “blocking set”. For now, we assume this adversary
knows witnesses for every step, i.e., w⃗ such that T ℓ(M0, w⃗) =Mℓ. The “blocking
sets” produced by B will satisfy:

Disjointness: The blocking sets are disjoint: ∀i, j : i ̸= j =⇒ Bi ∩Bj = ∅.
Frequent Appearance: In a random run from step n until step ℓ the expected

number of elements from Bn which occur in V(i)
↓ for i ≥ n is at least (ℓ−n)/2.

Formally:

E

[
ℓ∑

i=n

∣∣∣Bn ∩ V(i)
↓

∣∣∣] > (ℓ− n)/2 .

We first argue that if we can prove the two properties then we are done.
Assume disjointness and frequent appearance. By linearity of expectation and
Gauss’ trick we get that

E

[
ℓ∑

n=1

ℓ∑
i=n

∣∣∣Bn ∩ V(i)
↓

∣∣∣] > ℓ∑
n=1

(ℓ− n)/2 =
ℓ(ℓ− 1)

4
.

By disjointness we get that

ℓ∑
n=1

ℓ∑
i=n

∣∣∣Bn ∩ V(i)
↓

∣∣∣ = ℓ∑
i=1

i∑
n=1

∣∣∣Bn ∩ V(i)
↓

∣∣∣ = ℓ∑
i=1

∣∣∣(∪in=1Bn) ∩ V(i)
↓

∣∣∣ ≤ ℓ∑
i=1

∣∣∣V(i)
↓

∣∣∣ .
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Combining the last two inequalities we get that

E

[
ℓ∑

i=1

|V(i)
↓ |

]
>
ℓ(ℓ− 1)

4
.

This shows that it happens with non-zero probability that

ℓ∑
i=1

|V(i)
↓ | >

ℓ(ℓ− 1)

4
.

Therefore there must exist i such that it happens with non-zero probability that

|V(i)
↓ | >

ℓ(ℓ−1)
4ℓ , which proves the lemma.

The Blocking Adversary. Let p be a polynomial which we specify below. The
blocking adversary B runs as follows.

1. Let M0 be the start state, π0 = ϵ, and w⃗ a witness vector
2. For m = 1, . . . , ℓ compute Mm = T (Mm−1, wm)
3. Let B<1 = ∅ and for m = 1, . . . , ℓ do:

(a) Query the random oracle on all points in B<m = ∪m−1
i=1 Bi

(b) Compute πm = PO(T,Mm−1, πm−1, wm)

(c) Run VO(T,M0,Mm, πm) and name its queries V(m)
↓

(d) For ι = 1, . . . , p let π
(ι)
m = πm and for f = m, . . . , ℓ do:

i. Run VO(T,M0,Mf , π
(ι)
f ) and record its queries V(f,ι)

↓

ii. Add V(f,ι)
↓ \B<m to Bm

iii. If f < ℓ then compute π
(ι)
f+1 = PO(T,Mf , π

(ι)
f , wf+1)

Call the experiment HonExp. Note that the blocking sets are disjoint by con-
struction. We now prove frequent appearance by appealing to zero-knowledge.

Likely/Unlikely Queries. Form ≥ 1 let Bm be the adversary running as B except
that it simulates 3(b) in iteration m instead of using the witness for this step and
call it SimExpm. Let Sm be the set of queries programmed by the simulator. We
call a point q ∈ Sm likely if when Bm runs forward from step m then q appears

in V(≥m)
↓ = ∪ℓi=mV

(i)
↓ with probability at least (q|Sm|)−1 for a polynomial q

specified below. Let Lm ⊆ Sm be the set of likely points. Conversely we call
Um = Sm \ Lm the unlikely points.

Since |Um| ≤ |Sm|, it follows by a union bound that if we do a random run,
then the probability that an unlikely point is verified is low. More precisely,

Pr
[
Um ∩ V(≥m)

↓ ̸= ∅
]
≤ q−1 .
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Collecting All Likely Queries. For all q we can set p to be a polynomial such
that if Bm does p random runs from step m on, then except with negligible
probability the likely points are included in the blocking set Bm, as described
now. Consider any likely point q. In a random run it appears with probability
at least (q|Sm|)−1. So if we do q|Sm| independent runs it appears in one of these
except with probability about 1/e as (1 − 1/n)n → 1/e with fast convergence.
So if we run for instance λq times, it appears except with probability about
e−λ. Then use that negligible probabilities are maintained by polynomial union
bounds and that the size of Sm is polynomial. This gives us that the likely point

will appear in some V(f,ι)
↓ . It will therefore be added to the blocking set when

the adversary adds V(f,ι)
↓ \B<m to Bm. Namely, the query q will not be in B<m

as the adversary queried on all points in B<m before the simulation step was
run. So by fresh reprogramming no element from Sm is in B<m, and all likely
points are in Sm by definition.

Next we argue that we can pick q large enough such that:

E

∑
n≥m

∣∣∣Um ∩ V(n)
↓

∣∣∣
 ≤ 1/2.

For q > 2ℓ|Sm| it holds that a given unlikely point appears with probability at
most 1/q, by definition, and that when it does it contributes at most ℓ to the
sum (if it is in all verifier sets). So its contribution to the expected value is at
most ℓ/q = 1/2|Sm|−1. Then use that Un ⊂ Sn to see that there are at most |Sn|
unlikely points and apply linearity of expectation.

Putting the pieces together. By Lemma 3 we have that

E

∑
n≥m

∣∣∣Sm ∩ V(n)
↓

∣∣∣
 ≥ ℓ−m− negl(λ) .

Combining the above two inequalities and Lm = Sn \ Um we get that:

E

∑
n≥m

∣∣∣Lm ∩ V(n)
↓

∣∣∣
 ≥ ℓ−m− negl(λ)− 1/2 ≥ ℓ−m− 1 .

Using that Lm ⊂ Bm we obtain:

E

∑
n≥m

∣∣∣Bm ∩ V(n)
↓

∣∣∣
 ≥ ℓ−m− 1 .

This inequality holds in SimExpm. Now run B (HonExp) instead of Bm. Then by
a reduction to zero-knowledge we easily get that:

E

∑
n≥m

∣∣∣Bm ∩ V(n)
↓

∣∣∣
 ≥ ℓ−m

2
.
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Namely, the value
∑

n≥m |Bm ∩ V(n)
↓ | can be computed in poly-time in both

experiments. So, if E
[∑

n≥m

∣∣∣Bm ∩ V(n)
↓

∣∣∣] ≥ ℓ − m − 1 in the real world and

E
[∑

n≥m

∣∣∣Bm ∩ V(n)
↓

∣∣∣] < ℓ−m
2 in the simulation we can easily make a distin-

guisher which computes
∑

n≥m |Bm ∩ V(n)
↓ | and uses it to guess whether we

simulated in step m or not. This completes the proof. ⊓⊔

Proof (Proof of Theorem 1). By combining Lemma 1, Lemma 3, and Lemma 4
we conclude that any proof system for TH, we can pick the number of steps ℓ to
be a large enough polynomial such that the proof system will have some verifier
of some step i make at least ℓ−1

4 queries to its random oracle. Therefore the

verifier must have running time at least ℓ−1
4 ̸∈ poly(|TH|, λ, log ℓ). This proves

the first part of the theorem.
The second part is proven by combining Lemma 2, Lemma 3, and Lemma 4

similarly for Tpp. ⊓⊔

Remark 5 (Simulation in the presence of computational assumptions). Despite
its simplicity the impossibility result above is quite general, in particular it ap-
plies to any non-deterministic O-IVC scheme where the simulator works by only
programming the random oracle—even in the presence of arbitrary computa-
tional assumptions. In particular it applies to interactive zero-knowledge argu-
ments compiled in the random oracle model, like Fiat-Shamir transformations.

5 On Proving Impossibility without Zero-Knowledge

In the previous section we proved impossibility for proof systems which are zero-
knowledge. We now explore what it would take to circumvent this result. Can
we construct non-deterministic IVC in the random-oracle model which is not
zero-knowledge. Towards this we prove impossibility of non-deterministic IVC
in the random-oracle model with the following properties:

Knowledge Soundness The proof is knowledge sound.
Blackbox The knowledge extractor only has blackbox rewinding access to the

prover.
Structured Queries When the prover makes a query x to the random oracle,

then with good probability it knows whether the query x was made already
or whether it is the first time the random oracle is queried on x.

Collision Intractability There exist collision intractable hash functions.

We know that it is possible to make blackbox knowledge sound proofs in the
random oracle model, for instance Micali’s CS proofs. It is hard to imagine a
world where it is reasonable to assume a random oracle, but where a family of
collision intractable hash functions does not exist. Our result can therefore be
interpreted as saying that it is the succinctness plus structured queries that give
the impossibility.
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We discuss the structure assumption briefly. First of all, this is clearly not a
reasonable assumption about any proof system. It says that the prover has to
“remember” previous queries using a small state. It is easy to make proof systems
that do not have this property. For instance, in iteration r flip a uniformly
random bit and query r if and only if the bit is 1. On the other hand, it seems hard
to exploit such forgotten queries in a constructive way. The result therefore hints
that if we want to circumvent Theorem 1 we need to come up with completely
new ways to use a random oracle. To see this, note that when querying random
oracles in a proof system one typically makes two types of queries. One can
make a query on a fresh point to get a fresh “challenge” that the prover is
not in control over a la the Fiat-Shamir transform. In this case it is crucial
that the queried point is fresh such that the challenge is unknown until the
time of query. Typically provers makes this type of query. One can also make a
query to check the validity of a previous query, for instance when recomputing
a hash path in a Merkle tree in the CS proofs. In this case one knows that the
point on which the queries are made are not fresh, at least in an honest run
of the proof system. Typically verifiers make this type of query. However, in
an iterative proof system we can imagine that also provers make such queries,
possibly to check previous provers or verifiers. We leave it as an open problem
to determine whether there are proof systems without structured queries which
allow to circumvent Theorem 1.

We proceed to the proof. A simple, yet central, component in our proof is a
simple lemma which states that for polynomially long computations there will be
polynomially long “stretches” of proof steps where no fresh query made during
the proofs in the stretch is checked by the final verifier.

Lemma 5 (Non-trivial O-IVC Implies Unchecked Stretches). Let the
running time of VO(x, π) be bounded by a polynomial ψ ∈ poly(|R|, λ, log ℓ).
Then for all lengths q ∈ poly(|R|, λ, log ℓ) there exist large enough ℓ ∈ poly(|R|, λ)
and a position p ∈ [1, . . . , ℓ] such that P(p,q)

∆ ∩ V(ℓ)
↓ = ∅ with non-negligible

probability. The position p may depend on λ.

Proof. Let ℓ be a free variable for now, we fix it later. Since |R| ∈ poly(λ)
it is sufficient to consider any constants a, b ∈ N and thereby any polynomial
q = λb(log ℓ)c. We want to show that there exists d such that if we let ℓ = λd

then there exists a position p (which might be a function of λ) such that

Pr
λ
[P(p,q)

∆ ∩ V(ℓ)
↓ = ∅] = negl(λ) ,

where Prλ denotes that the probability is taken over a random run with security
parameter set to λ.

For any q as above we can consider e = b + 1 and q′ = λe. We have that
q′ > q for large enough λ as ℓ = poly(λ). So for large enough λ we have that

P(p,q)
∆ ⊂ P(p,q′)

∆ . It is therefore sufficient to consider any constant e ∈ N and
thereby any polynomial q′ = λe and show that there exists d such that if we let



26 M. Hall-Andersen, J. B. Nielsen

ℓ = λd then there exists a position p such that

Pr
λ
[P(p,q′)

∆ ∩ V(ℓ)
↓ = ∅] = negl(λ) .

Now that q′ does not depend on ℓ we can for any ϕ ∈ poly(λ) set ℓ = qϕ.
Then we have ϕ disjoint stretches (1, q), (q + 1, q), . . . , (ℓ − q + 1, q). This by

definition gives disjoints sets P(1,q)
∆ ,P(q+1,q)

∆ , . . . ,P(ℓ−q+1,q)
∆ .

Since the running time of VO(x, π) is bounded by poly(|R|, λ, log ℓ) it is also
bounded by some ϕ ∈ poly(λ) for large enough λ via the same arguments as
above. So for large enough λ the verifier can make at most ψ queries to the

oracle, i.e., |V(ℓ)
↓ | ≤ ψ. So if we set ϕ = 2ψ, then in any given run at most half

the sets P(p,q)
∆ enumerated above will contain an element from V(ℓ)

↓ .
For each large enough λ this allows us to pick a fixed position pλ such that

for a random run P(p,q)
∆ will contain an element from V(ℓ)

↓ with probability at
most 1/2. For smaller λ simply let pλ = 1. Now let p(λ) = λ. Then

∃λ′∀λ > λøPr
λ
[P(p,q′)

∆ ∩ V(ℓ)
↓ = ∅] ≥ 1

2

which is non-negligible. ⊓⊔

Note that the function p(λ) can be computed in non-uniform PPT in λ by a
simple lookup table. This is enough for where we use the lemma as we consider
non-uniform adversaries for simplicity. We could, however, also get impossibility
for uniform adversaries. If we allow p to be randomized (and all subsequent
proofs can handle a randomized p), then we can simply set ℓ as in the proof
and do λ runs of the experiment. We can then let p(λ) be any position where

P(p,q′)
∆ ∩ V(ℓ)

↓ = ∅ happens with frequency at least 1
2 . It is easy to see that such

a position exists and will have Prλ[P(p,q′)
∆ ∩ V(ℓ)

↓ = ∅] ̸= negl(λ) in a fresh run.
Before giving the full proof, we prove a warmup case (Lemma 6) to give the

intuition of the proof up front. The lemma just says that if a long witness is
hashed and then the witness extracted, then it is the original witnesses which is
extracted, or collision intractability is broken. We then later show how to exploit
this to get impossibility by showing that it cannot be the case that the original
witness is extracted.

We describe a class of adversaries A(·)
H,ℓ,w⃗,ρ in Fig. 2. Let A(·)

ℓ denote the

random variable describing A(·)
H,ℓ,w⃗,ρ, where H, w⃗ and ρ are sampled at random.

And let w⃗(AO
ℓ ) denote the witnesses used by this adversary when run with oracle

O.

Lemma 6. There exists a PPT algorithm E such that when O is a random ora-
cle and (H,Mℓ, πℓ)← AO

ℓ then EAℓ,O = w⃗(AO
ℓ ) except with negligible probability.

Proof. SinceAO
ℓ internally runs an honest proof using P we have that VO(H,Mℓ, πℓ) =

⊤ except with negligible probability. So, by knowledge soundness we have that
there exists a PPT extractor E such that if we let w⃗′ = EAℓ,O then Mℓ =
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Hℓ(M0, w⃗
′) except with negligible probability. Let w⃗ = w⃗(AO

ℓ ). We have by con-
struction thatMℓ = Hℓ(M0, w⃗). This implies that w⃗′ = w⃗ or (w⃗, w⃗′) is a collision
for H. It is therefore enough to prove that (w⃗, w⃗′) is a collision for H with negli-
gible probability. This follows from a simple reduction to collision intractability
of H using the fact that E is a fixed PPT algorithm and H is chosen at random
after E is fixed. ⊓⊔

The above simple case shows that if the proof system has knowledge sound-
ness we can make the extractor extract the long witness w⃗ from blackbox inter-
action with the adversary. The only way the extractor learns information is via
the queries of the adversary to the random oracle. We now show that it is possi-
ble for A to use a fake hardcoded oracle for a long stretch of the proof and still
have the proof be accepted with good probability. This is because the verifier
does not have queries enough to test a query from all proof steps. During this
stretch the adversary will not query the real oracle O. So there is no interaction
with the extractor. Hence the extractor does not learn enough about the witness
used during the stretch to be able to extract it. We now flesh out this intuition.

The adversary AO
H,ℓ,w⃗,ρ has the following values hard-coded. A hash function

H, the number of steps ℓ, the witnesses w⃗, and a random tape ρ = (ρ1, . . . , ρℓ)
long enough to provide P with randomness ℓ times. Let O denote the oracle
used by the adversary. The adversary proceeds as follows.

1. Let M0 = 0λ and π0 = ϵ.
2. For i = 1, . . . , ℓ compute Mi = H(Mi−1, wi) and

πi = PO(H,Mi−1, πi−1, wi; ρi) .

3. Output (H,Mℓ, πℓ).

Fig. 2. A(·)
H,ℓ,w⃗,ρ

The transition function we look at is simply collision intractable hashing.
We describe the class of transition functions T . We assume we have a family of
collision intractable hash functions H : {0, 1}λ×{0, 1}λ → {0, 1}λ. The witnesses
are given by w⃗ ∈ ({0, 1}λ)ℓ. The step function T is represented by a hash function
H. We always letM0 = 0λ and the step function is given byMi = T (Mi−1, wi) =
H(Mi−1, wi). Since M0 is fixed we drop it from the notation below.

We describe a class of adversaries in Fig. 3. In the proof we will need to go
through some hybrids. For simplicity we provide a single adversary with some
parameters (two oracles and a binary switch) allowing to produce all the hybrids.
For the same purpose we define in Fig. 4 an experiment with two binary switches
a and b.
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The adversaryAO
H,ℓ,(p,q),w⃗pre,w⃗post,ρ,Õ,W̃,b

has the following values hard-coded. A

hash function H, the number of steps ℓ, a stretch (p, q), the pre-stretch witnesses
w⃗pre = (w1, . . . , wp−1), the post-stretch witnesses w⃗post = (wp+q, . . . , wℓ), a

random tape ρ long enough to provide P with randomness ℓ times, an oracle Õ :
{0, 1}λ → {0, 1}λ called the stretch oracle, an oracle W̃ : {0, 1}∗ → ({0, 1}λ)q
called the witness oracle, and a switch b ∈ {0, 1}. Let O denote the oracle which
the adversary has oracle access to. The adversary proceeds as follows.

1. Let M0 = 0λ and π0 = ϵ.
2. Let (w1, . . . , wp−1) = w⃗pre.
3. For i = 1, . . . , p− 1 compute Mi = H(Mi−1, wi) and

πi = PO(H,Mi−1, πi−1, wi; ρi) .

4. Let Ppre
↓ = P(1,p−1)

∪ be the queries from P to O in the above step. Let

Ostr = [Ppre
↓ 7→ O, Õ]. For the i’th query qi ∈ Ppre

↓ in order of ap-
pearance in the execution let yi = O(qi) be the reply given by O to
the query qi in the above step, let h = |Ppre

↓ |, and define the query tag
T = ((q1, y1), . . . , (qh, yh)).

5. Define the stretch witnesses w⃗str = (wp, . . . , wp+q−1) = W̃(T,Mp−1, πp−1).
6. For i = p, . . . , p+ q − 1 compute Mi = H(Mi−1, wi) and

πi = POstr

(H,Mi−1, πi−1, wi; ρi) .

7. Let usedp+q = used(H,Mi−1, πi−1, wi; ρi).

8. Let Pstr
↓ = P(p,p+q−1)

∪ \ P(1,p−1)
∪ be the queries from P to Õ in the above

step.
9. Let Opost

0 = [Ppre
↓ 7→ O,Pstr

↓ 7→ Õ,O].
10. Let Opost

1 be the following oracle.

Opost
1 (q) =

{
Õ(q) if usedp+q(q) = ⊤ ∧ q ̸∈ Ppre

↓

O(q) otherwise

11. For i = p+ q, . . . , ℓ compute Mi = H(Mi−1, wi) and

πi = POpost
b (H,Mi−1, πi−1, wi; ρi) .

12. Output (H,Mℓ, πℓ).

Fig. 3. AO
H,ℓ,(p,q),w⃗pre,w⃗post,ρ,Õ,W̃,b



On Valiant’s Conjecture 29

Note that the oracle Ostr = [Ppre
↓ 7→ O, Õ] used during the stretch will

send all fresh queries to the simulated oracle Õ so it will make no new queries
to the real oracle O. Note that Opost

1 is the oracle which behaves like the real
random oracle O except on queries which according to usedp+q were made while
proving for the stretch witness. The queries usedp+q(q) = ⊤∧q ̸∈ Ppre

↓ are those
presumable made before the stretch ended and not before the stretch started.
For such stretch queries it uses the simulated oracle Õ.

The experiment ExtExpO
ℓ,(p,q),a,b runs as follows.

1. Pick H, w⃗pre, w⃗post, ρ at random.
2. Let Õ0 and W̃0 be uniformly random functions from their domain. Let
Õ1 and W̃1 be pseudo-random functions over their domains, specified by
uniformly random keys O,W ∈ {0, 1}λ.

3. Let A(·) = A(·)
H,ℓ,(p,q),w⃗pre,w⃗post,ρ,Õa,W̃a,b

.

4. Let (H,Mℓ, πℓ)← AO.

– Let Pstr
↓ denote the set Pstr

↓ used inside A. Similarly for other variables

used by A like Opost
b , usedp+q, and P(i,k)

∪ .
– Let NSF be the no structure failure event that it did not happen that
Opost

b was queried on an q such that (usedp+q(q) = ⊤ and q ̸∈ P(1,p+1)
∪ )

or (usedp+q(q) = ⊥ and q ∈ P(1,p+1)
∪ ).

5. Let O0 = O and let O1 = Opost
b be the oracle used in AO.

6. For c = 0, 1 let Jc = VOc(H,Mℓ, πℓ).

– Let Vc = V(ℓ)
↓ be the queries from V(·)(H,Mℓ, πℓ) to its oracle Oc

and let QFSc be the query-free stretch event that Vc ∩ Pstr
↓ = ∅. Let

QFS = QFS0.
– Let VERc be the event that Jc = ⊤.

7. Let v⃗ = EA(·),O and let v⃗pre∥v⃗str∥v⃗post = v⃗, where |v⃗pre| = p − 1 and
|v⃗str| = q.
– Let XTF be the extraction of full witness event that J0 = ⊥ or v⃗ = w⃗.
– Let XTS be the stretch extraction event that v⃗str = w⃗str.

Fig. 4. ExtExpO
ℓ,(p,q),a,b

We are particularly interested in the event XTSa=0,b=1. This is the event that
the random witness used during the stretch is correctly extracted when a = 0
(such that a uniformly random oracle and uniformly random witness are used)
and b = 1 (such that Opost

1 is used for the post-stretch part of the proof in step
11). Below we prove two lemmas about XTSa=0,b=1, which allows us to give the
following proof for Theorem 2.

Proof (Proof of Theorem 2). Under the premises of the theorem we can prove
both Lemma 7 and Lemma 8, and these two lemmas are in contradiction. ⊓⊔
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We first prove:

Lemma 7. Under the premises of Theorem 2 the following holds. There exists
a polynomial stretch length q ∈ poly(|R|, λ, log ℓ) such that it is not possible to
set the number of steps ℓ to a polynomial and set the stretch position p such that

Pr[XTSa=0,b=1] ≥ 1/λO(1) .

Proof. Note that the stretch witness is picked uniformly at random using the
oracle W̃. This means that it has entropy q|w|. The extractor needs to learn this
many bits to extract the stretch witness. Let us be curious about from where it
could learn this many bits of information.

Note that the stretch witness is computed as w⃗str = (wp, . . . , wp+q−1) =

W̃(T,Mp−1, πp−1), where (T,Mp−1, πp−1) is the entire state of the proof up to
step 5, including previous random-oracle queries and replies. This ensured that if
the adversary is rewound behind step 5 then an independent, uniformly random
stretch witness is picked. So we can ignore extractors rewinding behind step 5.

The extractor also learns no information during steps 5 and 6 as the prover
queries the stretch oracle Õ during the stretch, not the real oracle. Hence the
adversary does not interact with the extractor at all during steps 5 and 6.

We finally argue that interacting with the adversary after step 6 cannot leak
the entire stretch witness. To see this note that the adversary only needs the
post-stretch witness and Opost

1 to run after step 6. The post-stretch witness
is independent of the stretch witness, and we can represent Opost

1 such that
it does not contain all information about the stretch witness. Namely, we could
indistinguishably for the extractor switch to a = 1 such that Õ is pseudo-random
and specified by a short key O. Note that we can then compute Opost

1 given O,
usedp+q, Ppre

↓ , and O. The oracle O and the queries Ppre
↓ were chosen before

the stretch witness was chosen, so cannot depend on it. The key O is short so
can only contain little information on the stretch witness. Finally, we assumed
usedp+q can be computed from the state of the prover which we have assumed is
poly(λ, log ℓ) for some fixed polynomial. So if we set q to some larger polynomial,
then the state of the prover cannot contain the stretch witness. By making q
large enough we can ensure that the stretch witness can be guessed only with
negligible probability from the state of the adversary after step 6, which proves
the lemma. ⊓⊔

We then prove the following contradicting lemma:

Lemma 8. Under the premises of Theorem 2 the following holds. For all poly-
nomials q ∈ poly(|R|, λ, log ℓ) it is possible to set ℓ to a polynomial and set p
such that

Pr[XTSa=0,b=1] ≥ 1/λO(1) .

Proof. We will argue that when a = 0 and b = 1 then we can for all q set ℓ such
that J0 = ⊤ with polynomial probability. When this happens, then knowledge

soundness gives us that the extraction v⃗ = EA(·),O must be correct and therefore
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XTSa=0,b=1 happened. Note that when b = 1 then the adversary’s proof is con-

structed with O1 = Opost
1 but EA(·),O extracts with O. The key to the proof is to

show that with polynomial probability it holds that 1) the proof constructed by
the adversary verifies against Opost

1 and that 2) Opost
1 (q) = O(q) for all queries

made by the verifier. The first part would give J1 = ⊤ and the second part would
give J0 = J1, and we would be done.

We first prove 2). Note that Opost
0 and Opost

1 only differ in which queries

they send to the simulated oracle Õ. The oracle Opost
0 sends exactly the queries

made for the first time in the stretch. The oracle Opost
1 tries to do the same

but relies on usedp+q correctly identifying queries made before step p + q. Un-
der the assumption that NSF happens we have that Opost

0 = Opost
1 and by the

assumption that the proof system is 1/λO(1)-SOQ we can assume that NSF hap-
pens with polynomial probability. So let us proceed under the assumption that
Opost

0 = Opost
1 . Then note that Opost

0 = O unless queried on a query made by
the prover during the stretch and use Lemma 5 to set ℓ large enough that the
verifier with polynomial probability does not make such a query. This ensure
that O1(q) = O(q) for all queries made by the verifier, as desired.

To prove 1) we then need to argue that it is also the case that the proof made

by the adversary verifies against Opost
1 . But note that when Õ is uniformly

random, then Opost
0 is just another uniformly random oracle. And therefore

Opost
1 = Opost

0 is also a uniformly random oracle. So the proof of the adversary
is a random, honestly generated proof relative to a uniformly random oracle
Opost

1 . Therefore, by completeness, it will also verify relative to Opost
1 . ⊓⊔
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