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Abstract. The computational overhead of a cryptographic task is the
asymptotic ratio between the computational cost of securely realizing
the task and that of realizing the task with no security at all.

Ishai, Kushilevitz, Ostrovsky, and Sahai (STOC 2008) showed that
secure two-party computation of Boolean circuits can be realized with
constant computational overhead, independent of the desired level of
security, assuming the existence of an oblivious transfer (OT) protocol
and a local pseudorandom generator (PRG). However, this only applies
to the case of semi-honest parties. A central open question in the area is
the possibility of a similar result for malicious parties. This question is
open even for the simpler task of securely realizing many instances of a
constant-size function, such as OT of bits.

We settle the question in the affirmative for the case of OT, assuming:
(1) a standard OT protocol, (2) a slightly stronger “correlation-robust”
variant of a local PRG, and (3) a standard sparse variant of the Learn-
ing Parity with Noise (LPN) assumption. An optimized version of our
construction requires fewer than 100 bit operations per party per bit-
OT. For 128-bit security, this improves over the best previous protocols
by 1-2 orders of magnitude.

We achieve this by constructing a constant-overhead pseudorandom
correlation generator (PCG) for the bit-OT correlation. Such a PCG gen-
erates N pseudorandom instances of bit-OT by locally expanding short,
correlated seeds. As a result, we get an end-to-end protocol for gener-
ating N pseudorandom instances of bit-OT with o(N) communication,
O(N) computation, and security that scales sub-exponentially with N.

Finally, we present applications of our main result to realizing other
secure computation tasks with constant computational overhead. These
include protocols for general circuits with a relaxed notion of security
against malicious parties, protocols for realizing N instances of natural
constant-size functions, and reducing the main open question to a po-
tentially simpler question about fault-tolerant computation.
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1 Introduction

A dream goal in cryptography is obtaining security “for free,” without any slow-
down. How close can we get to this goal in the context of secure computation?

A theoretical study of this question was initiated in the work of Ishai, Kushile-
vitz, Ostrovsky, and Sahai [52] (IKOS). For secure two-party computation of
Boolean circuits, they showed that it is possible to achieve constant computa-
tional overhead under plausible cryptographic assumptions. Concretely, there is
a multiplicative constant ¢, independent of the desired security level, such that
every sufficiently big Boolean circuit of size N can be securely evaluated by two
parties which are implemented by Boolean circuits of size cN EI This means that
the amortized slowdown factor can be independent of the security levelﬂ

The IKOS protocol combines a technique of Beaver [19] with a local PRG
[46/62/10], namely a pseudorandom generator G : {0,1}* — {0,1}*(*) that has
polynomial stretch (n = £2(k?) for some d > 1) and such that every output bit of
G depends on a constant number of input bits. While the existence of such local
PRGs was considered quite speculative at the time, it is now widely accepted as
a standard cryptographic assumption.

A major limitation of the IKOS protocol is that its security is restricted to
the case of semi-honest parties. The possibility of a similar result for malicious
parties was the main question left open by [52]. In spite of significant progress
on this and related problems, including constant-overhead protocols for arith-
metic circuits over large fields [8124], a solution to the above main question is
still elusive; see [36J55] for a survey of related work. The question is open even
for simpler tasks, such as computing N instances of a nontrivial constant-size
function. To make things worse, strong cryptographic primitives such as indis-
tinguishability obfuscation do not seem helpful. In fact, even entirely heuristic
solutions are not currently known. Our work is motivated by the goal of solving
useful special cases of this central open question.

The Overhead of Oblivious Transfer. A common framework toward secure
computation, including the protocol of IKOS, follows a two-phase approach: first
run an input-independent preprocessing protocol for secure distributed genera-
tion of useful correlated secret randomness, and then consume these correlations
within an online protocol that performs a secure computation on the inputs [I§].
An important example is the random oblivious transfer (OT) correlationﬂ in

! Here the default security requirement is that any poly(NN)-time adversary can only
obtain a negl(INV) advantage. Alternatively, using a separate security parameter A,
the ¢N bound holds when N is sufficiently (but polynomially) larger than A.

2 See Section for more details on our specific cost model. Briefly, functions and
protocols are implemented as bounded fan-in Boolean circuits, and the computa-
tional cost is the number of gates. For concrete computational costs, we allow any
bit operation over two-bit inputs.

3 In this work, OT refers by default to bit-OT, namely oblivious transfer of pairs of
bits. However, as discussed below (cf. Section 7 our results apply to most other
natural flavors of OT.
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which Alice and Bob receive (sp, s1) and (b, sp) respectively, where sg, s1,b are
random bits. Given 2N independent instances of this OT correlation, Alice and
Bob can evaluate any Boolean circuit with N gates (excluding “free” XOR and
NOT gates) on their inputs, with perfect semi-honest security, by each sending 2
bits and performing a small constant number of bit operations per gate [48/47].
Indeed, IKOS protocol obtains constant-overhead general secure two-party com-
putation precisely by achieving this goal for generation of random bit-OTs.
Generating random bit-OTs with malicious security, however, is much more
challenging. In particular, the IKOS protocol is not secure in this setting E| The
best known solutions incur polylogarithmic computational overhead [41136]. A
natural approach for improvement would be to follow the “GMW-paradigm” [4§],
applying zero-knowledge proofs to enforce honest behavior in the IKOS protocol.
However, the existence of such proofs with constant computational overhead for
the satisfiability of Boolean circuits is also wide open: even there, the best known
solutions have polylogarithmic overhead [41]. A number of works developed
special-purpose cut-and-choose techniques for protecting efficient OT extension
protocols against malicious parties with a very low overhead [56JT565]. However,
these techniques are inherently tied to string-OTs whose length is proportional
to a security parameter, and seem to require (at least) a polylogarithmic compu-
tational overhead when adapted to the case of bit-OT. Part of the challenge of
protecting “traditional” OT generation protocols against malicious adversaries is
that the underlying semi-honest protocols require {2(N) communication for gen-
erating NV OT correlation instances, which must somehow be checked or verified.

Pseudorandom Correlation Generators. A recent alternative approach to
OT generation is via the tool of pseudorandom correlation generators (PCQ),
put forth in [30U25128]. The PCG approach enables fast generation of short corre-
lated seeds, of length o(NN), that can be locally expanded without interaction to
N instances of OT (or other) correlations. Unlike the traditional protocols from
above, the structure of PCG-based protocols directly gives rise to secure compu-
tation of N pseudorandom OT correlations with sublinear o(N') communication
cost. This is an appealing feature, not only as a concrete efliciency benefit (in-
deed, communication costs often form the practical efficiency bottleneck), but
also as a promising starting point for obtaining malicious security with low over-
head. Indeed, since the local expansion from short PCG seed to long OT output
is deterministic, it suffices to ensure that the short seeds be generated correctly,
reducing the malicious-security problem to an instance of sublinear size.

However, existing PCG constructions do not yet suffice for our goal. While
the communication cost of PCG-based protocols is sublinear in N, the required
computation costs are quite high. In existing constructions [2827/69/40/26], even
just the amortized cost of generating each final bit-OT correlation (corresponding
to simply 2 output bits per party) requires generating security-parameter many
pseudorandom bits, and then hashing them down.

4 See the full version for an explicit attack.
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1.1 Owur Results

We present new constructions of pseudorandom correlation generators for N in-
stances of the bit-OT correlation, which not only have sublinear communica-
tion in NV but also achieve constant computational overhead. As a direct conse-
quence, we obtain the first constant-overhead protocol for realizing N instances
of bit-OT with security against malicious parties. As we further discuss below,
this result extends beyond OT to other natural secure computation tasks.

Theorem 1 (Constant-overhead PCG for OT, informal). Suppose that
the following assumptions hold:

— There is a local PRG with an additional “correlation robustness” property;
— There are sparse generating matrices of codes for which Learning Parity with
Noise is hard.

Then, there is a pseudorandom correlation generator for the bit-OT correlation,
with polynomial stretch, where the local expansion function PCG.Expand has con-
stant computational overhead.

In fact, we present two variants of this main result: one based on a primal-
LPN assumption, which has better amortized cost but a small (sub-quadratic)
stretch, and one based on dual-LPN that can achieve an arbitrary polynomial
stretch at the cost of a slightly increased (constant) overhead.

By applying a general-purpose secure computation protocol to distribute the
PCG seed generation, we obtain the following corollary.

Corollary 2 (Constant-overhead malicious OT, informal). Assuming the
ezistence of a standard OT protocol along with the assumptions of Theorem [,
there exists a two-party protocol for realizing N instances of bit-OT with security
against malicious parties and a constant computational overhead.

About the Assumptions. Our protocols require three types of assumptions:
(1) the (necessary) existence of standard OT; (2) a slight strengthening of local
PRGs that we refer to as correlation robustness; and (3) a “sparse” form of the
Learning Parity with Noise (LPN) assumption.

As discussed above, local PRGs (more concretely, PRGs with constant local-
ity and polynomial stretch) were already used in the IKOS protocol [52]. A well-
known candidate is Goldreich’s PRG [46], where significant study has gone to-
ward proving resilience against classes of attacks for particular choices of output
predicates P; [204I63I385I7IT2I6TIB0/39]. Correlation robustness of a PRG G :
{0,1}® — {0,1}* requires that for any choice of offsets Ay,..., Ay € {0,1}",
the output (Py(x & A1),...,Py(z® Ay)) € {0,1}" appears pseudorandom for
random z. For a local PRG, this corresponds to fixed xor-shifts of the corre-
sponding output local predicates. In the full version we investigate the potential
correlation robustness of the Goldreich local PRG construction, demonstrating
that “good” properties of PRG output predicates P; are preserved under fixed



OT with Constant Computational Overhead 5

xor-shift. In turn, we conclude that the same classes of attacks can be ruled out
for correlation robustness of the PRG as well as for standard pseudorandomness.

“Sparse” LPN, first put forth by Alekhnovich [2], corresponds to a form of
LPN whose code generator matrix (i.e., coefficients of noisy linear equations) has
constant row sparsity. The assumption states that the mapping (5,é) — G-§5+¢
is a PRG, where 5 is a short uniform seed of length n, G € {0,1}V*" is a
suitably chosen sparse matrix and € is a noise vector of weight ¢ < N. In such
a scenario we can have polynomial stretch (i.e., both n,t are at most N1=¢ for
some € > 0) but the stretch is fairly limited.

We also consider the dual variant of LPN directly, where the seed is viewed
as a length M error vector € and the mapping sends € — H - € for a suitably
chosen H € {0, 1}"*M with M > N. By choosing H to have a repeat-accumulate
structure, we get desirable efficiency properties (analogous to the efficiency the
sparsity of G earns us in the primal case) while allowing for arbitrary polynomial
stretch.

To evaluate the plausibility of our LPN-assumptions we follow the linear
tests-framework, which was implicit in [29/40] and made explicit in [20]. Briefly,
this means that we need to verify that the distance of a code related to the
matrix is not too small.

Concrete Amortized Cost. We estimate that, when producing a sufficiently
large number N of OTs, our construction based on primal-LPN can have a
concrete, amortized cost of 243 bit operations per party, per OT, while achieving
sublinear communication complexity. This figure is based on using a PRG with
locality 9, which asymptotically is believed to be secure with stretch as large as
k%% and a primal-LPN matrix with row sparsity of d = 18. For the dual LPN
variant, we can rely on a PRG with locality 5, achieving amortized costs of 91
bit operations per party.

In comparison, with 128 bits of security against malicious parties, the amor-
tized cost of all previous protocols is bigger by 1-2 orders of magnitude, even
when using a best-possible implementation of the underlying primitives (e.g., us-
ing a local PRG for generating pseudorandom bits). This applies both to proto-
cols with linear communication [50J56II5I65] and to PCG-based protocols with
sublinear communication [2827/69/20/26].

Counting bit operations does not reflect true performance on standard archi-
tectures, and in particular does not take into account additional costs such as
memory access. However, the extra costs can be amortized by performing many
identical computations in parallel. We leave a more thorough investigation of
concrete efficiency and further optimizations to future work.

Beyond Oblivious Transfer. While our main result only refers to the specific
task of securely realizing N instances of OT, the ubiquity of OT in cryptography
makes it relevant to many applications. Even in the strict context of secure com-
putation with constant computational overhead, our results have broader impli-
cations to other useful secure computation tasks. We summarize them below.
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— General protocols with relazed security. Given our constant-overhead real-
ization of (malicious-secure) OT, one can securely compute every Boolean
circuit with constant computational overhead by settling for security up to
additive attacks [43]. In this relaxed security model, the malicious party can
(blindly) choose a subset of the circuit wires to toggle, independently of the
honest party’s input. While devastating in some applications, such as zero-
knowledge proofs, additive attacks can be tolerable in others. This may be
the case, for example, when computing functions with long inputs and short
outputs, and when the main concern is about the amount of information
that a malicious party can learn.

— Leveraging perfect security. Consider the case of realizing N instances of a
“constant-size” functionality f. If f has perfect security against malicious
parties in the OT-hybrid model, namely using ideal calls to a bit-OT oracle,
then our main result implies a constant-overhead protocol in the plain model.
While the question of characterizing such f is still open, positive examples
include other flavors of OT [34l54], simple noisy channels such as a BSC
channel and, more surprisingly, a broad class of functionalities that includes
constant-size instances of the millionaire’s problem and many others [3].

— Reducing security to fault-tolerance. Finally, given our constant-overhead re-
alization of the OT-hybrid model, settling the general open question reduces
to settling it in this model. This, in turn, reduces to a constant-overhead
construction of Boolean AMD circuits — randomized circuits that are re-
silient to additive attacks [43]. The best known construction of such circuits
has polylogarithmic overhead [44].

1.2 Technical Overview

At a high-level, our approach follows the construction of PCGs for random bit-
OT via subfield vector oblivious linear evaluation (sVOLE) [25128]. We first recall
their approach, and then explain how to achieve constant overhead.

PCGs for sVOLE from LPN [25/28]. Recall that an sVOLE instance is
of the form (b, %), (z,71), where z € {0,1}%,b € {0,1},%, € ({0,1}")N, %, €
({0,1}%)N such that z-b = Zy& 71, where 2-b := (by - x,..., by -z) € ({0,1}%)N.
(Note that typically x is considered as element = € Fax, which is where the name
subfield VOLE comes from. Here, however, it will be more convenient to think
of = as a bitstring = € {0, 1}", since this will later be input to a local PRG.)

The first ingredient of the PCG construction is a pseudorandom generator
from the learning parity with noise assumption. Let n, N € N with n < N.
The primal learning parity with noise assumption states that, relative to some
code generator C returning matrices in {0, 1}?V*" and noise distribution D over
{0,1V, (G,G - §® &) ~ (G,b), where G + C,5 & {0,1}",& « D and b &
{0,1}". Here, we consider noise distributions D that return t-sparse vectors, i.e.,
vectors containing at most £ non-zero entries.

The second ingredient is a (known-index) function secret sharing (FSS) scheme
to generate a succinct secret sharing of z - €, where « € {0,1}* as above, and €'is
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a t-sparse noise vector. Roughly, a function secret sharing scheme consists of a
tuple of algorithms (Setup, FullEval), such that Setup(1*,?) (where © is the suc-
cinct representation of the vector ¥ = x - €) returns a tuple of succinct (i.e., poly-
nonomial in the size of 0) keys (K, K1) and FullEval(o, K,) returns a vector i, €
({0,1}%)N such that 4j,®7; = v. The security requirement states, essentially, that
even given g, for either b = 0 or b = 1, one cannot derive any information about v.

Function secret sharing schemes for so-called t-sparse point functions are
known to exist from one-way functions [4531]. Further, as observed in [66/27]
for the purpose of constructing PCGs for sVOLE a so-called known-indez FSS
scheme is sufficient, where one party learns the positions of the non-zero entries.
Known-index FSS for point functions are implied by simpler constructions of
puncturable pseudorandom functions [58/2333].

Now, given these two ingredients, the PCG construction for sVOLE can be
obtained as follows:

— Sample z & {0,1}* as input for P;.
— Sample § & {0,1}", & & D and give 5, as well as a succinct description of &
to Py, who can then compute b:=G - F5ge.
— Generate a succinct secret sharing of x - b as follows:
1. Generate additive secret shares 7, 7 such that 7o®7r; = -5 € ({0,1}7)™.
2. Generate function secret shares (Ko, K1) < Setup(1*, ), where ¥ := €.

By the correctness of the FSS and linearity of the code, it now holds
t-b=1-(G 508 =G (f®7)®Eval(0, Ko) ® Eval(1, K,) = 7 @ 2,
where Z, := G - 7, + FullEval(c, K,) for o € {0,1}.

From sVOLE to bit-OT. The transformation from sVOLE to bit-OT follows
the strategy of [50]. Namely, an instance of N-dimensional sVOLE can be consid-
ered as N instances of correlated string-OT with offset = as follows. The vector
b corresponds to the choice vector of the “receiver” Py. Further, for each entry b;,
the receiver obtains zp; = 2z1,; ® b; - x, i.e., either the bit-string z; ; € {0,1}" or
the bit-string z1 ; ® = € {0,1}" held by the “sender” P;. These correlations can
be removed by applying a correlation-robust hash function H: {0,1}* — {0,1}.
Roughly, a correlation-robust hash function has the property that applied to val-
ues related by an (adversarially chosen) A, the outputs are indistinguishable from
the output on uncorrelated values. With this, the j-th bit OT can be obtained as

(bj, H(z0,5)), (H(20,5), H(205 & ).

Choosing k,n,t such that x-n +t-log N € N'=¢ for some ¢ > 0, the above
PCG construction allows to obtain N bit-OTs with communication o(N). On the
negative side, it does not achieve constant computational-overhead. The most
crucial reason for this is that the sVOLE instance itself introduces an overly large
overhead: for each bit-OT, the above transformation requires one to hash k-bits,
introducing a factor k-overhead (even if all other building blocks are assumed
to be constant time). Note that in the above construction it is essential that x
is large, since otherwise a corrupt receiver could guess x and thereby violate the
security of the OT.
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Towards PCGs for bit-OT with constant overhead. The central idea
of this work is to replace the correlation-robust hash function H by a local
pseudorandom generator G. More precisely, recall that a local PRG is of the form

G(z) = Pi(mi(2))] ... [|Pn (7 (2)),

where each 7; projects = to an {-sized subset of its coordinates, and P;: {0,1}¢ —
{0,1} is a predicate.

Given a local PRG with constant locality ¢, we can obtain N bit-OTs from
an sVOLE instance z - b = 20D 71 as

(bj, Pj(7j(20,5))) » (Pj(7(21,5)), Pj(mj (21,5 ® x))) -

In other words, in the j-th bit-OT instance, we replace H by P; o 7;. Now,
it can be shown that if the PRG G additionally satisfies a form of correlation
robustnessEI, then replacing the correlation-robust hash function by a local PRG
preserves correctness and security of the PCG for bit-OT.

This observation does not yet suffice to achieve constant overhead, since the
starting point is still an instance of sVOLE with vectors in ({0,1}%)". Observe
though that the parties actually do not need to generate zp, z; € ({0,1}*)"V, such
that Z, ® 7, = z - b. Instead, it suffices to generate @y, 71 € ({0,1}9)Y, such that

mj(x) - bj = vo,j B 1,

for all j € [N], where ¢ € N is constant. The above generation of bit-OTs can
then be simplified as

(bj; Pj(vo,4))s (Pi(vj1), Pi(vja @ mj(x))),

where equality holds since the projection functions are linear. We will refer to this
correlation as projected-payload sVOLE in the following. It remains to discuss
how to generate a projected payload sVOLE PCG with constant overhead.

Projected payload sVOLE via primal LPN. Recall that we need to gen-
erate compressed secret sharings of x - b=G- (z - 5) + x - € Towards constant
overhead, we first replace G by a sparse matrix, for which each row only con-
tains a constant number d of non-zero entries. By an Alekhnovich variant of the
LPN assumption [2], the resulting b is still computationally hard to distinguish
from random (given a suitable choice of parameters). This allows Py to compute
b= G -5+ & with constant overhead O(d-N +t-logN).

Again, we generate secret shares 7,7 such that 7o &7 =2 -s € ({0,1}")".
If k- n < N, these shares have size < N as required. For expansion, note that
for each j € [N] it is sufficient to compute

mi(x) Gy - 8= Gy (m(x) - 8) = G- (IL;(70) & I;(™)),

® Namely, we require {P;(A; @ 7;(x))}jen is indistinguishable from random, where
Ay, ..., Ay are pseudorandom with seed known to the adversary.
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where G is the j-th row of G, and I1;: ({0,1}*)Y — ({0,1}*)" is obtained by
applying m; componentwise. Overall, expansion requires d - N operations.

Finally, recall that by above considerations it is left to generate secret shares
o, %1 € ({0,1}4)N such that vy ; ® v1; = () - €;.

We can do this with constant overhead by relying on LPN with regular
noise, i.e., where € is split into N/t intervals, each containing exactly one non-
zero noise coordinate. For the corresponding class {7;(x) - ¢;},cn], one can
achieve a known-index FSS with constant overhead by using the puncturable
PRF construction of [682333] together with an observation in [25], which allows
to remove a factor-A overhead. This only requires a length-doubling PRG, which
can be instantiated with constant overhead using the same PRG with constant
locality as before.

Projected-payload sVOLE via dual LPN. The above construction suffices
for constant-overhead OT, although the PCG is limited to subquadratic stretch.
We can obtain arbitrary polynomial stretch by generating b via dual LPN, i.e.,
as b = H- & where H € {0,1}*M & ¢ {0,1}™ (where M = d - N). To
achieve constant locality, we choose H such that H = B - A, where A is an
accumulator matrix (i.e., an all-one lower-triangular matrix) and B has only a
constant number d of non-zero entries in each column. The security is based
on a “repeat-accumulate” variant of LPN, which is analogous to the expand-
accumulate LPN assumption that appeared recently [26].

In this case, for b=H- e, the goal is now to generate compressed secret
shares of (by - w1 (), ba - ma(x), ..., by - Ty (x)). Fortunately for us, we know how
to share @ := A - € in a compressed manner: @ is a multi-interval noise vector,
and so we can share it using function secret-sharing for multi-interval functions.
More precisely, by a t-multi-interval noise vector we mean a vector in which
there are at most ¢ coordinates ¢ > 2 for which the i-th coordinate differs from
the (i — 1)-st. However, as b = B - @, we need to work a bit harder.

Fortunately, recall that each row of B only has d nonzero entries, and d is
a constant. Let S; C [M] be such that b; = ;g a;- To get shares of b;m;(),
it suffices to secret share a; - m;(x) for exactly these d choices of i € S;. We
thereby get secret shares #°, v € ({0,1}*)M. In particular, to obtain an additive
secret-sharing of b; - ;(z) for j € [N], each party o € {0,1} just needs to locally
compute ;s v That is, B,cq, v} & Dics, vi = bj - ().

To distribute the shares v, v, we introduce an FSS variant called projected-
payload distributed comparison function, which optimizes for the fact that, at
each index j, only the projection m;(z) is multiplied with the bits a; of the in-
terval vector for ¢ € S;. This is contrasted with a standard distributed compar-
ison function, where the whole of the k-bit x is multiplied for every a;.

We show how to build projected-payload DCF with constant overhead, by
carefully combining a standard (known-index) DCF with a DPF. In a nutshell,
we use a DPF and DCF which both correspond to a truncated binary tree,
with N/k leaves instead of N. The DCF is set to give out shares of the full
payload z for indices ¢ such that [i/k] < o/, where o/ = [a/k], and shares of
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0 otherwise. Note that this already allows the parties to obtain shares of the
projected evaluations a; - m;(z), for all i € [N] except those whose prefix is o.
To correct for the indices with prefix o/, we give out an ¢k-bit correction word,
which is masked using the missing expanded output of the DPF, and allows the
party who knows « to correct its outputs to the right value.

2 Preliminaries

2.1 Computational Model and Cost Measure

Computational cost. Similarly to prior works [52/T3[9223664/55042137], we
assume that functions and protocols are implemented using Boolean circuits
with bounded fan-in gates. Computational cost is then measured by the circuit
size, namely the number of gates. Note that this cost measure is robust to the
exact fan-in or the type of gates used, which can only change the cost by a
constant multiplicative factor. This should be contrasted with counting atomic
operations in more liberal computational models, such as arithmetic circuits
or RAM programs, which are more sensitive to model variations such as the
underlying ring or the allowable word size. See [67] for discussion.

Concrete cost. When we refer to concrete computational costs, we count the
number of bit operations by considering the size of a circuit over the full binary
basis, namely where a gate can compute any mapping from two bits to one bit.
For instance, the concrete computational cost of the predicate Ps =: (z1 Ax2) @
r3@® x4 D x5 is 4. This is a standard concrete cost measure in complexity theory.

Setup. When considering the computational cost of cryptographic tasks, we
allow a one-time PPT setup that given a security parameter 1* and a task
description, outputs a circuit implementation for the task. For instance, for the
task of generating N instances of random bit-OT, the task description is 17V
and the implementation includes circuits computing the next-message functions
of the protocol. Since the setup cost is amortized away, we do not consider its
complexity except for requiring it to run in polynomial time. The setup will
typically need to generate constant-degree bipartite expander graphs in which
one side is polynomially bigger than the other. A recent PPT construction of
such graphs with negligible failure probability was given in [I1]. Alternatively,
the failure probability can be eliminated assuming the conjectured existence of
explicit unbalanced expanders or similar combinatorial objects; see, e.g., [52I]]
for discussion. Under this assumption, the setup required by our protocols can
be implemented in deterministic polynomial time.

Computational overhead. We will be interested in minimizing the amortized
computational cost of a task of size N (e.g., N instances of random bit-OT),
when N tends to infinity. Here we allow N = N(X) to be an arbitrarily big
polynomial in the security parameter, effectively ignoring lower order additive
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terms that may depend polynomially on A and sublinearly on N E| We say that
the implementation has computational overhead (at most) ¢ = c(A) if there is
a polynomial N = N(A) such that ratio between the implementation cost and
N()) is at most ¢(\) for all sufficiently large A\. We say that the implementation
has constant computational overhead if ¢(\) = O(1).

As discussed in [52], a cleaner alternative is to use N both as a size param-
eter and a security parameter, similarly to textbook definitions of basic crypto-
graphic primitives. (Here security means that every poly(V)-size adversary only
has a negl(N) advantage.) The separation between the two parameters serves to
simplify the presentation and give a better sense of concrete efficiency.

Cost of pseudorandomness. Sometimes, it will be convenient to refer to the
amortized cost of outputting n pseudorandom bits from a PRG seed. We write
this as Cprg(n).

Note that using local PRGs, we have Cpg(n) = O(n), where the best con-
crete candidate (using the Ps predicate described above) has cost Cprg(n) = 4n.
To analyze efficiency on modern CPUs, it can be useful to measure this cost sep-
arately due to the prevalence of built-in hardware support for AES. However,
note that for large values of n, a “bitsliced” implementation of a local PRG (eval-
uating many PRG copies in parallel using bitwise AND and XOR operations)
may have better performance, at the expense of using a much bigger seed.

2.2 Correlation Robust Local PRGs

In this section we recall local pseudorandom generators and introduce the notion
of correlation-robustness in the context of local PRGs.

Definition 3 (Pseudorandom generator). Let k = x(\),N = N()\) € N.
We say a family of functions G = {Gx: {0,1}*) — {0,1}¥NMN} oy is a pseu-
dorandom generator (PRG), if for all polynomial-time non-uniform adversaries
A, there exists a negligible function negl : N — R>o such that for all A € N :

[PrlA(1Y, Ga(z)) =1 | 2 + {0,1}"] = PrlA(1, u) =1 | u + {0, 1}"V]| < negl(M).

Definition 4 (Subset projection). Let x, ¢ € N with k > . We say a mapping
7: {0,1}% — {0,1}¢ is a subset projection (or simply projection), if there exists
a size-f set S C{1,...,k} such that w(x) = (2;)ies for all x € {0,1}".

Definition 5 (Local family of functions). Let k = k(\),N = N(\),{ =
L(A) e N with { € k (e.g., £ = O(log k) or £ = O(1)). We say a family of func-
tions G = {Gx: {0,1}*N) — {0,1}NN Yoy is (-local if there exists families of

% This should be contrasted with a more fine-grained measure of overhead considered
in [I7I22I36], which requires exponential security in A (rather than super-polynomial),
measures the overhead with respect to N + A, and requires the overhead to apply to
all choices of N and X (e.g., even when N = \).
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subset projections my,..., Ty {0, 11 — {0, 1Y) and families of predicates
Py, ..., Py {0, 1} — 0,1}, such that for every X € N,

G(z) = Pu(mi(@)]l- . 1Py oy (mv ey ()
for all x € {0,1}*N) . We say G has constant locality if £ € O(1).

Definition 6 (A-shift). Let x,N,¢ € N with { < r and let G: {0,1}" —
{0,1}N be a {-local function with subset projections my, ..., wn: {0,1}* — {0,1}*
and predicates P, ..., Py: {0,1}* — {0,1}. For A = (Ay,..., Ay) € {0,1}V,
we define the A-shift of G as

G2 (z) = Pi(mi(z) ® A1) ... || P (mn(z) ® A)
for all x € {0,1}".

Definition 7 (Correlation-robust local PRG). Let k = k(\), N = N(\),{ =
¢(\) € N. Let G = {Gy: {0,1}*N — {0, 1}VN}sen be a family of local func-
tions with £-locality.

We say that G is a correlation-robust ¢-local PRG, if for all polynomial-time
non-uniform adversaries A, there exists a negligible function negl: N — R>q
such that for all A € N

(A4,st) « A; (1Y)
Pr|As(st,y) =1| =& {0,1}*N | —Pr |:A2(Stay) =1 ‘

(4,st) «+ Al(l)‘)}
y=G3(z)

v & .
< negl(\),
where A € {0,1}VXN and G4 is the A-shift of G*, as defined in Def. @

Note that this definition implies the standard definition of pseudorandomness
since the adversary can choose A = 0. Further, note that for our constructions
it is actually sufficient to rely on a weaker distributional version of correlation-
robustness, where the adversary does not have control over A. For simplicity we
will rely on the stronger version in the body of the paper. For a formal definition
of distributional correlation-robustness, we refer to the full version.

2.3 Pseudorandom Correlation Generators

We recall the notion of pseudorandom correlation generator (PCG) from [28].
At a high level, a PCG for some target ideal correlation takes as input a pair of
short, correlated seeds and outputs long correlated pseudorandom strings, where
the expansion procedure is deterministic and can be applied locally.

Definition 8 (Correlation Generator). A PPT algorithm C is called a cor-
relation generator, if C on input 1% outputs a pair of strings in {0,1}0N x
{0,1}4N for £y, 41, N € poly()\).
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The correlation we consider in this paper is the bit-OT correlation, where o =
¢1 = 2, and C outputs N uniformly random tuples of the form ((b, sp), (s0,51))
(where b, 59, s1 € {0,1}).

The security definition of PCGs requires the target correlation to satisfy a
technical requirement, which roughly says that it is possible to efficiently sample
from the conditional distribution of Ry given R; = r; and vice versa. It is easy
to see that this is true for the bit-OT correlation.

Definition 9 (Reverse-sampleable Correlation Generator). Let C be a
correlation generator. We say C is reverse sampleable if there exists a PPT
algorithm RSample such that for o € {0,1} the correlation obtained via:

{(R},R}) |(Ro, R1) & C(1*), R, := R,,R|_, & RSample(o, R,)}

1—0o
is computationally indistinguishable from C(1*).

The following definition of pseudorandom correlation generators is taken al-
most verbatim from [28]; it generalizes an earlier definition of pseudorandom
VOLE generator in [25].

Definition 10 (Pseudorandom Correlation Generator (PCG) [28]). Let
C be a reverse-sampleable correlation generator. A PCG for C is a pair of algo-
rithms (PCG.Gen, PCG.Expand) with the following syntaz:

— PCG.Gen(1*) is a PPT algorithm that given a security parameter \, outputs
a pair of seeds (Ko, k1);

— PCG.Expand(o, ko) is a polynomial-time algorithm that given party index o €
{0,1} and a seed k,, outputs a bit string R, € {0,1}%.

The algorithms (PCG.Gen, PCG.Expand) should satisfy the following:
— Correctness. The correlation obtained via:
{(Ro, R1) |(ko, k1) & PCG.Gen(1*), (R, < PCG.Expand(c,k,))o=0.1}
is computationally indistinguishable from C(1).
— Security. For any o € {0,1}, the following two distributions are computa-

tionally indistinguishable:

{(ki_g, Rs) | (ko, ki) & PCG.Gen(1*),R, + PCG.Expand(c,k,)} and
{(ki_o, Rs) | (ko, k1) & PCG.Gen(1*),R;_, + PCG.Expand(c,ki_o),
R, & RSample(o, R1_,)}

where RSample is the reverse sampling algorithm for correlation C.
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2.4 Learning Parity With Noise

We define the LPN assumption over a ring R with number of samples N w.r.t. a
code generation algorithm C and a noise distribution D. In the following we state
a primal and a dual version of the LPN assumption. Note that we consider LPN
and dual-LPN in the bounded sample regime, which is commonly referred to as
the syndrome decoding assumption in the code-based cryptography literature.

Definition 11 (Primal LPN). Let D(R) = {D,, n(R)}n,Nen denote a family
of distributions over a ring R, such that for any n, N € N, Im(D,, x(R)) C R".
Let C be a probabilistic code generation algorithm such that C(N,n, R) outputs a
matriz G € RN*". For dimension n = n(\), number of samples (or block length)
N = N(\), and ring R = R(A), the (primal) (D, C,R)-LPN(n, N) assumption
states that

{(G,b) | G & C(N,n,R),e & Dy n(R),§E R, b+ G -5+ ¢}
~{(G,b) | G & C(N,n,R),b & RVY

Definition 12 (Dual LPN). Let D(R) = {Dn,m(R)}n,nen denote a family of
efficiently sampleable distributions over a ring R, such that for any N,M € N,
Im(Dy m(R)) € RM. Let C be a probabilistic code generation algorithm such
that C(N, M, R) outputs a matrit H € RN*M | For dimension M = M (X), num-
ber of samples N = N(X), and ring R = R(A), the (dual) (D, C,R)-LPN(N, M)
assumption states that

{(H,b) | H& C(N,M,R),é & Dy.a(R), b+ H- &}
~ {(H,b) | H& C(N,M,R),b & RN}

If C(N, n,R) always outputs the same matrix G € R¥*" (in the primal case) or
H € RY*M (in the dual case), we simplify the notation to (D, G, R)-LPN(n, N)
(in the primal case) or (D, H,R)-LPN(N, M) (in the dual case).

Remark 13 (LPN with regular noise). In this work, for the noise distribution we
will use Regl ({0,1}) which outputs a concatenation of ¢ random unit vectors
from {0, 1}/, This variant of choosing regular noise was introduced in [I6], has
been further analysed in [25] and [49], and has found applications in the PCG line
of work as it significantly improves efficiency [252827]. While building on regular
noise does not seem to affect security of dual LPN in the parameter regimes
considered in the line of work on PCGs, it requires a more careful parameter
instantiation for primal LPN. For more details we refer to the full version.

LPN-friendliness. In order to develop more efficient protocols, we will con-
sider code generation algorithms that output matrices with useful structure. To
determine when the primal/dual-LPN assumption plausibly holds, we follow the
recently proposed heuristic of resilience to linear tests. As discussed in detail
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in [26][] essentially all attacks on the LPN problem for our range of parameters
involve choosing a nonzero attack vector @ € {0, 1}V \ {0} and then computing
the dot product @' - b, where either b <& {0,1}¥, or b=G -5+ ¢in the primal
case or (_)' =H € in the dual case. The hope is to detect a noticeable bias in the
bit 4" - b as in the case b is uniform the bit @' - b is perfectly unbiased. Con-
cretely, for a vector ¥ € {0,1}V and a distribution D with Im(D) C {0, 1}V we
define the bias of ¥ with respect to D as

biass(D) = |Esp[o” - 7] — %
Concretely, for a vector 7 € {0,1}" of weight D we have biasy(Regl¥) < (1 —
2(D/t)/(N/t))t < e~ 2P/N,

For the primal case, to rule out the existence of a good linear test it suffices
to show that the code generated by G has good dual distance. More concretely,
letting HW(#@) denote the number of nonzero entries the vector (its weight) it
should be that any nonzero vector @ satisfying @' - G = 0! has HW(@) > D
(say). To see this, note that if @' - G # 0' then @' - (G - 5) will be perfectly
unbiased (since § <& {0,1}"), so @' - b will be perfectly unbiased. Otherwise
@ -b=1" - & whose bias will not be too large assuming both HW(@) > D and
HW(&) > t. In particular, once Dt > AN In(2)/2 the bias will be at most 272

The dual case is similar: we would like that there is no light vector of the form
@' -H for @ € {0,1}N\ {0}, as if all such vectors @ satisfy HW(@ " - H) > D then
the bias of @' - H - & will be at most e~ 2P*M 5o we can take Dt > AM In(2)/2
to guarantee bias at most 27,

2.5 (Known Index) Function Secret Sharing

We use several types of function secret sharing for different function classes,
including point functions and interval functions. We relax the standard defini-
tion [32] by allowing some additional leakage given to one of the parties. The
leakage will be the point/ interval positions to party Py. As observed in [66127],
in the context of PCGs for OT and VOLE, allowing this leakage can give rise
to more efficient instantiations without hurting security (since Py already knows
the LPN noise values anyway).

FSS with per-party leakage. Following the syntax of [32], we consider a function
family to be defined by a pair F = (Pr, Ex), where Pr is an infinite collection
of function descriptions f (containing the input domain D and output domain
Ry), and Ex: Prx{0, 1}* —{0,1}*is a polynomial-time algorithm defining the
function described by f More concretely, each f € Pr describes a corresponding
function f: Dy — Ry defined by f(z) = E7(f,z). In the following, we will
typically have Dy = [N] (where [N] ={1,...,N}), and Ry = G for some group
G.

7 We refer the interested reader to this work for more details.
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Note that as a difference to the original definition, we include FullEval in the
full definition for the following reason. While Eval implies the existence of FullEval
(and vice versa), considering the two independently can give rise to more efficient
implementations. If only considering FullEval for evaluation, we will sometimes
write FSS = (Setup, FullEval).

Definition 14 (FSS Syntax). 4 (2-party) function secret sharing scheme (FSS)
is a pair of algorithms (Setup, Eval, FullEval) with the following syntax:

— Setup(lk,f) is a PPT algorithm, which on input of the security parameter
1Y) and the description of a function f € {0,1}* outputs a tuple of keys
(Ko, K1).

— Bval(o, K,,x) is a polynomial-time algorithm, which on input of the party
index o € {0,1}, key K, and input x € [N], outputs a group element y, € G.

— FullEval(o, K,;) is a polynomial-time algorithm, which on input of the party
index o € {0,1} and key K, outputs a vector (¢,) € GV .

Definition 15 (FSS Security). Let F = (Pr,Ex) be a function family and
Leakg, Leaky: {0,1}* — {0,1}* be the respective leakage functions. A secure FSS
for F with leakage Leak is a pair (Setup, Eval, FullEval) as in Deﬁnition sat-
isfying the following:

— Correctness: For all f € Pr describing f: [N] = G, and every x € [N], if
(Ko, K1) + Setup(1%, f), then

Pr[Eval(0, Ko, z) + Eval(1, K1, 2) = f(z)] =1 and

Pr[FullEval(0, Ko) + FullEval(1, K1) = { f(2) }seny] = 1
— Secrecy: For each o € {0, 1}, there exists a PPT algorithm Sim such that for

every sequence fl, fg, ... of polynomial-size function descriptions from Pr,
the outputs of the following experiments Real and ldeal are computationally
indistinguishable:

e Real(1*) : Sample (Ko, K1) « Setup(1*, fx) and output K,.
e Ideal(1?) : Output Sim(1*, Leak, (f2))-

In the following, when referring to an FSS, we always assume the FSS to
satisfy correctness and secrecy.

Remark 16 (Pseudorandomness of the output shares). In [31] it was shown that
for any sufficiently rich function class (including point functions and interval
functions considered below), secrecy implies pseudorandomness of the output
shares.

Remark 17 (Succinctness). Note that the running time of the Setup algorithm
(and therefore the key sizes) are only allowed to depend polynomially on the
size of the description f of f. We will refer to the computational cost of Setup
as CFss Setup-
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In the following, we define the computational overhead of an FSS.

Definition 18 (FSS Cost). For an FSS = (Setup, Eval, FullEval) we define
the cost functions Clss, Ciss as the circuit sizes (over the full binary basis) of
FullEval(0, -) and FullEval(1, -), respectively. If Css(X) = ¢- N +poly(A) for some
constant ¢ € O(1), for o € {0,1}, we say that FSS has constant overhead.

Multi-point and multi-interval functions. In the following we give the definition
of regular multi-point functions and projected-payload multi-interval function.
For more definitions we refer to the full version.

Definition 19 (Regular multi-point function). Lett € NN € N, ay,...,
ay € [N/t], G be an additive group and f31,..., 5 € G. The regular multi-point

function defined by & = (a1, ...,q:) and 5: (B1,...,B) is then

2N = G, fL(a) = {51 ife=ai+f-(i-1)

0 else

Definition 20 (Projected-payload multi-interval function). Let N € N
be the domain size, k, 0 € N, G = {0,1}" be the group of k-length bit-strings and
7 {0,1}% — {0,1}¢ for i € [N] projection functions. Let further ay,...,a; €
[N] be pairwise different and 8 € {0,1}*. Then, we define the projected-payload

interval function specified by & = (aq,...,4), B and 7 := (71,...,7N) as
B () = m(8) f|{i€t]:a; <z} =1 (mod2)
<« 0* else ’

Known-index FSS. In known-index FSS for point functions, introduced in [66],
the index « is allowed to be leaked to party Py. As observed in [66l27], a punc-
turable PRF suffices to instantiate known-index FSS for point-functions. Simi-
larly, a t-puncturable PRF suffices to instantiate known-index FSS for ¢-point
functions. In [26], it was further observed that allowing to leak the index can also
give efficiency improvements for interval FSS, through known-index interval FSS
(in their work, this is referred to as relazed distributed comparison function).

In the full version we give the formal definitions of these flavors of FSS,
present constructions and analyze their circuit complexity. For known-index DPF
and known-index interval F'SS, the constructions are based on prior works, while
for projected-payload FSS, we devise a new construction.

3 Constant-Overhead PCG for OT from Primal LPN

In this section give a PCG for OT with constant overhead in Figure [I] An
inherent limitation to this approach is that primal LPN is limited to subquadratic
stretch.

First, following Alekhnovich [2], we will consider a primal code generation
procedure that outputs matrices G that are very sparse. In particular, G will
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be sampled uniformly at random subject to the constraint that every row has

exactly d 1’s. Alekhnovich already conjectured this is hard when d = 3 if N, ¢t =

O(n), where the noise is sampled to have weight ¢. Polynomial-time attacks exist

with N = 2(n%/?) [6J21]: one hopes for there to be two rows of G which agree
N

(which occurs with probability ﬁ) This is the same as saying the dual distance
d

of G is 2.

However, as discussed in Section [2.4] when the dual distance D is larger we
obtain security against linear tests: the security is at most 2~* when Dt >
(In2)AN/2. In general, for any v > 0 it is feasible to have a d-sparse matrix
G € {0,1}V*" with dual distance D = §24(n”) and N = n'z 47 In particular
we can choose 7 = 9/10 to get D = Oy(n%19) and N = n“50", so if we wish to
have NA = O(tD) to guarantee exponentially small in A security against linear
tests we may choose t = Qd()\nﬁ).

We must also be careful in light of the attack by Arora and Ge [I4], which
is effective when N = 2(n?). For this reason, we will ensure N = o(n?).

In what follows (and in the rest of the paper), we assume the existence of
an explicitly generated matrix G with sparsity d = O(1) for which the primal
(Regl ({0,1}), G, {0,1})-LPN(n, N) holds with n,# < N'=7 for some ~ > 0. Al-
ternatively, we conjecture that the randomized expander generation algorithm
from [11] can be used to efficiently generate such G with negligible failure prob-
ability.

We show security of the PCG in the theorem below, and then analyze its
overhead.

Theorem 21. Let N = N(A),n =n(A),t =t(A),s =x(\) € N and let £,d € N
be constant and C a primal code generation algorithm with constant sparsity d
(i.e., generating code matrices, where each row has at most d non-zero entries).
If the (primal) (Reg? (F3), C,Fy)-LPN(n, N)-assumption holds, if G: {0,1}* —
{0,1}V is a correlation-robust £-local PRG, and if FSS = (Setup, FullEval) is a
known-index reqular t-point FSS, then the PCG as defined in Figure[]) is a PCG
for generating N instances of the bit-OT correlation.

The proof is provided in the full version.

Lemma 22. The PCG.Gen algorithm in Fz’g.has circuit size O(k-n+Crss Setup) -
Furthermore, if Cgsg(X) is the cost of FSS.FullEval(c,-) and Cp is an upper
bound on the cost of evaluating one predicate in the local PRG G, then the
PCG.Expand(o, ) phase has circuit size

So, if FSS has constant overhead then PCG.Expand has constant overhead.

Proof. For key generation, generating the secret shares 7,7 requires O(n - k)
operations. The remainder of the setup is dominated by FSS.Setup, giving O(x -

n + Crss setup())-
For expansion, the cost derivation is as follows.
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Construction PCGF’O'-il-mal

PARAMETERS:

— Security parameter A € N, matrix parameters N = N(\),n = n(\) € N
with N > n, constant matrix sparsity parameter d € N, noise weight ¢t =
t(A) € N, local PRG input length x = k() € N, constant locality £ € N.

— A primal sparse code generation algorithm C returning matrices in

{0, 1}N X" with d non-zero entries per row and a public matrix G &

C(N, n,F3) sampled according to C.

— A constant-overhead known-index regular ¢-point

(Setup, FullEval) over domain [N] and range {0, 1}*.

— A correlation-robust ¢-local PRG G: {0,1}* — {0,1}" with G(z)

Pi(mi(x))]] ... ||Pn(mn(x)) for all z € {0,1}".

FSS FSS =

CORRELATION: Outputs N tuples ((b,w), (wo,w1)), where b, wo, w1 are ran-

dom bits and w = wy.

GEN:

— Pick a local PRG seed x & {0,1}" at random.
— Pick an LPN seed § & {0,1}" at random.

— Generate a random additive secret sharing of 7:= (s1 -z, 82"z, . .

i.e., choose 7 & ({0,1}%)" and set 7 := 7o @ 7.

— Choose regular noise positions @ €~ [N/t]* at random.

— Set 3; := 7rai+¥(i_1)(x) € {0,1}¢ for each i € [t] and set G = (B1,---

— Set (Ko, K1) « FSS.Setup(1*, @, ).

— Set ko := (8,70, @, Ko) and ky := (z,71, K1) and output (ko, ki1).

ExXPAND: On input (o, ke ):

1. If 0 = 0, parse ko as (8,70, d, Ko) and proceed as follows:

— Let i € {0,1}" be the regular noise vector defined by &, i.e.,

1 ifj=ai+d-(i-1)
Hi =
0 else

— Setb:=G-F@jie{0,1}".

. SN T),

7ﬁt)'

— Set §° := G -7 € ({0, 1}")N. Note that we only need the ¢ entries
Tr_,'(,l/y) € {0,1}" to continue. Towards constant overhead this step
can therefore be computed in N -d - £ € O(N) operations (by only
computing relevant parts of the matrix-vector product).

— Compute #° + FSS.FullEval(0, Ko) € ({0,1}9).

— For each j € [N], compute w; := P;(m;(y}) & v)) € {0,1}.

— Output {(bj, w;)}jen)-

2. If o =1, parse ki as (Z,71, K1) and proceed as follows:
— Set ¢ := G -7 € ({0,1}%)V.
— Compute #; < FSS.FullEval(1, K1) € ({0,1}%)".

— For j € [N], b € {0,1}, compute wj, := Pj(m;(yj) & 0j &b m;(F)).

— Output {(wj,0,w;,1)}je[n]-

Fig. 1: Constant-overhead PCG for N instances of random bit-OT.

19
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Computing each entry of b (for ¢ = 0) can be done with d XORs, for a total
of dN gates.

Since one only has to compute the ¢-bit projections 7; of 7, ' (as explained
in the protocol description), these cost at most /dN XOR gates.

— Computing 77 costs Cfsg(A) - N gates.

— Each w;/ wjo,w;1 can be computed with Cp + 1 gates, resulting in either
(Cp+1)N (for 0 =0) or 2(Cp 4+ 1)N (o = 1) for the last step.

We can instantiate the FSS construction with the naive “square-root” con-
struction of known-index DPF from the full version. This gives CPg(A) <
Cprg(0)+(1—0)2¢. With regular noise, the setup cost of the F'SS is O(tA/N/t) =
O(M/Nt). For the PCG to be sublinear, we therefore get the constraint that
kn + AW/ Nt = o(N)

Based on the above analysis, we now obtain our main result on maliciously
secure bit-OT, by replacing PCG.Gen with a secure 2-PC protocol.

Corollary 23. Suppose OT exists. Suppose the (Regh (Fy),C,Fy)-LPN(n, N)-
assumption holds for some n,t, N and matrix G with constant sparsity d, and
suppose there exists a correlation-robust £-local PRG for constant £ that stretches
N'=¢ to N bits for some ¢ € (0,1), where 19¢/20 > d-?—ols and 0.9 - (19¢/20) +
9¢/10 > 1. Then, there exists a protocol for securely computing N instances of
random bit-OT with malicious security, o(N) communication and an average,
amortized per-party computation of £(d + 1) + % + Cprg(£) + 3(Cp + 1) Boolean
gates per OT.

Proof. Assuming OT and using standard 2-PC protocols like [54], there is a poly-
nomial p such that for all A and circuits C, there is a malicious 2-PC protocol
that securely computes C' with computation complexity O(|C|) - p()). Based on
Lemma 22| and plugging in the square-root F'SS construction, we obtain a proto-
col that securely computes the PCG.Gen algorithm from Fig. [1| with complexity
(kn + A/Nt) - p(\). Following [28, Theorem 19], by running the 2-PC protocol
and then locally evaluating PCG.Expand, the resulting protocol securely realizes
the functionality for N instances of random bit-OT.

We show how to choose parameters such that the complexity of the 2-PC
phase is sublinear in N for sufficiently large N. This means the p()\) overhead
of 2-PC amortizes and the total computational cost is dominated by the expand
phase. With k = N'7¢, we set n = N19/20 and ¢t = N9¢/10_ Further, we obtain
complexities of kn = N17¢/20 and \WV/Nt = ANzT325¢. These are both sublinear
in N. Regarding security of primal-LPN, note that by assumption we have n >
N20/(d+18) " which is enough to give dual distance D = @(n®/1?). We also have
tn?/10 = (N ) for large enough N by assumption, giving exponential security
in A

Finally, to compute the computational complexity of PCG.Expand, we plug
in the cost of the square-root FSS construction to the formula from Lemma [22]
and average the result over the two parties 0 = 0 and o = 1. This is possible as
random bit-OT is symmetric, so the parties can run two instances of the protocol
of size N/2, reversing the roles of sender and receiver.
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Concrete Complexity. We now estimate the constant overhead of our con-
struction, at least asymptotically as IV grows large. We need to choose the LPN
degree d and f-local correlation robust PRG, which determines the predicate cost
Cp and the PRG seed size k = N17¢ bits. We also need to instantiate the PRG
used in the F'SS scheme, for which we use a 5-local PRG, giving Cpg(¢) = Cp, 0 =
4¢ (unlike the other PRG, this one only needs to have constant stretch, since it
can be used iteratively). Using the XOR4 ®MAJ5 predicate in our PCG, we have
¢ =9, Cp = 17 and a plausible stretch of k247, giving ¢ = 1 — 1/2.49. This sat-

isfies 19¢/20 > % for d = 18, and furthermore that 0.9-(19¢/20) 4+ 9¢/10 > 1.

Note further that 19¢/20 > 0.5, so n = N'95/20 = (,(v/N), ruling out the Arora-
Ge attack [I4]. Furthermore t = N9¢/10 = o(n), which is necessary for building
on LPN with regular noise. Overall, we get a cost of 243 gates per party.

Remark 24 (Iterative constant overhead). If the FSS scheme supports single eval-
uation Eval with constant cost ¢ € O(1), the above construction yields a PCG
with iterative constant overhead, i.e., where a single bit-OT can be computed at
constant cost. This property in fact already holds of the square-root FSS con-
struction when instantiated with a local PRG.

Remark 25 (Building on LPN with standard noise). To build on LPN with the
more standard Bernoulli noise, one has to replace the t-regular FSS by a more
general multi-point FSS. Known-index multi-point FSS with constant overhead
can be obtained generically from single-point FSS with constant overhead via
batch codes. For details we refer to [25].

4 Constant-Overhead PCG for OT from Dual LPN

In this section we provide a PCG for OT with constant computational overhead
based on a dual-LPN assumption. This will allow us to achieve an arbitrary
polynomial stretch. All proofs in this section are provided in the full version.

Repeat-Accumulate (RA) Codes. We consider the following dual code
generation procedure, which essentially outputs generator matrices for repeat-
accumulate (RA) codes.

Definition 26. Letd, N € N with d > 3 and let M = dN. A repeat-accumulate
(RA) matriz H is a matriz of the form H = BA, where B € {0,1}V*M pqs
exactly d nonzero entries per row and 1 nonzero entry per column and A €
{0, 13M*M s an accumulator matriz which has 1’s on and below the main diag-
onal.

The code {@" - BA : @ € {0,1}} is well-studied in coding theory (it is
called a repeat-accumulate (RA) code). In particular, for fixed v > 0 it is known
that they achieve minimum distance D = M'~2/9=7 with good probability over
a random choice of B. This means that if & < Reg ({0,1}), recalling that the
bias of the dot-product between a vector of weight D and € is at most e 2tP/M
we will require ¢ > In2- X - M?/d+7,
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Unfortunately, the failure probability is not negligible (an inspection of the
proof of [60, Theorem 1| shows that it is roughly of the order M ~7%4/2). Thus, as
before we will assume access to a ezplicitly generated RA matrix H = BA and
assume that the dual (Regl ({0,1}), H, {0, 1}-LPN(N, dN) holds with respect to
it Fl
Theorem 27. Let N = N(\),t =t(\),k = k(A) €N, let £,d € N be constants,
let M = dN and let H= BA be an N x M repeat-accumulate matriz. If the dual
(Reg ({0,1}), H,{0,1})-LPN(N, M)-assumption holds, if G: {0,1}* — {0,1}N
18 a correlation-robust £-local PRG, and if FSS is a known-index projected-payload
t-interval FSS, then the PCG as defined in Figure[dis a constant-overhead PCG
for generating N instances of the bit-OT correlation.

Lemma 28. The PCG.Gen algorithm in Fig.[d has circuit size O(tlog(N/t) +
Ckss.Setup(A)). Furthermore, if Cgsg(X) is the cost of FSS.FullEval(o,-) and Cp
is an upper bound on the cost of evaluating one predicate in the local PRG G,
then the PCG.Expand(o,-) phase has circuit size

CEss(A\) + (1 —0)(2Nd — 1) + (dl + Cp)N + o((d + 1)¢ + Cp)N .

Corollary 29. Suppose OT exists. Suppose the (Regiw (F9),H,F3)-LPN(N, M)-
assumption holds for some RA matrizc H with M = dN for constant integer
d, and suppose there exists a correlation-robust {-local PRG for constant £ that
stretches N'=¢ to N bits for some ¢ > 0. Then, there exists a protocol for
securely computing N instances of random bit-OT with malicious security, o(N)
communication and an average, amortized per-party computation of

3 5¢ 3 1
§d£ +d+ 5 1 §Cp + Cprg(20) + EC,,,g(QA +K)+3

Boolean gates per OT. In particular, if Cog(k) = O(k) for integer k, then the
amortized per-party computation is constant.

Concrete Complexity. Choose d = 3. Now we choose the P; predicate for
the local PRG so that ¢ = 5 and Cp = 4. Further we use a constant stretch
PRG for the FSS satisfying Cpg(¢) = 4¢. Asymptotically we then compute 91
bit operations per output, beating the primal construction. Furthermore, note
with this value of d we are stretching roughly N?/3 bits to N bits (we can
choose t = M?/3%¢). For general d we can get stretch (dN)?/4+¢ bits to N bits,
yielding arbitrary polynomial stretch (although the complexity per OT output
does increase commensurately).

5 Beyond Oblivious Transfer

In this section we discuss applications of our main result to constant-overhead
implementations of other secure computation tasks. For simplicity, we refer here

8 Instead of RA codes we could have used a code of Tillich and Zémor [68]; however
the effect on the computational complexity is essentially nil.
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Construction PCG3%!

PARAMETERS:

— Security parameter A € N, matrix parameters M = M(\),N = N(\) € N
with M = dN for constant matrix sparsity parameter d € N, noise weight
t = t(A) € N, local PRG input length & = k(A) € N, constant locality
£eN.

— An RA matrix H = BA € {0,1}"*™ for which the dual
(RegM ({0,1}),H, {0, 1})-LPN(N, dN) holds. Let S; for j € [N] denote the
support of the j-th row of B (each of which has size d) and for ¢ € [M] let
7() € [N] denote the nonzero coordinate of the i-th column of B. //Note
that S; = {i € [M]: 7(i) = j} = 77 1(j).

— A constant overhead regular known-index projected-payload t-interval
FSS FSS = (Setup, Eval) over domain [M] with output bit length x and
projected output length £.

— A correlation-robust ¢-local PRG G: {0,1}* — {0,1}" with G(z) =
Pi(mi(2))]] ... ||Pv(mn(x)) for all x € {0,1}".

CORRELATION: Outputs N tuples ((b, w), (wo,w1)), where b, wo, w1 are ran-
dom bits and w = wy.

GEN:

Pick a local PRG seed = & {0,1}" at random.

— Choose regular noise positions @ <~ [M/t]" at random.
— Set =z € {0,1}".

— Denote 1/7: (7TT(1), .. ,7TT(]M)).

Set (Ko, K1) < FSS.Setup(1*, (&, 8, ).

Set ko := (@, Ko) and k; := (z, K1) and output (ko, ki1).

ExPAND: On input (o, ke ):

1. If 0 = 0, parse ko as (@, Ko) and proceed as follows:
— Let @ € {0,1}™ be the regular interval noise vector defined by &, i.e.,
a; is equal to the parity of [{¢ € [t] : o, + (M/t) - (¢ — 1) < i}].
Compute b := B - a.
Compute #° < FSS.FullEval(0, Ko) € ({0, 1}%)*.
For j € [N] compute w; := P; ®z’esj o).
— Output {(b;,w;)}jen-
2. If o =1, parse ki as (z, K1) and proceed as follows:
— Compute 7" + FSS.FullEval(1, K1) € ({0,1}%)™.
— For j € [N], b € {0,1} compute wj; = P; ((®iesj vzl) @b‘ﬂ'j((ls)).
- Output {(wj,o,wj,1)}]~€m].

Fig. 2: Constant-overhead PCG for N instances of random bit-OT.
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only to the two-party case, though most of the results in this section apply also
to MPC with a constant number of parties with the same asymptotic cost. We
will also refer to security against malicious parties by default.

One of the main open questions about the asymptotic complexity of cryp-
tography is the possibility of securely computing Boolean circuits with constant
computational overhead. While in the semi-honest model such a result can be
based on local PRGs [52], extending this to the malicious model was posed as
an open questionﬂ The overhead of the best known protocols grows polyloga-
rithmically with the security parameter and the circuit size [41].

Our main result allows us to make progress on this question, by obtaining
partial positive results and reducing the general question to simpler questions.

5.1 General Protocols with Relaxed Security

Our main result gives the first constant-overhead implementation of (malicious
bit-) OT. However, extending this to general functionalities is challenging. While
it is well-known that OT is complete for secure computation [59/54], the best
known protocols for Boolean circuits in the OT-hybrid model have polylogarith-
mic overhead [41/44]. In contrast, in the semi-honest OT-hybrid model, a simple
“textbook” protocol [48/47], commonly referred to as the (semi-honest) GMW
protocol, achieves perfect security with a small constant overhead.

A key observation from [43] is that this textbook protocol actually achieves
a nontrivial notion of security even against malicious parties: it is secure up to
additive attacks. For Boolean circuits, this means that the adversary’s attack
capability is limited to choosing a subset of the circuit wires that are toggled.
This is formalized by modifying the ideal functionality to take from the adver-
sary an additional input bit for each wire, specifying whether to insert a NOT
gate into the middle of the wire. Combining this with a standard composition
theorem [35J47], we get the following application of our main result.

Theorem 30 (Constant overhead with additive attacks). Suppose there
exists a constant-overhead OT protocol with security against malicious parties.
Then there exists a constant-overhead protocol for Boolean circuits with security
up to additive attacks.

Additive attacks can render security meaningless for some applications. For
instance, capturing a zero-knowledge proof as a secure computation of the veri-
fication predicate, a malicious prover can make the verifier accept a false state-
ment by simply toggling the final decision bit.

In some other cases, however, security up to additive attacks is still mean-
ingful. Consider a secure computation task that has long inputs and a short out-
put, such as applying a complex search query to a big database or a data-mining

9 In fact, the question is open even in the simpler special case of zero-knowledge
functionalities. A solution for this special case would imply a solution for the general
case by applying the GMW compiler [48] to a constant-overhead protocol with semi-
honest security.
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algorithm to the union of two databases. In such cases, it is often hard to rea-
son about the security features of an ideal-model implementation, except for the
syntactic guarantee that a malicious party can only learn a small amount of in-
formation about the honest party’s input. The same kind of guarantee is given
by a protocol with security up to additive attacks. In contrast, applying the
constant-overhead semi-honest protocol from [52] to such a functionality may
allow a malicious party to learn the entire input of the honest party.

5.2 Leveraging Perfect Security

Consider the case of evaluating N instances of a constant-size f on different
sets of inputs. If f admits a perfectly secure protocol in the OT-hybrid model,
then the protocol necessarily uses a fixed number of bit operations, independent
of any security parameter. Combining N instances of such a protocol with the
constant-overhead OT from this work, we get a constant-overhead protocol for
evaluating N instances of f.

Theorem 31 (Constant overhead from perfect security). Let f be a
constant-size functionality that can be computed with perfect security in the OT-
hybrid model. Then, a constant-overhead OT protocol with security against ma-
licious parties implies a constant-overhead protocol for computing N instances

of f.

The existence of perfectly secure protocols in the OT-hybrid model is still
quite far from understood. There are negative results for functionalities with big
inputs (assuming that the protocol’s running time must be polynomial in the in-
put length), as well as for constant-size two-sided functionalities delivering out-
puts to both parties [51]. The general case of constant-size one-sided function-
alities is still open, but positive results for natural functionalities appear in the
literature.

Early examples include other flavors of OT, including 1-out-of-k bit-OT, its
extension to string-OT (of any fixed length) [34], and instances of “Rabin-OT”
that correspond to erasure channels with a rational erasure probability [54].

Perfectly secure protocols for a much broader class of one-sided functionalities
were recently obtained in [3]. This class includes natural functionalities such as
small instances of the millionaire’s problem, as well as almost all Boolean one-
sided functionalities where the party receiving the output has a smaller input
domain than the other party.

Realizing a BSC. An even simpler corollary of Theorem is a constant-
overhead protocol for securely realizing N instances of a binary symmetric chan-
nel (BSC). The feasibility and complexity of securely realizing BSC and other
channels was studied in several previous works [53I57UT].

Corollary 32 (Constant-overhead BSC). Suppose there exists a constant-
overhead OT protocol with security against malicious parties. Then there exists a
constant-overhead protocol for realizing N instances of the BSCy o5 functionality,
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which takes a bit b from the sender and delivers bde to the receiver, where e = 1
with probability 0.25 and e = 0 otherwise.

Proof. By Theorem [31] it suffices to show that BSCy 25 perfectly reduces to OT.
Consider a deterministic functionality f that takes bits b, e7, e5 from the sender
and bits ef, el from the receiver, and delivers b ® ((ef @ ef?) A (e5 @ el?)) to the
receiver. Let C't be a Boolean circuit computing f in the natural way. By the
abovementioned theorem of [43], there is a perfectly secure protocol for C in the
OT-hybrid model with security up to additive attacks. We argue that applying
this protocol with randomly chosen inputs e7, 5, e, elt yields a perfectly secure
protocol for BSCg o5 in the OT-hybrid model. Indeed, letting e = (ef @ eff) A
(e5 @el), it is not hard to see that a single malicious party cannot bias nor learn
any information about e by toggling wire values of C'. Furthermore, toggling b
or the output can be trivially simulated in the ideal model.

5.3 Reducing the Main Open Question to Simpler Questions

Finally, while we leave open the existence of constant-overhead protocols for
general Boolean circuits, our result for OT allows us to reduce this question to
a question about a special kind of fault-tolerant circuits.

An Algebraic Manipulation Detection (AMD) circuit [43] for f is a random-
ized circuit C that computes f while resisting additive attacks in the following
sense: the effect of every additive attack on the wires of C can be simulated by an
ideal additive attack on the inputs and outputs of f. As before, in the Boolean
case an additive attack can toggle an arbitrary subset of the wires. More formally:

Definition 33 (Boolean AMD circuit). Let C : {0,1}" — {0,1}* be a (de-
terministic or randomized) Boolean circuit. We say that a randomized Boolean
circuit C : {0,1}" — {0,1}* is an e-secure AMD implementation of C if the fol-
lowing holds:

— Completeness. For all x € {0,1}™, a(m) =C(x).

— Security against additive attacks. For any additive attack A, toggling a subset
of the wires of C, there exist distributions A, over {0,1}" and Agy over
{0,1}* such that for every x € {0,1}" it holds that

SD (C(x), Clx & Ain) & Ao ) <,

where C + A(C) and SD denotes statistical distance.

Boolean AMD circuits are motivated by the goal of obtaining efficient se-
cure computation protocols in the OT-hybrid model. Indeed, applying the semi-
honest GMW protocol [48/47] to the AMD circuit C, with a suitable encoding
to protect the input and output, yields a secure protocol for C' [43/44]. Com-
bined with a constant-overhead OT protocol, this reduces an affirmative answer
to the main open question to the design of constant-overhead AMD circuits.
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Theorem 34 (Cf. [44], Claim 18). Suppose that every Boolean circuit C
admits a 2~ -secure AMD implementation C of size O(|C|) + poly(\) - |C|0-9.
Then, a constant-overhead OT protocol implies a constant-overhead protocol for
general Boolean circuits.

The main result of [44] is a construction of AMD circuits with polylogarith-
mic overhead (in |C|, A). Whether this can be improved was left open, but the
question was further reduced to the design of two kinds of simple protocols in
the honest-majority setting: a protocol that only provides semi-honest security
(with a constant fraction of corrupted parties) and a protocol that only guar-
antees the correctness of the output. This should be contrasted to the approach
from [544T], which reduces the question to the design of honest-majority proto-
cols with security against malicious parties.
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