
SuperPack: Dishonest Majority MPC with
Constant Online Communication

Daniel Escudero,1 Vipul Goyal,23 Antigoni Polychroniadou,1 Yifan Song4 and
Chenkai Weng5

1 J.P. Morgan AI Research & J.P. Morgan AlgoCRYPT CoE, NY, USA
{daniel.escudero,antigoni.polychroniadou}@jpmorgan.com

2 NTT Research, CA, USA
3 Carnegie Mellon University, PA, USA vipul@cmu.edu

4 Tsinghua University, Beijing, China yfsong1995@gmail.com
5 Northwestern University, IL, USA ckweng@u.northwestern.edu

Abstract. In this work we present a novel actively secure dishonest
majority MPC protocol, SuperPack, whose efficiency improves as the
number of honest parties increases. Concretely, let 0 < ε < 1/2 and con-
sider an adversary that corrupts t < n(1−ε) out of n parties. SuperPack
requires 6/ε field elements of online communication per multiplication
gate across all parties, assuming circuit-dependent preprocessing, and
10/ε assuming circuit-independent preprocessing. In contrast, most of
previous works such as SPDZ (Damgård et al, ESORICS 2013) and its
derivatives perform the same regardless of whether there is only one
honest party, or a constant (non-majority) fraction of honest parties. The
only exception is due to Goyal et al (CRYPTO 2022), which achieves
58/ε+ 96/ε2 field elements assuming circuit-independent preprocessing.
Our work improves this result substantially by a factor of at least 25 in
the circuit-independent preprocessing model.
Practically, we also compare our work with the best concretely efficient
online protocol Turbospeedz (Ben-Efraim et al, ACNS 2019), which
achieves 2(1− ε)n field elements per multiplication gate among all parties.
Our online protocol improves over Turbospeedz as n grows, and as ε
approaches 1/2. For example, if there are 90% corruptions (ε = 0.1), with
n = 50 our online protocol is 1.5× better than Turbospeedz and with
n = 100 this factor is 3×, but for 70% corruptions (ε = 0.3) with n = 50
our online protocol is 3.5× better, and for n = 100 this factor is 7×.
Our circuit-dependent preprocessing can be instantiated from OLE/VOLE.
The amount of OLE/VOLE correlations required in our work is a factor
of ≈ εn/2 smaller than these required by Le Mans (Rachuri and Scholl,
CRYPTO 2022) leveraged to instantiate the preprocesing of Turbospeedz.
Our dishonest majority protocol relies on packed secret-sharing and
leverages ideas from the honest majority TurboPack (Escudero et al,
CCS 2022) protocol to achieve concrete efficiency for any circuit topology,
not only SIMD. We implement both SuperPack and Turbospeedz and
verify with experimental results that our approach indeed leads to more
competitive runtimes in distributed environments with a moderately large
number of parties.



1 Introduction

Secure multiparty computation (MPC) protocols enable a set of parties P1, . . . , Pn
to securely compute a function on their private inputs while leaking only the final
output. MPC protocols remain secure even if t out of the n parties are corrupted.
There are honest majority protocols, which are designed to tolerate at most a
minority of corruptions, or in other words, they assume that t < n/2. On the
other hand, protocols in the dishonest majority setting accommodate t ≥ n/2.
Honest majority MPC protocols can offer information-theoretic security (that is,
they do not need to depend on computational assumptions, which also makes
them more efficient), or guaranteed output delivery (that is, all honest parties
are guaranteed to receive the output of the computation). However, dishonest
majority protocols tolerate a larger number of corruptions at the expense of
relying on computational assumptions and sacrificing fairness and guarantee
output delivery.

Communication complexity is a key measure of efficiency for MPC. Over the
last few decades, great progress has been made in the design of communication-
efficient honest majority protocols [4,13,18,24,9,23,7,20,15]. In particular, the
recent work [15] shows that it is possible to achieve constant communication
complexity among all parties (i.e., O(1)) per multiplication gate in the online
phase while maintaining linear communication complexity in the number of
parties (i.e., O(n)) per multiplication gate in the offline phase — which is
independent of the private inputs.

Dishonest majority protocols provide the best security guarantees in terms of
collusion sizes since security will be ensured even if all parties but one jointly
collude against the remaining honest party. It is known that in this setting public
key cryptography tools are needed. In the seminar work of Beaver [1] it was
shown how to push most of the “heavy crypto machinery” to an offline phase,
hence allowing for a more efficient online phase that can even be information-
theoretically secure, or at least use simpler cryptographic tools such as PRGs and
hash functions for efficiency. This approach eventually led to the seminal works
of BeDOZa [5] and SPDZ [12,14], which leveraged the Beaver triple technique
from [1] together with message authentication codes to achieve a concretely
efficient online phase with linear linear communication complexity in the number
of parties per gate. The online phase in SPDZ has been very influential, and
there is a large body of research that has focused solely on improving the offline
phase, leaving the SPDZ online phase almost intact.

Despite the progress of designing MPC in the dishonest majority setting, it
remains unclear whether we can achieve a sub-linear communication complexity
in the number of parties per multiplication gate without substantially sacrificing
the offline phase6. This motivates us to study the following question:

6 An example is [10] which achieves slightly sub-linear communication complexity in
the circuit size at the cost of increasing the preprocessed data size to be quadratic in
the circuit size.

2



“If a small constant fraction of parties are honest, can we build concretely
efficient dishonest majority MPC protocols that achieve constant online commu-
nication among all parties per multiplication gate with comparable efficiency as
the state-of-the-art in the honest majority setting?”

To be concretely efficient, we refer to protocols that do not rely on heavy
Cryptographic tools such as FHE. In particular, we restrict the online phase
to be almost information-theoretic except the black-box use of PRGs or hash
functions. Perhaps surprisingly, it is not clear what benefits can be achieved if
assume instead of all-but-one corruption, but a constant fraction of parties are
honest. In fact, in the case that there are n − t > 1 honest parties — unless
these constitute a majority — the best one can do to optimize communication
is removing (n − t − 1) parties so that, in the new set, there is at least one
honest party, which is the only requirement for dishonest majority protocols to
guarantee security. To the best of our knowledge, the only exception to this is
[22], which considers the corruption threshold t = n(1− ε) for a constant ε in the
circuit-independent preprocessing model and achieves 58/ε+ 96/ε2 elements per
multiplication gate among all parties in the malicious security setting7. Despite
the constant communication complexity per multiplication gate achieved in [22],
it requires hundreds or even thousands of parties to outperform SPDZ [14].

Given the above state-of-affairs, we see that existing dishonest majority
protocols are either not very flexible in terms of the amount of corruptions —
50% corruptions are as good as 99%, and having more honest parties do not
provide any substantial benefit — or not concretely efficient at all.

1.1 Our Contribution

In this work, we answer the above question affirmatively: we design the first
concretely efficient dishonest majority MPC protocol SuperPack that achieves
constant online communication among all parties per multiplication gate with
comparable efficiency as the state-of-the-art in the honest majority setting [15].
SuperPack tolerates any number of corruptions and becomes more efficient as the
number of honest parties increases, or put differently, it becomes more efficient
as the percentage of corrupted parties decreases.

More concretely, we show the following theorem.

Theorem 1 (Informal). Let n be a positive integer, ε ∈ (0, 1/2) be a constant,
and κ be the security parameter. For an arithmetic circuit C that computes an
n-ary functionality F , there exists an n-party protocol that computes C with
computational security against a fully malicious adversary who can control at
most t = n(1 − ε) corrupted parties. The protocol has total communication

7 The work [22] does not analyze the concrete cost of their malicious protocol. We
obtain this number by counting the amount of communication in their construction.
We note that the protocol in [22] also needs to interact for addition gates. Our
reported number assumes that the amount of addition gates is the same as the
amount of multiplication gates.

3



O(6|C|n + 45|C|/ε) elements (ignoring the terms that are independent of the
circuit size or only related to the circuit depth8) with splitting cost:

– Online Phase: 6/ε per multiplication gate across all parties.
– Circuit-Dependent Preoprocessing Phase: 4/ε per multiplication gate across
all parties.

– Circuit-Independent Preprocessing Phase: 6n+ 35/ε per multiplication gate
across all parties.

Our construction has the following features:

Online phase (Section 4). The online phase requires circuit-dependent pre-
processing (meaning, this preprocessing does not depend on the inputs but it
depends on the topology of the underlying circuit). It relies on information-
theoretic tools and as it is typical we also introduce PRGs to further improve
the efficiency.

Circuit-dependent offline phase (Section 5). The circuit-dependent prepro-
cessing is instantiated using circuit-independent preprocessing (meaning, it
may depend on the amount of certain types of gates of the circuit, but not
on its topology) in a simple and efficient manner. Again, the protocol makes
use of information-theoretical tools together with PRGs to further improve
the efficiency.

Circuit-independent offline phase (Section 6). The circuit-independent pre-
processing is instantiated by a vector oblivious linear evaluation (VOLE)
functionality and an oblivious linear evaluation (OLE) functionality. These
two functionalities are realized by protocols in Le Mans [25], which can
achieve sub-linear communication complexity in the amount of preprocessed
data. In addition, we manage to reduce the amount of preprocessed data by
a factor of εn/2 compared with that in [25]. More discussion can be found in
Section 2.

Comparison to Best Previous Works. When comparing with [22], which achieves
58/ε+ 96/ε2 elements per multiplication gate among all parties in the circuit-
independent preprocessing phase, our protocol achieves a factor of at least 25
improvement in the same setting, and a factor of at least 40 improvement
in the circuit-dependent preprocessing phase. Since [22] does not realize the
circuit-independent preprocessing phase, we do not compare the cost in the
circuit-independent preprocessing phase.

Since our goal is to optimize the online phase of dishonest majority protocols
where there is a constant fraction of honest parties, we take as a baseline for
comparison the existing dishonest majority protocol with the best concrete
efficiency in the online phase. This corresponds to the Turbospeedz protocol [3],

8 The only term that is related to the circuit depth is in the form of O(n · Depth). This
is because of the use of packed secret sharing which requires to evaluate at least O(n)
gates per layer. A similar term also occurs in previous works that use packed secret
sharings [11,17,2,21,22,15].

4



which is set in the circuit-dependent preprocessing model. To instantiate the
preprocessing, we utilize the state-of-the-art [25]. Details on this protocol are
given in the full version of this paper. The resulting protocol has the following
communication complexity: 2(1− ε)n in the online phase, 4(1− ε)n in the circuit-
dependent offline phase, and 6(1− ε)n in the circuit-independent offline phase
when instantiated using Le Mans [25] (ignoring the calls to the VOLE and
OLE functionalities). Again, the VOLE and OLE functionalities can be properly
instantiated with sub-linear communication complexity in the preprocessed data
size. And our protocol even reduce this size by a factor of εn/2.

The communication complexity of our protocol and its comparison with
respect to Turbospeedz is given in Table 1. We see that our online phase is better
than Turbospeedz by a factor of (nε(1 − ε))/3. Some observations about this
expression:

– (Fixing the ratio ε) Given a factor ε, meaning there is an ε×100% percentage
of honest parties and (1− ε)× 100% percentage of corrupt parties, our online
phase is better as long as the total number of parties n is at least the constant
term 3/(ε(1 − ε)), with the improvement factor increasing as n increases
past this threshold. Furthermore, this term goes down as ε approaches 1/2,
meaning that the more honest parties/less corruptions, the smaller n needs to
be for our online phase to be better. For example, if ε = 0.1 (90% corruptions)
we see improvements with n ≥ 34; if ε = 0.2 (80% corruptions) then n ≥ 19;
and if ε = 0.3 (70% corruptions) then n ≥ 15.

– (Fixing the number of honest parties) Given a fixed number of honest parties
h, our online protocol is

(
h
4

)
× better than prior work regardless of the total

number of parties n, as long as n ≥ 4h. This is proven in the full version of
this paper. This motivates the use of our protocol over prior solutions for
any number of parties, as long as a minimal support of honest parties can be
assumed.

Regarding the complete offline phase (ignoring calls to Fprog
OLE and FnVOLE),

our complexity is 6n+ 39/ε, while in Turbospeedz it is 10(1− ε)n. In the limit
as n → ∞, our offline protocol is approximately a factor of 10(1 − ε)/6 times
better than Turbospeedz/Le Mans, which ranges between 10/6 ≈ 1.6 for ε = 0,
to 5/6 ≈ 0.83 for ε = 1/2. As a result, in the limit, our offline phase is only
1/0.83 = 1.2× less efficient than that of Turbospeedz (and for ε close to zero it
can be even up to 1.6 better), which is a reasonable cost taking into account the
benefits in the online phase. A more thorough discussion on the communication
complexity and its implications is given in the full version of this paper.

Implementation and experimental results. Finally, we implement all of our
protocol—except for the OLE/VOLE functionalities—and verify that, experi-
mentally, our protocol outperforms Turbospeedz by the expected amount based
on the communication measures when the runtimes are not computation bound.
For example, in a 100 mbps network our online phase is more than ≈ 4.5× better
than that of Turbospeedz for 80 parties, where 60% of them are corrupted. If

5



Online CD Offline CI Offline

SuperPack 6/ε 4/ε 6n + 35/ε
Turbospeedz∗ 2(1 − ε)n 4(1 − ε)n 6(1 − ε)n

Table 1. Communication complexity in terms of field elements per multiplication gate
of SuperPack, and comparison to the previous work with the best concrete efficiency
in the online phase, which is Turbospeedz [3] (with its offline phase instantiated by Le
Mans [25]), referred to as Turbospeedz∗. The cost of the calls to Fprog

OLE and FnVOLE in
the circuit-independent offline phase is ignored.

the network is too fast, then computation becomes a more noticeable bottleneck,
and our improvements are less noticeable. This is discussed in Section 7.

2 Overview of the Techniques

In this section we provide an overview of our SuperPack protocol. Recall that
in our setting we have t < n(1− ε). Let F be a finite field with |F| ≥ 2κ, where κ
is the security parameter. We consider packed Shamir secret sharing, where k
secrets x = (x1, . . . , xk) are turned into shares as [x]d = (f(1), . . . , f(n)), where
f(x) is a uniformly random polynomial over F of degree at most d constrained
to f(0) = x1, . . . , f(−(k− 1)) = xk. It also holds that [x]d1 ∗ [y]d2 = [x ∗ y]d1+d2 ,
where the operator ∗ denotes point-wise multiplication. In our protocol we would
like to be able to multiply degree-d sharings by degree-(k − 1) sharings (which
corresponds to multiplying by constants), so we would like the sum of these
degrees to be at most n−1 so that the n parties determine the underlying secrets.
For this, we take d+(k− 1) = n− 1. On the other hand, we also want the secrets
of a degree-d packed Shamir sharing to be private against t corrupted parties,
which requires d ≥ t+k−1. Together, these imply n = t+2(k−1)+1 = t+2k−1,
and k = n−t+1

2 ≥ ε·n+2
2 .

At a high level, our technical contributions can be summarized as two aspects:

1. First, we lift the online protocol of TurboPack [15] from the honest majority
setting to the dishonest majority setting. Our starting point is the observation
that the passive version of the online protocol from TurboPack [15] also
works for a dishonest majority by setting the parameters correctly. To achieve
malicious security, however, the original techniques do not work. This is
because in TurboPack, all parties will prepare a degree-t Shamir sharing
for each wire value in the circuit. In the honest majority setting, a degree-t
Shamir sharing satisfies that the shares of honest parties can fully determine
the secret, and the most that malicious parties can do is to change their
local shares and cause the whole sharing inconsistent (in the sense that the
shares do not lie on a degree-t polynomial). Malicious parties however cannot
change the secret by changing their shares. This property unfortunately does
not hold in the dishonest majority setting.

6



Instead, in our case, we rely on a different type of redundancy widely used in
the dishonest majority setting: We make use of message authentication codes,
or MACs, to ensure that corrupted parties cannot change the secrets by
changing their local shares without being caught. While a similar technique
has also been used in [22], their way of using MACs increases the online
communication complexity by a factor of at least 2 compared with their
passive protocol.
We will show how to use MACs in a way such that the online communication
complexity remains the same as our passive protocol.

2. Second, we have to reinvent the circuit-independent preprocessing protocol
for SuperPack as the corresponding protocol from TurboPack highly relies
on the assumption of honest majority, plus that we also need the preprocessed
sharings to be authenticated due to the larger corruption threshold.
The main preprocessing data we need to prepare is referred to as Packed
Beaver Triples, which are first introduced in [22]. At a high level, a packed
Beaver triple contains three packed Shamir sharings ([a], [b], [c]) such that
a, b are random vectors in Fk and c = a∗b. To prepare such a packed Beaver
triple, a direct approach would be first preparing standard Beaver triples using
additive sharings and then transform them to packed Shamir sharings. In this
way, we may reuse the previous work of generating standard Beaver triples
in a black box way. However, this idea requires us to not only pay the cost of
preparing standard Beaver triples, but also pay the cost of doing the sharing
transformation. The direct consequence is that the overall efficiency of our
protocol will be worse than that of the state-of-the-art [25] in the dishonest
majority setting. (And this is the approach used in TurboPack [15].)
We will show how to take the advantage of the constant fraction of honest
parties in the circuit-independent preprocessing phase by carefully using the
techniques of [25] in our setting.

In the following, we will start with a sketch of the modified passive version of
TurboPack, which is suitable in our setting.

2.1 Starting Point: TurboPack

Our starting point is the observation that the passive version of the online
protocol from TurboPack [15], which is set in the honest majority setting, also
works for a dishonest majority by setting the parameters correctly. We focus
mostly on multiplication gates. So we ignore details regarding input and output
gates.

Preprocessing. We consider an arithmetic circuit whose wires are indexed by
certain identifiers, which we denote using lowercase Greek letters α, β, γ, etc.
Our work is set in the client-server model where there are input and output gates
associated to clients, who will be in charge of providing input/receiving output.
Each multiplication layer of the circuit is split into batches of size k. Similarly,
each input and output layer assigned to a given client are split into batches of

7



size k. The invariant in TurboPack is the following. First, every wire α that is
not the output of an addition gate has associated to it a uniformly random value
λα. If a wire γ is the output of an addition gate with input wires α with wire β,
then λγ is defined (recursively) as λα + λβ .

The parties are assumed to have the following (circuit-dependent) preprocess-
ing material: For every group of k multiplication gates with input wires α,β and
output wires γ, the parties have [λα]n−k, [λβ]n−k, and [λγ ]n−1 (The degree of
the last sharing is chosen to be n− 1 on purpose). In addition, all parties also
hold a fresh packed Beaver triple ([a]n−k, [b]n−k, [c]n−1) for this gate (Again, the
degree of the last sharing is chosen to be degree-(n− 1) on purpose).

Main Invariant. The main invariant in TurboPack is that for every wire α,
P1 knows the value µα = vα − λα, where vα denotes the actual value in wire α
for a given choice of inputs. Notice that this invariant preserves the privacy of
all intermediate wires, since P1 only learns a masked version of the wire values,
and the masks, the λα’s, are uniformly random and they are kept private with
packed Shamir sharings of degree n− k = t+(k− 1). We now discuss how, in the
original TurboPack work, this invariant is maintained throughout the circuit
execution. We only focus on (groups of) multiplication gates. Addition gates can
be processed locally. Groups of input gates with wires α make use of a simple
protocol in which the client who owns the gates learns the corresponding masks
λα, and sends µα = vα − λα to P1. Groups of output gates are handled in a
similar way.

Maintaining the Invariant for Multiplication Gates. Consider a group of multi-
plication gates in a given circuit level, having input wires α,β, and output wires
γ. Assume that the invariant holds for the input wires, meaning that P1 knows
µα = vα −λα and µβ = vβ −λβ. Recall that the parties have the preprocessed
sharings [λα]n−k, [λβ]n−k, and [λγ ]n−1. To maintain the invariant, P1 must learn
µγ = vγ − λγ , where vγ = vα ∗ vβ. This is achieved by using the techniques of
packed Beaver triples introduced in [22]. Recall that all parties also hold a fresh
packed Beaver triple ([a]n−k, [b]n−k, [c]n−1). All parties proceeds as follows:

1. All parties locally compute the packed Shamir sharing [λα − a]n−k =
[λα]n−k− [a]n−k and let P1 learn λα−a. Similar step is done to let P1 learn
λβ − b.

2. P1 computes vα − a = µα + (λα − a) and computes vβ − b similarly. Then,
P1 distributes shares [vα − a]k−1 and [vβ − b]k−1 to the parties.

3. Using the received shares and the shares obtained in the preprocessing phase,
the parties compute locally

[vγ ]n−1 = [vα − a]k−1 ∗ [vβ − b]k−1 + [vα − a]k−1 ∗ [b]n−k
+ [vβ − b]k−1 ∗ [a]n−k + [c]n−1.

and [µγ ]n−1 = [vγ ]n−1 − [λγ ]n−1.

8



4. The parties send their shares [µγ ]n−1 to P1, who reconstructs µγ . It is easy
to see that µγ = vα ∗ vβ − λγ .

Note that the first step can be completely moved to the circuit-dependent
preprocessing phase since both [λα]n−k and [a]n−k are preprocessed data. With
this optimization, the online protocol only requires all parties to communicate
3n elements for k = εn/2 multiplication gates, which is 6/ε elements per gate
among all parties.

2.2 Achieving Active Security

There are multiple places where an active adversary can cheat in the previous
protocol, with the most obvious being distributing incorrect (or even invalid)
[vα−a]k−1 and [vβ−b]k−1 at a group of multiplication gates, either by corrupting
P1, or by sending incorrect shares in previous gates to P1. This is prevented in
TurboPack by explicitly making use of the honest majority assumption: Using
the degree-(k − 1) packed Shamir sharings distributed by P1, the parties will be
able to obtain a certain “individual” (i.e. non-packed) degree-t Shamir sharing for
each wire value. As we discussed above, a degree-t Shamir sharing in the honest
majority setting allows honest parties to fully determine the secret. This enables
the use of distributed zero-knowledge techniques [6] to check the correctness of
the computation.

In our case where t ≥ n/2, these techniques cannot be used. Instead, we rely
on a different type of redundancy widely used in the dishonest majority setting,
namely, we make use of message authentication codes, or MACs, to ensure the
parties cannot deviate from the protocol execution when performing actions like
reconstructing secret-shared values. We observe that the use of MACs has the
following two advantages:

– With MACs, corrupted parties cannot change the secrets of a degree-(n− k)
packed Shamir sharing without being detected except with a negligible
probability.

– In addition to adding verifiability to packed Shamir sharings, we show how
to allow all parties to directly compute MACs of the secret values that are
shared by P1 using degree-(k − 1) packed Shamir sharings. This allows us
to directly verify whether vα − a and vβ − b are correct without doing
distributed zero-knowledge like [15].

Before we describe our approach, let us introduce some notation. We use [x|i]t
to denote a Shamir secret sharing of degree t, where the secret is in position
−(i− 1). I.e., the corresponding polynomial f(x) satisfies that f(−(i− 1)) = x.
We also use 〈x〉 to denote an additive secret sharing of x. Observe that from a
Shamir sharing of x (or a packed Shamir sharing that contains x), all parties can
locally obtain an additive sharing of x by locally multiplying suitable Lagrange
coefficients.

To achieve active security, we need the parties to hold preprocessing data of
the following form:

9



– Shares of a global random key ∆ ∈ F in the form ([∆|1]t, . . . , [∆|k]t).
– For every group of k multiplication gates with input wires α,β and output

wires γ, recall that all parties hold a fresh packed Beaver triple ([a]n−k, [b]n−k, [c]n−1).
They additionally hold [∆ · a]n−k, [∆ · b]n−k, and {〈∆ · ci〉}ki=1, and also
{〈∆ · λγi〉}ki=1.

With these at hand, the new invariant we maintain to ensure active security
is that (1) as before, P1 learns µα and λα − a for every group of input wires α
of multiplication gates, but in addition (2) the parties have shares 〈∆ · µαi

〉 and
〈∆ · (λαi − ai)〉 for all i ∈ {1, . . . , k}. In this way, the first part of the invariant
enables the parties to compute the circuit, while the second ensures that P1

distributed correct values.

Maintaining the New Invariant. Consider a group of multiplication gates with
input wires α,β, and output wires γ. Assume that the invariant holds for the
input wires, meaning that P1 knows µα = vα−λα and µβ = vβ −λβ as well as
λα − a and λβ − b, and also the parties have {(〈∆ · µαi〉, 〈∆ · (λαi − ai)〉)}ki=1

and {(〈∆ · µβi
〉, 〈∆ · (λβi

− bi)〉)}ki=1.
The parties preserve the invariant as follows.

– For (1), we follow the passive protocol described above and reconstruct µγ

to P1.
– For (2), to be able to compute 〈∆ · µα′

i
〉 for some wire α′i in the next layer, it

is sufficient to let all parties hold 〈∆ · µγi〉 for all i ∈ {1, . . . , k}. To this end,
we try to follow the procedure of computing [µγ ]n−1. Recall that

[µγ ]n−1 = [vα − a]k−1 ∗ [vβ − b]k−1 + [vα − a]k−1 ∗ [b]n−k
+ [vβ − b]k−1 ∗ [a]n−k + [c]n−1 − [λγ ]n−1.

1. For [vα−a]k−1∗ [b]n−k and [vβ−b]k−1∗ [a]n−k, since all parties also hold
[∆ ·a]n−k and [∆ ·b]n−k, they may locally compute [vα−a]k−1∗ [∆ ·b]n−k
and [vβ−b]k−1 ∗ [∆ ·a]n−k and convert them locally to 〈∆ · (vαi

−ai) · bi〉
and 〈∆ · (vβi

− bi) · ai〉.
2. For [c]n−1 and [λγ ]n−1, all parties already hold 〈∆ · ci〉 and 〈∆ · λγi〉.
3. The problematic part is to obtain 〈∆ · (vαi

− ai) · (vβi
− bi)〉. There we

use the degree-t Shamir sharing [∆|i]t as follows. We note that

[∆ · (vαi
− ai) · (vβi

− bi)|i]n−1 = [∆|i]t ∗ [vα − a]k−1 ∗ [vβ − b]k−1.

This follows from the multiplication of the underlying polynomials and
the fact that n− 1 = t+2(k− 1). From [∆ · (vαi −ai) · (vβi − bi)|i]n−1, all
parties can locally compute an additive sharing of ∆ · (vαi

−ai) · (vβi
−bi).

Summing all terms up, all parties can locally obtain 〈∆ · µγi〉.
– For (2), to be able to compute 〈∆ · (λα′

i
− a′i)〉 for some wire α′i in the next

layer, it is sufficient to show how to obtain 〈∆ · λα′
i
〉 since all parties can

obtain 〈∆ · a′i〉 from [∆ · a′]n−k prepared in the preprocessing data. Note
that all parties already hold 〈∆ · λγi〉 for the current layer. By following the
circuit topology, they can locally compute 〈∆ · λα′

i
〉 for the next layer.

10



Checking the Correctness of the Computation. All parties together hold additive
sharings 〈∆ · µαi

〉 and 〈∆ · (λαi
− ai)〉, they compute 〈∆ · (vαi

− ai)〉. On the
other hand, all parties hold a degree-(k − 1) packed Shamir sharing [vα − a]k−1.

It is sufficient to check the following two points:

– The sharing [vα −a]k−1 is a valid degree-(k− 1) packed Shamir sharing. I.e.,
the shares lie on a degree-(k − 1) polynomial. The check is done by opening
a random linear combination of all degree-(k − 1) packed Shamir sharings
distributed by P1.

– The secrets of [vα−a]k−1 are consistent with the MACs {〈∆ · (vαi −ai)〉}ki=1.
This is done by using [vα−a]k−1 and {[∆|i]t}ki=1 to compute another version
of MACs: {〈∆ · (vαi − ai)〉}ki=1, and then check whether these two versions
have the same secrets inside.

Both of these two checks are natural extensions of the checks done in SPDZ [14].
We thus omit the details and refer the readers to Section 4.4 for more details.

2.3 Instantiating the Circuit-Dependent Preprocessing

The preprocessing required by the parties is summarized as follows.

– A circuit-independent part, which are the global key [∆|1]t, . . . , [∆|k]t and a
fresh packed Beaver triple with authentications per group of multiplication
gates ([a]n−k, [∆ · a]n−k), ([b]n−k, [∆ · b]n−k), ([c]n−1, {〈∆ · ci〉}ki=1).

– A circuit-dependent part that consists of [λα]n−k, [λβ]n−k, ([λγ ]n−1, {〈∆ ·
λγi〉}ki=1). Also P1 needs to obtain λα − a and λβ − b.

For the circuit-independent part, we will focus more on the preparation of the
packed Beaver triples with authentications in the next section since the size of
[∆|1]t, . . . , [∆|k]t is independent of the circuit size. As for the circuit-dependent
part, we essentially follow the same idea in TurboPack [15] including the
preprocessing data we need from a circuit-independent preprocessing, with the
only exception that the preprocessing data should be authenticated. We refer
the readers to [15] and Section 5 for more details.

On the Necessity of a Circuit-Dependent Preprocessing. At a first glance, it may
appear that if the circuit only contain multiplication gates, then there is no need
to have a circuit-dependent preprocessing phase since all λ values are uniform.
We stress that this is not the case. This is because each wire α is served as an
output wire in a previous layer and then served as an input layer in a next layer.
We need all parties to hold two packed Shamir sharings that contain λα, one
for a previous layer where α is an output wire, and the other one for a next
layer where α is an input wire. In particular, the positions of λα depend on the
circuit topology since we need the two input packed Shamir sharings of a group
of multiplication gates to have their secrets correctly aligned.

11



2.4 Instantiating the Circuit-Independent Preprocessing

Next, we focus on the preparation of authenticated packed Beaver triples:

([a]n−k, [∆ · a]n−k), ([b]n−k, [∆ · b]n−k), ([c]n−1, {〈∆ · ci〉}ki=1),

where c = a ∗ b.
To this end, we make use of two functionalities FnVOLE and Fprog

OLE from [25].
In [25], these two functionalities are used to efficiently prepare Beaver triples
using additive sharings. At a high level,

1. All parties first use FnVOLE to prepare authenticated random additive sharings.
In particular,
– All parties receive an additive sharing 〈∆〉 = (∆1, . . . ,∆n) from FnVOLE,

where ∆ is served as the MAC key. (Here ∆i is the i-th share of 〈∆〉.)
– Each party Pi receives a vector ui, which is served as the additive shares

held by Pi. We denote the additive sharings by 〈u1〉, . . . , 〈um〉.
– For every ordered pair (Pi, Pj), they together hold an additive sharing

of ui · ∆j . From these, all parties locally transform them to additive
sharings 〈∆ · u1〉, . . . , 〈∆ · um〉.

2. After using FnVOLE to prepare two vectors of additive sharings, say (〈a1〉, 〈b1〉),
. . . , (〈am〉, 〈bm〉) together with their MACs, every ordered pair of parties
(Pi, Pj) invokes Fprog

OLE to compute additive sharings of ai` · b
j
` for all ` ∈

{1, . . . ,m}. (Here ai` is the i-th share of 〈a`〉 and bj` is the j-th share of 〈b`〉.)
These allow all parties to obtain additive sharings of c = (a1 · b1, . . . , am · bm).
Note that the MACs of 〈c1〉, . . . , 〈cm〉 are not computed in this step.

3. Finally, all parties authenticate 〈c1〉, . . . , 〈cm〉 by using random additive
sharings (〈r1〉, . . . , 〈rm〉) with authentications which can be prepared using
Step 1.

As we discussed above, one direct solution would be using the above approach
in a black box way and then transforming additive sharings to packed Shamir
sharings. However, the direct consequence is that we need to not only pay the same
cost as that in [25], but pay the additional cost for the sharing transformation
as well. In the following we discuss how to take the advantage of the constant
fraction of honest parties when preparing packed Beaver triples.

Obtaining Authenticated Shares ([a]n−k, [∆ · a]n−k). We first discuss how the
parties can obtain [a]n−k and [∆ · a]n−k (and also [b]n−k and [∆ · b]n−k).

Our main observation is that the shares of a random degree-(n− 1) packed
Shamir sharing are uniformly distributed. This is because a random degree-(n−1)
packed Shamir sharing corresponds to a random degree-(n−1) polynomial, which
satisfies that any n evaluations are uniformly distributed. On the other hand,
the shares of a random additive sharing are also uniformly distributed. Thus,
we may naturally view the random additive sharings prepared in FnVOLE as
degree-(n − 1) packed Shamir sharings. Concretely, for each random additive
sharing (u1, . . . , un), let u denote the secrets of the degree-(n− 1) packed Shamir

12



sharing when the shares are (u1, . . . , un). Then we may view that all parties hold
the packed Shamir sharing [u]n−1. To obtain a degree-(n − k) packed Shamir
sharing of u, we simply perform a sharing transformation via the standard
“mask-open-unmask” approach following from the known techniques [13].

Now the problem is to prepare the MACs for u. We observe that in FnVOLE,
for every ordered pair of parties (Pi, Pj), Pi, Pj together hold an additive sharing
of ui ·∆j . Since each secret u` in u is a linear combination of (u1, . . . , un), all
parties can locally compute an additive sharing of u` ·∆j for each j ∈ {1, . . . , n}
and then compute an additive sharing of ∆·u`. To obtain the MACs [∆·u]n−k, we
will perform a sharing transformation again via the standard “mask-open-unmask”
approach following from the known techniques [13,22].

In this way, to obtain a pair of authenticated sharings ([a]n−k, [∆ ·a]n−k), we
only need to perform once the transformation from additive sharings to packed
Shamir sharings. In addition, we essentially obtain such a pair of authenticated
sharing from the same data that is only for one authenticated additive sharing
in [25]. As a result, the amount of preprocessing data we need from FnVOLE is
reduced by a factor of k = εn/2.

Authenticated Product ([c]n−1, {〈∆ · ci〉}ki=1). Once the parties have obtained
([a]n−k, [∆ · a]n−k) and ([b]n−k, [∆ · b]n−k), they need to obtain ([c]n−1, {〈∆ ·
ci〉}ki=1), where c = a ∗ b.

To this end, we need to reuse the degree-(n−1) packed Shamir sharings [a]n−1
and [b]n−1 output by FnVOLE. As that in [25], every ordered pair of parties (Pi, Pj)
invokes Fprog

OLE to compute additive sharings of ai · bj , where ai is the i-th share
of [a]n−1 and bj is the j-th share of [b]n−1. From additive sharings of {ai · bj}i,j ,
all parties can locally compute an additive sharing of each c` = a` · b` for all
` ∈ {1, . . . , k}. Finally, we obtain [c]n−1 with authentications by using random
sharings ([r]n−1, {〈∆ · r`〉}k`=1) and follow the standard “mask-open-unmask”
approach. Note that ([r]n−1, {〈∆ · r`〉}k`=1) can be directly obtained from FnVOLE

by properly interpreting the output of FnVOLE as we discussed above.
Thus, to prepare the authenticated product ([c]n−1, {〈∆ · ci〉}ki=1), we only

need to perform once the transformation from additive sharings to packed Shamir
sharings. Again the amount of preprocessing data we need from Fprog

OLE is also
reduced by a factor of k = εn/2.

Remarks About Our Techniques. Note that we essentially follow the same steps
as those in [25] but interpreting the output differently, and then perform sharing
transformations to obtain sharings in the desired form. We would like to point out
that following the same steps as those in [25] is crucial since in [25], FnVOLE only
outputs random seeds to parties and the parties need to compute their shares by
locally expanding the seeds using a proper PRG. And the same seeds are fed in
Fprog

OLE to compute the product sharings. Only in this way together with proper
realizations of FnVOLE and Fprog

OLE , [25] can achieve sub-linear communication
complexity in preparing Beaver triples (without authenticating the product
sharing 〈c〉). Thus, to be able to properly use the functionalities in [25], we should
follow a similar pattern to that in [25].

13



Verification of Packed Beaver Triples. We note that the packed Beaver triples we
obtained may be incorrect. This is because the invocations of Fprog

OLE are between
every pair of parties and the functionality Fprog

OLE does not force the same party to
use the same input across different invocations. Also when the product sharings
are authenticated, corrupted parties may introduce additive errors. The same
issues also appear in [25].

To obtain correct packed Beaver triples with authentications, our idea is to
extend the technique of sacrificing [12] and use one possibly incorrect packed
Beaver triple to check another possibly incorrect packed Beaver triple. To improve
the concrete efficiency, we show that it is sufficient to have the sacrificed packed
Beaver triple prepared in the form:

([ã]n−1, {〈∆ · ãi〉}ki=1), ([b̃]n−1, {〈∆ · b̃i〉}ki=1), ([c̃]n−1, {〈∆ · c̃i〉}ki=1).

I.e., we do not need to do any sharing transformation for the first two pairs of
sharings and only need to authenticate the product sharing. We defer the details
to the full version of this paper due to space constraints.

3 Preliminaries

The Model. We consider the task of secure multiparty computation in the
client-server model, where a set of clients C = {C1, . . . , Cm} provide inputs to a
set of computing parties P = {P1, P2, . . . , Pn}, who carry out the computation
and return output to the clients. Clients are connected to parties, and parties
are connected to each other using a secure (private and authentic) synchronous
channel. The communication complexity is measured by the total number of bits
via private channels.

We focus on functions which can be represented as an arithmetic circuit C
over a finite field F with input, addition, multiplication, and output gates.9 The
circuit C takes inputs (x1, . . . ,xm) and returns (y1, . . . ,ym), where xi ∈ FIi and
yi ∈ FOi , for i ∈ {1, . . . ,m}. We use the convention of labeling wires by means
of greek letters (e.g. α, β, γ), and we use vα to denote the value stored in a wire
labeled by α for a given execution. We use κ to denote the security parameter,
and we assume that |F| ≥ 2κ. We assume that the number of parties n and the
circuit size |C| are bounded by polynomials of the security parameter κ.

We study the dishonest majority setting where the adversary corrupts a
majority of the parties, but we focus on the case where the number of corruptions
may not be equal to n− 1. Instead, the adversary corrupts t < n(1− ε) parties
for some constant 0 < ε < 1/2. For security we use Canetti’s UC framework [8],
where security is argued by the indistinguishability of an ideal world, modeled by
a functionality (denoted in this work by the letter F and some subscript), and

9 In this work, we only focus on deterministic functions. A randomized function can be
transformed into a deterministic function by taking as input an additional random
tape from each party. The XOR of the input random tapes of all parties is used as
the randomness of the randomized function.

14



the real world, instantiated by a protocol (denoted using the letter Π and some
subscript). Protocols can also use procedures, denoted using the lowercase letter
π and some subscript, which are like protocols except they are not intended to
instantiate a given functionality, and instead they are used as “macros” inside
other protocols that instantiate some functionality. The details on the security
definition will be included in the full version of this paper.

We denote by FMPC the functionality that receives inputs from the clients,
evaluates the function f , and returns output to the clients. This is given in
detail in the full version of this paper. Security with unanimous abort, where
all honest parties may jointly abort in the computation, is the best that can be
achieved in the dishonest majority setting. Here we achieve security with selective
abort, where the adversary can choose which honest parties abort, which can be
compiled to unanimous abort using a broadcast channel [19]. To accommodate
for aborts, every functionality in this work implicitly allows the adversary to
send an abort signal to a specific honest party. We do not write this explicitly.

Packed Shamir Secret Sharing. In our work, we make use of packed Shamir
secret sharing, introduced by Franklin and Yung [16]. This is a generalization of
the standard Shamir secret sharing scheme [26]. Let n be the number of parties
and k be the number of secrets to pack in one sharing. A degree-d (d ≥ k − 1)
packed Shamir sharing of x = (x1, . . . , xk) ∈ Fk is a vector (w1, . . . , wn) for which
there exists a polynomial f(·) ∈ F[X] of degree at most d such that f(−i+1) = xi
for all i ∈ {1, 2, . . . , k}, and f(i) = wi for all i ∈ {1, 2, . . . , n}. The i-th share wi
is held by party Pi. Reconstructing a degree-d packed Shamir sharing requires
d+ 1 shares and can be done by Lagrange interpolation. For a random degree-d
packed Shamir sharing of x, any d− k+1 shares are independent of the secret x.
If d− (k − 1) ≥ t, then knowing t of the shares does not leak anything about the
k secrets. In particlar, a sharing of degree t+(k− 1) keeps hidden the underlying
k secret.

In our work, we use [x]d to denote a degree-d packed Shamir sharing of x ∈ Fk.
In the following, operations (addition and multiplication) between two packed
Shamir sharings are coordinate-wise, and ∗ denotes element-wise product. We
recall two properties of the packed Shamir sharing scheme:

– Linear Homomorphism: For all d ≥ k − 1 and x,y ∈ Fk, [x + y]d =
[x]d + [y]d.

– Multiplicativity: Let ∗ denote the coordinate-wise multiplication operation.
For all d1, d2 ≥ k−1 subject to d1+d2 < n, and for all x,y ∈ Fk, [x∗y]d1+d2 =
[x]d1 ∗ [y]d2 .

Note that the second property implies that, for all x, c ∈ Fk, all parties can
locally compute [c ∗ x]d+k−1 from [x]d and the public vector c. To see this, all
parties can locally transform c to a degree-(k − 1) packed Shamir sharing [c]k−1.
Then, they can use the property of the packed Shamir sharing scheme to compute
[c ∗ x]d+k−1 = [c]k−1 ∗ [x]d. We simply write [c ∗ x]d+k−1 = c ∗ [x]d to denote
this procedure.

15



When the packing parameter k = 1, a packed Shamir sharing degrades to a
Shamir sharing. Generically, a Shamir sharing uses the default evaluation point
0 to store the secret. In our work, we are interested in using different evaluation
points in different Shamir secret sharings. Concretely, for all i ∈ {1, . . . , k}, we
use [x|i]d to represent a degree-d Shamir sharing of x such that the secret is stored
at the evaluation point −i+ 1. If we use f to denote the degree-d polynomial
corresponding to [x|i]d, then f(−i+ 1) = x.

In this work, we choose the packing parameter to be k = (n− t+1)/2 (assume
for simplicity that this division is exact), or equivalently n = t + 2k − 1 =
t + 2(k − 1) + 1. This implies not only that a sharing of degree t + (k − 1)
(which keeps the privacy of k secrets) is well defined as there are more parties
than the degree plus one, but also if a sharing of such degree is multiplied by
a degree-(k − 1) sharing, the resulting degree-(t+ 2(k − 1)) sharing is also well
defined. Also, we observe that with these parameters, a sharing of degree at most
2(k−1) is fully determined by the honest parties’ shares since n− t = 2(k−1)+1,
which in particular means that such sharings can be reconstructed to obtain
the correct underlying secrets (i.e. the secrets determined by the honest parties’
shares). Finally, recall that t < n(1 − ε). We assume that t + 1 = (1 − ε)n for
simplicity, and in this case it can be checked that k = ε

2 · n+ 1 = Θ(n).

Some Functionalities. For our protocols we assume the existence of two widely
used functionalities. One is FCoin, which upon being called provides the parties
with a uniformly random value r ∈ F. This can be easily implemented by having
the parties open some random shared value 〈r〉, and if more coins are needed
these can be expanded with the help of a PRG. The second functionality is
FCommit, which enables the parties to commit to some values of their choice
without revealing them to the other parties. At a later point, the parties can
open their committed values with the guarantee that these opened terms are
exactly the same that were committed to initially. This can be instantiated with
the help of a hash function, modeled as a random oracle (cf. [12]).

4 Online Protocol

We begin by describing the online phase of SuperPack.

4.1 Circuit-Dependent Preprocessing Functionality

In order to securely compute the given function, our online phase must make
use of certain circuit-dependent preprocessing, which is modeled in Functionality
FPrepMal below.

16



Functionality 1: FPrepMal

1. Assign Random Values to Wires in C: FPrepMal receives the circuit
C from all parties. Then FPrepMal assigns random values to wires in C as
follows.
(a) For each output wire α of an input gate or a multiplication gate, FPrepMal

samples a uniform value λα and associates it with the wire α.
(b) Starting from the first layer of C to the last layer, for each addition gate

with input wires α, β and output wire γ, FPrepMal sets λγ = λα + λβ .
2. Settling Authentication Keys: FPrepMal samples a random value ∆. Then
FPrepMal samples k random degree-t Shamir sharings ([∆|1]t, . . . , [∆|k]t) and
distributes the shares to all parties.

3. Preparing Packed Beaver Triples with Authentications: For each
group of k multiplication gates, FPrepMal samples a random packed Beaver
triple with authentications as follows:
(a) FPrepMal samples two random vectors a, b ∈ Fkp and computes ∆ ·a,∆ ·b.

Then FPrepMal samples two pairs of random degree-(n−k) packed Shamir
sharings JaKn−k = ([a]n−k, [∆ · a]n−k), JbKn−k = ([b]n−k, [∆ · b]n−k).

(b) FPrepMal computes c = a ∗ b and ∆ · c. Then FPrepMal samples a random
degree-(n − 1) packed Shamir sharing [c]n−1. For all i ∈ {1, . . . , k},
FPrepMal samples a random additive sharing 〈∆ · ci〉.

FPrepMal distributes the shares of (JaKn−k, JbKn−k, ([c]n−1, {〈∆ · ci〉}ki=1)) to
all parties.

4. Distributing λα − a and λβ − b to P1: For each group of multiplication
gates, let α,β denote the batch of first input wires and that of the second
input wires respectively. Let (JaKn−k, JbKn−k, ([c]n−1, {〈∆ · ci〉}ki=1) be the
packed Beaver triple with authentications associated with these gates.
FPrepMal receives two vectors of additive errors δα, δβ from the adversary,
computes λα − a+ δα and λβ − b+ δβ, and sends them to P1. Here λα

and λβ are the random values associated with the wires α and β.
FPrepMal also samples random additive sharings {〈∆ · (λαi − ai)〉, 〈∆ · (λβi −
bi)〉}ki=1 and distributes the shares to all parties.

5. Preparing Authenticated Packed Sharings for Multiplication
Gates: For each group of multiplication gates with output wires γ, FPrepMal

samples
– A random degree-(n− 1) packed Shamir sharing [λγ ]n−1,
– k additive sharings {〈∆ · λγi〉}ki=1,

and distributes the shares to honest parties.
6. Preparing Random Sharings for Input and Output Gates: For

each group of k input gates or output gates, FPrepMal prepares the following
random sharings.
(a) Let α be the output wires of these k input gates or the input wires of

these k output gates. FPrepMal samples
– A random degree-(n− 1) packed Shamir sharing [λα]n−1,
– k additive sharings {〈∆ · λαi〉}ki=1,

and distributes the shares to honest parties.
(b) FPrepMal also prepares a random packed Beaver triple with authentica-

tions (JaKn−k, JbKn−k, ([c]n−1, {〈∆ · ci〉}ki=1) in the same way as Step 3.
Later, we will view b as an authentication key and c as the MAC of a.
This allows the input holder to verify the correctness of a.

17



Corrupted Parties: When FPrepMal prepares random sharings, corrupted parties
can choose their shares. FPrepMal then samples the random sharings based on
the secret it generated and the shares chosen by the corrupted parties.

4.2 Input Gates

In this section, we give the description of the procedure πInput. This procedure
enables P1 to learn µα = vα−λα for every input wire α, where vα is the input pro-
vided by the client owning the input gate. In addition, the parties output shares of
the MAC of this value, namely {〈∆·µαi〉}ki=1. Recall that in FPrepMal, we prepared
a packed Beaver triple with authentications (JaKn−k, JbKn−k, ([c]n−1, {〈∆·ci〉}ki=1)
for each group of input gates. Here b serves as the MAC key and c serves as the
MAC of a so that the client can verify that he receives the correct a in πInput.
The description of πInput appears below.

Procedure 1: πInput

1. For each group of input gates that belongs to Client, let α denote the
batch of output wires of these input gates. All parties receive from FPrepMal

– A random degree-(n− 1) packed Shamir sharing [λα]n−1 with MACs
{〈∆ · λαi〉}ki=1.

– A packed Beaver triple with authentications
(JaKn−k, JbKn−k, ([c]n−1, {〈∆ · ci〉}ki=1).

Let vα denote the inputs held by Client.
2. All parties send to Client their shares of [λα]n−1, [a]n−k, [b]n−k, [c]n−1.
3. Client reconstructs the secrets λα,a, b, c and checks whether c = a ∗ b.

If not, Client aborts. Otherwise, Client computes µα = vα − λα and
[vα − a]2k−2.

4. Client sends µα to P1 and distributes the shares of [vα − a]2k−2 to all
parties.

5. For all i ∈ {1, . . . , k}, all parties locally compute 〈∆ · µαi〉 as follows:
(a) Recall that all parties hold [∆|i]t generated in FPrepMal. All parties

locally compute [∆ · (vαi − ai)|i]n−1 = [∆|i]t ∗ [vα − a]2k−2. Then all
parties locally transform it to an additive sharing 〈∆ · (vαi − ai)〉.

(b) Recall that all parties hold [∆ · a]n−k. All parties locally transform it
to an additive sharing 〈∆ · ai〉.

(c) Recall that all parties hold 〈∆ · λαi〉. All parties locally compute
〈∆ · µαi〉 = 〈∆ · (vαi − ai)〉+ 〈∆ · ai〉 − 〈∆ · λαi〉.

4.3 Computing Addition and Multiplication Gates

After receiving the inputs from all clients, all parties start to evaluate the circuit
gate by gate. We will maintain the invariant that for each output wire α of an
input gate or a multiplication gate, P1 learns µα in clear. In the procedure, P1

distributes shares of certain values, which may be incorrect. To prevent cheating,

18



the parties get additive shares of the MAC of these values, which are used in a
verification step in the output phase to check for correctness.

Procedure 2: πMult

The procedure is executed for a group of k multiplication gates with input wires
α and β, and output wires γ.

1. All parties hold
– A packed Beaver triple with authentications

(JaKn−k, JbKn−k, ([c]n−1, {〈∆ · ci〉}ki=1).
– A random degree-(n− 1) packed Shamir sharing [λγ ]n−1 with MACs
{〈∆ · λγi〉}ki=1.

– Additive sharings {〈∆ · (λαi − ai)〉, 〈∆ · (λβi − bi)〉}
k
i=1.

And P1 learns
– µα = vα − λα, µβ = vβ − λβ from the previous layers;
– λα − a, λβ − b received from FPrepMal.

2. P1 locally computes vα − a = µα +λα − a. Similarly, P1 locally computes
vβ − b. Then P1 distributes shares of [vα − a]k−1 and [vβ − b]k−1 to all
parties.

3. For all i ∈ {1, . . . , k}, all parties locally compute 〈θαi〉 and 〈θβi〉 as follows.
(a) Recall that all parties have computed additive sharings of the MACs

of the µ values for output wires of multiplication gates and input gates
in previous layers. By using these additive sharings, all parties locally
compute 〈∆ · µαi〉, 〈∆ · µβi〉.

(b) Recall that all parties hold 〈∆ · (λαi − ai)〉, 〈∆ · (λβi − bi)〉. They
locally compute 〈∆ · (vαi − ai)〉 = 〈∆ · µαi〉 + 〈∆ · (λαi − ai)〉 and
〈∆ · (vβi − bi)〉 = 〈∆ · µβi〉+ 〈∆ · (λβi − bi)〉.

(c) Also recall that all parties hold [∆|i]t. All parties locally compute [∆|i]t∗
[vα − a]k−1 and transform it to an additive sharing 〈∆ · (vαi − ai)〉.
Similarly, all parties locally compute [∆|i]t ∗ [vβ − b]k−1 and transform
it to an additive sharing 〈∆ · (vβi − bi)〉.

(d) All parties locally compute 〈θαi〉 = 〈∆ · (vαi − ai)〉 − 〈∆ · (vαi − ai)〉
and 〈θβi〉 = 〈∆ · (vβi − bi)〉 − 〈∆ · (vβi − bi)〉.

4. All parties locally compute [µγ ]n−1 = [vα − a]k−1 ∗ [vβ − b]k−1 + [vα −
a]k−1 ∗ [b]n−k + [vβ − b]k−1 ∗ [a]n−k + [c]n−1 − [λγ ]n−1.

5. For all i ∈ {1, . . . , k}, all parties locally compute an additive sharing 〈∆·µγi〉
as follows.
(a) Recall that all parties hold [∆|i]t from FPrepMal. All parties locally

compute [∆|i]t ∗ [vα − a]k−1 ∗ [vβ − b]k−1 and transform it to an
additive sharing 〈∆ · (vαi − ai) · (vβi − bi)〉.

(b) Recall that all parties hold [∆ ·a]n−k and [∆ · b]n−k. All parties locally
compute [vα−a]k−1 ∗ [∆ ·b]n−k+[vβ−b]k−1 ∗ [∆ ·a]n−k and transform
it to an additive sharing 〈∆ · ((vαi − ai) · bi + (vβi − bi) · ai)〉.

(c) Recall that all parties hold 〈∆ · ci〉 and 〈∆ · λγi〉. All parties locally
compute 〈∆ · µγi〉 = 〈∆ · (vαi − ai) · (vβi − bi)〉+ 〈∆ · ((vαi − ai) · bi +
(vβi − bi) · ai)〉+ 〈∆ · ci〉 − 〈∆ · λγi〉.

6. P1 collects the whole sharing [µγ ]n−1 from all parties and reconstructs µγ .

19



4.4 Output Gates and Verification

At the end of the protocol, all parties together check the correctness of the
computation. We first transform the output sharings to sharings that can be
conveniently checked by clients. However, before reconstructing these outputs
to the clients, the parties jointly verify the correctness of the computation by
checking that (1) the sharings distributed by P1 in πMult have the correct degree
≤ k−1, and (2) the underlying secrets are correct, for which the MACs computed
in the online phase are used.

Due to space constraints, we describe the procedure πOutput in detail in the
full version of this paper, including the computation of the output gates, the
verification of the computation (degree and MAC check), and the reconstruction
of the outputs.

4.5 Full Online Protocol

Our final online protocol makes use of the procedures πInput (Proc. 1, Section 4.2)
to let the clients distribute their inputs, πMult (Proc. 2, Section 4.3) to process
each group of k multiplication gates, and πOutput (Section 4.4) to verify the
correctness of the computation and reconstruct output to the clients. πOutput and
the online protocol ΠOnline are presented in detail in the full version. We prove
the following:

Theorem 2. Let c denote the number of servers and n denote the number of
parties (servers). For all 0 < ε ≤ 1/2, protocol ΠOnline instantiates Functional-
ity FMPC in the FPrepMal-hybrid model, with statistical security against a fully
malicious adversary who can control up to c clients and t = (1 − ε)n parties
(servers).

Communication complexity of ΠOnline. Let I and O be the number of input
wires and output wires, and assume that each client owns a number of input and
output gates that is a multiple of k. We assume for simplicity that n divides each
of these terms, and also that n divides the number of multiplication gates in each
layer. Let us also denote by |C| the number of multiplication gates in the circuit
C. The total communication complexity is given by 4

ε · (I +O) + 6
ε · |C|, ignoring

small terms that are independent of I, O and |C|.

5 Circuit-Dependent Preprocessing Phase

In this section, we discuss how to realize the ideal functionality for the circuit-
dependent preprocessing phase, FPrepMal, presented as Functionality 1. Recall that
k = (n− t+ 1)/2. For simplicity, we only focus on the scenario where t ≥ n/2.

We realize FPrepMal by using a circuit-independent functionality, FPrepIndMal,
which is described below.

20



Functionality 2: FPrepIndMal

1. Setting Authentication Keys: FPrepIndMal samples a random value
∆. Then FPrepIndMal samples k random degree-t Shamir sharings
([∆|1]t, . . . , [∆|k]t) and distributes the shares to all parties.

2. Preparing Random Packed Sharings: For each output wire α of an
input gate or a multiplication gate in the circuit C, FPrepIndMal samples a
random value as λα and computes λα · 1, where 1 = (1, . . . , 1) ∈ Fk. Then
FPrepIndMal samples
– a random degree-(n− k) packed Shamir sharing [λα · 1]n−k,
– and a random additive sharing 〈∆ · λα〉,

and distributes the shares to all parties.
3. Preparing Packed Beaver Triples with Authentications: For each

group of k multiplication gates, FPrepIndMal samples a random packed Beaver
triple with authentications as follows:
(a) FPrepIndMal samples two random vectors a, b ∈ Fkp and computes∆·a,∆·b.

Then FPrepIndMal samples two pairs of random degree-(n − k) packed
Shamir sharings JaKn−k = ([a]n−k, [∆ · a]n−k), JbKn−k = ([b]n−k, [∆ ·
b]n−k).

(b) FPrepIndMal computes c = a ∗ b and ∆ · c. Then FPrepIndMal samples
a random degree-(n − 1) packed Shamir sharing [c]n−1. For all i ∈
{1, . . . , k}, FPrepIndMal samples a random additive sharing 〈∆ · ci〉.

FPrepIndMal distributes the shares of (JaKn−k, JbKn−k, ([c]n−1, {〈∆ · ci〉}ki=1)
to all parties.

4. Preparing Random Masked Sharings for Multiplication Gates:
For each group of k multiplication gates, FPrepIndMal sets o(1) = o(2) =
o(3) = 0 ∈ Fk. Then FPrepIndMal samples three random degree-(n− 1) packed
Shamir sharings [o(1)]n−1, [o

(2)]n−1, [o
(3)]n−1 and distributes the shares to

all parties.
5. Preparing Random Sharings for Input and Output Gates: For each

group of k input gates or output gates, FPrepIndMal prepares the following
random sharings.
(a) FPrepIndMal prepares a random degree-(n− 1) packed Shamir sharing of

0 ∈ Fk, denoted by [o]n−1, in the same way as Step 4.
(b) FPrepIndMal also prepares a random packed Beaver triple with authenti-

cations (JaKn−k, JbKn−k, ([c]n−1, {〈∆ · ci〉}ki=1) in the same way as Step
3. Later, we will view b as an authentication key and c as the MAC of
a. This allows the input holder to verify the correctness of a.

Corrupted Parties: When FPrepIndMal prepares random sharings, corrupted
parties can choose their shares. FPrepIndMal then samples the random sharings
based on the secret it generated and the shares chosen by the corrupted parties.

To instantiate the circuit-dependent preprocessing functionality FPrepMal using
the circuit-independent preprocessing FPrepIndMal, we follow the idea in [15]. We
describe the protocol ΠPrepMal below.

21



Protocol 3: ΠPrepMal

1. All parties invoke FPrepIndMal.
2. Setting Authentication Keys: All parties use {[∆|i]t}ki=1 generated in
FPrepIndMal.

3. Preparing Packed Beaver Triples with Authentications: All parties
use the packed Beaver triples with authentications prepared in FPrepIndMal.

4. Distributing λα − a and λβ − b to P1: In FPrepIndMal, for each output
wire α of an input gate or a multiplication gate, all parties obtain a random
degree-(n− k) packed Shamir sharing with authentication in the form of
([λα · 1]n−k, 〈∆ · λα〉). All parties locally compute ([λα · 1]n−k, 〈∆ · λα〉) for
every wire α in the circuit.
For each group of multiplication gates, let α,β denote the batch of
first input wires and that of the second input wires respectively. Let
(JaKn−k, JbKn−k, ([c]n−1, {〈∆ · ci〉}ki=1) be the packed Beaver triple with au-
thentications associated with these gates. Let ([o(1)]n−1, [o

(2)]n−1, [o
(3)]n−1)

be the random degree-(n − 1) packed Shamir sharings of 0 prepared in
FPrepIndMal. All parties run the following steps:
(a) All parties locally compute [λα − a]n−1 =

(∑k
i=1 ei ∗ [λαi · 1]n−k

)
−

[a]n−k + [o(1)]n−1 and send their shares to P1.
(b) P1 reconstructs λα − a.
(c) For all i ∈ {1, . . . , k}, all parties locally transform [∆ · a]n−k to an

additive sharing 〈∆ · ai〉. Then all parties locally compute 〈∆ · (λαi −
ai)〉 = 〈∆·λαi〉−〈∆·ai〉. All parties locally refresh the obtained additive
sharing.a As a result, all parties hold a random additive sharing of
∆ · (λαi − ai).

(d) Repeat the above steps for λβ − b using [o(2)]n−1.
5. Preparing Authenticated Packed Sharings for Multiplication

Gates: For each group of multiplication gates with output wires γ,
let ([o(1)]n−1, [o

(2)]n−1, [o
(3)]n−1) be the random degree-(n − 1) packed

Shamir sharings of 0 prepared in FPrepIndMal. Recall that all parties hold
{([λγi · 1]n−k, 〈∆ · λγi〉)}ki=1.
All parties locally compute [λγ ]n−1 =

(∑k
i=1 ei ∗ [λγi · 1]n−k

)
+ [o(3)]n−1.

6. Preparing Random Sharings for Input and Output Gates: For
each group of k input gates or output gates, let α denote the output wires
of these k input gates or the input wires of these k output gates. Recall
that all parties obtain [o]n−1 and (JaKn−k, JbKn−k, ([c]n−1, {〈∆ · ci〉}ki=1) in
FPrepIndMal.
Also recall that all parties hold {[λαi ·1]n−k, 〈∆ ·λαi〉}ki=1. All parties locally
compute [λα]n−1 =

(∑k
i=1 ei ∗ [λαi · 1]n−k

)
+ [o]n−1.

a We will discuss how parties locally refresh an additive sharing in the full
version.

Lemma 1. Protocol ΠPrepMal securely computes FPrepMal in the FPrepIndMal-hybrid
model against a malicious adversary who controls t out of n parties.

Lemma 1 is proven in the full version of this paper.

22



Communication complexity ofΠPrepMal. The only communication in Protocol
ΠPrepMal (ignoring calls toΠPrepIndMal) happens in Step 4a. This amounts to 2(n−1)
shares sent to P1, per group of k multiplication gates, so 2n−2

k = 4n−4
ε·n+2 ≤

4
ε per

multiplication gate.

6 Circuit-Independent Preprocessing Phase

In this section, we discuss how to realize the ideal functionality FPrepIndMal for
the circuit-independent preprocessing phase. Recall that k = (n− t+ 1)/2. For
simplicity, we only focus on the scenario where t ≥ n/2. Due to space constrains,
part of the procedures we use to instantiate FPrepIndMal appear in the full version
of this paper. Here, we focus on the fundamental aspects of the instantiation.
Recall that FPrepIndMal is in charge of generating the following correlations:

1. The global random key [∆|1]t, . . . , [∆|k]t;
2. Shamir sharings [λα · 1]n−k and additive sharings 〈∆ · λα〉 for every wire α;
3. A tuple (JaKn−k, JbKn−k, ([c]n−1, {〈∆ · ci〉}ki=1)) and shares of zero [o(1)]n−1,

[o(2)]n−1, [o
(3)]n−1 for every group of k multiplication gates;

4. A tuple (JaKn−k, JbKn−k, ([c]n−1, {〈∆ · ci〉}ki=1)) and a share of zero [o]n−1 for
every group of k input or output gates.

In this section we will focus our attention on how to generate the packed Beaver
triples (JaKn−k, JbKn−k, ([c]n−1, {〈∆ · ci〉}ki=1)). All of the remaining correlations
are discussed in full detail in the full version of this paper.

Building blocks: OLE and VOLE. It is known that protocols in the dishonest
majority setting require computational assumptions. In our work, these appear
in the use of oblivious linear evaluation. Here, we make use of two functionalities,
FnVOLE and Fprog

OLE , which sample OLE correlations as follows. We consider an
expansion function Expand : S → Fmp with seed space S and output length m,
ultimately corresponding to the amount of correlations we aim at generating.

– Fprog
OLE is a two-party functionality such that, on input seeds sa from party

PA and sb from party PB, samples v ← Fmp , and outputs w = u ∗ x− v to
PA and v to PB . Here, u = Expand(sa) and v = Expand(sb). Notice that in
this functionality the parties can choose their inputs (at least, choose their
seeds).

– FnVOLE is an n-party functionality that first distributes ∆i ← F to each party
Pi in an initialize phase, and then, to sample m correlations, the functionality
sends si, (wi

j ,v
i
j)j 6=i to each party Pi, where si is a uniformly random seed,

vij ← Fmp , and wi
j = ui ·∆j − vji , and ui = Expand(si). Notice that in this

functionality, the parties do not choose their inputs (seeds), but rather, the
functionality samples the seeds and sends them to the parties.

The functionalities above are presented in full detail in the full version of
this paper. At a high level, FnVOLE is used to generate authenticated sharings

23



of a uniformly random value, and Fprog
OLE , which allows the parties to set theit

inputs, is used to secure multiply two already-shared secret values. FnVOLE can
be instantiated using pseudo-random correlator generators, as suggested in [25].
On the other hand, for Fprog

OLE we can use the implementation from [25]. As we
are using exactly the same functionalities as in [25], we refer the reader to that
work for instantiations and complexity measures.

Omitted procedures. For our triple generation protocol we will make use of
a series of procedures that are described in full detail in the full version of this
paper. These procedures are the following:

– πRandSh: this procedure generates sharings (under some secret-sharing scheme,
which will be clear from context) of uniformly random values. For this, the
trick of using a Vandermonde matrix for randomness extraction from [13] is
used.

– πDegReduce: this procedure takes as input a sharing [u]n−1 and outputs [u]n−k.
This is achieved by using the trick of masking with a random value [r]n−1,
opening, and unmasking with [r]n−k. This random pair is generated using
πRandSh.

– πAddTran: this procedure takes as input sharings (〈∆ · u1〉, . . . , 〈∆ · uk〉) and
converts them to [∆ · u]n−k. Once again, the trick of masking with a ran-
dom sharing 〈r1〉, . . . , 〈rk〉, opening, and unmasking with [r], is used. The
sharing [r] is obtain using πRandSh, and each 〈ri〉 can be derived from it
non-interactively.

– πMACKey: this procedure enables the parties to obtain individual Shamir
sharings of the global MAC key [∆|1]t, . . . , [∆|k]t, starting from additive
shares of it 〈∆〉 which are obtained using FnVOLE. This is done by using the
standard trick of masking with a random value 〈r〉, opening, and unmasking
with each [r|i]t. These random sharings are obtained using πRandSh.

– πAuth: this procedure takes as input sharings (〈u1〉, . . . , 〈uk〉) to ([u]n−1, {〈∆ ·
ui〉}ki=1). The trick here is to mask with 〈r1〉, . . . , 〈rk〉, open, and adding
[r]n−1 to obtain [u]n−1. The authenticated part can be obtained by first
multiplying locally by each [∆|i]t and then adding each 〈∆ · ri〉. The pair
([r]n−1, {〈∆ · ri〉}ki=1) is produced using πRandSh.

Preparing packed beaver triples with authentications. The procedure to
generate packed Beaver triples with authentications, πTriple, is described below.
This protocol calls πDegReduce twice, πAddTran twice, and πAuth once per triple.

Procedure 4: πTriple

Initialization: All parties run the following initialization step only once.

1. Each Pi calls FnVOLE with input Init and receives ∆i.
2. All parties invoke πRandSh to prepare random sharings {[r|i]t}ki=1 and then

invoke πMACKey and obtain {[∆|i]t}ki=1.

24



Generation:

1. Each Pi calls FnVOLE twice with input Extend and receives the seeds
sia, s

i
b. Use the outputs to define degree-(n − 1) packed Shamir sharings

{[a`]n−1}m`=1, {[b`]n−1}m`=1, where m is the output length of the expan-
sion function defined in FnVOLE, such that the i-th shares of {[a`]n−1}m`=1

are Expand(sia), and the i-th shares of {[b`]n−1}m`=1 are Expand(sib). All
parties locally compute and refresh {(〈∆ · a`,1〉, . . . , 〈∆ · a`,k〉)}m`=1 and
{(〈∆ · b`,1〉, . . . , 〈∆ · b`,k〉)}m`=1.

2. Every ordered pair (Pi, Pj) calls Fprog
OLE with Pi sending sia and Pj sending

sjb. F
prog
OLE sends back ui,j to Pi and vj,i to Pj such that ui,j + vj,i =

Expand(sia)∗Expand(sjb). All parties locally compute {(〈c`,1〉, . . . , 〈c`,k〉)}m`=1

where c` = a` ∗ b`.
3. All parties invoke πRandSh to prepare m random sharings in the form of

([r]n−k, [r]n−1). For all ` ∈ {1, . . . ,m}, consume a pair of random sharings
([r]n−k, [r]n−1) and invoke πDegReduce to transform [a`]n−1 to [a`]n−k.
Repeat this step for {[b`]n−1}m`=1.

4. All parties invoke πRandSh to prepare m random sharings in the form of
[r]n−k. For all ` ∈ {1, . . . ,m}, consume a random sharing [r]n−k and invoke
πAddTran to transform (〈∆ · a`,1〉, . . . , 〈∆ · a`,k〉) to [∆ · a`]n−k.
Repeat this step for {(〈∆ · b`,1〉, . . . , 〈∆ · b`,k〉)}m`=1.

5. All parties follow Step 1 to prepare m random sharings with authentications
in the form of ([r]n−1, {〈∆ · ri〉}ki=1). For all ` ∈ {1, . . . ,m}, consume
a random sharing ([r]n−1, {〈∆ · ri〉}ki=1) and invoke πAuth to transform
(〈c`,1〉, . . . , 〈c`,k〉) to ([c`]n−1, {〈∆ · c`,i〉}ki=1).

We remark that the triples produced by πTriple may not be correct, but this
can be checked by running a verification step in which the parties generate an
extra triple and “sacrifice” it in order to check for correctness. This is described
in the full version, where three procedures πSacrifice, πCheckZero and πVerifyDeg to
perform this check are introduced.

Communication complexity of πTriple. This is derived as follows

– (Step 3) Two calls to πRandSh to generate two pairs ([r]n−k, [r]n−1), which
costs 2n, and two calls to πDegReduce, which costs 2(2n− k). These sum up to
6n− 2k

– (Step 4) Two calls to πRandSh to generate [r]n−k and two calls to πAddTran.
These add up to 2(n/2) + 2(k · (n− 2) + n+ 1).

– (Step 5) One call to πAuth, which is k · (n− 2) + n+ 1.

The above totals k · (3n− 8) + 10n+ 3.

Remark 1 (On the output size of Fprog
OLE and FnVOLE). We make the crucial ob-

servation that, in order to obtain m packed multiplication triples, we require
the Expand function used in Functionalities Fprog

OLE and FnVOLE to output m field
elements. However, since each such packed triple is used for a group of k multi-
plication gates, this effectively means that, if there are |C| multiplication gates

25



in total, we only require Expand to output |C|/k ≈ 2|C|/(εn) correlations. In
contrast, as we will see in the full version of this paper, the best prior work
Turbospeedz [3], when instantiated with the preprocessing from Le Mans [25],
would require |C| correlations from the FnVOLE and Fprog

OLE . As a result, we manage
to reduce by a factor of k the expansion requirements on VOLE/OLE techniques,
which has a direct effect on the resulting efficiency since this allows us to choose
better parameters for the realizations of Fprog

OLE and FnVOLE. We do not explore
these concrete effects in efficiency as it goes beyond the scope of our work, but
we refer the reader to [25] where an instantiation of Fprog

OLE and a discussion on
PCG-based FnVOLE is presented.

Final circuit-independent preprocessing protocol. In the full version of
this paper, we present the final protocol, ΠPrepIndMal, that puts together the
pieces we have discussed so far, together with the techniques to generate the
remaining correlations, in order to instantiate Functionality FPrepIndMal. The proof
of the lemma below will be available in the full version. We also analyze the
communication complexity of ΠPrepIndMal and conclude that, per multiplication
gate (ignoring terms that are independent of the circuit size), 6n+ 35

ε elements
are required.

Lemma 2. Protocol ΠPrepIndMal securely computes FPrepIndMal in the {Fprog
OLE ,FnVOLE,

FCommit,FCoin}-hybrid model against a malicious adversary who controls t out of
n parties.

7 Implementation and Experimental Results

We have fully implemented the three phases of SuperPack, ΠOnline, ΠPrepMal

and ΠPrepIndMal, only ignoring the calls to the Fprog
OLE and FnVOLE functionalities

for the implementation of ΠPrepIndMal. In this section we discuss our experimental
results.

Implementation setup. We implement SuperPack by using as a baseline the
code of TurboPack [15].1011 As TurboPack, our program is written in C++
with no dependencies beyond the standard library. Our implementation includes
fully functional networking code. However, for the experiments, we deploy the
protocol as multiple processes in a single machine, and emulate real network
conditions using the package netem12, which allows us to set bandwidth and
latency constraints. We use the same machine as in [15] for the experiments,
namely an AWS c5.metal instance with 96 vCPUs and 192 GiB of memory. For
our protocol, we use a finite field F = Fp where p = 261 − 1. We explore how the
performance of our protocol is affected by the parameters including the number
of parties n, the width and depth of the circuit, the network bandwidth and the
values of ε such that t = n(1− ε) is the threshold for corrupted parties.
10 TurboPack is available at https://github.com/deescuderoo/turbopack
11 SuperPack is available at https://github.com/ckweng/SuperPack
12 https://wiki.linuxfoundation.org/networking/netem

26

https://github.com/deescuderoo/turbopack
https://github.com/ckweng/SuperPack
https://wiki.linuxfoundation.org/networking/netem


Width # Parties Percentage of corrupt parties

90% 80% 70% 60%

100
16 0.63, 0.07, 1.22 0.56, 0.06, 1.26 0.33, 0.06, 1.25 0.34, 0.06, 1.26
32 0.47, 0.11, 2.86 0.47, 0.11, 2.90 0.75, 0.11, 2.86 0.62, 0.09, 2.87
48 0.35, 0.18, 5.77 0.63, 0.16, 6.41 0.68, 0.15, 6.33 0.68, 0.13, 6.01

1k
16 0.44, 0.21, 2.10 0.45, 0.16, 2.14 0.45, 0.20, 2.1 0.66, 0.16, 2.15
32 0.50, 0.69, 8.38 0.61, 0.63, 9.08 0.58, 0.54, 9.05 0.64, 0.62, 8.78
48 0.59, 1.46, 21.31 0.97, 1.15, 25.93 0.90, 1.05, 24.70 0.69, 1.01, 24.20

10k
16 1.74, 2.03, 14.10 1.49, 1.64, 13.36 1.45, 1.64, 13.39 1.28, 1.43, 12.44
32 2.36, 6.25, 70.71 2.03, 5.60, 73.98 2.26, 4.80, 70.47 2.32, 4.45, 67.16
48 3.24, 12.48, 196.97 3.19, 10.39, 238.32 3.49, 9.49, 227.80 4.14, 7.87, 201.17

100k
16 11.84, 15.39, 147.03 9.60, 12.46, 140.01 9.63, 12.56, 140.18 8.74, 10.68, 129.89
32 19.84, 64.61, 714.02 17.46, 46.56, 749.22 18.39, 38.70, 716.26 19.18, 35.03, 682.54
48 27.62, 124.22, 1978.42 27.56, 103.55, 2374.39 31.55, 92.74, 2256.70 36.98, 78.55, 1998.26

Table 2. Running times in seconds of SuperPack across its three different phases,
for different circuit widths, number of parties, and values of ε. Each cell is a triple
corresponding to the runtimes of the online phase, circuit-dependent offline phase, and
circuit-independent offline phase (ignoring OLE calls), respectively. All the circuits have
depth 10.

End-to-end runtimes. We first report the running times of our SuperPack
protocol for each of the three phases: circuit-independent preprocessing, circuit-
dependent preprocessing, and online phase. The results are given in Table 2. In our
experiments, we show the running time of our protocol for different parameters.
We throttle the bandwidth to 1Gbps and network latency to 1ms to simulate a
LAN setting. We generate four generic 10-layer circuits of widths 100, 1k, 10k
and 100k. For each circuit, we benchmark the SuperPack protocol of which
the number of parties are chosen from {16, 32, 48}. After fixing the circuit and
parties, the percentage of corrupt parties varies from 60%, 70%, 80% and 90%.
Generally the running time increases as the width and number of parties increase.
As demonstrated in Table 2, the majority of running time is incurred by the
circuit-independent preprocessing. For n = 48 and width larger than 1k, the online
phase only occupies less than 5% of the total running time. Furthermore, it is
important to observe that the runtimes of the online and circuit-dependent offline
phases do not grow at the same rate as the runtimes for the circuit-independent
offline phase. This is consistent with what we expect: as can be seen from Table 1,
the communication in the first two phases is independent of the number of parties
for a given ε, which is reflected in the low increase rate in runtimes for these
phases (there is still a small but noticeable growth, but this is not surprising
since even though communication is constant, computation is not). In contrast,
the communication in the circuit-independent offline phase depends linearly on
the number of parties, which impacts runtimes accordingly.

Experimental comparison to Turbospeedz. Now we compare the online phase of
our protocol and compare it against that of Turbospeedz [3],13 for a varying
number of parties n and parameter ε. We fix the circuit to have width 100k and
depth 10, but we vary the bandwidth in {500, 100, 50, 10}mbps. The results are
13 We implemented the online phase of Turbospeedz in our framework for a fair com-

parison.

27



given in Table 3. Notice that we report the improvement factor of our online phase
with respect to that of Turbospeedz. The concrete runtimes will be available in
the full version. We also report the communication factors between our protocol
and Turbospeedz, for reference.

Table 3 shows interesting patterns. First, as expected (and as analyzed theo-
retically in the full version), our improvement factor with respect to Turbospeedz
improves (i.e. increases) as the number of parties grows—since in this case com-
munication in Turbospeedz grows but in our case remains constant—or as the
percentage of corruptions decreases—since in this case we can pack more secrets
per sharing. Now, notice the following interesting behavior. The last rows next
to the “comm. factor” rows represent the improvement factor of our online phase
with respect to Turbopeedz, in terms of communication. In principle, this is the
improvement factor we would expect to see in in terms of runtimes. However,
we observe that the expected factor is only reasonably close to the experimental
ones for low bandwidths such as 10, 50 and 100 mbps. For the larger bandwidth
of 500 mbps, we see that the experimental improvement factors are much lower
than the ones we would expect, and in fact, there are several cases where we
expect our protocol to be even slightly better, and instead it performs worse.

The behavior above can be explained in different ways. First, we notice that
it is not surprising that our improvement factor increases as the bandwidth
decreases, since in this case the execution of the protocol becomes communication
bounded, and computation overhead becomes negligible. In contrast, when the
bandwidth is high, communication no longer becomes a bottleneck, and compu-
tation plays a major role. Here is where our protocol is in a slight disadvantage:
in SuperPack, the parties (in particular P1) must perform polynomial inter-
polation in a regular basis, while in Turbospeedz these operations correspond
to simple field element multiplications, which are less expensive. We remark
that our polynomial interpolation is very rudimentary, and a more optimized
implementation (e.g. using FFTs) may be the key to bridging the gap between
our protocol and Turbospeedz, even for the case when bandwidth is large. Finally,
we remark that SuperPack remains the best option even with high bandwidth
when the fraction of honest parties is large enough.

Acknowledgments

This paper was prepared in part for information purposes by the Artificial
Intelligence Research group of JPMorgan Chase & Co and its affiliates (“JP
Morgan”), and is not a product of the Research Department of JP Morgan. JP
Morgan makes no representation and warranty whatsoever and disclaims all
liability, for the completeness, accuracy or reliability of the information contained
herein. This document is not intended as investment research or investment
advice, or a recommendation, offer or solicitation for the purchase or sale of
any security, financial instrument, financial product or service, or to be used
in any way for evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or to any person, if such

28



Bandwidth # Parties Percentage of corrupt parties

90% 80% 70% 60%

500 mbps

16 0.51 0.44 0.42 0.50
32 0.55 0.68 0.68 0.72
48 0.58 0.87 1.00 1.14
64 0.75 0.92 1.30 1.22
80 0.95 1.27 1.57 1.40

100 mbps

16 0.97 1.08 1.05 1.20
32 1.43 1.67 1.88 1.95
48 1.51 2.38 2.78 3.07
64 2.08 2.95 3.37 3.47
80 2.51 3.88 4.57 4.56

50 mbps

16 1.08 1.31 1.31 1.45
32 1.57 1.99 2.43 2.44
48 1.73 2.88 3.43 3.76
64 2.24 3.60 4.55 4.34
80 2.76 4.51 5.30 5.59

10 mbps

16 1.10 1.40 1.39 1.53
32 1.58 2.00 2.53 2.68
48 1.81 3.04 3.61 3.94
64 2.31 3.60 4.73 5.28
80 2.91 4.56 5.73 6.22

Comm. factor

16 0.48 0.85 1.12 1.28
32 0.96 1.71 2.24 2.56
48 1.44 2.56 3.36 3.84
64 1.92 3.41 4.48 5.12
80 2.4 4.27 5.6 6.4

Table 3. Improvement factors of our online protocol with respect to the online phase in
Turbospeedz, for a varying number of parties, ε and network bandwidth. The network
delay is 1ms for the simulation of LAN network. The number represents how much
better (or worse) our online phase is with respect to that of Turbospeedz. The circuits
have depth 10 and width 10k. In the final five rows we show the corresponding factors
but measuring communication complexity, instead of runtimes.

solicitation under such jurisdiction or to such person would be unlawful. 2022 JP
Morgan Chase & Co. All rights reserved.

References

1. Beaver, D.: Efficient multiparty protocols using circuit randomization. pp. 420–432
(1992). https://doi.org/10.1007/3-540-46766-1_34

2. Beck, G., Goel, A., Jain, A., Kaptchuk, G.: Order-C secure multiparty computa-
tion for highly repetitive circuits. pp. 663–693 (2021). https://doi.org/10.1007/
978-3-030-77886-6_23

3. Ben-Efraim, A., Nielsen, M., Omri, E.: Turbospeedz: Double your online SPDZ!
Improving SPDZ using function dependent preprocessing. pp. 530–549 (2019).
https://doi.org/10.1007/978-3-030-21568-2_26

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). pp. 1–10
(1988). https://doi.org/10.1145/62212.62213

29

https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-030-77886-6_23
https://doi.org/10.1007/978-3-030-77886-6_23
https://doi.org/10.1007/978-3-030-77886-6_23
https://doi.org/10.1007/978-3-030-77886-6_23
https://doi.org/10.1007/978-3-030-21568-2_26
https://doi.org/10.1007/978-3-030-21568-2_26
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213


5. Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryp-
tion and multiparty computation. pp. 169–188 (2011). https://doi.org/10.1007/
978-3-642-20465-4_11

6. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-knowledge
proofs on secret-shared data via fully linear PCPs. pp. 67–97 (2019). https://doi.
org/10.1007/978-3-030-26954-8_3

7. Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Efficient fully secure computation via
distributed zero-knowledge proofs. pp. 244–276 (2020). https://doi.org/10.1007/
978-3-030-64840-4_9

8. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. pp. 136–145 (2001). https://doi.org/10.1109/SFCS.2001.959888

9. Chida, K., Genkin, D., Hamada, K., Ikarashi, D., Kikuchi, R., Lindell, Y., Nof, A.:
Fast large-scale honest-majority MPC for malicious adversaries. pp. 34–64 (2018).
https://doi.org/10.1007/978-3-319-96878-0_2

10. Couteau, G.: A note on the communication complexity of multiparty computation
in the correlated randomness model. pp. 473–503 (2019). https://doi.org/10.
1007/978-3-030-17656-3_17

11. Damgård, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation
and the computational overhead of cryptography. pp. 445–465 (2010). https:
//doi.org/10.1007/978-3-642-13190-5_23

12. Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. pp.
1–18 (2013). https://doi.org/10.1007/978-3-642-40203-6_1

13. Damgård, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty compu-
tation. pp. 572–590 (2007). https://doi.org/10.1007/978-3-540-74143-5_32

14. Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. pp. 643–662 (2012). https://doi.org/10.
1007/978-3-642-32009-5_38

15. Escudero, D., Goyal, V., Polychroniadou, A., Song, Y.: TurboPack: Honest majority
MPC with constant online communication. pp. 951–964 (2022). https://doi.org/
10.1145/3548606.3560633

16. Franklin, M.K., Yung, M.: Communication complexity of secure computation (ex-
tended abstract). pp. 699–710 (1992). https://doi.org/10.1145/129712.129780

17. Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party computation: From
passive to active security via secure SIMD circuits. pp. 721–741 (2015). https:
//doi.org/10.1007/978-3-662-48000-7_35

18. Genkin, D., Ishai, Y., Prabhakaran, M.M., Sahai, A., Tromer, E.: Circuits resilient
to additive attacks with applications to secure computation. In: Proceedings of
the Forty-sixth Annual ACM Symposium on Theory of Computing. pp. 495–504.
STOC ’14, ACM, New York, NY, USA (2014). https://doi.org/10.1145/2591796.
2591861, http://doi.acm.org/10.1145/2591796.2591861

19. Goldwasser, S., Lindell, Y.: Secure multi-party computation without agree-
ment. J. Cryptol. 18(3), 247–287 (jul 2005). https://doi.org/10.1007/
s00145-005-0319-z, https://doi.org/10.1007/s00145-005-0319-z

20. Goyal, V., Li, H., Ostrovsky, R., Polychroniadou, A., Song, Y.: ATLAS: Efficient
and scalable MPC in the honest majority setting. pp. 244–274 (2021). https:
//doi.org/10.1007/978-3-030-84245-1_9

21. Goyal, V., Polychroniadou, A., Song, Y.: Unconditional communication-efficient
MPC via hall’s marriage theorem. pp. 275–304 (2021). https://doi.org/10.1007/
978-3-030-84245-1_10

30

https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-64840-4_9
https://doi.org/10.1007/978-3-030-64840-4_9
https://doi.org/10.1007/978-3-030-64840-4_9
https://doi.org/10.1007/978-3-030-64840-4_9
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1145/3548606.3560633
https://doi.org/10.1145/3548606.3560633
https://doi.org/10.1145/3548606.3560633
https://doi.org/10.1145/3548606.3560633
https://doi.org/10.1145/129712.129780
https://doi.org/10.1145/129712.129780
https://doi.org/10.1007/978-3-662-48000-7_35
https://doi.org/10.1007/978-3-662-48000-7_35
https://doi.org/10.1007/978-3-662-48000-7_35
https://doi.org/10.1007/978-3-662-48000-7_35
https://doi.org/10.1145/2591796.2591861
https://doi.org/10.1145/2591796.2591861
https://doi.org/10.1145/2591796.2591861
https://doi.org/10.1145/2591796.2591861
http://doi.acm.org/10.1145/2591796.2591861
https://doi.org/10.1007/s00145-005-0319-z
https://doi.org/10.1007/s00145-005-0319-z
https://doi.org/10.1007/s00145-005-0319-z
https://doi.org/10.1007/s00145-005-0319-z
https://doi.org/10.1007/s00145-005-0319-z
https://doi.org/10.1007/978-3-030-84245-1_9
https://doi.org/10.1007/978-3-030-84245-1_9
https://doi.org/10.1007/978-3-030-84245-1_9
https://doi.org/10.1007/978-3-030-84245-1_9
https://doi.org/10.1007/978-3-030-84245-1_10
https://doi.org/10.1007/978-3-030-84245-1_10
https://doi.org/10.1007/978-3-030-84245-1_10
https://doi.org/10.1007/978-3-030-84245-1_10


22. Goyal, V., Polychroniadou, A., Song, Y.: Sharing transformation and dishonest
majority MPC with packed secret sharing. pp. 3–32 (2022). https://doi.org/10.
1007/978-3-031-15985-5_1

23. Goyal, V., Song, Y.: Malicious security comes free in honest-majority MPC. Cryptol-
ogy ePrint Archive, Report 2020/134 (2020), https://eprint.iacr.org/2020/134

24. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic
circuits with malicious adversaries and an honest-majority. pp. 259–276 (2017).
https://doi.org/10.1145/3133956.3133999

25. Rachuri, R., Scholl, P.: Le mans: Dynamic and fluid MPC for dishonest majority.
pp. 719–749 (2022). https://doi.org/10.1007/978-3-031-15802-5_25

26. Shamir, A.: How to Share a Secret. Commun. ACM 22(11), 612–613
(Nov 1979). https://doi.org/10.1145/359168.359176, http://doi.acm.org/10.
1145/359168.359176

31

https://doi.org/10.1007/978-3-031-15985-5_1
https://doi.org/10.1007/978-3-031-15985-5_1
https://doi.org/10.1007/978-3-031-15985-5_1
https://doi.org/10.1007/978-3-031-15985-5_1
https://eprint.iacr.org/2020/134
https://doi.org/10.1145/3133956.3133999
https://doi.org/10.1145/3133956.3133999
https://doi.org/10.1007/978-3-031-15802-5_25
https://doi.org/10.1007/978-3-031-15802-5_25
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176

	SuperPack: Dishonest Majority MPC with Constant Online Communication

