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Abstract. Secure computation enables mutually distrusting parties to
jointly compute a function on their secret inputs, while revealing nothing
beyond the function output. A long-running challenge is understanding
the required communication complexity of such protocols—in particular,
when communication can be sublinear in the circuit representation size of
the desired function. Significant advances have been made affirmatively
answering this question within the two-party setting, based on a variety
of structures and hardness assumptions. In contrast, in the multi-party
setting, only one general approach is known: using Fully Homomorphic
Encryption (FHE). This remains the state of affairs even for just three
parties, with two corruptions.
We present a framework for achieving secure sublinear-communication
(N +1)-party computation, building from a particular form of Function
Secret Sharing for only N parties. In turn, we demonstrate implications
to sublinear secure computation for various function classes in the 3-
party and 5-party settings based on an assortment of assumptions not
known to imply FHE.

Keywords: Foundations · Secure Multiparty Computation · Function
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1 Introduction

Secure computation enables mutually distrusting parties to jointly compute a
function on their secret inputs, while revealing nothing beyond the function
output. Since the seminal feasibility results of the 1980s [6, 19, 30, 42], a major
challenge in the area has been if and when it is possible to break the “circuit-size
barrier.” This barrier refers to the fact that all classical techniques for secure com-
putation required a larger amount of communication than the size of a boolean
circuit representing the function to be computed. In contrast, insecure computa-
tion only requires exchanging the inputs, which are usually considerably smaller
than the entire circuit.

This challenge eluded the field for nearly two decades, aside from partial
results that either required exponential computation [4, 37], or were limited to
very simple functions (such as point functions [21, 22, 36] or constant-depth cir-
cuits [3]). This changed with the breakthrough result of Gentry [28] on fully



homomorphic encryption (FHE). FHE is a powerful primitive supporting com-
putation on encrypted data, which can be used to build asymptotically optimal-
communication protocols in the computational setting [2, 25].

In the years after, significant progress has been made toward broadening the
set of techniques and class of assumptions under which sublinear-communication
secure computation can be built. A notable such approach is via homomorphic
secret sharing (HSS) [12]. HSS can be viewed as a relaxation of FHE, where ho-
momorphic evaluation can be distributed among two parties who do not interact
with each other, but which still suffices for low-communication secure compu-
tation. Following this approach (explicitly, building forms of HSS for NC1),
sublinear-communication secure protocols have been developed based on the
Decisional Diffie-Hellman (DDH) assumption [12], Decision Composite Residu-
osity (DCR) [27, 38, 41], and further algebraic structures, including a class of
assumptions based on class groups of imaginary quadratic fields [1]. It was ex-
tended to a flavor of the Learning Parity with Noise (LPN) assumption (via
HSS for log log-depth circuits) by [24]. Othogonally to these approaches, which
rely on computational assumptions, [23] built sublinear-communciation secure
computation under an assumption of correlated randomness.

Very recently, a work of [9] demonstrated an alternative approach to sublinear
secure computation through a certain form of rate-1 batch oblivious transfer
(OT), resulting in protocols based on a weaker form of LPN plus Quadratic
Residuosity.

However, aside from the original approach via FHE, all of the above tech-
niques are strongly tied to the two-party setting, as opposed to the general setting
of multiple parties, where all but one can be corrupt.

More concretely, while N -party HSS with security against (N − 1) collud-
ing parties would directly imply the desired result, actually achieving such a
primitive for rich function classes (without tools already implying FHE) beyond
N = 2, is a notable open challenge in the field. The 2-party setting provides
special properties leveraged within HSS constructions; e.g., given an additive
secret sharing of 0, it implies the two parties hold identical values. These prop-
erties completely break down as soon as one steps to three parties with security
against two. This separation can already be showcased for very simple func-
tion classes, such as HSS for equality test (equivalently, “distributed point func-
tions” [11,29]), where to this date an exponential gap remains between the best
constructions in the 2-party versus 3-party setting [11]. For N ≥ 3, there are con-
structions ofN -party FSS for all polynomial-time computable functions, but only
from LWE, by using additive-function-sharing spooky encryption (AFS-spooky
encryption) [26], or from subexponentially secure indistinguishability obfusca-
tion [11]. Additionally, [15] turns this FSS from spooky encryption into additive
HSS. In addition, approaches from the 2-party batch OT primitive seem also to
be strongly tied to two parties.

Despite great progress in the two-party setting—and the fundamental nature
of the question—to date, sublinear secure computation results for 3 or more
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parties remain stuck in the “2009 era”: known only for very simple functions
(e.g., constant-degree computations), or based on (leveled) FHE.

1.1 Our Results

We present a new framework for achieving secure computation with low com-
munication. Ultimately our approach yields new sublinear secure computation
protocols for various circuit classes in the 3-party and 5-party settings, based on
an assortment of assumptions not known to imply FHE.

General framework. Our high-level approach centers around Function Secret
Sharing (FSS) [11], a form of secret sharing where the secret object and shares
comprise succinct representations of functions. More concretely, FSS for function
class F allows a client to split a secret function f ∈ F into function shares
f1, . . . , fN such that any strict subset of fi’s hide f , and for every input x in the
domain of f it holds that

∑N
i=1 fi(x) = f(x). (This can be seen as the syntactic

dual of HSS, where the role of input and function are reversed; we refer the reader
to e.g. [15] for discussion.4)N -party FSS/HSS for sufficiently rich function classes
is known to support low-communication N -party secure computation, but lack
of multi-party FSS constructions effectively leaves us stuck at N = 2.

The core conceptual contribution of this work is the following simple frame-
work, which enables us to achieve (N + 1)-party secure computation by using a
form of FSS for only N parties.

Proposition 1 ((N + 1)-PC from N-FSS framework, informal). For any
ensemble of polynomial-size circuits C = {Cλ}, consider an N -party FSS scheme
for the class of “partial evaluation” functions {Cλ(·, x1, . . . , xN )}λ,x1,...,xN

, and
define the following sub-computation functionalities:

– FFSS
SD : N -party secure FSS share distribution, where each party Pi holds input

xi (and λ), and learns the ith FSS key fi for the function Cλ(·, x1, . . . , xN ).
– FFSS

OE : Two-party oblivious FSS evaluation, where party Pi holds an FSS key
fi, party P0 holds input x0, and P0 learns the ith output fi(x0).

Then there exists a (N + 1)-party protocol for securely computing C making one
call to FFSS

SD and N calls to FFSS
OE .

Once expressed in this form, the resulting (N+1)-party protocol becomes an
exercise: Roughly, it begins by having parties 1, . . . , N jointly execute FFSS

SD on
their inputs x1, . . . , xN to each receive a function share fi of the secret function
f(x0) := Cλ(x0, x1, . . . , xN ), and then each run a pairwise execution of FFSS

OE

together with the remaining party P0 in order to obliviously communicate the
ith output share fi(x). Given these shares, P0 can compute the final output as∑N
i=1 fi(x0). (See the Technical Overview for more detailed discussion.)
The communication of the resulting protocol will be dominated by the ex-

ecutions of FFSS
SD ,FFSS

OE . Of course, the technical challenge thus becomes if and
4 Indeed, we will refer to both notions, using each when more conceptually convenient.
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how one can construct corresponding FSS schemes which admit secure share
distribution and oblivious evaluation with low communication.

Instantiating the framework. We demonstrate how to instantiate the above
framework building from known constructions of Homomorphic Secret Sharing
(HSS) combined with a version of low-communication PIR.

We first identify a structural property of an FSS scheme which, if satis-
fied, then yields a low-communication procedure for oblivious share evaluation,
through use of a certain notion of “correlated” (batch) Symmetric Private Infor-
mation Retrieval (SPIR). Loosely, correlated SPIR corresponds to a primitive
where a client wishes to make correlated queries into m distinct size-S databases
held by a single server. Without correlation between queries, the best-known
PIR constructions would require m · polylog(S) communication. However, it was
shown in [9] that if the m index queries (each logS bits) are given by various
subsets of a fixed bit string of length n� m logS held by the client, then (using
the rate-1 batch OT constructions from [18]) this batch SPIR can be performed
with significantly lower communication.

We then demonstrate that FSS schemes with the necessary structural prop-
erty can be realized from existing constructions of HSS. Loosely speaking, the
FSS evaluation procedure will be expressible as a polynomial (which depends
on x1, . . . , xN ) evaluated on the final input x0, and the HSS will enable the N
parties to compute additive secret shares of the coefficients of this corresponding
polynomial.

We further extend the approach to support an underlying HSS scheme satis-
fying only a weaker notion of correctness, with inverse-polynomial (Las Vegas)
error. In such scheme, homomorphic evaluation may fail with noticeable prob-
ability (over the randomness of share generation), in a manner identifiable to
one or more parties. This is the notion satisfied by the 2-party HSS construc-
tions from Decisional Diffie-Hellman [12], or Learning With Errors with only a
polynomial-size modulus [17,26]. This error must be removed in our construction
while incurring minimal additional interaction. We demonstrate how to do so,
using (standard) Private Information Retrieval [22] and punctured pseudoran-
dom functions [8,16,34]. Note that the former is implied by correlated SPIR, and
the latter implied by any one-way function, so that these tools do not impose
additional assumptions in the statement below.

Theorem 2 (Sublinear MPC, informal). For any ensemble of polynomial-
size circuits C = {Cλ} of size s, depth log log s, and with n inputs and m outputs,
if there exists the following:

– Correlated Symmetric Batch PIR, for m size-s databases where queries come
from n bits, with communication O(n +m + poly(λ) + comm(s)) for some
function comm.

– (Las Vegas) N -party Homomorphic Secret Sharing with compact shares (size
O(n) for input size n), for the class of log log-depth boolean circuits.
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Then there exists a secure (N+1)-party computation protocol for C with commu-
nication O(n+m+poly(λ)+N ·comm(s)). In particular, sublinearity is achieved
when N · comm(s) ∈ o(s).

Remark 3 (Compiling Sublinear MPC from Passive to Active Security). In this
work, we focus on security against semi-honest adversaries. However, all our
results extend immediately to the malicious setting, using known techniques.
Indeed, to get malicious security while preserving sublinearity, one can just use
the seminal GMW compiler [30] with zero-knowledge arguments, instantiating
the ZKA with (interactive) succinct arguments [37]. Using Kilian’s PCP-based
4-move argument [35], which has polylogarithmic communication, this can be
done using any collision-resistant hash function. The latter are implied by all
assumptions under which we base sublinear MPC, hence our results generalise
directly to the malicious setting. This observation was made in previous works
on sublinear-communication secure computation (e.g. [10, 12,24]).

Remark 4 (Beyond Boolean circuits). The above approach can be extended to
arithmetic circuits over general fields F, by replacing the correlated SPIR with an
analogous form of (low-communication) correlated oblivious polynomial evalua-
tion (OPE). We discuss and prove this more general result in the main body, but
focus here on the Boolean setting, as required instantiations of such correlated-
OPE beyond constant-size fields are not yet currently known.

Resulting constructions. Finally, we turn to the literature to identify construc-
tions of the required sub-tools, yielding resulting sublinear secure computation
results from various mathematical structures and computational assumptions.

Corollary 5 (Instantiating the framework, informal). There exists secure
3-party computation for evaluating Boolean circuits of size s and depth log log s
with n inputs and m outputs, with communication complexity O(n +m +

√
s ·

poly(λ) · (n + m)2/3) based on the Learning Parity with Noise (LPN) assump-
tion for any inverse-polynomial error rate, together with any of the following
additional computational assumptions:

– Decisional Diffie-Hellman (DDH)
– Learning with Errors with polynomial-size modulus (poly-modulus LWE)
– Quadratic Residuosity (QR) + superpolynomial LPN5

This can be extended under the same assumptions to secure 3-party compu-
tation of general “layered” (in fact, only locally synchronous6) circuits of depth d

5 Superpolynomial hardness of LPN with a small inverse-superpolynomial error rate,
but few samples, as assumed in [24].

6 A circuit is layered [32] if all gates and inputs are arranged into layers, such that
any wire only connects one layer to the next, but each input may occur multiple
times at different layers. A layered circuit is locally synchronous [5] if each input
occurs exactly once (but at an arbitrary layer). A locally synchronous circuit is
synchronous [33] if all inputs are in the first layer.
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and size s with communication O(s/ log log s+d1/3 ·s2(1+ε)/3 ·poly(λ)), for arbi-
trary small constant ε. The latter is sublinear in s whenever d = o(s1−ε/poly(λ)),
i.e., the circuit is not too “tall and skinny.”

If we further assume the existence of a constant-locality PRG with some
polynomial stretch and the super-polynomial security of the Decisional Composite
Residuosity (DCR) assumption, then the above extends to the 5-party setting,
both for loglog-depth boolean circuits and for layered boolean circuits.

More concretely, the required notion of correlated SPIR was achieved in [9],
building on [18], from a selection of different assumptions. The required HSS
follows for N = 2 from DDH from [12], LWE with polynomial-size modulus
from [17, 26], DCR from [38, 41], and from superpolynomial LPN from [24]. It
holds for N = 4 from DCR from [20] (with some extra work, complexity lever-
aging, and restrictions; see technical section). Note that combining the works
of [18, 38] seems to implicitly yield rate-1 batch OT from DCR, and in turn
correlated SPIR [9]: if true, the assumptions for sublinear-communication five-
party MPC can be simplifed to constant-locality PRG, LPN, and superpolyno-
mial DCR (without the need for DDH, LWE, or QR). Since this claim was never
made formally, we do not use it.

A beneficial consequence of our framework is that future developments within
these areas can directly be plugged in to yield corresponding new constructions
and feasibilities.

1.2 Technical Overview

General framework. Recall the secure computation framework via homomor-
phic secret sharing (HSS). Given access to an N -party HSS scheme supporting
homomorphic evaluation of the desired circuit C, the parties begin by jointly
HSS-sharing their inputs via a small secure computation. Each party can then
homomorphically evaluate the circuit C on its respective HSS share without
interaction, resulting in a short output share that it exchanges with all other
parties. The parties can then each reconstruct the desired output by combin-
ing the evaluated shares (for standard HSS, this operation is simply addition).
The resulting MPC communication cost scales only with the complexity of HSS
share generation plus exchange of (short) output shares, but remains otherwise
independent of the complexity of C.

In theory, this approach provides sublinear secure computation protocols for
any number of parties N . In practice, however, we simply do not have HSS
constructions for rich function classes beyond N = 2 with security against col-
lusion of two or more corrupted parties, crucial for providing the corresponding
MPC security. This remains a standing open question that has received notable
attention, and unfortunately seems to be a challenging task.

A natural question is whether the above framework can somehow be modified
to extend beyond the number of parties N supported by the HSS, for example
to N ′ = N + 1. The issue with the above approach is that parties cannot afford
to secret share their input to any N -subset in which they do not participate, as
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all parties within this subset may be corrupt, in which case combining all HSS
shares reveals the shared secrets.

Instead, suppose that only the N parties share their inputs amongst each
other. In this case, there is no problem with all N shareholding parties being
corrupt, as this reveals only their own set of inputs. But, we now have a challenge:
how to involve the final party’s input into the computation?

In the HSS framework, parties each homomorphically evaluated the public C
on shares. Suppose, on the other hand, the HSS supports homomorphic evalua-
tion of the class of functions Cx0 := C(x0, ·, . . . , ·). Or, more naturally, consider
a dual view: Where the N parties collectively generate shares of a secret func-
tion C(·, x1, . . . , xN ) with their inputs hardcoded, which accepts a single input
x0 and outputs C(x0, . . . , xN ). That is, using function secret sharing (FSS).

Of course, normally in FSS we think of the input on which the function is
to be evaluated (in this case, x0) as a public value, which each shareholder will
know. Here, this clearly cannot be the case. Instead, we consider a modified
approach, where each of the N FSS shareholders will perform a pairwise obliv-
ious evaluation procedure, with the final (N + 1)st party P0. That is, the ith
shareholder holds the ith function key FSS ki, which defines a share evaluation
function “fi”= FSS.Eval(i, ki, ·). As a result of the oblivious evaluation, party
P0 will learn the evaluation yi = FSS.Eval(i, ki, x0) of this function on its secret
input x0, and neither party will learn anything beyond this; in particular, P0

does not learn ki, and Pi does not learn x0. At the conclusion of this phase,
party P0 learns exactly the set of N output shares, and can reconstruct the final
output C(x0, · · · , xN ) = y1 + · · ·+ yN and send to all parties.

The corresponding high-level protocol template is depicted in Figure 1. Here,
FFSS

SD represents an ideal N -party functionality for N -FSS share generation (de-
fined formally in Figure 2 of Section 3), where each party provides its input xi
and receives its FSS share ki. FFSS

OE represents an ideal two-party functionality for
oblivious FSS share evaluation (defined formally in Figure 3 of Section 3), where
Pi and P0 respectively provide inputs ki and x0, and P0 learns the evaluation
FSS.Eval(i, ki, x0).

Consider the (passive) security of the proposed scheme against up to N cor-
ruptions. If the corrupted parties are (any subset of) those holding FSS shares,
then since the parties execute a secure computation for share generation, their
view is restricted to a subset of FSS key shares (ki)i∈T , which hides any honest
parties’ inputs (xi)i∈[N ]\T by the security of the FSS. (Note if all N shareholding
parties are corrupt, then this statement holds vacuously, as no honest parties’
inputs were involved.) If the corrupted parties include P0 together with a (neces-
sarily strict) subset of FSS shareholders, then their collective view consists of a
strict subset of FSS keys (ki)i∈T together with evaluated output shares (yi)i∈[N ].
However, the security of the FSS combined with the additive reconstruction of
output shares implies this reveals nothing beyond the function output.7

7 Note that in fact we do not need FSS with additive reconstruction, but rather any
form of reconstruction will suffice, as long as the output shares provide this property
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FFSS
SD

Generate FSS keys (k1, . . . , kN ) for
C(·, x1, . . . , xN )

P1 P2
. . . PN

x1 k1 x2 k2 xN kN

FFSS
OE

k1

FFSS
OE

k2

FFSS
OE

kN

P0

x0 y1 x0 y2 x0 yN

Broadcast

y1 + · · ·+ yN

First Phase: N -Party
FSS share distribution
for the “partially eval-
uated circuit”.

Second Phase: Obliv-
ious evaluation by
P0 of each function
share.

yi ← FSS.Eval(i, ki, x)

Third Phase: Output
reconstruction.

Fig. 1: Template for (N + 1)-party sublinear secure computation of C from N -
party additive FSS.

Now, in order for this framework to provide low communication, it must be
the case that we have an FSS scheme for the relevant partial-evaluation function
class {fα1,...,αN

= C(·, α1, . . . , αN )}, for which the following two steps can be
performed succinctly:

– Secure N -party FSS share generation, and
– Oblivious evaluation by P0 of each function share.

We next address approaches for how each of these pieces can be achieved.

Oblivious evaluation for “Loglog-depth” FSS via PIR. Consider first the pairwise
oblivious FSS evaluation procedure, where P0 holds x0, party Pi holds FSS key
ki, and P0 should learn FSS.Eval(i, ki, x0).

Since this is reduced to a 2-party functionality, a natural first place to look
would be for FSS schemes where FSS.Eval(i, ki, ·) is within a function class al-
ready admitting low-communication 2-party secure computation. Unfortunately,
this is more challenging than it sounds. While sublinear-communication 2PC
exists for general layered circuits from a variety assumptions, recall that the
sublinearity will be here in the complexity not of C, but of FSS.Eval, almost
certainly a more complex computation.

of revealing nothing beyond the function output. We formalize this property, and
prove it holds for additive reconstruction, in the full version of the paper.
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Indeed, the idea of increasing the number of parties by homomorphically eval-
uating an HSS.Eval has previously been considered in the related setting of HSS,
and hit similar limitations. For example, relatively strong HSS schemes based
on DDH or DCR support homomorphic evaluation (and thus secure computa-
tion with very low communication) of NC1; but, the corresponding operations
required to actually compute HSS.Eval itself lies outside of NC1. In [14], this was
addressed by instead securely computing a (low-depth) randomized encoding of
the evaluation operation, effectively squashing the depth of the computation
to be securely performed. This enabled them to achieve low round complex-
ity, but resulted in large communication (scaling with the size of the entire
HSS.Eval circuit). Recently, it was shown by Chillotti et al. [20] that for the
specific DCR-based HSS construction of [38,41], HSS.Eval for homomorphically
evaluating a constant-degree computation can be computed within NC1. How-
ever, this only gives low-communication secure computation for constant-degree
functions, which will not suffice for overall sublinearity.

Instead, we take a different approach, going beyond black-box use of existing
sublinear 2PC results. While the full FSS.Eval(i, ki, x0) computation itself may
be complex, suppose it is the case that it can be decomposed into two parts:
(1) some form of precomputation, depending only on i and ki, followed by (2)
computation on x0, which is of low complexity. More concretely, consider the
output of part (1) to be a new circuit CEval whose input is x0 and output is
FSS.Eval(i, ki, x0), and suppose it is the case that CEval has low log log(s) depth
(where s is the size of the original circuit C the parties wish to compute in the
MPC). Note that while CEval has low depth, its identity depends on the secret
ki (of Pi), so that black-box secure computation of CEval does not apply.

On the other hand, opening the box of one such recent secure computa-
tion protocol, we identify that an intermediate tool developed actually has
stronger implications. The tool is correlated batch symmetric PIR, for short
correlated SPIR [9], which as discussed above, enables low-communication of
several batched instances of (single-server) SPIR whose queries are correlated.
In this case, the m “databases” will be defined implicitly by the m output bits
of the circuit CEval. Because CEval is log log s depth as a function of its input x0
(and circuits are taken to be fan-in 2), each computed output bit depends on at
most log s bits of x0, and as such can be represented as a size-s database indexed
by the corresponding log s input bits. Oblivious evaluation of CEval on x0 can
then be achieved by P0 making m batch queries into these databases, where the
collective query bits are all derived from various bits of the single string x0.

As a brief aside: Extending to larger arithmetic spaces, the role of correlated
SPIR here can be replaced by an analogous version of correlated Oblivious Poly-
nomial Evaluation (OPE). Here, a log log s depth arithmetic circuit CEval can be
expressed as a secret multivariate polynomial in x0 of size poly(s), where each
monomial depends on at most log s elements of the arithmetic vector x0. Unfor-
tunately, we are not presently aware of tools for achieving low-communication
correlated OPE beyond constant-size fields. However, we include this in the tech-
nical exposition, in case such techniques are later developed. We note that the
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final steps in our instantiation (described in the following) do hold over larger
arithmetic spaces under certain computational assumptions.

“Loglog-depth” FSS from HSS. Consider an ensemble C = {Cλ} of Boolean cir-
cuits of size s and depth log log s. The remaining goal is to obtain FSS for the
corresponding class of partial-evaluation functions {Cλ(·, x1, . . . , xN )} for which
the FSS evaluation CEval is (log log s)-depth, as discussed above.

From the structure of Cλ, the evaluation of Cλ(x0, . . . , xN ) on all inputs can
be expressed as a poly(s)-size multivariate polynomial in the bits xi[j] of the xi,
where each monomial is of degree at most log s. When viewed as a function of just
x0, we thus have poly(s)-many monomials in the bits of x0 whose coefficients pj
are each formed by the product of at most log s bits from the inputs x1, . . . , xN .
That is,

∑
j pj

∏
`∈Sj

x0[`], where each |Sj | ≤ log s is a publicly known set.

If the N parties can somehow produce additive secret shares {p(i)j }i∈[N ] of
each one of these coefficients pj , then this would constitute the desired FSS
evaluation: Indeed, the ith share evaluation FSS.Eval(i, ki, x0) would be com-
putable as y(i) =

∑
j p

(i)
j

∏
`∈Sj

x0[`], satisfying
∑N
i=1 y

(i) =
∑
j pj

∏
`∈Sj

x0[`] =

Cλ(x0, . . . , xN ). Further, each FSS.Eval(i, ki, ·) is expressible as a (log log s)-
depth circuit in x0—as required from the previous discussion.

The question is how to succinctly reach a state where the N parties hold these
coefficient secret shares. Of course, direct secure computation is not an option, as
even the output size is large, poly(s). However, this is not a general computation.
Suppose we have access to an HSS scheme supporting homomorphic evaluation of
log log s depth operations. Such constructions are known to exist from a variety
of assumptions (as discussed after Corollary 5). Then, if the parties HSS share
their respective inputs x1, . . . , xN , they can locally evaluate additive shares of
the corresponding (log s)-products pj .

The corresponding FFSS
SD operation will thus correspond to the HSS.Share pro-

cedure of the HSS scheme on the parties’ collective inputs. If the HSS scheme
has a compact sharing procedure, then this will be computable with sufficiently
low communication. Note that vanilla usage of some HSS schemes will not pro-
vide the required compactness (e.g., including structured ciphertexts of the input
bits); however, using standard hybrid encryption tricks this can be facilitated.

“Loglog-depth” FSS from Las Vegas HSS. An additional challenge arises, how-
ever, when the underlying HSS scheme we attempt to use provides correctness
only up to inverse-polynomial error. This is the case, for example, in known 2-
party HSS schemes for NC1 from DDH [12] or from LWE with polynomial-size
modulus [17, 26]. In these schemes, the inverse-polynomial error rate δ can be
chosen as small as desired, but shows up detrimentally as 1/δ in other scheme
parameters (runtime for the DDH scheme; modulus size for LWE).

This means with noticeable probability, the shares of at least one of the
coefficients pj from above will be computed incorrectly. Even worse, as typical
in these settings, the parties cannot learn or reveal where errors truly occurred,
as this information is dependent on the values of the secret inputs. This remains
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a problem even if the HSS scheme is “Las Vegas,” in the sense that for every error
at least one of the parties will identity that a potential-error event has occurred
(i.e., will evaluate output share as ⊥). Even then, the flagging party must not
learn whether an error truly took place, and the other party must not learn that
a potential error was flagged.

We present a method for modifying the HSS-based FSS sharing procedure
from above, to remove the error in the required homomorphic evaluations, while
hiding from the necessary parties where these patches took place. We focus on
the 2-party case, and further assume the HSS has a succinct protocol (communi-
cation linear in the input size, up to an additive poly(λ) term) for distributing the
shares of the HSS, where homomorphic evaluation can take place across different
sets of shared values. This is the case for known Las Vegas HSS schemes.

This procedure can be viewed as a modification to either the Share or Eval
portion of the FSS. By viewing it as part of FSS.Share, we automatically fit into
the framework of the previous sections. Namely, this can be viewed as a new
FSS.Share (or FFSS

SD ) procedure with relatively large computational complexity
(comparable to the truth table of the shared function), but which we show ad-
mits a low-communication secure computation procedure. We describe the shar-
ing procedure directly via the achieving protocol; the corresponding FSS.Share
procedure can be inferred.

First, note that by taking the inverse-polynomial error rate δ to be sufficiently
small, we can guarantee with high probability that the total number of potential-
error flags ⊥ obtained by any party is at most the security parameter, λ. The
sharing protocol begins by HSS sharing the inputs (s0, s1)← HSS.Share(x1, x2)
as usual. Then, each party homomorphically evaluates all required values corre-
sponding to shares of each of the coefficients pj . For each party Pi (i ∈ {1, 2}),
denote these values in an array Ti, which contains at most λ positions in which
Ti[j] = ⊥. For each such position j∗, FFSS

SD sets Ti[j∗] = 0, and must now “patch”
the missing value. Consider this procedure for party P1 (P2 will be reversed).

In order to compute the correct output (i.e., coefficient pj) in this position,
the parties run a small-scale secure protocol that HSS shares the index position
j∗ of each ⊥ symbol of P1. This enables them to homomorphically re-evaluate
shares of the corresponding coefficient term pj∗ , in a way that hides the index
j∗ from P2 (note that this computation, with index selection, remains within
NC1). In fact, by re-evaluating this computation λ-many times, then with over-
whelming probability, at least one is error-free. By running a small-scale secure
computation on these shares, we can assume that the parties hold additive shares
of the correct value pj∗ .

It would seem the remaining step is for P1 to somehow learn the correct value
pj∗ offset by P2’s share T2[j∗], while keeping j∗ hidden from P2. However, the
situation is somewhat more sticky. The problem is that in the original HSS eval-
uation, P1 learns not only ⊥, but also a candidate output share. By receiving the
correct output share (pj∗−T2[j∗]), party P1 would learn whether or not an error
actually occurred, leaking sensitive information. This means that inherently, P2

must also modify its share in position j∗ as part of the correction procedure.
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But, this must be done in a way that both hides the identity of j∗, and also does
not affect the secret sharing across the two parties in other positions.

This will be done in two pieces: (1) P1 will learn (T2[j
∗]− r), for some secret

mask r chosen by P2; and (2) they will both perform some operation on their
local Ti array that offsets the value shared in position j∗ by exactly (pj∗−T2[j∗])
while preserving the values shared in all other j′ 6= j∗.

The first of these tasks can be performed by executing a standard single-
server polylogarithmic symmetric PIR protocol, where P1 acts as client with
query index j∗, and P2 acts as server with the r-shifted database T ′2[j] = T2[j]−r,
for random r of its choice.

The second task will be performed by a low-communication private incre-
ment procedure using distributed point functions (DPF): namely, FSS for the
class of point functions (equivalently, compressed secret shares of a secret unit
vector). Actually, since party P1 knows the identity of j∗, a weaker tool of punc-
tured PRFs suffice; however, we continue with DPF terminology for notational
convenience (both are implied by one-way functions). More concretely, the par-
ties will run a small-scale secure computation protocol on inputs j∗, (T2[j∗]− r)
(held by P1), the additive shares of pj∗ , and r (held by P2), which outputs
short DPF key shares k1, k2 to the respective parties, with the property that
DPF.Eval(1, k1, j) +DPF.Eval(2, k2, j) = 0 for every j 6= j∗, and = (pj∗ − T2[j∗])
for j = j∗. Each party thus modifies its Ti array by offsetting each position j
with the jth DPF evaluation, yielding precisely the required effect.

This procedure is performed for every flag position j∗, and for each party
P1, P2. (Note that the parties should always perform the above steps λ times,
sometimes on dummy values, in order to hide the true number of flagged posi-
tions.) The final resulting scheme provides standard FSS correctness guarantees,
removing the inverse-polynomial error, and thus can be plugged into the ap-
proach from above. As mentioned, the new resulting FFSS

SD functionality is now
a complex procedure, with runtime scaling as the entire truth table size of the
shared function. But, the above-described protocol provides a means for securely
emulating FFSS

SD with low communication: scaling just as λ-many small-scale se-
cure computations and PIR executions.

2 Preliminaries

2.1 Assumptions

We assume familiarity with the following computational assumptions, and refer
to the full version for more details: Quadratic Residuosity (QR) [31], Learning
With Errors (LWE) [40], Learning Parity with Noise (LPN) [7], Decisional Diffie-
Hellman (DDH), and Decision Composite Residuosity (DCR) [39].

2.2 Function Secret Sharing and Homomorphic Secret Sharing

We follow the function secret sharing definition of [13], for the specific leakage
function which reveals the input and output domain sizes (1n, 1m) of the secret
function.

12



Definition 6 (Function Secret Sharing (FSS)). An N -party Function Secret-
Sharing (FSS) scheme (with additive reconstruction) for a function family F is
a pair of algorithms FSS = (FSS.Gen,FSS.Eval) with the following syntax and
properties:
– Gen(1λ, f̃) is a probabilistic polynomial-time key generation algorithm, which

on input 1λ (a security parameter) and f̃ ∈ {0, 1}? (the description of some
function f : {0, 1}n → {0, 1}m ∈ F), outputs an N -tuple of keys (k1, . . . , kN ).
Each key is assumed to contain 1n and 1m.

– Eval(i, ki, x) is a deterministic polynomial-time evaluation algorithm, which
on input i ∈ [N ] (the party index), ki (a key defining fi : {0, 1}n → {0, 1}m),
and x ∈ {0, 1}n (an input for fi), outputs a value yi ∈ {0, 1}m (the value of
fi(x), the ith share of f(x)).

– Correctness: For all λ ∈ N, all f ∈ F (described by f̃), and all x ∈ {0, 1}n,

Pr

[
y1 + · · ·+ yN = f(x) :

(k1, . . . , kN )
$← FSS.Gen(1λ, f̃)

yi ← FSS.Eval(i, ki, x), i = 1 . . . N

]
= 1 .

– Security: For every set of corrupted parties D ( [N ], there exists a proba-
bilistic polynomial-time algorithm SimFSS (a simulator), such that for every
sequence of functions f1, f2, · · · ∈ F (described by f̃1, f̃2, . . . ), the outputs of
the following experiments RealFSS and IdealFSS are computationally indistin-
guishable:
• RealFSS(1λ) : (k1, . . . , kN )

$← Gen(1λ, f̃λ); Output (ki)i∈D.
• IdealFSS(1λ) : Output SimFSS(1λ, 1N , 1n, 1m).

We consider also the dual notion of Homomorphic Secret Sharing [12], in
which the roles of input and function are reversed, as well as a weaker variant
with only Las Vegas inverse-polynomial correctness error.

3 General Template for (N + 1)-Party Sublinear Secure
Computation from N -Party FSS

In this section we present a generic template for building (N+1)-party sublinear
secure computation from an N -party additive function secret sharing scheme (for
a well-chosen function class) with two specific properties. We require of the FSS
scheme that there exist low-communication protocols to realise the following
tasks:
– N -Party Share Distribution: N servers generate FSS shares of some function

of their inputs; the ideal functionality FFSS
SD is provided in fig. 2.

– Two-Party Oblivious Share Evaluation: A client obliviously evaluates an FSS
share held by a server; the ideal functionality FFSS

OE is provided in fig. 3.

Theorem 7 proves that the protocol provided in fig. 5 is an (N + 1)-party
secure computation scheme in the (FFSS

SD ,FFSS
OE )-hybrid model. This template

achieves sublinear secure computation provided FFSS
SD and FFSS

OE can be realised
with low enough communication. A high level overview of the protocol is provided
in fig. 1.

13



3.1 Requirements of the FSS Scheme

We start by isolating in the properties we require of the FSS scheme to fit our
template for sublinear secure computation, and show that they are satisfied by
any additive FSS scheme. At a high level, we require that given a strict subset
of the FSS keys, together with the evaluated output shares of all keys on some
known input x, it should be computationally hard to recover any information
about the secret shared function f beyond its evaluation f(x). For the formali-
sation of this property, as well as the proof that additivity suffices, we refer to
the full version of the paper.

3.2 The Secure Computation Protocol

We define the ideal functionalities FFSS
SD (fig. 2) for N -party FSS share distribu-

tion, and FFSS
OE (fig. 3) for 2-party oblivious evaluation of FSS shares. We then

introduce in fig. 5 the generic template for secure computation from additive
FSS in the (FFSS

SD ,FFSS
OE )-hybrid model.

Functionality FSS Share Distribution FFSS
SD

Parameters: The ideal functionality FFSS
SD is parameterised by a number

of parties N , a function class C = {fα1,...,αN
}(α1,...,αN )∈F`1×···×F`N , and an

additive FSS scheme FSS = (FSS.Gen,FSS.Eval) for C.

FFSS
SD interacts with the N parties P1, . . . , PN in the following manner.

Input: Wait to receive (input, i, xi) where xi ∈ {0, 1}`i from each party
Pi (for 1 ≤ i ≤ N).

Output: Run (k1, . . . , kN )
$← FSS.Gen(1λ, f̃x1,...,xN

), where f̃x1,...,xN
is a

description of fx1,...,xN
; Output ki to each party Pi (for 1 ≤ i ≤ N).

Fig. 2: Ideal functionality FFSS
SD for the generation of FSS keys of a distributed

function.

Functionality Oblivious Evaluation of FSS Shares FFSS
OE

Parameters: The ideal functionality FFSS
SD is parameterised by a number

of parties N , and an additive FSS scheme FSS = (FSS.Gen,FSS.Eval) for
some function class C.

FFSS
OE interacts with two parties, Alice (“the client”) and Bob (“the server”),

in the following manner.
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Input: Wait to receive (Client, x) from Alice and (Server, i, ki) from
Bob, and record (i, ki, x).

Output: Run yi ← FSS.Eval(i, ki, x); Output yi to Alice.

Fig. 3: Ideal functionality FFSS
OE for the two-party oblivious evaluation of FSS

shares.

Functionality FSFE(C)

The functionality is parameterised with a number N and an arithmetic cir-
cuit C with n = `0+`1+ · · ·+`N inputs and m outputs over a finite field F.

Input: Wait to receive (input, i, xi) from each party Pi (0 ≤ i ≤ N),
where xi ∈ F`i , and set ~x← x0‖x1‖ . . . ‖xN .

Output: Compute ~y ← C(~x); Output ~y to all parties P0, P1, . . . , PN .

Fig. 4: Ideal functionality FSFE(C) for securely evaluating an arithmetic circuit
C among N + 1 parties.

Protocol ΠC

Parties: P0, P1, . . . , PN

Parameters: The protocol is parameterised with a number of parties (N+
1), an arithmetic circuit C : Fn → Fm with n = `0 + `1 + · · ·+ `N , and an
additive FSS scheme FSS = (FSS.Gen,FSS.Eval) for the following function
family of “partial evaluations of C”:{

gα1,...,αN
: F`0 → Fm
x 7→ C(x, α1, . . . , αN )

: (α1, . . . , αN ) ∈ F`1 × · · · × F`N
}
.

(sid1, . . . , sidN ) are N distinct session ids.

Hybrid Model: The protocol is defined in the (FFSS
SD ,FFSS

OE )-hybrid model.

Input: Each party Pi holds input xi ∈ F`i .

The Protocol:
1. Each party Pi for i 6= 0 sends (input, i, xi) to FFSS

SD (C), and waits to
receive ki.
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2. For each i = 1, . . . , N :
(a) Party P0 sends (sidi, Client, x0) to FFSS

OE (C) and Pi sends
(sidi, Server, i, ki) to FFSS

OE (C)
(b) Party P0 waits to receive (sidi, yi) from FFSS

OE (C).
3. Party P0 sets ~y ← y1 + · · · yN , and sends ~y to all parties.
4. Every party outputs ~y.

Fig. 5: (Sublinear) secure computation protocol in the (FFSS
SD ,FFSS

OE )-hybrid.

Theorem 7 (Template for (N+1)-Party Sublinear MPC fromN-Party
FSS). Let N ≥ 2. Let C : Fn → Fm be an arithmetic circuit with n = `0 + `1 +
· · · + `N inputs over a finite field F, and let FSS = (FSS.Gen,FSS.Eval) be an
(additive) FSS scheme for the following function family of “partial evaluations
of C”:{

gα1,...,αN
: F`0 → Fm
x 7→ C(x, α1, . . . , αN )

: (α1, . . . , αN ) ∈ F`1 × · · · × F`N
}
.

The protocol ΠC provided in fig. 5 UC-securely implements the (N + 1)-party
functionality FSFE(C) in the (FFSS

SD (C),FFSS
OE (C))-hybrid model, against a static

passive adversary corrupting at most N out of (N+1) parties. The protocol uses
N ·m · log |F| bits of communication, and additionally makes one call to FFSS

SD (C)
and N calls to FFSS

OE (C).

We refer the reader to the full version of the paper for the proof of theorem 7.

4 Oblivious Evaluation of LogLog-Depth FSS from PIR

In the previous section we provided a generic template for (N+1)-party sublinear
secure computation from N -party additive function secret sharing for which
FFSS

SD and FFSS
OE can be securely realised with low communication. In this section

we introduce the notion of loglog-depth for (additive) FSS schemes, and show
that this property allows FFSS

OE to be securely realised with low communication
using correlated symmetric PIR (corrSPIR), a primitive introduced in [9] (and
which can be instantiated from standard assumptions using the rate-1 batch OT
from [18]).

4.1 LogLog-Depth FSS

A depth-d, n-input, m-output arithmetic circuit with gates of fan-in at most
two over a finite field F can be associated with the degree-(≤ 2d) n-variate
m-output8 polynomial with coefficients in F that it computes. In all generality, a
8 An m-output (multivariate) polynomial can be seen as a tuple of m (multivariate)
polynomials.
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degree-2d n-variate polynomial can have up to nbn,2d =
∑2d

k=0

(
k+n−1
n−1

)
different

monomials (which can be verified using a stars-and-bars counting argument).
In this section we will only be interested in circuits whose representation
as a polynomial is the sum of poly(λ) monomials (where λ is the security
parameter). A sufficient condition is for it to have n = poly(λ) inputs and depth
d ≤ log log(n); we refer to this property as a circuit being “of loglog-depth”.
Indeed, because we only consider circuits whose gates have fan-in at most
two, if a circuit has depth d then it is 2d-local (i.e. each of its m outputs is a
function of only at most 2d inputs). Therefore each of its outputs is computed
by a polynomial with at most nb2d,2d ≤ 22

d+2d monomials, which is poly(λ) if
d = log log n = log log λ+O(1).

We extend in definition 8 the above notion of “loglog-depth” circuits to “loglog-
depth” FSS schemes.

Definition 8 (LogLog-Depth FSS). Let F be a class of functions with n
inputs and m outputs over a finite field F. We say that an N -party FSS scheme
FSS = (FSS.Gen,FSS.Eval) for F whose evaluation algorithm FSS.Eval is explic-
itly described as an arithmetic circuit, has loglog-depth (alternatively, FSS is a
loglog-depth function secret sharing scheme) if for every party index i ∈ [N ] and
every key ki ∈ Supp([FSS.Gen]i) the circuit FSS.Eval(i, ki, ·) (which has hardcoded
i and ki) has depth log log(n).

Throughout this section we will be using “loglog-depth” circuits and FSS
schemes, but it should be noted that all of our results go through if this is
replaced everywhere with the more obtuse notion of “circuits (resp. FSS evalu-
ation) whose polynomial representation has a polynomial number of coefficients”.

When considering “loglog-depth”, which in particular are “log-local” circuits, we
will be interested in the log-sized subsets of the inputs on which each output
depends. We say that an FSS scheme is (S1, . . . , Sm)-local if the jth output of
FSS.Eval, which takes as input a party index i, a key ki, and an input x, only
depends on (i, ki, x[Sj ]). In other words, an FSS scheme is (S1, . . . , Sm)-local if
its evaluation algorithm is (S1, . . . , Sm)-local in its last input. We refer to the
full version of this paper for a more complete treatment. We emphasize that a
loglog-depth circuit or FSS scheme is always log-local, but that the converse is
not necessarily true if F 6= F2.

4.2 Oblivious Evaluation of LogLog-Depth FSS from PIR

We first discuss the notion of PIR we need, then show how it can be leveraged
to build oblivious evaluation of any loglog-depth FSS scheme.

4.2.1 Correlated PIR. We refer to [9] for the definition of the ideal
functionality for batch SPIR with correlated “mix and match” queries (FcorrSPIR),
which we extend in the full version of this paper from the boolean to the
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arithmetic setting as batch Oblivious (Multivariate) Polynomial Evaluation with
correlated “mix and match” queries (FcorrOPE).
In the boolean world, this corresponds to a batched form of SPIR, querying into
k size-N databases, where the queries are not independent. Rather, the queried
indices can be reconstructed via a public function that “mixes and matches”
individual bits of a single bitstring ~α = (α1, . . . , αw) of length w < k logN , in
a public manner. What this means is that each of the (n = logN)-bit queries
to a single database can be obtained by concatenating n of the bits αi, possibly
permuted. In the arithmetic world, this corresponds to batch multivariate OPE,
where each database corresponds to a polynomial, and the evaluation inputs
are various subvectors of some joint input vector, comprised of w field elements.
More specifically, the input to a single d-variate polynomial (in the batch to be
obliviously evaluated) is a size-d ordered subset of the joint inputs.
We will be interested in how many times a given bit of entropy (resp. input) αi
appears within the k queries (resp. input)–counted by the occurrence function ti
below–, as well as how many times it appears in specific index position j′ ∈ [n]
within the k queries (resp. input)–denoted below by ti,j′–. To the best of our
knowledge, there are no protocols realising corrOPE over superpolynomial-size
fields without FHE, and the only protocol realising corrSPIR without FHE
requires introducing this notion of “balance between the queried bits”.

We refer to [9] for the formalisation of “mix and match” functions, (the ideal func-
tionality for) batch SPIR with correlated “mix and match” queries (FcorrSPIR), and
to the full version of this paper for the (ideal functionality for) batch Oblivious
(Multivariate) Polynomial Evaluation with correlated “mix and match” queries
(FcorrOPE).

4.2.2 Oblivious Evaluation of LogLog-Depth FSS from PIR. Let
FSS = (FSS.Gen,FSS.Eval) be a loglog-depth, (S1, . . . , Sm)-local FSS scheme
(definition 8). Because FSS has loglog-depth, the polynomial representation of
FSS.Eval has m · poly(n) coefficients. Furthermore, each of its local evaluation
algorithms FSS.Evalj depends only on the inputs indexed by Sj . Therefore obliv-
iously evaluating FSS.Eval can be done by using batch OPE with correlated “mix
and match” inputs: the m polynomials in the batch are the FSS.Evalj(i, ki, ·),
where ki is known only to the server Pi. This protocol is formalised in fig. 6.
Note that this notion of corrOPE, as defined in the full version of the paper,
requires the polynomials in the batch be represented as a vector of coefficients.
For this reason we impose that FSS be loglog-depth, so this vector be polynomial-
size.

Protocol Oblivious Evaluation of Partial Function Shares ΠOE

Parties: P0 (the client) and Pi (the server).

Parameters:
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– Let N be a number, and let C = C1‖ . . . ‖Cm be a loglog-depth circuit
(definition 8) with n = `0 + `1 + · · ·+ `N inputs and m outputs over F
such that the following function family C is (S1, . . . , Sm)-local , where
S1, . . . , Sm is some family of (log / log log)-sized subsets of [n]:

C =
{
gα1,...,αN

: F`0 → Fm
x 7→ C(x, α1, . . . , αN )

: (α1, . . . , αN ) ∈ F`1 × · · · × F`N
}
.

We assume that each of the Si is ordered in such a way that the function
MixAndMatch associated with (S1, . . . , Sm) is polylog-balanceda (c.f. full
version).

– FSS = (FSS.Gen,FSS.Eval) is an (S1, . . . , Sm)-local (additive) FSS
scheme for C, whose local evaluation algorithms (c.f. full version) are
(FSS.Evalj)j∈[m].

Hybrid Model: The protocol is defined in the FcorrOPE-hybrid model
(the subsets characterising MixAndMatch, and in turn corrOPE, are
(S1, . . . , Sm)).

Input: P0 holds input x0 ∈ {0, 1}`0 , and Pi holds ki.

The Protocol:

– First Round:
1. P0 sends (receiver, x0) to FcorrOPE

2. Pi sends (sender, (~cj)j∈[m]) to FcorrOPE where ~cj is the vector of
coefficients of FSS.Evalj(i, ki, ·)
// For the case F = F2 (i.e. when using FcorrSPIR), the databases can
be more simply described as the truth tables of the FSS.Evalj(i, ki, ·)
for j ∈ [m], i.e. (FSS.Evalj(i, ki, x′))x′∈{0,1}|Sj | .

– Second Round:
3. P0 waits to receive (yi,1, . . . , yi,m) from FcorrOPE

4. P0 outputs (yi,1, . . . , yi,m)

a By [9, Lemma 9], such orderings exist and furthermore can be found in expected
constant time by random shuffling. Alternatively, since a random ordering of
(S1, . . . , Sm) works with high probability, the protocol could be modified so
that P0 samples a PRG key and sends it to P1, and both use the resulting
pseudorandomness to order (S1, . . . , Sm). This additional step incurs only a
small additive overhead in communication, and the resulting protocol is still
sublinear.

Fig. 6: Two-party protocol for obliviously evaluating shares of an additive loglog-
depth FSS scheme.
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Lemma 9 (Oblivious Share Evaluation for LogLog-Depth FSS
Schemes). Let N ≥ 2. Let C : Fn → Fm be a loglog-depth arithmetic cir-
cuit with n = `0 + `1 + · · · + `N inputs over a finite field F, and let C be the
family of “partial evaluations of C”:{

gα1,...,αN
: F`0 → Fm
x 7→ C(x, α1, . . . , αN )

: (α1, . . . , αN ) ∈ F`1 × · · · × F`N
}
.

If FSS is an additive loglog-depth, (S1, . . . , Sm)-local FSS scheme (definition 8)
for C and corrSPIR is a two-round batch SPIR protocol (characterised by
(S1, . . . , Sm)), then the protocol ΠOE provided in fig. 6 UC-securely imple-
ments the two-party functionality FFSS

OE against a static, passive adversary in
the FcorrOPE-hybrid model.

The proof of lemma 9 is given in the full version of the paper.

5 LogLog-Depth FSS from Compact and Additive HSS

In this section we show how to use compact and additive HSS to build a loglog-
depth FSS scheme whose share distribution FFSS

SD can be realised in low com-
munication. When combined with sections 3 and 4, this yields sublinear secure
computation from compact and additive HSS. In the full version of this paper, we
show how to extend this construction to use the weaker primitive of Las-Vegas
HSS. We note that this extension forms a non-trivial technical contribution of
our work, which we defer to the full version due to lack of space, and focus this
edition of the paper on the simplest version of our template.

5.1 An Overview of the Construction

Let C : Fn → Fm be a log log-depth arithmetic circuit with n = `0+`1+ · · ·+`N
inputs over a finite field F, and let C be the family of “partial evaluations of C”:{

gα1,...,αN
: F`0 → Fm
x 7→ C(x, α1, . . . , αN )

: (α1, . . . , αN ) ∈ F`1 × · · · × F`N
}
.

Our goal in this section is to provide a construction of a loglog-depth FSS
scheme for C such that FFSS

SD can be realised with low communication, and we
do so by using compact and additive single-function HSS for any function in a
well-chosen function class (that of {coefsc1,...,cN : (c1, . . . , cN ) ∈ F`1 ×· · ·×F`N },
as defined below).

We provide in fig. 7 a construction of loglog-depth additive FSS for C from
single-function additive HSS for the following function coefs:

coefs : F`1 × · · · × F`N → F?
(α1, . . . , αN ) 7→ (p0, p1, . . . )
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where (p0, p1, . . . ) are the coefficients of the polynomial representation of all the
Cj(X,α1, . . . , αN ), for j ∈ [m] (which are polynomials in X, whose coefficients
are themselves polynomials in α1, . . . , αN ). Because C has loglog-depth (defini-
tion 8), there are at most m ·n · (1+o(1)) such coefficients. Furthermore, the key
generation algorithm of the FSS scheme for C essentially boils down to a single
call to the share generation algorithm of the HSS scheme for coefs. Therefore,
we also need to provide an HSS scheme for coefs whose share generation can be
distributed using low communication. We use a transformation akin to hybrid
encryption in order to ensure this last property: we mask the inputs using
pseudorandom generators, and reduce the problem of generating HSS shares of
the inputs to that of distributing HSS shares of the keys, which can be done
generically using oblivious transfer.

More precisely, for i ∈ [N ] let Gi : {0, 1}λ → F`i be a PRG and consider the
function family {coefsc1,...,cN : (c1, . . . , cN ) ∈ F`1 × · · · × F`N }, where:

coefsc1,...,cN : Fλ × · · · × Fλ → F?
(K1, . . . ,KN ) 7→ (p0, p1, . . . )

where (p0, p1, . . . ) are the coefficients of the polynomial representation of all
the Cj(X, c1 − G1(K1), . . . , cN − GN (KN )), j ∈ [m] (which are polynomials in
X, whose coefficents are polynomials in the bits of K1, . . . ,KN ). We provide
in the full version of this paper the construction of an HSS scheme for coefs
whose share generation can be distributed using low communication (along
with a corresponding protocol), assuming the existence of compact and additive
single-function HSS for any function in {coefsc1,...,cN }.

While this assumption relating to the existence of HSS for {coefsc1,...,cN } may
not seem standard, it is weaker than each of the following assumptions:

1. HSS for NC1 and polynomial-stretch PRGs in NC1;
2. Single-function HSS for any log log-depth circuit and constant-depth PRGs

with some fixed polynomial-stretch.

5.2 Defining the LogLog-Depth FSS Scheme.

Observation 1 (Parsing Additive Shares). Let ~x ∈ {0, 1}n and let I ⊆ [n]. If
(~x(1), . . . , ~x(m)) are additive shares of ~x, then ([~x(1)]I , . . . , [~x

(m)]I) are additive
shares of [~x]I , where [·]I denotes the subvector induced by the set of coordinates
I.

LogLog-Depth FSS Scheme from Additive HSS

Parameters: Let N ≥ 2 be a number of parties, and let C = C1‖ . . . ‖Cm
be a loglog-depth circuit with n = `0 + `1 + · · ·+ `N inputs and m outputs
over F such that the following function family is (S1, . . . , Sm)-local, where
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S1, . . . , Sm is some family of (log n/ log log n)-sized subsets of [n]:

C =
{
gα1,...,αN

: F`0 → Fm
x 7→ C(x, α1, . . . , αN )

: (α1, . . . , αN ) ∈ F`1 × · · · × F`N
}
.

Let HSS = (HSS.Share,HSS.Eval) be an N -party additive (single-function)
HSS scheme for the function:

coefs : F`1 × · · · × F`N → F?
(α1, . . . , αN ) 7→ (p0, p1, . . . )

where (p0, p1, . . . ) are the coeffi-
cients of the polynomial represen-
tation of all the Cj(X,α1, . . . , αN ),
j ∈ [m] (which are polynomials
in X, whose coefficients are them-
selves polynomials in α1, . . . , αN ).

// Note that since C has loglog-depth and C is (S1, . . . , Sm)-local, each
of the m polynomials has degree |Sj | and |Sj | variables, and there are
therefore at most

∑m
j=1

(|Sj |+|Sj |
|Sj |

)
= m ·n · (1+o(1)) coefficients, regardless

of (α1, . . . , αN ).

FSS.Gen(1λ, g̃α1,...,αN
):

1. Parse g̃α1,...,αN
to retrieve (α1, . . . , αN )

2. (k1, . . . , kN )
$← HSS.Share(1λ, i, (α1, . . . , αN ))

3. Output (k1, . . . , kN )

FSS.Evalj(i, ki, x
′): // x′ ∈ F|Sj | should be seen as an Sj-subset of some

larger x ∈ F`0 (i.e. x′ = x[Sj ]), input of FSS.Eval.

1. (p0,i, p1,i, . . . )
$← HSS.Eval(i, ki)

2. Parse (p0,i, p1,i, . . . ) to retrieve shares (q0,i, q1,i, . . . ) of the coefficients
of Cj(·, α1, . . . , αN ) (c.f. observation 1).

3. yi,j ← (x′)⊗|Sj | · (q0,i, q1,i, . . . )ᵀ
4. Output yi,j

FSS.Eval(i, ki, x):

1. For j ∈ [m], set yi,j ← FSS.Evalj(i, ki, x[Sj ])
2. Output (yi,j)j∈[m]

Fig. 7: LogLog-Depth FSS Scheme from “Single-Function” Additive HSS for every
LogLog-Depth Circuit.
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Lemma 10 (LogLog-Depth FSS Scheme from “Single-Function” Addi-
tive HSS). Let N ≥ 2 be a number of parties, and let C = C1‖ . . . ‖Cm be
a loglog-depth circuit with n = `0 + `1 + · · · + `N inputs and m outputs over F
such that the following function family is (S1, . . . , Sm)-local , where S1, . . . , Sm
is some family of (log n/ log logn)-sized subsets of [n]:

C =
{
gα1,...,αN

: F`0 → Fm
x 7→ C(x, α1, . . . , αN )

: (α1, . . . , αN ) ∈ F`1 × · · · × F`N
}
.

Let HSS = (HSS.Share,HSS.Eval) be an N -party (single-function) additive HSS
scheme for the function:

coefs : F`1 × · · · × F`N → F?
(α1, . . . , αN ) 7→ (p0, p1, . . . )

where (p0, p1, . . . ) are the
coefficients of the polyno-
mial representation of all the
Cj(·, α1, . . . , αN ), j ∈ [m].

Then the construction of fig. 7 is an N -party additive loglog-depth and
(S1, . . . , Sm)-local FSS scheme for C.

The proof of lemma 10 is deferred to the full version of the paper.

5.3 Securely Realising FFSS
SD in Low Communication.

The FSS scheme FSS = (FSS.Gen,FSS.Eval) of fig. 7 is parameterised by an
additive single-function HSS scheme for the function coefs. We provide in the
full version of the papersuch an HSS scheme with the additional property that
it yields FSS for which FFSS

SD can be securely realised in low communication.
As explained in the overview of section 5.1, we use a standard hybrid encryption
trick in order to build HSS for coefs from HSS for {coefsc1,...,cN }. This allows us
to securely distribute the shares of HSS for coefs (and hence the keys of the FSS
scheme of fig. 7) by using generic secure computation to distribute the shares of
HSS for {coefsc1,...,cN } (which can be done in complexity poly(λ+N)). We refer
to the full version of the paper for the details.

Lemma 11 (FFSS
SD for the LogLog-Depth FSS scheme of fig. 7 can be

realised with low communication). Let N ≥ 2 be a number of parties, and
let C = C1‖ . . . ‖Cm be a loglog-depth circuit with n = `0+`1+· · ·+`N inputs and
m outputs over F such that the following function family is (S1, . . . , Sm)-local,
where S1, . . . , Sm is some family of (log / log log)-sized subsets of [n]:

C =
{
gα1,...,αN

: F`0 → Fm
x 7→ C(x, α1, . . . , αN )

: (α1, . . . , αN ) ∈ F`1 × · · · × F`N
}
.

For i ∈ [N ], let Gi : {0, 1}λ → F`i be a constant-depth PRG.
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Let HSS = (HSS.Share,HSS.Eval) be an N -party compact and additive HSS
scheme for any function in {coefsc1,...,cN : (c1, . . . , cN ) ∈ F`1×· · ·×F`N }, where:

coefsc1,...,cN : Fλ × · · · × Fλ → F?
(K1, . . . ,KN ) 7→ (p0, p1, . . . )

where (p0, p1, . . . ) are the coefficients of
the polynomial representation of all the
Cj(X, c1 −G1(K1), . . . , cN −GN (KN )),
j ∈ [m] (which are polynomials in X).

Then the protocol ΠSD provided in the full version of the paper UC-securely
implements the N -party functionality FFSS

SD in the FHSS
SD -hybrid model against a

static, passive adversary. Furthermore, assuming oblivious transfer, there exists
a protocol (in the real world) using (N · λ)O(1) + N(N − 1) · n · log |F| bits of
communication which UC-securely implements the N -party functionality FFSS

SD

against a static, passive adversary.

6 Instantiations

In section 6.1, we combine the results of sections 3 to 5 and achieve sublinear
secure computation from generic assumptions (HSS and forms of PIR/OLE).
In section 6.2, we build four-party compact and additive HSS for loglog-depth
correlations from standard assumptions (DCR and constant-locality PRGs). In
section 6.3, we show how to combine all the above (as well as existing con-
structions of 2-party HSS) in order to build sublinear secure 3- and 5-party
computation from standard assumptions not previously known to imply it (in
particular, they are not known to imply FHE).

6.1 Sublinear-Communication Secure Multiparty Computation
from PIR and Additive HSS

Section 4 established that FFSS
OE for local FSS schemes can be based on batch OPE

(with correlated inputs) and section 5 builds local FSS schemes (such that FFSS
SD

can be realised with low communication) from additive HSS (with or without
errors). Plugging these two constructions into the template of section 3 yields
sublinear secure multiparty computation from batch OPE and additive HSS.

Theorem 12 (Sublinear-Communication Secure (N + 1)-Party Com-
putation of Shallow Circuits). Let N ≥ 2 be a number of parties, and let
C : Fn → Fm be a depth-d (d ≤ log log n − log log log n) arithmetic circuit with
n = `0 + `1 + · · ·+ `N inputs over F. Assuming the existence of:

– A family of PRGs Gi : {0, 1}λ → F`i for i ∈ [N ],
– An N -party compact and additive single-function HSS scheme for any func-

tion in the class {coefsα1,...,αN
: (α1, . . . , αN ) ∈ F`1 × · · · × F`N }, where

coefsx1,...,xN
is the function which, on input (K1, . . . ,KN ) ∈ ({0, 1}λ)N ,

computes the (polynomially many) coefficients of the representation of
Cj(·, α1 − G1(K1), . . . , αN − GN (KN )) as `0-variate polynomials for j = 1
to m,
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– A protocol for UC-securely realising FcorrOPE using communication
CommcorrOPE(k,Nvar,deg, w), where k is the number of OPEs in the batch,
Nvar is the number of variables of each polynomial, deg is the degree of each
polynomial, and w is the size of the joint input vector,

There exists a protocol using (N + λ)O(1) +N · [(N − 1) · n +m] · log |F| +N ·
CommcorrOPE(m, 2

d, 2d, n) bits of communication to securely compute C amongst
(N + 1) parties (that is, to UC-securely realise FSFE(C)) in the presence of a
semi-honest adversary statically corrupting any number of parties.

Proof. The proof of theorem 12 is obtained by combining the results of sections 3
to 5. Our starting point is the generic template of theorem 7 in the (FFSS

SD ,FFSS
OE )-

hybrid model, which uses N ·m · log |F| bits of communication and makes a single
call to FFSS

SD , and N to FFSS
OE . We use the FSS scheme of lemmas 10 and 11, for

which, by lemma 9, each call to FFSS
OE can be implemented using communication

CommcorrOPE(m, 2
d, 2d, n) and the single call to FFSS

SD can be implemented using
communication (N · λ)O(1) +N(N − 1) · n · log |F|.

6.2 Four-Party Additive HSS from DCR

In this section, we build a 4-party compact homomorphic secret sharing scheme
for the class of loglog-depth circuits. Our starting point is the (non compact)
4-party HSS for constant degree polynomials recently described in [20]. At a high
level, the scheme works by nesting a 2-party HSS scheme inside another 2-party
HSS scheme. Concretely, let HSSin and HSSout be two 2-party HSS schemes.
Then, the following is a 4-party HSS:
– HSS.Share(x) : run (x(0), x(1)) ← HSS.Sharein(x). For b = 0, 1, run

(x(b,0), x(b,1))← HSS.Shareout(x
(b)). Output (x(0,0), x(0,1), x(1,0), x(1,1)).

– HSS.Eval(i, f, x(i)) : parse i as (b, c) ∈ {0, 1}2. Define Gin(f) : x(b,c) →
HSSin.Eval(b, f, x

(b,c)) and run y(i) ← HSSout.Eval(c,Gin(f), x
(b,c)).

Therefore, to get 4-party HSS for a function class F , we need (1) a 2-party HSSin
for F , and (2) a 2-party HSS.out for the class F ′ = Gin(F). We refer to the full
version of the paper for how to obtain these two building blocks, and now state
the resulting theorem in theorem 13.

Theorem 13 (Four-Party Additive HSS for Constant-Depth Circuits
from DCR). Assuming the superpolynomial hardness of DCR and the existence
of PRGs with constant locality, there exists a four-party HSS scheme for the class
of loglog-depth circuits with nin inputs; the HSS scheme has share size nin(1 +
o(1)). Furthermore, there exists a protocol with communication complexity nin ·
(4+o(1)) (for large enough nin) for securely realising the four-party functionality
FHSS

SD for the generation of HSS shares of the concatenation of the parties inputs.

6.3 Sublinear-Communication Secure Multiparty Computation
from New Assumptions

Combining section 6.1 with instantiations of corrSPIR and additive HSS from the
literature (and section 6.2) yields sublinear-communication secure 3- and 5-party
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computation of shallow boolean circuits from a variety of assumptions. Layered
boolean circuits are boolean circuits whose gates can be arranged into layers
such that any wire connects adjacent layers. It is well-known from previous
works [12, 23, 24] that sublinear protocols for low-depth circuits translate to
sublinear protocols for general layered circuits: the parties simply cut the layered
circuit into low-depth “chunks”, and securely evaluate it chunk-by-chunk. For
each chunk, a sublinear secure protocol is invoked to compute the low-depth
function which maps shares of the values on the first layer to shares of the
values on the first layer of the next chunk.

Theorem 14 (Secure (N+1)-Party Computation with Sublinear Com-
munication from New Assumptions).

– 3-PC of Shallow Circuits: Let C : {0, 1}n → {0, 1}m be a size-s, depth-
d (d ≤ log log s − log log log s) boolean circuit. Let ε ∈ (0, 1). Assuming
the Learning Parity with Noise (LPN) assumption with dimension dim =
poly(λ), number of samples num = (n + m)1/3 · λO(1), and noise rate ρ =
numε−1 (for some constant 0 < ε < 1) together with any of the following
additional computational assumptions:
• Decisional Diffie-Hellman
• Learning with Errors with polynomial-size modulus
• Quadratic Residuosity and Superpolynomial F2-LPN ( i.e. assuming the
security against time-λ2 log λ adversaries of F2-LPN with dimension
λlog λ, 2λlog λ samples, and rate λ/(2λlog λ)).

There exists a 3-party protocol with communication complexity λO(1)+O(n+
m + 2d+2d · poly(λ) · polylog(n) · ((n + m)2/3 + (n + m)(1+2ε)/3)) to se-
curely compute C (that is, to UC-securely realise FSFE(C)) in the pres-
ence of a semi-honest adversary statically corrupting any number of par-
ties. In particular, if d ≤ (log log s)/4 the communication complexity is
λO(1) +O(n+m+

√
s · poly(λ) · polylog(n) · ((n+m)2/3 + (n+m)(1+2ε)/3))

(for some arbitrarily small constant 0 < δ < 1/2), which is sublinear in the
circuit-size, as detailed in remark 15.

– 3-PC of Layered Boolean Circuits: Let C : {0, 1}n → {0, 1}m be a size-s,
depth-d layered boolean circuit. Let ε ∈ (0, 1). Assuming the Learning Parity
with Noise (LPN) assumption with dimension dim = poly(λ), number of
samples num = ((s/d)2/sε)1/3 ·poly(λ), and noise rate ρ = num−1/2 together
with any of the following additional computational assumptions:
• Decisional Diffie-Hellman
• Learning with Errors with polynomial-size modulus
• Quadratic Residuosity and Superpolynomial F2-LPN ( i.e. assuming the
security against time-λ2 log λ adversaries of F2-LPN with dimension
λlog λ, 2λlog λ samples, and rate λ/(2λlog λ)).

There exists a 3-party protocol with communication complexity O(n +m +
d1/3 ·s2(1+ε)/3 ·poly(λ)+s/(log log s)) to securely compute C (that is, to UC-
securely realise FSFE(C)) in the presence of a semi-honest adversary statically
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corrupting any number of parties. In particular, if d = o(s1−ε/poly(λ)) ( i.e.
the circuit is not too “tall and skinny”) the communication complexity is
O(n+m+ s

log log s ), which is sublinear in the circuit-size.

– 5-PC of Shallow Circuits: Let ε ∈ (0, 1). Assuming the existence of a
constant-locality PRG with polynomial stretch, there exists a constant c ≥ 3
such that for any boolean circuit C : {0, 1}n → {0, 1}m of size s and depth
d (d ≤ (log log s− log log log s)/2c), assuming the superpolynomial Decision
Composite Residuosity (DCR) assumption, the Learning Parity with Noise
(LPN) assumption with dimension dim = poly(λ), number of samples num =
(n+m)1/3 ·λO(1), and noise rate ρ = numε−1 (for some constant 0 < ε < 1),
as well as any of the following computational assumptions:
• Decisional Diffie-Hellman (DDH)
• Learning with Errors with polynomial-size modulus (poly-modulus LWE)
• Quadratic Residuosity (QR) and Superpolynomial F2-LPN ( i.e. assuming
the security against time-λ2 log λ adversaries of F2-LPN with dimension
λlog λ, 2λlog λ samples, and rate λ/(2λlog λ)).

There exists a 5-party protocol with communication complexity λO(1)+O(n+
m + 2d/2

c+2d/2
c

· poly(λ) · polylog(n) · ((n + m)2/3 + (n + m)(1+2ε)/3)) to
securely compute C (that is, to UC-securely realise FSFE(C)) in the presence
of a semi-honest adversary statically corrupting any number of parties. In
particular, if d ≤ (log log s)/2c+2 the communication complexity is λO(1) +
O(n+m+

√
s ·poly(λ) ·polylog(n) · ((n+m)2/3+(n+m)(1+2ε)/3)) (for some

arbitrarily small constant 0 < ε < 1/2), which is sublinear in the circuit-size,
as detailed in remark 15.

– 5-PC of Layered Boolean Circuits: Let ε ∈ (0, 1). Assuming the exis-
tence of a constant-locality PRG with polynomial stretch, there exists a con-
stant c ≥ 3 such that for any layered boolean circuit C : {0, 1}n → {0, 1}m
of size s and depth d, assuming the superpolynomial Decision Composite
Residuosity (DCR) assumption, assuming the Learning Parity with Noise
(LPN) assumption with dimension dim = poly(λ), number of samples num =
((s2c/d)2/sε)1/3 · poly(λ), and noise rate ρ = num−1/2 together with any of
the following additional computational assumptions:
• Decisional Diffie-Hellman
• Learning with Errors with polynomial-size modulus
• Quadratic Residuosity and Superpolynomial F2-LPN ( i.e. assuming the
security against time-λ2 log λ adversaries of F2-LPN with dimension
λlog λ, 2λlog λ samples, and rate λ/(2λlog λ)).

There exists a 5-party protocol with communication complexity O(n +m +
d1/3 ·s2(1+ε)/3 ·poly(λ)+s/(log log s)) to securely compute C (that is, to UC-
securely realise FSFE(C)) in the presence of a semi-honest adversary statically
corrupting any number of parties. In particular, if d = o(s1−ε/poly(λ)) ( i.e.
the circuit is not too “tall and skinny”) the communication complexity is
O(n+m+ s

log log s ), which is sublinear in the circuit-size.
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Note that combining the works of [18, 38] seems to implicitly yield rate-1 batch
OT from DCR, and in turn correlated SPIR [9]: if true, the assumptions for
sublinear-communication five-party MPC can be simplifed to constant-locality
PRG, LPN, and superpolynomial DCR (without the need for DDH, LWE, or
QR). Since this claim was never made formally, we do not use it.
The proof of theorem 14 is deferred to the full version of the paper. We conclude
by remarking that while this may not be immediately apparent due to the com-
plicated expressions, the above communication complexities do indeed qualify
as “sublinear in the circuit-size”.

Remark 15 (The Expressions of Theorem 14 are Sublinear in the Circuit Size).
Recall that a protocol for securely computing a size-s circuit with n inputs and
m outputs is sublinear in the circuit-size if its communication complexity is of
the form λO(1) + poly(n +m) + o(s), where poly is some fixed polynomial. The
communication of our protocols for loglog-depth circuits, both in the 3- and the
5-party case, are sublinear in the circuit-size. For 3PC and 5PC of loglog-depth
circuits, the expression is the following:

λO(1) +O(n+m+
√
s · poly(λ) · polylog(n) · ((n+m)2/3 + (n+m)(1+2ε)/3)).

where ε ∈ (0, 1) is some constant tied to the strength of the LPN assumption.
Because we view s as an arbitrarily large polynomial in the security parameter
(in other words we are interested in an asymptotic notion of sublinearity), there
exists an arbitrarily small constant δ ∈ (0, 12 ) such that poly(λ) ≤ sδ. Therefore
the complexity can be simplified as:

λO(1) +O(n+m+ s
1
2+δ · polylog(n) · ((n+m)2/3 + (n+m)(1+2ε)/3)).

Whenever sδ ≥ polylog(n) ·((n+m)2/3+(n+m)(1+2ε)/3), the above expression is
λO(1)+O(n+m+s1+2δ). Whenever sδ < polylog(n)·((n+m)2/3+(n+m)(1+2ε)/3),
the entire expression is already some fixed polynomial in n+m. Therefore, our
final complexity is of the form λO(1) + polyδ(n+m) + s

1
2+2δ.
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