
Rai-Choo! Evolving Blind Signatures
to the Next Level

Lucjan Hanzlik1, Julian Loss1 , and Benedikt Wagner?1,2

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{hanzlik,loss,benedikt.wagner}@cispa.de
2 Saarland University, Saarbrücken, Germany

Abstract. Blind signatures are a fundamental tool for privacy-preserving
applications. Known constructions of concurrently secure blind signa-
ture schemes either are prohibitively inefficient or rely on non-standard
assumptions, even in the random oracle model. A recent line of work
(ASIACRYPT ‘21, CRYPTO ‘22) initiated the study of concretely effi-
cient schemes based on well-understood assumptions in the random oracle
model. However, these schemes still have several major drawbacks: 1)
The signer is required to keep state; 2) The computation grows linearly
with the number of signing interactions, making the schemes impractical;
3) The schemes require at least five moves of interaction.

In this paper, we introduce a blind signature scheme that elimi-
nates all of the above drawbacks at the same time. Namely, we show
a round-optimal, concretely efficient, concurrently secure, and stateless
blind signature scheme in which communication and computation are
independent of the number of signing interactions. Our construction also
naturally generalizes to the partially blind signature setting.

Our scheme is based on the CDH assumption in the asymmetric pairing
setting and can be instantiated using a standard BLS curve. We obtain
signature and communication sizes of 9 KB and 36 KB, respectively. To
further improve the efficiency of our scheme, we show how to obtain a
scheme with better amortized communication efficiency. Our approach
batches the issuing of signatures for multiple messages.
Keywords. Blind Signatures, Standard Assumptions, Random Oracle
Model, Cut-and-Choose, Computation Complexity, Round Complexity.

1 Introduction

Blind signatures, introduced by David Chaum in 1982 [15] are an interactive type
of signature scheme with special privacy features. Informally, in a blind signature
scheme, a Signer, holding a secret key sk, and a User, holding a corresponding
public key pk and a message m, engage in a two-party protocol. At the end of
the interaction, the user obtains a signature on m that can be verified using pk.
Blindness ensures that the Signer learns no information about m. On the other
? Main author

https://orcid.org/0000-0002-7979-3810
https://orcid.org/0000-0002-4620-7264
mailto:benedikt.wagner@cispa.de
mailto:benedikt.wagner@cispa.de

2 L. Hanzlik, J. Loss, B. Wagner

hand, unforgeabillity guarantees that the User cannot obtain valid signatures
without interacting with the Signer. These properties make blind signatures
a useful building block for privacy-sensitive applications, e.g. e-cash [15,36],
anonymous credentials [10,11], e-voting [25], and blockchain-based systems [29].

Unfortunately, even in the random oracle model, existing constructions of blind
signatures either rely on non-standard assumptions [7,5,19], or have parameters
(e.g. communication and signature sizes) that grow linearly in the number of
concurrent signing interactions [39,27,33]. Very recently, Chairattana-Apirom et
al. [13] gave the first blind signature schemes from standard assumptions in the
random oracle model that are simultaneously size and communication efficient.
Even so, their schemes cannot be considered practical. For one, they require
many rounds of interaction, which may be problematic if network conditions are
poor. Second, they still require computation that grows linearly in the number of
signatures that the server has already issued. This can become a heavy burden as
the number of signatures grows large, say 230. In this work, we propose a novel
construction of a blind signature scheme that overcomes all of these limitations.
Concretely, our scheme has the following properties:

– Our scheme can be instantiated from the (co)-CDH assumption in type-3
pairings in the random oracle model (to get a proof from plain CDH, we can
easily use type-2 or type-1 pairings).

– It has compact signatures and communication complexity.
– Signing and verifying are computationally efficient and require only a few

hundred hash and group operations per signature; we provide a prototypical
implementation to demonstrate practicality.

– Our scheme is round-optimal, i.e., it requires only a single message from both
the signer and the user.

1.1 Background and Limitations of Existing Constructions

A long line of work [39,2,1,27,28] has explored constructions of blind signatures
from witness indistinguishable linear identification schemes such as the Okamoto-
Schnorr and Okamoto-Guillou-Quisquater schemes [34]. The resulting blind
signature schemes are secure under well-understood assumptions, such as RSA,
factoring, or discrete logarithm. On the downside, some these schemes admit an
efficient attack [40,43,6] if the number of (concurrent) singing interactions ever
exceeds a polylogarithmic bound.

Inspired by an early work by Pointcheval [38], Katz, Loss, and Rosenberg [33]
recently introduced a boosting transform that turns linear blind signature schemes
into fully secure ones (i.e., admitting a polynomial number of concurrent signing
interactions). Applying their transform, one obtains schemes that rely on well-
studied assumptions and have short signatures. Unfortunately, the resulting
communication and computational complexity renders them impractical. This
is because in the Nth interaction between Signer and User, the communication
and computation depend linearly on N . To ameliorate some of these drawbacks,
Chairattana-Apirom et al. [13] introduced a more compact version of Katz et

Rai-Choo! 3

al.’s generic transform in which the communication only depends logarithmically
on N . Their work also presents two more optimized blind signature schemes
which do not follow from their transform generically. We focus here on their
BLS-based [8,7] construction (called ‘PI-Cut-Choo’) which can be instantiated
from CDH.

We briefly highlight the remaining drawbacks of PI-Cut-Choo. The idea of
the boosting transform fundamentally relies on a 1-of-N cut-and-choose where
N , the number of signing interactions, grows over time. This requires to execute
N copies of the base scheme and has the following implications:

– The Signer is stateful, as it has to keep track of the current value of N .
– The computation grows linearly in N for both the Signer and the User. To

issue N ≈ 230 signatures, this would require prohibitive computational effort
(roughly

∑230

i=1 i ≈ 259 operations).
– Issuing a signature requires five moves of interaction between Signer and

User which is a far cry from the theoretical one-round limit achieved by some
schemes [7].

Thus, even though PI-Cut-Choo significantly improves over prior schemes, it can
still not be considered useful for practical deployment.

1.2 Our Contribution

In this work, we eliminate all of the aforementioned drawbacks.

Our Scheme. We construct a practical blind signature scheme using a new variant
of the cut-and-choose technique, that is polynomially secure and does not require
the signer to keep a state. This eliminates the dependency on a counter N as in
[33,13] entirely, thereby also significantly reducing the computational complexity,
see Table 1. Additionally, in contrast to schemes in [33,13], our scheme is round-
optimal. Our scheme is statistically blind against malicious signers. We show
one-more unforgeability based on the (co)-CDH assumption in asymmetric pairing
groups. One-more unforgeability holds for any (a priori unbounded) polynomial
number of signing interactions. We obtain several parameter settings for our
scheme. This leads to a trade-off between signature and communication size, see
Table 2. For example, we can instantiate parameters to obtain 9 KB signature
size and 36 KB communication complexity. To demonstrate that our scheme is
computationally efficient, we implemented a prototype over the BLS12–381 curve.
Our experiments show that signing takes less than 0.2 seconds, see Table 2.

Partial Blindness and Batching. We show that our scheme naturally generalizes
to the setting of partially blind signatures. Additionally, we show how we can
batch multiple signing interactions to improve communication complexity (see
also Table 2), and provide the first formal model and analysis for that. Batching
has been used in many other contexts as well, e.g. in oblivious transfer [30,9].
We believe that batching blind signatures has a lot of natural use-cases. As an

4 L. Hanzlik, J. Loss, B. Wagner

Boosting [33] Compact Boosting [13] Our Work
Moves 7 7 5 2

Communication Θ(λN) Θ(λ logN) Θ(λ logN + λ2) Θ(λ2)
Computation Θ(N) Θ(N logN) Θ(λN) Θ(λ)

Table 1. Comparison of number of moves, communication and computation for the line
of work [33,13] and our work in the Nth signing interaction. The security parameter is
denoted by λ. Communication is given in bits, and computation is given by treating
pairings, group and field operations, and hash evaluations as one unit.

Communication with batch size L Running Time
|pk| |σ| L = 1 L = 4 L = 16 L = 256 Sign Verify

(I) 0.14 13.98 33.20 16.98 12.92 11.65 163 54
(II) 0.14 9.41 36.21 20.11 16.08 14.82 169 36
(III) 0.14 5.71 72.79 43.97 36.77 34.52 333 22

Table 2. Efficiency of different parameter settings of our scheme. Sizes and times
are given in kilobytes and milliseconds, respectively. Communication is amortized per
message. Details can be found in Section 5.

example, consider an e-cash scenario. Here, parties withdraw coins from a bank
by getting blind signature for a random message. Later, the coin can be deposited
by presenting the message-signature pair. Blindness ensures that the process of
withdrawal is not linkable to the process of depositing. This approach is also
used to do enhance the anonymity in electronic payment systems [29]. We remark
that it is crucial that all issued coins are of equal amount to guarantee a large
anonymity set. Therefore, any user that wants to retrieve more than one coin has
to interact with the bank multiple times to get multiple coins (i.e. signatures).
Using batch blind signatures, these interactions can all happen in parallel, leading
to improved communication and computational efficiency, as well as reduced
overhead to initiate interactions.
Remark on Assumptions. In our construction, we use the asymmetric type-3
pairing setting, as standard in practical pairing-based schemes. This also means
that we need to use the standard variant of CDH in this setting, sometimes called
co-CDH [14]. We emphasize that this variant is even needed to prove unforgeability
of standard BLS signatures in the asymmetric type-3 setting [8]. On the other
hand, it is straight-forward to instantiate our scheme in the symmetric pairing
setting, or the asymmetric type-2 pairing setting based on plain CDH. We refer
to Section 5 for more details.

1.3 Technical Overview

We give an intuitive overview of our techniques. For full formal details, we refer
to the main body.

Rai-Choo! 5

Boosting and PI-Cut-Choo. We start this overview by recalling the boosting
transform [33] and its parallel instance variant [13]. Let BS be a blind signature
scheme which is secure against an adversary that queries the signer for a small
number of signatures (we will give a suitable definition of “small” below). The
boosting transform results in a new scheme which is secure for any number of
signing interactions between signer and adversary. In the Nth signing interaction,
the User and the Signer behave as follows.

1. The user commits to its message m using randomness ϕj , j ∈ [N], thereby
obtaining N commitments µj . It also samples random coins ρj , j ∈ [N] for
the user algorithm of BS. Then, it commits to each pair (µj , ρj) using a
random oracle, and sends the resulting commitments comj to the Signer.

2. Signer and User run the underlying scheme BS N times in parallel. We refer
to these N parallel runs as sessions. More precisely, the Signer uses its secret
key sk, and the User uses the public key pk, µi as the message, and ρj as the
random coins in the jth session, for j ∈ [N].

3. Before the final messages sj , j ∈ [N] are sent from the Signer to the User,
the Signer selects a random session J ∈ [N]. The user now has to open all
the commitments comj for j ∈ [N] \ {J} by sending (µj , ρj). The Signer can
now verify that the User behaved honestly for all but the Jth session. In case
the User behaved dishonestly in one session, the Signer aborts.

4. The Signer completes the Jth session by sending the final message sJ . Finally,
the User derives a signature σJ from that session as in BS, and outputs
σ = (σJ , ϕJ) as its final signature.

Katz, Loss, and Rosenberg [33] show that the above scheme is secure for polyno-
mially many signing interactions, given that the underlying scheme BS is secure
for logarithmically many signing interactions. In more detail, they provide a
reduction that simulates a signer oracle for the new scheme, given a logarithmic
number of queries to the signer oracle for BS. Their reduction distinguishes the
following cases for the Nth signing interaction.

1. If the adversary (i.e. the User) is dishonest in at least two sessions, then the
adversary is caught. Hence, no response has to be provided and no secret key
is needed.

2. If the adversary is honest in all sessions, the reduction can extract all (µj , ρj)
by inspecting random oracle queries. Using a special property of the under-
lying scheme BS, this allows the reduction to simulate the response, e.g. by
programming the random oracle.

3. If the adversary is dishonest in exactly one session j∗, then either J 6= j∗ and
the reduction works as in the previous case, or J = j∗, and the reduction has
to use the signer oracle of BS to provide the response sJ . In this case, we say
that there is a successful cheat.

It is clear that the probability of a successful cheat is at most 1/N in the Nth
signing interaction. Therefore, the expected number of successful cheats over
q signing interactions is at most

∑q+1
N=2 1/N ≤ O(log q). Using an appropriate

6 L. Hanzlik, J. Loss, B. Wagner

concentration bound, it therefore can be argued that the underlying signer oracle
for BS is called logarithmically many times.

Unfortunately, the above transform yields impractical parameter sizes for
the resulting signature scheme, which results from a relatively loose reduction
to BS. To overcome these issues, recent work introduced a parallel instance
version of the boosting transform (hereafter PI-Cut-Choo) [13]. The primary
goal of this version is to work for key-only secure schemes BS, i.e. such that the
reduction can simulate signing queries in the transformed scheme entirely without
accessing the signing oracle of BS. First, N is scaled by some constant, such that
the expected number of successful cheats is less than 13. Thus, in expectation,
the reduction does not need access to a signer oracle for BS. To ensure that
this is true with overwhelming probability, the entire boosting transform is
repeated with K = Θ(λ) instances in parallel. These instances use independent
public keys pk1, . . . , pkK and independent random coins4. This implies that with
overwhelming probability, there will be an instance i∗ ∈ [K], such that there is
no successful cheat in instance i∗ over the entire runtime of the reduction. The
reduction can now guess i∗ and embed the target public key of BS in pki∗ . If the
guess was correct, the reduction to key-only security of BS goes through.

The above discussion highlights the importance of growing the parameter N as
a function of the number of signing interactions over time. In summary, it allows
to bound the expected number of successful cheats, which is the central idea of
prior work [33,13]. Thus, keeping N fixed presents several technical challenges
that we discuss in the next paragraph.

Strawman One: Fixed Cut-and-Choose. We are now ready to describe our central
ideas to avoid a growing cut-and-choose parameter N . As explained above, the
key idea of PI-Cut-Choo is to ensure that for one of the parallel instances i∗, the
adversary never cheats in any of its interactions with the signer. This argument
fails if we set N to be constant, e.g. N = 2. However, by keeping the number
of parallel instances K the same, we can still argue that with overwhelming
probability in each signing interaction, there is a non-cheating instance i∗. We
highlight the reversed role of quantifiers: The non-cheating instance i∗ could now
be different for every signing interaction. Unfortunately, the reduction approach
presented in PI-Cut-Choo only allows to embed the target public key of the
underlying scheme BS in a fixed key among the keys pk1, . . . , pkK corresponding
to the K parallel instances. Once this key is fixed, the reduction fails if ever there
is a successful cheat with respect to this instance.

Strawman Two: Dynamic Key Structure (Naively). The above discussion shows
that we have to support a dynamic embedding of the target public key into one of
3 This assumes an upper known bound on the number of signing interactions, which is
a minor limitation. Alternatively, one could instead increase N as N2 to achieve an
expected constant number of successful cheats.

4 In PI-Cut-Choo, this parallel repetition comes almost for free due to a lot of opti-
mizations that we do not cover in this overview.

Rai-Choo! 7

the keys pk1, . . . , pkK . The first (naive) idea would be to use a fresh set of public
keys pk1, . . . , pkK and secret keys sk1, . . . , skK in each interaction. Observe that
in PI-Cut-Choo, the base scheme BS is a two-move scheme, in which the first
message c (challenge) sent from user to signer does not depend on the public
key. Thus, our reduction for the resulting scheme can identify the non-cheating
instance i∗ after seeing the commitments comi,j and the challenges ci,j . Using this
observation, we could let the Signer send the (fresh) public keys pk1, . . . , pkK that
will be used in the current signing interaction after receiving commitments and
challenges. This way, the reduction knows in which key pki∗ to embed the target
public key in each signing interaction. To do so, the reduction first identifies
the non-cheating instance i∗, and then samples (pki, ski) for i 6= i∗ honestly,
while setting pki∗ to (a rerandomization of) the target public key. Finally, the
reduction can use ski to simulate all instances except i∗, while using random
oracle programming in instance i∗.

We can use random-self reducibility of the underlying signature scheme to
ensure blindness of this construction. Namely, the User re-randomizes the keys
and signatures it receives from the user. (Otherwise, it would be trivial to
link signatures to signing interactions). The final signature then contains the
rerandomized set of keys and signatures. Fortunately, the BLS scheme [7], which
serves as the basis of PI-Cut-Choo, has such a property.

However, the above scheme is insecure. Since a fresh set of keys pk1, . . . , pkK
is used in every interaction, there is nothing tying signatures to the Signer’s
actual public and secret key. In particular, there is no way from preventing the
adversary from (trivially) creating a forgery containing a set of keys of its own
choice. In the security proof, the reduction can not extract a forgery for BS with
respect to the target public key in this scenario.

Our Solution: PI-Cut-Choo evolves to Rai-Choo. To overcome the remaining
issues of the above strawman approach, we fix one public key pk and one secret
key sk for our scheme. Instead of using independent public keys pk1, . . . , pkK for
each interaction, we instead use a sharing

(pk1, sk1), . . . , (pkK , skK) such that
∑
i

ski = sk and
∏
i

pki = pk.

By setting pk to be the target public key of the underlying scheme BS and
carefully working out the details, our reduction is now able to extract a forgery
as required. It remains to sketch why the simulation of the signing oracle is still
possible with this new structure of the pk1, . . . , pkK . Note that the reduction
can define the pk1, . . . , pkK in a way that allows it to know all but one ski.
Concretely, after identifying the non-cheating instance i∗ in an interaction with
the adversary, the reduction first samples (pki, ski) for all i ∈ [K]\{i∗}, and then
sets pki∗ := pk ·

∏
i6=i∗ pk−1

i . This is identically distributed to the real sharing.
In summary, we have successfully transformed a key-only secure scheme BS

into a fully secure one, while using a constant cut-and-choose parameter N . We
can further optimize the scheme using many minor tricks, some of them similar to

8 L. Hanzlik, J. Loss, B. Wagner

[13]. In the process we also manage to reduce the number of moves to two, which
is optimal. This is because in our new scheme, we can make the cut-and-choose
step completely non-interactive using a random oracle, and the signer does not
need to send N anymore, as it is fixed.

1.4 More on Related Work

We discuss related work in more detail.
There are several impossibility results about the construction of blind signa-

tures in the standard model [18,37,4]. Fischlin and Schröder showed that statisti-
cally blind three-move schemes can not be constructed from non-interactive as-
sumptions under certain conditions [18]. Pass showed that unique round-optimal
blind signatures can not be based on a class of interactive assumptions [37].
Baldimtsi and Lysyanskaya showed that schemes with a unique secret key and a
specific structure can not be proven secure, even under interactive assumptions [4].

In terms of unforgeability, one distinguishes concurrent and sequential security.
For sequential security, the adversary has to finish one interaction with the signer
before initiating the following interaction. In contrast, concurrent security allows
the adversary to interact with the signer in an arbitrarily interleaved way. In
practice, restricting communication with the signer to sequential access opens a
door for denial of service attacks. Therefore, concurrent security is the widely
accepted notion.

One can build blind signatures generically from standard signatures and
secure two-party computation (2PC), as shown by Juels, Luby and Ostrovsky [31].
Unfortunately, this construction only achieves sequential security. Contrary to
that, Fischlin [17] gave a (round-optimal) generic construction that is secure
even in the universal composability framework [12]. However, it turns out that
instantiating these generic constructions efficiently is highly non-trivial. For
example, instantiating Fischlin’s construction requires to prove statements in
zero-knowledge about a combination of commitment and signature scheme. If we
instantiate the signature scheme efficiently in the random oracle model, we end up
treating the random oracle as a circuit. This leads to unclear implications in terms
of security. Additionally, schemes based on Fischlin’s construction inherently
require strong decisional assumptions due to the use of zero-knowledge proofs and
encryption. The recent work by Katsumata and del Pino [16] makes significant
progress in this direction. By carefully choosing building blocks and slightly
tweaking the construction, they give an instantiation of Fischlin’s paradigm in
the lattice setting. However, the communication complexity of their protocol is
still far from being practical.

In addition to the generic constructions mentioned above, there are direct
constructions of blind signatures. While some constructions make use of com-
plexity leveraging [23,22], others are proven secure under non-standard q-type
or interactive assumptions [35,23,19,24]. Notably, there are efficient and round-
optimal schemes based on the full-domain-hash paradigm [7,5,3]. For example,
Boldyreva [7] introduces a blinded version of the BLS signature scheme [8]. To

Rai-Choo! 9

prove security, one relies on the non-standard one-more variant of the underlying
assumption (e.g. one-more CDH for BLS).

In addition to the works in the standard and random oracle model mentioned
before, there are also constructions [21,32,42] that are proven secure in more
idealized models, such as the algebraic or generic group model [20,41]. While
it leads to efficient schemes, we want to avoid using such a model, as it is
non-standard.

2 Preliminaries

We denote the security parameter by λ ∈ N, and assume that all algorithms get
1λ implicitly as input. Let S be a finite set and D be a distribution. We write
x←$S to indicate that x is sampled uniformly at random from S. We write
x← D if x is sampled according to D. Let A be a (probabilistic) algorithm. We
write y ← A(x), if y is output from A on input x with uniformly sampled random
coins. To make these random coins ρ explicit, we write y = A(x; ρ) The notation
y ∈ A(x) means that y is a possible output of A(x). As always, an algorithm is
said to be PPT if its running time T(A) is bounded by a polynomial in its input
size. A function f : N→ R+ is negligible in its input λ, if f ∈ λ−ω(1). Let G be a
security game. We write G⇒ b to indicate that G outputs b. The first K natural
numbers are denoted by [K] := {1, . . . ,K}. Next, we define the cryptographic
primitive of interest and the computational assumption that we use.

Definition 1 (Blind Signature Scheme). A blind signature scheme is a
quadruple of PPT algorithms BS = (Gen,S,U,Ver) with the following syntax:

– Gen(1λ) → (pk, sk) takes as input the security parameter 1λ and outputs a
pair of keys (pk, sk). We assume that the public key pk defines a message
spaceM =Mpk implicitly.

– S and U are interactive algorithms, where S takes as input a secret key sk
and U takes as input a key pk and a message m ∈M. After the execution, U
returns a signature σ and we write (⊥, σ)← 〈S(sk),U(pk,m)〉.

– Ver(pk,m, σ)→ b is deterministic and takes as input public key pk, message
m ∈M, and a signature σ, and returns b ∈ {0, 1}.

We require that BS is complete in the following sense. For all (pk, sk) ∈ Gen(1λ)
and all m ∈Mpk it holds that

Pr [Ver(pk,m, σ) = 1 | (⊥, σ)← 〈S(sk),U(pk,m)〉] = 1.

Definition 2 (One-More Unforgeability). Let BS = (Gen,S,U,Ver) be a
blind signature scheme and ` : N → N. For an algorithm A, we consider the
following game `-OMUFABS(λ):

1. Sample keys (pk, sk)← Gen(1λ).

10 L. Hanzlik, J. Loss, B. Wagner

2. Let O be an interactive oracle simulating S(sk). Run

((m1, σ1), . . . , (mk, σk))← AO(pk),

where A can query O in an arbitrarily interleaved way and complete at most
` = `(λ) of the interactions with O.

3. Output 1 if and only if all mi, i ∈ [k] are distinct, A completed at most k − 1
interactions with O and for each i ∈ [k] it holds that Ver(pk,mi, σi) = 1.

We say that BS is `-one-more unforgeable (`-OMUF), if for every PPT algorithm
A the following advantage is negligible:

Adv`-OMUF
A,BS (λ) := Pr

[
`-OMUFABS(λ)⇒ 1

]
.

We say that BS is one-more unforgeable (OMUF), if it is `-OMUF for all polyno-
mial `.

Definition 3 (Blindness). Consider a blind signature scheme BS = (Gen, S,U,
Ver). For an algorithm A and bit b ∈ {0, 1}, consider the following game
BLINDAb,BS(λ):

1. Run (pk,m0,m1, St)← A(1λ).
2. Let O0 be an interactive oracle simulating U(pk,mb) and O1 be an interactive

oracle simulating U(pk,m1−b). Run A on input St with arbitrary interleaved
one-time access to each of these oracles, i.e. St′ ← AO0,O1(St).

3. Let σb, σ1−b be the local outputs of O0,O1, respectively. If σ0 = ⊥ or
σ1 = ⊥, then run b′ ← A(St′,⊥,⊥). Else, obtain a bit b′ from A on input
σ0, σ1, i.e. run b′ ← A(St′, σ0, σ1).

4. Output b′.

We say that BS satisfies malicious signer blindness, if for every PPT algorithm
A the following advantage is negligible:

Advblind
A,BS(λ) :=

∣∣∣Pr
[
BLINDA0,BS(λ)⇒ 1

]
− Pr

[
BLINDA1,BS(λ)⇒ 1

]∣∣∣ .
We make use of the natural variant of the CDH assumption in the asymmetric
pairing setting [14].

Definition 4 (CDH Assumption). Let PGGen(1λ) be a bilinear group genera-
tion algorithm that outputs cyclic groups G1,G2 of prime order p with generators
g1 ∈ G1, g2 ∈ G2, and a non-degenerate5 pairing e : G1 × G2 → GT into some
target group GT . We say that the CDH assumption holds relative to PGGen, if
for all PPT algorithms A, the following advantage is negligible:

AdvCDH
A,PGGen(λ) := Pr

z = xy

∣∣∣∣∣∣
(G1,G2, g1, g2, p, e)← PGGen(1λ),
x, y←$ Zp, X1 := gx1 , X2 := gx2 , Y := gy1
gz1 ← A(G1,G2, g1, g2, p, e,X1, Y,X2)


5 Non-degenerate means that e(g1, g2) is a generator of the group GT .

Rai-Choo! 11

3 Our Blind Signature Scheme

In this section, we present our blind signature scheme.

3.1 Construction

Let PGGen(1λ) be a bilinear group generation algorithm that outputs cyclic
groups G1,G2 of prime order p with generators g1 ∈ G1, g2 ∈ G2, and a non-
degenerate pairing e : G1×G2 → GT into some target group GT . We assume that
these system parameters are known to all algorithms. Note that their correctness
can be verified efficiently. Our scheme BSR = (Gen,S,U,Ver) is parameterized
by integers K = K(λ), N(λ) ∈ N. These do not depend on the number of
previous interactions. We only need that N−K is negligible in λ. Our scheme
does not require the signer to hold a state. The scheme makes use of random
oracles Hr,Hµ : {0, 1}∗ → {0, 1}λ,Hα : {0, 1}∗ → Zp,Hcc : {0, 1}∗ → [N]K , and
H : {0, 1}∗ → G1.

Key Rerandomization. Our scheme makes use of an algorithm ReRa, that takes
as input tuples (pki, hi)i∈[K] and an element σ̄ ∈ G1, where pki = (pki,1, pki,2) ∈
G1 ×G2, and hi ∈ G1 for all i ∈ [K]. The algorithm is as follows:

1. Choose r1, . . . , rK−1←$ Zp and set rK := −
∑K−1
i=1 ri.

2. For all i ∈ [K], set pk′i :=
(
pk′i,1, pk′i,2

)
:=
(
pki,1 · gri1 , pki,2 · gri2

)
.

3. Set σ̄′ := σ̄ ·
∏K
i=1 h

ri
i and return ((pk′i)i∈[K], σ̄

′).

It is easy to see that
∏
i∈K pki,j =

∏
i∈K pk′i,j for both j ∈ {1, 2}. Further, if we

assume that the inputs satisfy e (σ̄, g2) =
∏K
i=1 e

(
hi, pki,2

)
and e

(
pki,1, g2

)
=

e
(
g1, pki,2

)
for all i ∈ [K], then the outputs satisfy e (σ̄′, g) =

∏K
i=1 e

(
hi, pk′i,2

)
and e

(
pk′i,1, g2

)
= e

(
g1, pk′i,2

)
for all i ∈ [K]. Additionally, the output does

not reveal anything about the input, except what is already revealed by these
properties. We will make this more formal in Lemma 1 when we analyze the
blindness property of our scheme.

Key Generation. To generate keys algorithm Gen(1λ) does the following:

1. Sample sk←$ Zp, set pk1 := gsk
1 and pk2 := gsk

2 .
2. Return public key pk = (pk1, pk2) and secret key sk.

Signature Issuing. The algorithms S,U and their interaction are formally given
in Figures 1 and 2.

Verification. The resulting signature σ := ((pki, ϕi)K−1
i=1), ϕK , σ̄) for a message

m is verified by algorithm Ver(pk,m, σ) as follows:

1. Write pki = (pki,1, pki,2) for each i ∈ [K − 1].
2. Compute pkK,1 := pk1 ·

∏K−1
i=1 pk−1

i,1 and pkK,2 := pk2 ·
∏K−1
i=1 pk−1

i,2 .

12 L. Hanzlik, J. Loss, B. Wagner

3. If there is an i ∈ [K] with e
(
pki,1, g2

)
6= e

(
g1, pki,2

)
, return 0.

4. For each instance i ∈ [K], compute µi := Hµ(m, ϕi).
5. Return 1 if and only if

e (σ̄, g2) =
K∏
i=1

e
(
H(µi), pki,2

)
.

3.2 Security Analysis

Completeness of the scheme follows by inspection. We show blindness and one-
more unforgeability. Before we give the proof of blindness, we first show a lemma
that is needed. Intuitively, it states that algorithm ReRa perfectly rerandomizes
the key shares.

Lemma 1. For any pk1 ∈ G1 and pki,1 ∈ G1, i ∈ [K] such that
∏K
i=1 pki,1 = pk,

the following distributions D1 and D2 are identical:

D1 :=
{(

pk1, (pki,1)i∈[K], (pk′i,1)i∈[K]
) ∣∣∣∣ r1, . . . , rK−1←$ Zp, rK := −

∑K−1
i=1 ri

∀i ∈ [K] : pk′i,1 := pki,1 · gri1

}
D2 :=

{(
pk1, (pki,1)i∈[K], (pk′i,1)i∈[K]

) ∣∣∣∣∀i ∈ [K] : pk′i,1←$ G
pk′K,1 := pk1 ·

∏K−1
i=1 pk′−1

i,1

}

We give a formal proof of the lemma in our full version [26].

Theorem 1. Let Hr,Hµ : {0, 1}∗ → {0, 1}λ and Hα : {0, 1}∗ → Zp be random
oracles. Then BSR satisfies malicious signer blindness.

Concretely, for any algorithm A that makes at most QHr , QHµ , QHα queries
to Hr,Hµ,Hα respectively, we have

Advblind
A,BS(λ) ≤

KNQHµ
2λ−2 + KQHr

2λ−2 + KQHα
2λ−2 .

Proof. We set BS := BSR and let A be an adversary against the blindness of BS.
Our proof is presented as a sequence of games Gi,b for i ∈ [8] and b ∈ {0, 1}. We
set G0,b := BLINDAb,BS(λ). Then, our goal is bound the distinguishing advantage

Advblind
A,BS(λ) = |Pr [G0,0 ⇒ 1]− Pr [G0,1 ⇒ 1]| .

To do that, we will change our game to end up at a game G8,b for which we have

Pr [G8,0 ⇒ 1] = Pr [G8,1 ⇒ 1].

Game G0,b: Game G0,b is defined as G0,b := BLINDAb,BS(λ). We recall this
game to fix some notation. First, A outputs a public key pk and two messages

Rai-Choo! 13

S(sk) U(pk,m)

for i ∈ [K − 1] : for (i, j) ∈ [K]× [N] :

ski←$ Zp ϕi,j←$ {0, 1}λ, µi,j := Hµ(m, ϕi,j)

skK := sk−
K−1∑
i=1

ski γi,j←$ {0, 1}λ, αi,j := Hα(γi,j)

for i ∈ [K] : ri,j := (µi,j , γi,j), comi,j := Hr(ri,j)

pki,1 = gski
1 ci,j := H(µi,j) · g

αi,j
1

pki,2 = gski
2 com := (com1,1, . . . , comK,N)

pki := (pki,1, pki,2) c := (c1,1, . . . , cK,N)
J := Hcc(com, c)

if Check(open) = 0 : open open :=
(

J,
(
(ri,j)j 6=Ji , ci,Ji , comi,Ji

)
i∈[K]

)
abort

for i ∈ [K] : si := cski
i,Ji

s̄ :=
K∏
i=1

si (pki)K−1
i=1 , s̄ pkK,1 := pk1 ·

K−1∏
i=1

pk−1
i,1

pkK,2 := pk2 ·
K−1∏
i=1

pk−1
i,2

pkK := (pkK,1, pkK,2)
for i ∈ [K] :

if e
(
pki,1, g2

)
6= e
(
g1, pki,2

)
: abort

if e (s̄, g2) 6=
K∏
i=1

e
(
ci,Ji , pki,2

)
: abort

σ̄ := s̄ ·
K∏
i=1

pk−αi,Jii,1

((pk′i)i, σ̄
′)← ReRa((pki,H(µi,Ji))i, σ̄)

return σ := ((pk′i, ϕi,Ji)
K−1
i=1 , ϕK,JK , σ̄

′)

Fig. 1. Signature issuing protocol of the blind signature scheme BSR, where algorithm
Check is defined in Figure 2.

14 L. Hanzlik, J. Loss, B. Wagner

Alg Check
(

open =
(

J,
(
(ri,j)j 6=Ji , ci,Ji , comi,Ji

)
i∈[K]

))
01 for i ∈ [K] :
02 for j ∈ [N] \ {Ji} :
03 parse ri,j = (µi,j , γi,j) ∈ {0, 1}λ × {0, 1}λ
04 αi,j := Hα(γi,j), ci,j := H(µi,j) · g

αi,j
1 , comi,j := Hr(ri,j)

05 com := (com1,1, . . . , comK,N), c := (c1,1, . . . , cK,N)
06 if J 6= Hcc(com, c) : return 0
07 return 1

Fig. 2. The algorithm Check used in the signature issuing protocol of blind signature
scheme BSR.

m0,m1. Second, A is run with access to two interactive oracles O0 and O1.
These simulate U(pk,mb) and U(pk,m1−b), respectively. To distinguish variables
used in the two oracles, we use superscripts L and R. That is, variables with
superscript L (resp. R) are part of the interaction between A and O0 (resp.
O1). For example, JL := Hcc(comL, cL) denotes the cut-and-choose vector that
O0 computes, and openR denotes the first message that O1 sends to A. For
descriptions with variables without a superscript, the reader should understand
them as applying to both oracles.
Game G1,b: This game is as G0,b, but we let the game abort on a certain event.
Namely, the game aborts if A ever makes a query of the form Hµ(·, ϕi,j) for
some i ∈ [K] and j ∈ [N] \ {Ji}. Note that for these values (i, j), A obtains no
information about ϕi,j throughout the entire game. Thus, the probability that a
query is of this form is at most 1/2λ. A union bound over all such (i, j), the two
oracles, and the random oracle queries leads to

|Pr [G0,b ⇒ 1]− Pr [G1,b ⇒ 1]| ≤
KNQHµ

2λ−1 .

Game G2,b: This game is as G1,b, but with another abort event. Concretely,
the game aborts if A ever makes a query Hr(ri,Ji), or a query Hα(γi,Ji) for some
i ∈ [K]. Note that ri,Ji has the form ri,Ji = (µi,Ji , γi,Ji), where γi,Ji is sampled
uniformly at random from {0, 1}λ. Further, A obtains no information about γi,Ji
throughout the entire game. Therefore, taking a union bound over all instances
i ∈ [K], the two user oracles, and the random oracle queries for both random
oracles Hr and Hα, we get

|Pr [G1,b ⇒ 1]− Pr [G2,b ⇒ 1]| ≤ KQHr

2λ−1 + KQHα
2λ−1 .

Game G3,b: In this game, we change how the final signatures are computed.
Specifically, suppose that the user oracle does not abort due to the condition
e (s̄, g2) 6=

∏K
i=1 e

(
ci,Ji , pki,2

)
and does not abort due to condition e

(
pki,1, g2

)
6=

e
(
g1, pki,2

)
for any i ∈ [K]. Then, in previous games, the user oracle first

computed σ̄, and then executed ((pk′i)i, σ̄′) ← ReRa((pki,H(µi,Ji))i, σ̄). The

Rai-Choo! 15

value σ̄′ is part of the final signature. In game G3,b, we instead let the user
oracle run a brute-force search to compute the unique σ̄′′ such that e (σ̄′′, g2) =∏K
i=1 e

(
H(µi,Ji), pk′i,2

)
. Then, we include σ̄′′ in the final signature instead of σ̄′.

We claim that this does not change the view of A. To see this, first note that we
did not change any verification or abort condition of the user oracles. Therefore,
we can first consider the case where one of the user oracles locally outputs ⊥.
In this case, A gets ⊥,⊥ as its final input in both G2,b and G3,b. It remains to
analyze the case where both user oracles do not abort. We claim that σ̄′ and σ̄′′
are the same. To see this, assume e (s̄, g2) =

∏K
i=1 e

(
ci,Ji , pki,2

)
, and multiply

both sides by
∏K
i=1 e

(
pk−αi,Jii,1 , g2

)
. We obtain

e (s̄, g2) ·
K∏
i=1

e
(

pk−αi,Jii,1 , g2

)
=

K∏
i=1

e
(
ci,Ji , pki,2

)
·
K∏
i=1

e
(

pk−αi,Jii,1 , g2

)
=⇒ e

(
s̄ ·

K∏
i=1

pk−αi,Jii,1 , g2

)
=

K∏
i=1

e
(
ci,Ji , pki,2

)
· e
(
g
−αi,Ji
1 , pki,2

)
=⇒ e (σ̄, g2) =

K∏
i=1

e
(
H(µi,Ji), pki,2

)
,

where we used e
(
pki,1, g2

)
= e

(
g1, pki,2

)
for all i ∈ [K] on the right-hand side.

Using the definition of algorithm ReRa, it is easy to see that this implies

e (σ̄′, g2) =
K∏
i=1

e
(
H(µi,Ji), pk′i,2

)
.

By definition, σ̄′′ satisfies the same equation. As their is a unique solution to this
equation for given pk′i,2 and µi,Ji , i ∈ [K], we see that σ̄′ = σ̄′′. We have

Pr [G2,b ⇒ 1] = Pr [G3,b ⇒ 1].

Game G4,b: We make another change to the computation of the final signatures.
Again, suppose that the user oracle does not abort. In this gameG4,b, we no longer
run algorithm ReRa in this case. Instead, we compute the pk′i = (pk′i,1, pk′i,2) as
a fresh sharing via

sk′i←$ Zp, pk′i,1 := gski
1 , pk′i,2 := gski

2 for i ∈ [K − 1],

pk′K,1 := pk1 ·
K−1∏
i=1

pk′−1
i,1 , pk′K,2 := pk2 ·

K−1∏
i=1

pk′−1
i,2 .

Note that the other output σ̄′ of algorithm ReRa is no longer needed due to the
previous change. To analyze this change, we first argue that the pk′i,2 are uniquely
determined by the pk′i,1. Namely, if the user oracle does not abort, we know that
e
(
pki,1, g2

)
= e

(
g1, pki,2

)
for all i ∈ [K], and e (pk1, g2) = e (g1, pk2). It is easy to

16 L. Hanzlik, J. Loss, B. Wagner

see that property is preserved by algorithm ReRa, i.e. e
(
pk′i,1, g2

)
= e

(
g1, pk′i,2

)
for all i ∈ [K]. One can verify that our new definiton of the pk′i,1, pk′i,2 also
satisfies this. It remains to analyze the distribution of the pk′i,1. By Lemma 1 the
distribution of the pk′i,1 stays the same. This implies that

Pr [G3,b ⇒ 1] = Pr [G4,b ⇒ 1].

Game G5,b: In game G5,b, we first sample random vectors ĴL←$ [N]K and
ĴR←$ [N]K . Then, we let the game abort, if later we do not have ĴL = JL and
ĴR = JR. As the view of A is independent of ĴL, ĴR until a potential abort, we
have

Pr [G5,b ⇒ 1] = 1
N2K · Pr [G4,b ⇒ 1].

Game G6,b: In game G6,b, we change how the values µi,j for i ∈ [K] and
j ∈ [N] \ {Ĵi} are computed. Recall that before, they were computed as µi,j =
Hµ(m, ϕi,j). In G6,b, we sample µi,j←$ {0, 1}λ for i ∈ [K] and j ∈ [N] \ {Ĵi}
instead. We highlight that the game still samples the values ϕi,j to determine
when it has to abort according toG1,b. Due to the changes introduced inG1,b and
G5,b, we can assume that Ĵ = J and A never queries Hµ(m, ϕi,j), and therefore
this change does not influence the view of A. We have

Pr [G5,b ⇒ 1] = Pr [G6,b ⇒ 1].

Game G7,b: In game G7,b, we change how the values αi,Ĵi and comi,Ĵi are
computed for all i ∈ [K]. Concretely, in this game, αi,Ĵi is sampled uniformly
at random as αi,Ĵi←$ Zp. Further, comi,Ĵi←$ {0, 1}λ is sampled uniformly at
random. Assuming that the game does not abort, we argue that the view of A
does not change. This follows directly from the changes in G5,b and G2,b. Namely,
we can assume that Ĵ = J and that A never makes a query Hr(ri,Ĵi). We have

Pr [G6,b ⇒ 1] = Pr [G7,b ⇒ 1].

Game G8,b: In game G8,b, we change how the values ci,Ĵi for i ∈ [K] are
computed. First, recall that in the previous games, these are computed as
ci,Ĵi = H(µi,Ĵi) · g

αi,Ĵi
1 . Now, we sample it at random using ci,Ĵi←$ G1. We argue

indistinguishability as follows. Due to the change introduced in G5,b, we can
assume that Ĵ = J. Then, we know that in this case αi,Ĵi is only used to define
ci,Ĵi and nowhere else. In particular, it is not used to derive the final signatures
from the interaction, due to the change introduced in G3,b, and it is not used
to define comi,Ĵi due to the change in G7,b. As αi,Ĵi is sampled uniformly at
random due to the change in G7,b, we know that ci,Ĵi is distributed uniformly at
random in G7,b. This shows that

Pr [G7,b ⇒ 1] = Pr [G8,b ⇒ 1].

Finally, it can be observed that the view of A does not depend on the bit b
anymore. This is because the messages m0,m1 are not used in the user oracles.

Rai-Choo! 17

Instead, the user oracles use random µi,j , independent of the messages, for all
opened sessions j 6= Ji, and the final signatures σ0, σ1 that A gets are computed
using brute-force independent of the interactions, assuming that both interactions
accept. This shows that

Pr [G8,0 ⇒ 1] = Pr [G8,1 ⇒ 1].

To conclude, we upper bound Advblind
A,BS(λ) = |Pr [G0,0 ⇒ 1]− Pr [G0,1 ⇒ 1]| by

|Pr [G4,0 ⇒ 1]− Pr [G4,1 ⇒ 1]|+ 2
(
KNQHµ

2λ−1 + KQHr

2λ−1 + KQHα
2λ−1

)
= N2K |Pr [G5,0 ⇒ 1]− Pr [G5,1 ⇒ 1]|+

KNQHµ
2λ−2 + KQHr

2λ−2 + KQHα
2λ−2

= N2K |Pr [G8,0 ⇒ 1]− Pr [G8,1 ⇒ 1]|+
KNQHµ

2λ−2 + KQHr

2λ−2 + KQHα
2λ−2

=
KNQHµ

2λ−2 + KQHr

2λ−2 + KQHα
2λ−2 .

ut

Theorem 2. Let Hr,Hµ : {0, 1}∗ → {0, 1}λ, and Hcc : {0, 1}∗ → [N]K , and H :
{0, 1}∗ → G be random oracles. If CDH assumption holds relative to PGGen, then
BSR is one-more unforgeable.

Concretely, for any polynomial ` and any PPT algorithm A that makes at
most QHcc , QHr , QHµ , QH queries to Hcc,Hr,Hµ,H respectively, there is a PPT
algorithm B with T(B) ≈ T(A) and

Adv`-OMUF
A,BSR (λ) ≤

Q2
Hµ +Q2

Hr
+QHrQHcc +QHQHµ

2λ + `

NK

+ 4` · AdvCDH
B,PGGen(λ).

Proof. We set BS := BSR and let A be an adversary against the one-more
unforgeability of BS. We show the statement by presenting a sequence of games.
Before we go into detail, we explain the overall strategy of the proof. In our final
step, we give a reduction that breaks the CDH assumption. This reduction works
similar to the reduction for the BLS signature scheme [8]. Namely, it embeds one
part of the CDH instance in the public key, and one part in some of the random
oracle queries for oracle H. In the first part of our proof, we prepare simulation
of the signer oracle without using the secret key. Here, the strategy is to extract
the users randomness using the cut-and-choose technique. With overwhelming
probability, in a fixed interaction, we can extract the randomness for one of the
K instances, say instance i∗. Then, we compute the public key shares pki in a
way that allows us to know all corresponding secret keys except ski∗ . For instance
i∗, we can simulate the signing oracle by programming random oracle H. In the
second part of our proof, we prepare the extraction of the CDH solution from the

18 L. Hanzlik, J. Loss, B. Wagner

forgery that A returns. Here, it is essential that the scheme uses random oracle
Hµ to compute commitments µi,j . This allows us to embed the part of the CDH
input in H in a consistent way. We will now proceed more formally.
Game G0: Game G0 is the real one-more unforgeability game, i.e. G0 :=
`-OMUFABS. Let us recall this game. First, the game samples (pk, sk)← Gen(1λ).
Then, A is executed on input pk, and gets concurrent access to signer oracle O,
simulating S(sk). Additionally, A gets access to random oracles H,Hµ,Hr,Hcc.
These are simulated by the game in the standard lazy way. Finally, A outputs
pairs (m1, σ1), . . . , (mk, σk). Denote the number of completed interactions (i.e.
interactions in which O sent s̄ to A) by `. If all mi are distinct, all σi are valid
signatures for mi with respect to pk, and k > `, the game outputs 1. By definition,
we have

Adv`-OMUF
A,BS (λ) = Pr [G0 ⇒ 1].

Game G1: Game G1 is as G0, but it aborts if a collision for one of the random
oracles Hr,Hµ occurs. More precisely, let ∗ ∈ {r, µ} and consider a query H∗(x)
for which the hash value is not yet defined. The game samples H∗(x) as in game
G0. Then, the game aborts if there is another x′ 6= x such that H∗(x′) is already
defined and H∗(x) = H∗(x′). As the outputs of H∗ are sampled uniformly from
{0, 1}λ, we can use a union bound over all pairs of queries and get

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤
Q2

Hµ
2λ +

Q2
Hr

2λ .

Game G2: Game G2 is as game G1, but we introduce a bad event and let
the game abort if this bad event occurs. Concretely, consider any fixed query
to oracle Hcc of the form Hcc(com, c) = J for com = (com1,1, . . . , comK,N) and
c = (c1,1, . . . , cK,N). For such queries and all (i, j) ∈ [K] × [N], the game now
tries to extract values r̄i,j such that comi,j = Hr(̄ri,j). To do that, it searches
through the random oracle queries for random oracle Hr. For those (i, j) for
which such a value can not be extracted, we write r̄i,j = ⊥. Due to the change
introduced in G1, there can be at most one extracted value for each (i, j). The
game now aborts, if in such a query, there is some (i, j) ∈ [K]× [N] such that
r̄i,j = ⊥, but later oracle Hr is queried and returns comi,j . Clearly, for a fixed pair
of queries to Hcc and Hr, respectively, this bad event can only with probability
1/2λ. By a union bound we get

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤ QHrQHcc
2λ .

Before we continue, we summarize what we established so far and introduce some
terminology. For that, we fix an interaction between A and the signer oracle O.
Consider the first message

open =
(

J,
(

(ri,j)j 6=Ji , ci,Ji , comi,Ji

)
i∈[K]

)
that is sent by A. Recall that after receiving this message, algorithm Check uses
open to compute values com = (com1,1, . . . , comK,N) and c = (c1,1, . . . , cK,N).

Rai-Choo! 19

Then, it also checks if J = Hcc(com, c). Also, consider the values r̄i,j related
to the query Hcc(com, c), as defined in G2. Assuming Check outputs 1 (i.e.
J = Hcc(com, c)), we make two observations for any instance i ∈ [K].

1. If for some j ∈ [N] we have r̄i,j = ⊥, then j = Ji. This is due to the bad
event introduced in G2.

2. If for some j ∈ [N] we have r̄i,j = (µ, γ) 6= ⊥ but ci,j 6= H(µ) · gα1 for
α := Hα(γ), then Ji = j. This is because we ruled out collisions for Hr in
G1. Namely, as there are no collisions, we know that r̄i,j = ri,j for all j 6= Ji.
Therefore, ci,j = H(µ) · gα1 by definition of Check.

If one of these two events occur for some i, we say that there is a successful cheat
in instance i. Note that the game can efficiently check if there is a successful cheat
in an instance once it received open. Also note that the values r̄i,j are fixed in
the moment A queries Hcc(com, c) for the first time. In particular, they are fixed
before A obtains any information about the uniformly random J = Hcc(com, c).
Therefore, using the two observations above, the probability of a successful cheat
in instance i is at most 1/N . Further, as the components of J are sampled
independently, the probability that there is a successful cheat in all K instances
(in this fixed interaction) is at most 1/NK .
Game G3: In game G3, we introduce another abort. Namely, the game aborts, if
in some interaction between A and the signer oracle O, there is a successful cheat
in every instance i ∈ [K], and that interaction is completed. By the discussion
above, we have

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ `

NK
.

Game G4: In game G4, we change the way the signer oracle computes the shares
ski. Recall that before, these were computed as

ski←$ Zp for i ∈ [K − 1], skK := sk−
K−1∑
i=1

ski.

Then, the corresponding public key shares were computed as pki = (gski
1 , gski

2) for
all i ∈ [K]. In game G4, the game instead defines the ski after it received the
first message open from A in the following way. If Check outputs 0 or there is a
successful cheat in every instance, the game behaves as before (i.e. it aborts the
interaction, or the entire execution). Otherwise, let i∗ ∈ [K] be the first instance
in which there is no successful cheat. Then, the game computes

ski←$ Zp for i ∈ [K] \ {i∗}, ski∗ := sk−
∑

i∈[K]\{i∗}

ski.

The game defines pki for all i ∈ [K] as before. It is clear that this change is only
conceptual, as a uniformly random additive sharing of sk is computed in both
G3 and G4. Therefore, we have

Pr [G3 ⇒ 1] = Pr [G4 ⇒ 1].

20 L. Hanzlik, J. Loss, B. Wagner

Game G5: In game G5, we introduce an abort related to the random oracles
H and Hµ. Namely, the game aborts if the following occurs. The adversary A
first queries H(µ) for some µ ∈ {0, 1}∗, and after that a hash value Hµ(x) is
defined for some x ∈ {0, 1}∗, and we have Hµ(x) = µ. Clearly, once µ is fixed,
the probability that a previously undefined hash value Hµ(x) is equal to µ is at
most 1/2λ. Therefore, we can use a union bound over the random oracle queries
and get

|Pr [G4 ⇒ 1]− Pr [G5 ⇒ 1]| ≤
QHQHµ

2λ .

Game G6: In this game, we introduce a purely conceptual change. To do that,
we introduce maps b[·] and b̂[·]. Then, on a query Hµ(m, ϕ) for which the hash
value is not yet defined, the game samples bit b̂[m] ∈ {0, 1} from a Bernoulli
distribution, such that the probability that b̂[m] = 1 is 1/(`+ 1). Additionally,
on a query H(µ) for which the hash value is not yet defined, the game first
searches for a previous query (mµ, ϕ) to Hµ such that Hµ(mµ, ϕ) = µ. Then, it
sets b[µ] := b̂[mµ]. If no such query can be found, it sets b[µ] := 0. Note that due
to the change in G1, the game can find at most one such query and mµ is well
defined. The view of A does not change, and we have

Pr [G5 ⇒ 1] = Pr [G6 ⇒ 1].

Game G7: In this game, we introduce an initially empty set L and an abort
related to it. In each interaction between A and the signer oracle O, the game
simulates the oracle as in G6. Additionally, if the game has to provide the final
message (pki)K−1

i=1 , s̄, then we know that Check output 1 and the game did not
abort. Therefore, there is at least one instance i∗ ∈ [K] such that A did not
cheat successfully in instance i∗. Fix the first such instance. This means that the
game could extract r̄i∗,Ji∗ = (µ, γ) before (see the discussion after G2). In game
G7, the game tries to extract mµ as defined in G6 from µ using Hµ, and inserts
(µ,mµ) into set L if it could extract. Also, the game aborts if b[µ] = 1. Otherwise,
it computes and sends (pki)K−1

i=1 , s̄ as before. We highlight that the size of L is at
most the number of completed interactions `.

Next, consider the final output (m1, σ1), . . . , (mk, σk) of A, write σr =
((pkr,i, ϕr,i)K−1

i=1), ϕr,K , σ̄r), and set µr,i := Hµ(mr, ϕr,i) for all r ∈ [k], i ∈ [K]. If
A is successful, we know that k > `. Therefore, by the pigeonhole principle, there
is at least one (r̃, ĩ) ∈ [k]× [K] such that (µr̃,̃i,mr̃) /∈ L. Game G7 finds the first
such µr̃,̃i, sets µ∗ := µr̃,̃i and aborts if b[µ∗] = 0. Note that we can assume that
b[µ∗] is defined, as verification of A’s output involves computing H(µ∗). For the
sake of analysis, G7 also appends further entries of the form (µ,mµ) to L such
that |L| = ` and all entries in L ∪ {µ∗} have distinct components mµ. It queries
H(µ) for all (µ,mµ) ∈ L. Then, it aborts if for some (µ,mµ) ∈ L it holds that
b[µ] = 1.

To analyze the change we introduced, note that G6 and G7 only differ if
b[µ∗] = 0 or b[µ] = 1 for some (µ,mµ) ∈ L. This is because if the game could not
extract mµ in some interaction, then due to the changes in G5 and G6, we know

Rai-Choo! 21

that b[µ] = 0. The view of A is independent of these bits until a potential abort
occurs. This implies that

Pr [G7 ⇒ 1] = Pr [G6 ⇒ 1] · Pr [b[µ∗] = 1 ∧ ∀(µ,mµ) ∈ L : b[µ] = 0].

By definition of the bits b[·], and the change in G5, we can rewrite the latter
term in the product as

Pr
[
b̂[mr̃] = 1 ∧ ∀(µ,mµ) ∈ L : b̂[mµ] = 0

]
= 1
`+ 1

(
1− 1

`+ 1

)`
= 1
`

(
1− 1

`+ 1

)`+1
≥ 1

4` ,

where we used the fact (1− 1/x)x ≥ 1/4 for all x ≥ 2, and that all bits b̂[·] are
independent. Thus, we have

Pr [G7 ⇒ 1] ≥ 1
4` · Pr [G6 ⇒ 1].

Game G8: In this game, we change how random oracle H is simulated. Namely,
in the beginning of the game, the game samples Y ←$ G1 and initiates a map
t[·]. Then, on a query H(µ) for which the hash value is not yet defined, the
game first determines bit b[µ] as before. Then, it samples t[µ]←$ Zp and sets
H(µ) := Y b[µ] · gt[µ]

1 . Clearly, all hash values are still uniformly random and
independent. Therefore, we have

Pr [G7 ⇒ 1] = Pr [G8 ⇒ 1].

Game G9: In this game, we change how the signing oracle computes public keys
(pki)i and the values si, i ∈ [K] used to compute the final message (pki)K−1

i=1 , s̄.
Consider an interaction between A and the signer oracle and recall the definition
of the instance i∗ as in game G4. This is the first instance for which there is no
successful cheat in this interaction, i.e. r̄i∗,Ji∗ = (µ, γ) 6= ⊥ could be extracted
and ci∗,Ji∗ = H(µ) · gα1 for α := Hα(γ). In G9, the public keys pki = (pki,1, pki,2)
are computed via

pki,1 = gski
1 for i ∈ [K] \ {i∗}, pki∗,1 := pk1 ·

∏
i∈[K]\{i∗}

pk−1
i,1 ,

pki,2 = gski
2 for i ∈ [K] \ {i∗}, pki∗,2 := pk2 ·

∏
i∈[K]\{i∗}

pk−1
i,2 .

Further, due to the aborts introduced in previous games, we know that the
game only has to send (pki)K−1

i=1 , s̄ if i∗ is defined and b[µ] = 0, where µ is as
above. In this case, game G8 would compute

si∗ = cski∗
i∗,Ji∗ = H(µ)ski∗ · gα·ski∗1 =

(
Y b[µ] · gt[µ]

1

)ski∗
· pkαi∗,1 = pkα+t[µ]

i∗,1 .

22 L. Hanzlik, J. Loss, B. Wagner

Game G9 computes si∗ directly as pkα+t[µ]
i∗,1 , and all other si, i 6= i∗ as before

using ski. Both changes are only conceptual and allow the game to provide the
signer oracle without using the secret key sk at all. We have

Pr [G8 ⇒ 1] = Pr [G9 ⇒ 1].

Finally, we give a reduction B against the CDH assumption that is successful if
G9 outputs 1. We argue that

Pr [G9 ⇒ 1] ≤ AdvCDH
B,PGGen(λ).

The reduction B is as follows.

– Reduction B gets as input g1, g2, e, p, X1, Y ∈ G1, and X2 ∈ G2. It sets
pk1 := X1, pk2 := X2 and uses Y as explained in G8.

– Reduction B simulates G9 for A. Note that it can do that efficiently, as sk is
not needed.

– When A terminates with its final output (m1, σ1), . . . , (mk, σk), the reduction
B writes σr = ((pkr,i, ϕr,i)K−1

i=1), ϕr,K , σ̄r), pkr,i = (pkr,i,1, pkr,i,2), sets µr,i :=
Hµ(mr, ϕr,i) for all r ∈ [k], i ∈ [K] and pkr,K,1 := pk1 ·

∏K−1
i=1 pk−1

r,i,1 and
pkr,K,2 := pk2 ·

∏K−1
i=1 pk−1

r,i,2 for all r ∈ [k]. It performs all checks as in G9.
If G9 outputs 1, we know that B defined µ∗ := µr̃,̃i as G9 does. Then, B
outputs

Z := σ̄r̃ ·
K∏
i=1

pk−t[µr̃,i]r̃,i,1 .

It is clear that B perfectly simulates G9 and the running time of B is dominated
by the running time of A. Thus, it remains to argue that if G9 outputs 1, the Z
is a valid CDH solution. To this end, assume that G9 outputs 1. It is sufficient
to show that e (Y,X2) = e (Z, g2).

First, note that due to the abort that we introduced in G5, we know that
for all i ∈ [K], the query Hµ(mr̃, ϕr̃,i) was made before bit b[µr̃,i] was defined.
Therefore, due to the change in G6, we obtain for all i ∈ [K]

b[µr̃,i] = b̂[mr̃] = b[µr̃,r̃] = b[µ∗] = 1.

Second, we know that we have
∏K
i=1 pkr̃,i,2 = X2, and by definition of the

verification algorithm we have

e (σ̄r̃, g2) =
K∏
i=1

e
(
H(µr,i), pkr̃,i,2

)
=

K∏
i=1

e
(
Y · gt[µr̃,i], pkr̃,i,2

)
=

K∏
i=1

e
(
Y, pkr̃,i,2

)
· e
(

pkt[µr̃,i]r̃,i,1 , g2

)
= e (Y,X2) · e

(
K∏
i=1

pkt[µr̃,i]r̃,i,1 , g2

)
.

Rai-Choo! 23

In the third equation we used e
(
pkr̃,i,1, g2

)
= e

(
g1, pkr̃,i,2

)
for all i ∈ [K]. This

implies that

e (Z, g2) = e

(
σ̄r̃ ·

K∏
i=1

pk−t[µr̃,i]r̃,i,1 , g2

)
= e (Y,X2) .

ut

4 Extension: Partial Blindness and Batching

In this section, we present a batching technique for our blind signature scheme,
which leads to a significant efficiency improvement in terms of communication.
At the same time, we show how to make our scheme partially blind. We first give
an informal overview. In the second part of the section, we present the formal
model for batching (partially) blind signatures. Then, we present our scheme and
its analysis.

4.1 Overview

We give an overview of the extensions we present in this section. These cover
partial blindness, and batching to further improve the communication complexity.
Partially Blind Signatures. Recall that a partially blind signature scheme
allows to sign messages with respect to some public information string info,
that the signer knows. This string acts as a form of domain separator. Namely,
one-more unforgeability now guarantees that the user can output at most `
valid message signature pairs with respect to any public information string info,
for which it interacted at most ` times with the signer oracle. It turns out
that we can extend our blind signature scheme into a partially blind signature
scheme, by changing the definition of the values ci,j from ci,j = H(µi,j) · g

αi,j
1 to

ci,j = H(info, µi,j) · gαi,j1 . Intuitively, the cut-and-choose technique now ensures
that the user uses the correct info to compute the ci,j ’s.
Batching. We show how we can batch multiple signing interactions. Namely,
we observe that if we sign multiple messages in one interaction, the (amortized)
communication complexity decreases. Batching has been subject of study for
other primitives, e.g. in oblivious transfer [30,9]. Let us briefly sketch how we
can apply batching to our blind signature scheme. For that, consider one signing
interaction in which a batch m1, . . . ,mL of L messages should be signed. Recall
that in our scheme, cut-and-choose ensured that there is an instance i∗ ∈ [K],
such that the user does not cheat successfully in instance i∗. Then, the purpose
of sending a fresh public key sharing pk1, . . . , pkK was to dynamically embed
the unknown share of the secret key in instance i∗. For this strategy, it is not
relevant that we cover one message per instance. Therefore we can use the same
public key sharing pk1, . . . , pkK , and the same cut-and-choose index for every
instance, leading to our batched scheme.

24 L. Hanzlik, J. Loss, B. Wagner

4.2 Model for Batched (Partially) Blind Signatures

In this section, we sketch the definition of batched (partially) blind signatures
and their security. For formal definitions, we refer to the full version [26]. The
reader should observe that batched partially blind signatures imply partially
blind signatures by fixing the batch size L = 1. Further, the partial blindness
can be lifted to standard blindness by fixing a default public information string.
We start with the syntax of batched partially blind signatures. Recall that in
partially blind signatures, the signer gets the public information string info, while
the user gets info and the message m. Here, we generalize the syntax of partially
blind signatures to the setting, where both user and signer get the batch size L
as input, and multiple pairs (infol,ml) are signed. This models that the batch
size is not fixed, but instead it can be chosen dynamically. More precisely, while
the syntax of key generation and verification is as for partially blind signatures,
an interaction between S and U can now be described as

(⊥, (σ1, . . . , σL))← 〈S(sk, L, (infol)l∈[L]),U(pk, L, (ml, infol)l∈[L]〉.

Completeness requires that for all l ∈ [L], it holds that Ver(pk, infol,ml, σl) = 1.
In terms of security, we require the same security guarantees, as if we just

run a normal (partially) blind signature scheme L times in parallel. We let the
adversary determine the batch size in each interaction separately. This leads to a
natural definition of batch one-more unforgeability.

As for unforgeability, blindness should give the same guarantees as if we just
run a normal (partially) blind signature scheme L times in parallel. Especially, it
should not be possible to tell if two signatures result from the same interaction
or not. In our security game, we let the malicious signer choose two batches of
(potentially different) sizes L0 and L1. The signer also points to one element for
each batch. Then, the game either swaps these two elements, or not, and the
signer has to distinguish these two cases. Via a hybrid argument, this implies
that the signer does not know which message is signed in which interaction.

4.3 Construction

As for BSR, we let PGGen(1λ) be a bilinear group generation algorithm that
outputs cyclic groups G1,G2 of prime order p with generators g1 ∈ G1, g2 ∈ G2,
and a non-degenerate pairing e : G1×G2 → GT into some target group GT . Again,
we assume that these system parameters are known to all algorithms and note that
their correctness can be verified efficiently. Our scheme BPBSR = (Gen, S,U,Ver)
is parameterized by integers K = K(λ), N(λ) ∈ N, where we need that N−K is
negligible in λ. We assume that the space I contains bitstrings of bounded length 6.
The scheme makes use of random oracles Hr,Hµ : {0, 1}∗ → {0, 1}λ,Hα : {0, 1}∗ →
Zp,Hcc : {0, 1}∗ → [N]K , and H : {0, 1}∗ → G1.

We verbally describe the signature issuing protocol (S,U) and verification of
scheme BPBSR. Key generation (algorithm Gen) is exactly as in BSR.
6 This is without loss of generality, using a collision-resistant hash function.

Rai-Choo! 25

Signature Issuing. The interactive signature issuing protocol between algorithms
S(sk, L, (infol)l∈[L]) and U(pk, L, (ml, infol)l∈[L]) is given as follows.

1. User U does the following.
(a) Preparation. First, for each instance i ∈ [K] and session j ∈ [N], U

commits to all L messages via

ϕi,j,l←$ {0, 1}λ, µi,j,l := Hµ(ml, ϕi,j,l) for all (i, j, l) ∈ [K]× [N]× [L].

(b) Commitments. Next, for each instance i ∈ [K] and session j ∈ [N], U
samples a seed γi,j←$ {0, 1}λ. It then defines

ri,j := (γi,j , µi,j,1, . . . , µi,j,L) , comi,j := Hr(ri,j) for all (i, j) ∈ [K]×[N].

Then, U sets com := (com1,1, . . . , comK,N).
(c) Challenges. Now, U derives randomness αi,j,l and computes challenges

ci,j,l via αi,j,l := Hα(γi,j , l) and

ci,j,l := H(infol, µi,j,l) · g
αi,j,l
1 for all (i, j, l) ∈ [K]× [N]× [L].

Then, U sets c := (c1,1,1, . . . , cK,N,L).
(d) Cut-and-Choose. Next, U derives a cut-and-choose vector J ∈ [N]K as

J := Hcc(com, c). It then defines an opening

open :=
(

J,
(

(ri,j)j 6=Ji , (ci,Ji,l)l∈[L], comi,Ji

)
i∈[K]

)
.

Finally, U sends open to S.
2. Signer S does the following.

(a) Key Sharing. First, S samples ski←$ Zp for i ∈ [K−1]. It computes skK :=
sk−

∑K−1
i=1 ski and pki := (pki,1, pki,2) := (gski

1 , gski
2) for all i ∈ [K].

(b) Cut-and-Choose Verification. To verify the opening, S runs algorithm
Check(L, (infol)l∈[L], open) (see Figure 3). If this algorithm returns 0, S
aborts the interaction.

(c) Responses. For each instance i ∈ [K] and each l ∈ [L], S computes
responses si,l := cski

i,Ji,l. Then, it aggregates them for each l ∈ [L] by
computing s̄l :=

∏K
i=1 si,l. Finally, S sends (pki)K−1

i=1 , s̄1, . . . , s̄L to U.
3. User U does the following.

(a) Key Sharing Verification. First, U recomputes key pkK as pkK := (pkK,1,
pkK,2) for pkK,1 := pk1 ·

∏K−1
i=1 pk−1

i,1 and pkK,2 := pk2 ·
∏K−1
i=1 pk−1

i,2 . Next,
U checks validity of the pki by checking if

e
(
pki,1, g2

)
= e

(
g1, pki,2

)
for all i ∈ [K].

If any of these equations does not hold, U aborts the interaction.

26 L. Hanzlik, J. Loss, B. Wagner

(b) Response Verification. Then, U verifies the responses s̄l by checking

e (s̄l, g2) =
K∏
i=1

e
(
ci,Ji,l, pki,2

)
for all l ∈ [L].

If any of these equations does not hold, U aborts the interaction. Other-
wise, it computes

σ̄l := s̄l ·
K∏
i=1

pk−αi,Ji,li,1 for all l ∈ [L].

(c) Key Rerandomization. Next, U computes rerandomized key sharings via

((pk′i,l)i, σ̄′l)← ReRa((pki,H(infol, µi,Ji,l))i, σ̄l) for all l ∈ [L].

It then defines signatures

σl := ((pk′i,l, ϕi,Ji,l)K−1
i=1 , ϕK,JK ,l, σ̄

′
l) for all l ∈ [L].

(d) Finally, U outputs the signatures σ1, . . . , σL.

Verification. The resulting signature σ := ((pki, ϕi)K−1
i=1), ϕK , σ̄) for a message

m and string info is verified by algorithm Ver(pk, info,m, σ) as follows:

1. Write pki = (pki,1, pki,2) for each i ∈ [K − 1].
2. Compute pkK,1 := pk1 ·

∏K−1
i=1 pk−1

i,1 and pkK,2 := pk2 ·
∏K−1
i=1 pk−1

i,2 .
3. If there is an i ∈ [K] with e

(
pki,1, g2

)
6= e

(
g1, pki,2

)
, return 0.

4. For each instance i ∈ [K], compute µi := Hµ(m, ϕi).
5. Return 1 if and only if

e (σ̄, g2) =
K∏
i=1

e
(
H(info, µi), pki,2

)
.

4.4 Security Analysis

Completeness of the scheme follows by inspection. The proofs and concrete
security bounds for blindness and one-more unforgeability are almost identical to
the proofs of the corresponding theorems in Section 3. Due to space limitation,
we postpone the formal analysis to the full version [26].

5 Concrete Parameters and Efficiency

In this section, we discuss concrete parameters and efficiency of our scheme.

Rai-Choo! 27

Alg Check
(
L, (infol)l∈[L], open =

(
J,
(
(ri,j)j 6=Ji , (ci,Ji,l)l∈[L], comi,Ji

)
i∈[K]

))
01 for i ∈ [K] :
02 for j ∈ [N] \ {Ji} :
03 comi,j := Hr(ri,j)
04 parse ri,j = (γi,j , µi,j,1, . . . , µi,j,L) ∈ ({0, 1}λ)L+1

05 for l ∈ [L] : αi,j,l := Hα(γi,j , l), ci,j,l := H(infol, µi,j,l) · g
αi,j,l
1

06 com := (com1,1, . . . , comK,N), c := (c1,1,1, . . . , cK,N,L)
07 if J 6= Hcc(com, c) : return 0
08 return 1

Fig. 3. The algorithm Check used in the signature issuing protocol of batched blind
signature scheme BPBSR.

Instantiating Parameters. We instantiate our scheme over the BLS12-381 curve,
using SHA-256 as a hash function. It remains to determine appropriate choices
for parameters K and N . To do that, we first fix some choice of N and a bit
security level κ = 128. Then, we assume a maximum number of ` = 230 signing
interactions with the same key. Following the security bound, we can now set
K := d(κ+ log `)/logNe+ 1. This approach leads to the instantiations

(I) K = 80, N = 4, (II) K = 54, N = 8, (III) K = 33, N = 32.

For these, we compute the sizes of signatures and communication in a Python
script (see the full version [26]). Our results are presented in Table 2.

Implementation. To demonstrate computational practicality, we prototypically
implemented our scheme in C++ using above parameter settings. Our implemen-
tation uses the MCL library7 and can be found at

https://github.com/b-wagn/Raichoo

Although our scheme is highly parallelizable, we did not implement any paral-
lelization. To evaluate the efficiency of our implementation, we determined the
average running time over 100 runs of the signing interaction (i.e. running U1,
then S, then U2), and the verification algorithm. For our tests, we used a Intel
Core i5-7200U processor @2,5 GHz with 4 cores and 8 GB of RAM, running
Ubuntu 20.04.4 LTS 64-bit. Our results are presented in Table 2. In general, the
table shows a tradeoff between signature size, communication complexity, and
computational efficiency.

Concrete Bit Security. In contrast to [13], we compute our parameters using
standardized curves and hash functions instead of estimating parameters based
on the security loss. The reason for this is twofold. First, we want our numbers be
consistent with our implementation and therefore have to rely on standardized
components. Second, the estimations in [13] assume a generic mapping from the
7 See https://github.com/herumi/mcl

https://github.com/b-wagn/Raichoo
https://github.com/herumi/mcl

28 L. Hanzlik, J. Loss, B. Wagner

bit security of CDH to the size of an appropriate group. This is not always given.
To discuss the effect of the security loss, we now assume all components are
roughly 128 bit secure. Then, the guaranteed security for our scheme is roughly
128− log ` = 98 bit. This is the same for the PI-Cut-Choo scheme [13], and the
standard BLS signature scheme [8].

References

1. Abe, M.: A secure three-move blind signature scheme for polynomially many
signatures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–
151. Springer, Heidelberg (May 2001). https://doi.org/10.1007/3-540-44987-6_
9

2. Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (Aug
2000). https://doi.org/10.1007/3-540-44598-6_17

3. Agrawal, S., Kirshanova, E., Stehle, D., Yadav, A.: Can round-optimal lattice-based
blind signatures be practical? Cryptology ePrint Archive, Report 2021/1565 (2021),
https://eprint.iacr.org/2021/1565

4. Baldimtsi, F., Lysyanskaya, A.: On the security of one-witness blind signature
schemes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS,
vol. 8270, pp. 82–99. Springer, Heidelberg (Dec 2013). https://doi.org/10.1007/
978-3-642-42045-0_5

5. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-
RSA-inversion problems and the security of Chaum’s blind signature scheme.
Journal of Cryptology 16(3), 185–215 (Jun 2003). https://doi.org/10.1007/
s00145-002-0120-1

6. Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the (in)security
of ROS. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part I. LNCS,
vol. 12696, pp. 33–53. Springer, Heidelberg (Oct 2021). https://doi.org/10.1007/
978-3-030-77870-5_2

7. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y. (ed.) PKC 2003.
LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (Jan 2003). https://doi.org/
10.1007/3-540-36288-6_3

8. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(Dec 2001). https://doi.org/10.1007/3-540-45682-1_30

9. Brakerski, Z., Branco, P., Döttling, N., Pu, S.: Batch-OT with optimal rate. In:
Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol.
13276, pp. 157–186. Springer, Heidelberg (May / Jun 2022). https://doi.org/10.
1007/978-3-031-07085-3_6

10. Camenisch, J., Groß, T.: Efficient attributes for anonymous credentials. In: Ning,
P., Syverson, P.F., Jha, S. (eds.) ACM CCS 2008. pp. 345–356. ACM Press (Oct
2008). https://doi.org/10.1145/1455770.1455814

11. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (May 2001).
https://doi.org/10.1007/3-540-44987-6_7

https://doi.org/10.1007/3-540-44987-6_9
https://doi.org/10.1007/3-540-44987-6_9
https://doi.org/10.1007/3-540-44987-6_9
https://doi.org/10.1007/3-540-44987-6_9
https://doi.org/10.1007/3-540-44598-6_17
https://doi.org/10.1007/3-540-44598-6_17
https://eprint.iacr.org/2021/1565
https://doi.org/10.1007/978-3-642-42045-0_5
https://doi.org/10.1007/978-3-642-42045-0_5
https://doi.org/10.1007/978-3-642-42045-0_5
https://doi.org/10.1007/978-3-642-42045-0_5
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-031-07085-3_6
https://doi.org/10.1007/978-3-031-07085-3_6
https://doi.org/10.1007/978-3-031-07085-3_6
https://doi.org/10.1007/978-3-031-07085-3_6
https://doi.org/10.1145/1455770.1455814
https://doi.org/10.1145/1455770.1455814
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-44987-6_7

Rai-Choo! 29

12. Canetti, R.: Security and composition of multiparty cryptographic protocols.
Journal of Cryptology 13(1), 143–202 (Jan 2000). https://doi.org/10.1007/
s001459910006

13. Chairattana-Apirom, R., Hanzlik, L., Loss, J., Lysyanskaya, A., Wagner, B.: PI-
cut-choo and friends: Compact blind signatures via parallel instance cut-and-choose
and more. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part III. LNCS,
vol. 13509, pp. 3–31. Springer, Heidelberg (Aug 2022). https://doi.org/10.1007/
978-3-031-15982-4_1

14. Chatterjee, S., Hankerson, D., Knapp, E., Menezes, A.: Comparing two pairing-
based aggregate signature schemes. Cryptology ePrint Archive, Report 2009/060
(2009), https://eprint.iacr.org/2009/060

15. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L.,
Sherman, A.T. (eds.) CRYPTO’82. pp. 199–203. Plenum Press, New York, USA
(1982)

16. del Pino, R., Katsumata, S.: A new framework for more efficient round-optimal
lattice-based (partially) blind signature via trapdoor sampling. In: Dodis, Y.,
Shrimpton, T. (eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 306–336.
Springer, Heidelberg (Aug 2022). https://doi.org/10.1007/978-3-031-15979-4_
11

17. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (Aug 2006). https://doi.org/10.1007/11818175_4

18. Fischlin, M., Schröder, D.: On the impossibility of three-move blind signa-
ture schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
197–215. Springer, Heidelberg (May / Jun 2010). https://doi.org/10.1007/
978-3-642-13190-5_10

19. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures
in the standard model. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015,
Part II. LNCS, vol. 9216, pp. 233–253. Springer, Heidelberg (Aug 2015). https:
//doi.org/10.1007/978-3-662-48000-7_12

20. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applica-
tions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol.
10992, pp. 33–62. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/
978-3-319-96881-0_2

21. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind schnorr signatures and signed
ElGamal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 63–95. Springer, Heidelberg
(May 2020). https://doi.org/10.1007/978-3-030-45724-2_3

22. Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer,
Heidelberg (May 2014). https://doi.org/10.1007/978-3-642-55220-5_27

23. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind
signatures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648.
Springer, Heidelberg (Aug 2011). https://doi.org/10.1007/978-3-642-22792-9_
36

24. Ghadafi, E.: Efficient round-optimal blind signatures in the standard model. In:
Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 455–473. Springer, Heidelberg
(Apr 2017)

25. Grontas, P., Pagourtzis, A., Zacharakis, A., Zhang, B.: Towards everlasting privacy
and efficient coercion resistance in remote electronic voting. In: Zohar, A., Eyal, I.,

https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/978-3-031-15982-4_1
https://doi.org/10.1007/978-3-031-15982-4_1
https://doi.org/10.1007/978-3-031-15982-4_1
https://doi.org/10.1007/978-3-031-15982-4_1
https://eprint.iacr.org/2009/060
https://doi.org/10.1007/978-3-031-15979-4_11
https://doi.org/10.1007/978-3-031-15979-4_11
https://doi.org/10.1007/978-3-031-15979-4_11
https://doi.org/10.1007/978-3-031-15979-4_11
https://doi.org/10.1007/11818175_4
https://doi.org/10.1007/11818175_4
https://doi.org/10.1007/978-3-642-13190-5_10
https://doi.org/10.1007/978-3-642-13190-5_10
https://doi.org/10.1007/978-3-642-13190-5_10
https://doi.org/10.1007/978-3-642-13190-5_10
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/978-3-642-55220-5_27
https://doi.org/10.1007/978-3-642-55220-5_27
https://doi.org/10.1007/978-3-642-22792-9_36
https://doi.org/10.1007/978-3-642-22792-9_36
https://doi.org/10.1007/978-3-642-22792-9_36
https://doi.org/10.1007/978-3-642-22792-9_36

30 L. Hanzlik, J. Loss, B. Wagner

Teague, V., Clark, J., Bracciali, A., Pintore, F., Sala, M. (eds.) FC 2018 Workshops.
LNCS, vol. 10958, pp. 210–231. Springer, Heidelberg (Mar 2019). https://doi.
org/10.1007/978-3-662-58820-8_15

26. Hanzlik, L., Loss, J., Wagner, B.: Rai-choo! Evolving blind signatures to the next
level. Cryptology ePrint Archive, Report 2022/1350 (2022), https://eprint.iacr.
org/2022/1350

27. Hauck, E., Kiltz, E., Loss, J.: A modular treatment of blind signatures from
identification schemes. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III.
LNCS, vol. 11478, pp. 345–375. Springer, Heidelberg (May 2019). https://doi.
org/10.1007/978-3-030-17659-4_12

28. Hauck, E., Kiltz, E., Loss, J., Nguyen, N.K.: Lattice-based blind signatures, revisited.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol.
12171, pp. 500–529. Springer, Heidelberg (Aug 2020). https://doi.org/10.1007/
978-3-030-56880-1_18

29. Heilman, E., Baldimtsi, F., Goldberg, S.: Blindly signed contracts: Anonymous
on-blockchain and off-blockchain bitcoin transactions. In: Clark, J., Meiklejohn, S.,
Ryan, P.Y.A., Wallach, D.S., Brenner, M., Rohloff, K. (eds.) FC 2016 Workshops.
LNCS, vol. 9604, pp. 43–60. Springer, Heidelberg (Feb 2016). https://doi.org/
10.1007/978-3-662-53357-4_4

30. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (Aug 2003). https://doi.org/10.1007/978-3-540-45146-4_9

31. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures (extended
abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp. 150–164.
Springer, Heidelberg (Aug 1997). https://doi.org/10.1007/BFb0052233

32. Kastner, J., Loss, J., Xu, J.: On pairing-free blind signature schemes in the algebraic
group model. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022, Part II.
LNCS, vol. 13178, pp. 468–497. Springer, Heidelberg (Mar 2022). https://doi.
org/10.1007/978-3-030-97131-1_16

33. Katz, J., Loss, J., Rosenberg, M.: Boosting the security of blind signature schemes.
In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part IV. LNCS, vol.
13093, pp. 468–492. Springer, Heidelberg (Dec 2021). https://doi.org/10.1007/
978-3-030-92068-5_16

34. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO’92. LNCS, vol. 740, pp. 31–
53. Springer, Heidelberg (Aug 1993). https://doi.org/10.1007/3-540-48071-4_3

35. Okamoto, T.: Efficient blind and partially blind signatures without random oracles.
In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer,
Heidelberg (Mar 2006). https://doi.org/10.1007/11681878_5

36. Okamoto, T., Ohta, K.: Universal electronic cash. In: Feigenbaum, J. (ed.)
CRYPTO’91. LNCS, vol. 576, pp. 324–337. Springer, Heidelberg (Aug 1992).
https://doi.org/10.1007/3-540-46766-1_27

37. Pass, R.: Limits of provable security from standard assumptions. In: Fortnow,
L., Vadhan, S.P. (eds.) 43rd ACM STOC. pp. 109–118. ACM Press (Jun 2011).
https://doi.org/10.1145/1993636.1993652

38. Pointcheval, D.: Strengthened security for blind signatures. In: Nyberg, K. (ed.)
EUROCRYPT’98. LNCS, vol. 1403, pp. 391–405. Springer, Heidelberg (May / Jun
1998). https://doi.org/10.1007/BFb0054141

39. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind
signatures. Journal of Cryptology 13(3), 361–396 (Jun 2000). https://doi.org/
10.1007/s001450010003

https://doi.org/10.1007/978-3-662-58820-8_15
https://doi.org/10.1007/978-3-662-58820-8_15
https://doi.org/10.1007/978-3-662-58820-8_15
https://doi.org/10.1007/978-3-662-58820-8_15
https://eprint.iacr.org/2022/1350
https://eprint.iacr.org/2022/1350
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-56880-1_18
https://doi.org/10.1007/978-3-030-56880-1_18
https://doi.org/10.1007/978-3-030-56880-1_18
https://doi.org/10.1007/978-3-030-56880-1_18
https://doi.org/10.1007/978-3-662-53357-4_4
https://doi.org/10.1007/978-3-662-53357-4_4
https://doi.org/10.1007/978-3-662-53357-4_4
https://doi.org/10.1007/978-3-662-53357-4_4
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/BFb0052233
https://doi.org/10.1007/BFb0052233
https://doi.org/10.1007/978-3-030-97131-1_16
https://doi.org/10.1007/978-3-030-97131-1_16
https://doi.org/10.1007/978-3-030-97131-1_16
https://doi.org/10.1007/978-3-030-97131-1_16
https://doi.org/10.1007/978-3-030-92068-5_16
https://doi.org/10.1007/978-3-030-92068-5_16
https://doi.org/10.1007/978-3-030-92068-5_16
https://doi.org/10.1007/978-3-030-92068-5_16
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/11681878_5
https://doi.org/10.1007/11681878_5
https://doi.org/10.1007/3-540-46766-1_27
https://doi.org/10.1007/3-540-46766-1_27
https://doi.org/10.1145/1993636.1993652
https://doi.org/10.1145/1993636.1993652
https://doi.org/10.1007/BFb0054141
https://doi.org/10.1007/BFb0054141
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/s001450010003

Rai-Choo! 31

40. Schnorr, C.P.: Security of blind discrete log signatures against interactive attacks.
In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 01. LNCS, vol. 2229, pp. 1–12.
Springer, Heidelberg (Nov 2001)

41. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(May 1997). https://doi.org/10.1007/3-540-69053-0_18

42. Tessaro, S., Zhu, C.: Short pairing-free blind signatures with exponential security.
In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol.
13276, pp. 782–811. Springer, Heidelberg (May / Jun 2022). https://doi.org/10.
1007/978-3-031-07085-3_27

43. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (Aug 2002). https://doi.org/
10.1007/3-540-45708-9_19

https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-031-07085-3_27
https://doi.org/10.1007/978-3-031-07085-3_27
https://doi.org/10.1007/978-3-031-07085-3_27
https://doi.org/10.1007/978-3-031-07085-3_27
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19

	 Rai-Choo! Evolving Blind Signatures to the Next Level

