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Abstract. In the setting of subversion, an adversary tampers with the
machines of the honest parties thus leaking the honest parties’ secrets
through the protocol transcript. The work of Mironov and Stephens-
Davidowitz (EUROCRYPT’15 ) introduced the idea of reverse firewalls
(RF) to protect against tampering of honest parties’ machines. All known
constructions in the RF framework rely on the malleability of the under-
lying operations in order for the RF to rerandomize/sanitize the tran-
script. RFs are thus limited to protocols that offer some structure, and
hence based on public-key operations. In this work, we initiate the study
of efficient Multiparty Computation (MPC) protocols in the presence of
tampering. In this regard,

– We construct the first Oblivious Transfer (OT) extension protocol
in the RF setting. We obtain poly(κ) maliciously-secure OTs using
O(κ) public key operations and O(1) inexpensive symmetric key
operations, where κ is the security parameter.

– We construct the first Zero-knowledge protocol in the RF setting
where each multiplication gate can be proven using O(1) symmetric
key operations. We achieve this using our OT extension protocol and
by extending the ZK protocol of Quicksilver (Yang, Sarkar, Weng
and Wang, CCS’21 ) to the RF setting.

– Along the way, we introduce new ideas for malleable interactive
proofs that could be of independent interest. We define a notion
of full malleability for Sigma protocols that unlike prior notions al-
low modifying the instance as well, in addition to the transcript. We
construct new protocols that satisfy this notion, construct RFs for
such protocols and use them in constructing our OT extension.

The key idea of our work is to demonstrate that correlated randomness
may be obtained in an RF-friendly way without having to rerandom-
ize the entire transcript. This enables us to avoid expensive public-key
operations that grow with the circuit-size.
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1 Introduction

Protocols in cryptography are proven secure under standard definitions where
the assumption is that the honest parties trust their machines to implement
their computation. This assumption breaks down in the real world, where even
honest parties’ computations are performed on untrusted machines. The secu-
rity guarantees of these protocols fall short of protecting against attacks that
take advantage of the implementation details instead of merely treating the al-
gorithm as a black-box. Such attacks are indeed realistic, both because users are
compelled to use third-party hardware due to lack of expertise, software man-
dated due to standardization, or even because of intentional tampering due to
subversion. The threat of a powerful adversary modifying the implementation so
that the subverted algorithm remains indistinguishable from the specification in
black-box interface, while leaking secrets is not overkill. Snowden revelations [2]
show that one of the potential mechanisms for large scale mass surveillance is
subversion of cryptographic standards and tampering of hardware.

Reverse Firewalls. The framework of cryptographic reverse firewalls was intro-
duced by Mironov and Stephens-Davidowitz [32] for designing protocols secure
against adversaries that can corrupt the machines of honest parties in order to
compromise their security. In such a setting, all parties are equipped with their
own reverse firewall (RF), which sits between the party and the external world
and sanitizes the parties’ incoming and outgoing messages. The parties do not
trust the RF, the RF cannot create security and the hope is for the RF to pre-
serve security in the face of subversion. Roughly, the security properties desired
from an RF are: (i) exfiltration-resistance: the firewall prevents the machine from
leaking any information to the outside world regardless of how the user’s ma-
chine behaves. (ii) security preservation: the protocol with the firewall is secure
even when honest parties’ machines are tampered.

The work of [32] provides a construction of a two-party passively secure
computation protocol with a reverse firewall in addition to introducing the RF
framework. Feasibility of RF for multi-party computation (MPC) was shown
in [10] who constructed RFs for MPC protocols in the malicious setting. The
recent work of [11] constructs MPC protocols with RF in the presence of adaptive
corruptions. We discuss other works in the RF framework and related models
for subversion resistance in Section 1.3.

Motivation. We begin by observing that both existing works that construct RFs
for maliciously-secure MPC protocols [10, 11] follow roughly the same template
– that of the GMW compiler [26]. Both constructions are essentially compilers:
they take a semi-honest secure MPC protocol and run GMW-like steps in the
reverse firewall setting to yield a secure MPC protocol with reverse firewalls.
In the process, they design secure protocols for the underlying primitives (like
augmented coin-tossing and zero knowledge) in the GMW compiler, construct
reverse firewalls for each of the primitives, and finally, show that the compiled
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MPC protocol is secure in the presence of tampering of honest parties. This
renders the resulting protocols inefficient for practical purposes.

The current techniques for constructing the RFs crucially make use of mal-
leability. This is because, the constructions rely on the ability of the RF to ran-
domize/maul messages to prevent exfiltration. In order to not break correctness,
such mauling has to be on messages that are malleable and therefore requires the
underlying primitives to be homomorphic. Indeed, the RFs for Sigma protocols
of [24] rely on malleability of Sigma protocol, and message and key homomor-
phism of Pedersen commitment. The RF of [10] relies on controlled malleable
non-interactive zero-knowledge proofs (NIZK)[14], and the constructions of [11]
need primitives like homomorphic commitment scheme, homomorphic public-key
encryption and homomorphic Sigma protocols for NP (which are secure against
adaptive corruption) [9]. These randomization techniques for constructing the
RF necessitates the MPC protocol to use homomorphic primitives based on
expensive public-key operations. In particular, the GMW approach of [10, 11]
require number of public-key operations that is proportional to the size of the
circuit being computed by the protocol. However, progress in MPC has resulted
in several efficient protocols [28, 37, 22] based on Oblivious Transfer (OT) ex-
tension [27, 29, 34, 7, 40, 16] that only rely on cheap symmetric key operations
and few public key operations. A recent line of works [38, 3] presented interac-
tive ZK protocols for circuits in the vector OLE (Oblivious Linear Evaluation)
model [5, 40, 16]. Now that we know feasibility of RF for MPC via generic
compilers, can we construct RFs for efficient MPC protocols like those based
on OT extension? All known techniques to construct RFs rely on some form of
malleability/homomorphism of the underlying protocol so that the RF can ran-
domize the messages. It is unclear how such randomization would work when the
protocol messages are unstructured. Modifying the protocol to be homomorphic
so as to be RF friendly defeats the purpose of protocols like OT extension where
the goal is to minimize the number of public key operations. This motivates us
to ask the following question:

Can we construct an MPC protocol in the reverse firewall setting where the
number of public key operations is independent of the size of the circuit being

computed?

We answer the above question in the affirmative by constructing such pro-
tocols for specific functions like OT extension and Zero-Knowledge (ZK). Con-
structing reverse firewalls for such protocols requires new techniques since the
transcript resulting from symmetric key operations are unstructured and do not
render themselves well to randomization.

1.1 Our Contributions

We initiate the study of efficient MPC protocols in the RF setting. Towards this
end, we make the following contributions.
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– We construct a variant of the KOS OT extension protocol [29] together with
an RF in the random oracle FRO model. Our protocol constructsm = poly(κ)
correlated OT (cOT)4 using only O(κ) public key operations. All prior con-
structions of maliciously secure OT [10, 11] require poly(κ) public key op-
erations per OT due to their reliance on the GMW compiler and expensive
ZK proofs. See Sec. 2.1, and 2.2 for an overview of our cOT functionality
FcOT (in Fig. 1) and cOT extension protocol respectively.

– We construct a new base (random) OT protocol, which we use for our OT
extension. In constructing the base OT protocol and RF (an overview of
these ideas in Sec 2.3), we employ new ideas for malleable interactive proofs.

– We define a notion of full malleability for Sigma protocols that unlike prior
notions allow randomizing the instance as well. We construct RFs for Sigma
protocols and for OR composition that sanitize both the instance and the
transcript. We show that ZK protocol resulting from the standard compila-
tion of a Sigma protocol is fully malleable and construct an RF for it. These
results could be of independent interest. We provide an overview of these
ideas in 2.4.

Each base OT protocol require 35 exponentiations. For ℓ ≤ κ base OTs in
the OT extension, the cost of computing 35ℓ exponentiations gets amortized by
generating poly(κ) extended cOTs. As a result each extended cOT communicates
κ bits and computes roughly 4 symmetric key operations. Our correlated OT
extension protocol in the firewall setting is captured in Thm. 1.

Theorem 1. (Informal) Assume there exists an additively homomorphic com-
mitment scheme Com, a collision resistant hash function H, a pseudorandom
generator PRG, and that the Discrete Log assumption holds. We obtain a corre-
lated OT extension protocol πcOT with reverse firewalls that implements FcOT in
FRO-model when the honest parties’ machines can be tampered and the adversary
can maliciously corrupt either the sender or the receiver.

We then show application of our cOT extension protocol in constructing
efficient Zero-knowledge protocols. We build upon the recent interactive ZK
protocol of Quicksilver [38] to obtain the first efficient ZK protocol for all of
NP in the RF setting. We capture our contribution by the following theorem.

Theorem 2. (Informal) Assuming H is a collision resistant hash function and
Com is an additively homomorphic commitment scheme, πQS implements the
Zero-knowledge FZK functionality in the FcOT model for NP in the presence of
reverse firewalls where the honest parties’ machines can be tampered and the
adversary can maliciously corrupt either the prover or the verifier. Our con-
struction requires (n + t) invocations to FcOT, where n is the number of input
wires and t is the number of multiplication gates in the NP verification circuit
for the statement.

4 Our cOT protocol allows the receiver to learn c bits of sender’s secret with probability
2−c. We capture this leakage in the ideal functionality FcOT, and show that this
weakened functionality suffices for constructing OT-based RF friendly ZK protocol.
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In πQS, proving each multiplication gate requires one cOT, as in the original
Quicksilver protocol. Instantiating FcOT with our πcOT results in a proof size
of (n+ t)κ bits. In comparison, the original Quicksilver implements FcOT using
Silent-OT extension protocol [40] yielding a proof size of (n+ t) bits. We provide
an overview of our Quicksilver variant and its RF in Sec 2.5.

Key Idea. The central idea of our work is to generate correlated data (cOTs
in our case) between two parties to compute a circuit. We show how these cor-
related data can be generated from symmetric key operations and in an RF-
friendly way. Previously, all RF-friendly techniques were for protocols relying
on public-key primitives and the RF exploits the natural “structure”. Our work
shows that there is no inherent barrier for constructing RFs for protocols that
rely on symmetric-key primitives. Concretely, we only need cheap symmetric key
operations, and the number of public key operations (e.g. the base OTs) are inde-
pendent of the size of the circuit to be computed. Looking ahead, this correlation
allows the parties to verify a protocol transcript (e.g. the RF-compatible Quick-
silver) efficiently. This verification can be performed using an inexpensive (solely
based on symmetric key operations) consistency check. In contrast, if we were to
use ZK proofs (GMW paradigm) for verification, RF-compatibility requires ZK
to be controlled-malleable which are algebraic and inherently require public key
operations. We believe our ideas to deal with unstructured data opens up a new
paradigm for constructing more efficient RF-compatible protocols, especially as
a stepping stone towards MPC protocols based on silent OT extension.

1.2 Future Work

Our RF-friendly OT extension protocol can be used in a straightforward way
to achieve an efficient semi-honest secure MPC using the GMW protocol. This
protocol requires the parties to sample randomness for input sharing and eval-
uation phases. Rest of the GMW protocol is deterministic and hence would be
exfiltration resistant when the parties are tampered or are semi-honest. Our
RF compatible extended OTs can be used in the evaluation of multiplication
gates. However, constructing a maliciously-secure MPC protocol in the GMW
paradigm will require much more work. One of the reasons being the requirement
of a controlled-malleable ZK protocol to ensure security against malicious ad-
versaries in the RF setting. However, we do not know of an efficient RF-friendly
instantiation, where the number of public-key operations are sub-linear in the
size of the verification circuit. For other OT-based MPC protocols that rely on
garbled circuits (GC), lifting our OT extension protocol to give a full-fledged RF-
friendly and efficient MPC protocol seems to be more challenging. Even with our
efficient OT extension protocol, one of the main bottlenecks is that we will need
a re-randomizable GC, for which currently no efficient (in terms of public-key
operations) constructions are known.

A natural extension of our work is to construct Silent OT extension family of
protocols [5, 40, 16] in the RF setting. Current techniques in Silent OT extension
paradigm require the receiver to compute LPN samples and use them in the
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underlying bootstrapping protocol. In the RF setting, this is a non-trivial task
since the LPN samples might be leaky due to bad randomness. It is not obvious
how to sanitize them without relying on expensive public key operations or
generic zero-knowledge. Our work shows that our correlated OTs suffice for
designated-verifier ZK protocols. We believe that similar ideas could be useful in
other designated-verifier settings, like silent-OT and authenticated garbling [39].

1.3 Related Work

Reverse firewalls. The work of [32] constructs RFs for a variant of the Naor-
Pinkas OT protocol [33]. Their construction only provides passive security, whereas
we are in the malicious setting. The work of [15] constructs an OT protocol
from graded rings, incurring poly(κ) public key operations for each OT. While
these works show feasibility, we focus on constructing OT extension protocols
in the RF setting with malicious security, while retaining the advantage of OT
extension – create poly(κ) OTs with symmetric key operations starting from
κ base OTs. The other approaches via generic MPC compilers [10, 11] incur
poly(κ) public key operations for each OT instance. In their original paper,
Mironov and Stephens-Davidowitz [32] show how to construct reverse firewalls
for oblivious transfer (OT) and two-party computation with semi-honest secu-
rity. Follow-up research showed how to construct reverse firewalls for a plethora
of cryptographic primitives and protocols including: secure message transmission
and key agreement [21, 15], signature schemes [1], interactive proof systems [24],
and maliciously secure MPC for both the case of static [10] and adaptive [11]
corruptions. The recent work of [13] also introduced the notion of Universally
Composable Subversion-Resilient security. Extending our results in their model
is an interesting direction for future work.

As already mentioned in the introduction, all the above constructions use the
ability of the RF to maul (in a controlled way) the transcript of the protocols
to prevent exfiltration, which in turn required the underlying building blocks
to be (controlled) homomorphic. Hence, the number of public key operations
depends on the size of the circuit (representing the function) to be computed
securely. This is in sharp contrast to our OT and (interactive) ZK protocols
where the resulting protocols after RF sanitization performs a number of public
key operations that are independent of the size of the circuit being computed.

Remark. Since our focus is on efficient MPC protocols and RFs, the RF-friendly
protocols we construct are based on symmetric-key primitives like hash functions
and Pseudorandom generators (PRGs). While backdooring of such primitives is
also of concern in the subversion setting, we argue that it is an issue orthogonal
to the issue of tampering of implementations that we consider in this work. We
also note that both prior works that construct RFs for MPC protocols [10, 11]
are generic compilers and therefore also implicitly assume that all the primitives
used by the underlying MPC protocol are backdoorless. We provide a more
detailed discussion comparing tampering of implementations and backdooring
of primitives in the full version [12]. We prove security of our protocols in the
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Random Oracle (RO) model, and it is known how to immunize backdoored
primitives like PRGs in the RO model [20]. Once the RO is instantiated with
a hash function like SHA-256, the assumption presumes that SHA-256 is itself
not backdoored. The works of [23, 19] show how to immunize backdoored ROs
and backdoored hash functions. Combining these immunization techniques with
RFs to construct end-to-end solutions that address subversion is an interesting
direction for future work. Countering both tampering of implementation and
subversion of primitives simultaneously is important but not in the scope of
the current work. We also refer to the full version [12] for more related works
on other forms of subversion resilience based on watch-dog, self-guarding and
tackling backdooring of primitives.

2 Technical Overview

In this section, we discuss state-of-the-art protocols, some hurdles in adapting
them to the RF setting and outline our techniques to overcome them. Our pro-
tocols are shown secure in the RF setting by relying on the recent result of
[11], which showed that 1) if an MPC protocol satisfies simulation-based secu-
rity, and 2) the firewall is functionality maintaining and provides exfiltration
resistance, then the firewall preserves security of the protocol in the presence of
functionality maintaining tampering. Thm. 3 in Sec. 3.1 formally summarizes the
result. For every protocol we prove that it satisfies simulation-based security and
their respective firewall provides exfiltration resistance. Combining Thm. 3 with
simulation security and exfiltration resistance provides us the desired security
guarantee.

2.1 Correlated OT with Leakage functionality

We initiate our overview discussion with the correlated OT functionality FcOT in
Fig. 1 (taken from [29]). It allows some leakage to a corrupt receiver. The receiver
has a choice bit vector b ∈ {0, 1}ℓ. The functionality samples s ←R {0, 1}κ,
M←R {0, 1}ℓ×κ and sets Qj = Mj ⊕ (s⊙ bj) for j ∈ [ℓ]. The functionality sets
Q = {Qj}j∈[j∈[ℓ]] and returns M to the receiver and the (s,Q) to the sender.
The functionality allows the receiver to guess c bits of s and the receiver gets
caught with 1− 2−c probability. We show that this weaker functionality suffices
for the ZK protocol of Quicksilver [38].

2.2 Correlated Oblivious Transfer Extension in the RF setting

We use the KOS [29] OT extension to implement the FcOT functionality. We
recall the KOS protocol as follows:

Recalling KOS OT extension: In the KOS OT extension, the sender SExt and
receiver RExt generate m (= poly(κ)) OTs using κ invocations to the random OT
functionality, i.e. FrOT

5(Fig. 5), (implemented by base OTs) and symmetric key

5 Each invocation of FrOT returns (a0, a1) to the sender and (b, ab) to the receiver where
a0, a1 ←R {0, 1}κ and b←R {0, 1} are randomly sampled by the functionality.

7



Functionality FcOT

Upon receiving (Initiate, sid, ℓ) from sender S and receiving (Initiate, sid, ℓ) from
receiver R, the functionality FcOT interacts as follows:

– Sample b = (b1, . . . , bℓ) where bj ∈ {0, 1} for j ∈ [ℓ].

– If S is corrupted receive s ∈ {0, 1}κ from the sender. Sample Q←R {0, 1}ℓ×κ. Set
Mj = Qj ⊕ (s⊙ bj) for j ∈ [ℓ].

– If R is corrupted then receiveM ∈ {0, 1}ℓ×κ from the receiver, sample s←R {0, 1}κ
and set Qj = Mj ⊕ (s⊙ bj) for j ∈ [ℓ].

– When a corrupt R guesses c bits of s by invoking (Guess, sid, {indi}i∈[c], {s′i}i∈[c]):
FrOT aborts if s′i ̸= sindi for any i ∈ [c]; otherwise all the guesses are correct and
FrOT sends (Undetected, sid) to A.

– If both parties are honest, then sample s ←R {0, 1}κ, M ←R {0, 1}ℓ×κ and set
Qj = Mj ⊕ (s⊙ bj) for j ∈ [ℓ].

Denote Q = {Qj}j∈[ℓ] and M = {Mj}j∈[ℓ]. Send (sent, sid,M,b) to R and
(sent, sid, (s,Q)) to S and store (sen, sid, ℓ, (b,M,Q)) in memory. Ignore future mes-
sages with the same sid.

If a corrupt sender (resp. receiver) sends ⊥ to the FcOT then FcOT delivers the output
of the corrupt sender (resp. receiver) to the corrupt sender (resp. receiver) and aborts.

Fig. 1: Ideal functionality FcOT for Correlated Oblivious Transfer with leakage

operations. In the base OTs, the sender SExt plays the role of a receiver, and the
receiver RExt plays the role of a sender. The ith invocation of FrOT functionality
returns random strings (ki,0, ki,1)←R {0, 1}κ to the sender and (si, ki,si) to the
receiver where si ←R {0, 1}. The input of RExt is bit string r ∈ {0, 1}m for m
correlated extended-OTs. The receiver also samples κ random bits τ ←R {0, 1}κ
and sets r′ = (r||τ) ∈ {0, 1}m+κ. This is done to prevent leakage of input choice
bits during the consistency checks. The receiver computes the choice bit matrix
R ∈ {0, 1}(m+κ)×κ where the jth row of R denoted as Rj is computed as follows:

Rj = (r′j , . . . , r
′
j) for j ∈ [m+ κ].

RExt computes a matrix M ∈ {0, 1}(m+κ)×κ such that the ith column of M
denoted as Mi is computed as follows:

Mi = PRG(ki,0) for i ∈ [κ],

where PRG : {0, 1}κ → {0, 1}m+κ. RExt sends a mapping D from his choice bits
r′ ∈ {0, 1}m to the (ki,0,ki,1) values. The ith column of D is denoted as Di and
is computed as follows:

Di = PRG(ki,0)⊕ PRG(ki,1)⊕Ri for i ∈ [κ].
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Upon obtaining this mapping D and the base-OT output, the sender com-
putes his mapping as Q where the ith column of Q is denoted as follows:

Qi =
(
si ⊙Di

)
⊕ PRG(ki,si) for i ∈ [κ],

The jth row of Q denoted as Qj satisfies the following relation:

Qj = Mj ⊕ (s⊙Rj) = Mj ⊕ (s⊙ rj) for j ∈ [m].

In addition to the above, the sender performs consistency checks [18]. A
corrupt receiver can leak bits of s if the rows of R are not monochrome, i.e.
∃j ∈ [m] s.t. Rj is neither 0κ nor 1κ. Such an attack can be launched by the
corrupt receiver if D is malformed. To detect such malicious behaviour, the
sender performs a consistency check on matrix D. In the original KOS paper,
the protocol consists of an interactive check phase. The receiver and sender
perform a coin-tossing protocol to generate m + κ fields elements χ ←R Fm+κ

using a random oracle FRO, where F = O(2µ) and µ is the statistical security
parameter. The receiver computes u and v as part of the consistency check on
D:

u =
⊕

j∈(m+κ)

(χj ·Mj),v =
⊕

j∈(m+κ)

(χj ·Rj)

The receiver sends (u,v) to the sender as the response of the consistency
checks. The sender computes w as follows:

w =
⊕

j∈(m+κ)

(χj ·Qj).

The sender aborts if w ̸= u ⊕ s · v. The consistency checks ensure that the
receiver learns only c bits of s with probability 2−c probability. We follow the
same approach. Once the consistency checks pass, the receiver sets {rj ,Mj} as
the output of the jth cOT for j ∈ [m]. The sender sets (s,Qj) as the output of
the jth cOT.

Obstacles in RF setting and key insights. The above protocol fails to provide
exfiltration resistance in the RF setting. We highlight the problems and outline
solution ideas.

– Implementing FcOT: There is no protocol πrOT in MPC literature that im-
plements FrOT functionality while providing ER for tampered honest parties.
In order to provide ER, the firewall needs to rerandomize the OT protocol
transcript such that the receiver’s choice bit gets randomized and the sender’s
messages are rerandomized. The state-of-the-art OT protocols of [35, 8] are
in the setup string model where the setup string can be tampered. Moreover,
a firewall cannot rerandomize the first message of the receiver to rerandomize
the receiver’s choice bit since the tampered receiver would then be unable to
decrypt the sanitized OT transcript. Meanwhile, the protocols of [6, 30, 7]
are in the random oracle model where the messages in the OT transcript
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consists of random oracle outputs. It is unclear how a firewall could reran-
domize such transcripts since it would require computing the preimage of
the random oracle output. To address this issue, we build a new base OT
protocol πrOT which implements FrOT functionality and provides exfiltra-
tion resistance for tampered parties. Overview of the base OT protocol is
discussed in Sec. 2.3.

– Rerandomizing D matrix: A malicious receiver could send a “signal”
such that a tampered sender behaves differently thereby leaking one bit of
the honest (tampered) sender’s input. For instance, a malicious receiver can
choose its choice bits r in a way such that D lies in a particular distribution
(e.g. the first column ofD is all 0s). A tampered sender aborts upon receiving
this malformed D matrix while an honest sender does not. This leaks one bit
of the sender’s input violating exfiltration resistance. We address this issue
by using a technique such that the r vector is randomly chosen as part of
the protocol. The receiver and the sender perform an augmented coin-tossing
protocol where the receiver obtains random coins coin and the sender obtains
a commitment to the coin as ccoin. The receiver generates the first column of
D, denoted as D1, by invoking the random oracle FRO on coin. The receiver
is required to compute the choice bit vector(and the padding bits) r′ = r||τ
from D1 and the outputs of the base OTs as follows:

r′ = D1 ⊕ PRG(k1,0)⊕ PRG(k1,1)

This rerandomizes the r′ vector, and as a result the D matrix cannot be used
to exfiltrate by choosing a tampered choice bit vector r (or τ). The receiver
is required to decommit to ccoin when it sends D to the sender. The sender
verifies the opening and also verifies that the first column of D is generated
by invoking the random oracle FRO on coin as FRO(0, coin)

6.

– Consistency Checks: A malicious receiver can still send a badly con-
structed D (rows of the computed R are not monochrome) which might
trigger a tampered sender. Upon obtaining D the tampered sender can abort
thus leaking one bit of its input. In contrast, an honest sender does not abort
until the end of the consistency checks. This behaviour could exfiltrate se-
crets of a tampered sender to a malicious receiver. We observe that if a
malicious receiver sends a malformed D and the consistency check is per-
formed correctly then a tampered sender aborts, similar to an honest sender,
since the tampering is functionality maintaining. However, the sender should
obtain D and the receiver’s response for the consistency check in the same
round. In such a case, an honest sender also aborts if D is malformed as
this is detected in the consistency check. A tampered sender also aborts and
now this prevents exfiltration even if D contains hidden triggers since the
abort is due to the checks failing. The behaviour of the tampered sender is
statistically indistinguishable from an honest sender: they only differ when

6 The FRO functionality is parametrized by 0 so that we can reuse the same function-
ality later for a different input/output pair by changing the parameter to 1
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the checks fail to detect inconsistency which occurs with probability 1
|F| . This

observation leads us to a modified protocol such that it provides ER for a
tampered sender.
After computing the base OTs, the corrupt receiver commits to the hash of
D using an additively homomorphic commitment scheme as cD. Additive
homomorphism allows rerandomization of the commitment by the firewall.
The parties then generate the coins seed for the consistency check using
an RF-compatible augmented coin-tossing protocol. The randomness for the
consistency checks are derived from FRO(1, seed), where FRO is the random
oracle. Finally, the receiver sends D, the decommitment of cD to H(D) and
the response to the consistency checks. The sender verifies the decommitment
and the response to the consistency check.

The hash function and cD forces a corrupt receiver to succinctly commit to
D and allows it to decommit to D along with the response to the consis-
tency check. The consistency check forces a tampered sender to abort if D
is malformed in a way oblivious to any hidden triggers. This provides exfil-
tration resistance for the sender. The commitment cD is rerandomized by

the firewall. seed is rerandomized by the firewall to ŝeed = seed + s̃eed. To

incorporate s̃eed into cseed the firewall computes ĉseed = cseed ·Com(seed; δ̃seed)
and sends ĉseed to receiver on behalf of sender. The firewall also sends ĉR =
seedR+ s̃eed to the sender on behalf of the receiver. When sender opens cseed
to (seedS; δseed) the firewall sends (seedS + s̃eed, δseed + δ̃seed) to the receiver.

This ensures that both parties obtain the coins as ŝeed. We also assume that
the commitments are additively homomorphic so that they can be rerandom-
ized by the firewall. The only way to tamper D matrix and not get caught is
when the receiver guesses κ bits of s to pass the consistency checks. However,
the checks ensure that such an event occurs with 2−κ probability.

The protocol with the three changes gives us a correlated OT (with leakage)
extension protocol πcOT. The protocol is presented in Fig. 3 and the firewall in
Fig. 4. Our correlated OT with leakage is weaker than correlated OT of [38]
since it allows a corrupt receiver to compute c bits of sender’s secret key s with
probability 2−c. However, as we show in Sec. 2.5, this suffices for Quicksilver
[38]. Next, we build our base OT protocol πrOT which implements FrOT.

2.3 Base Oblivious Transfer Protocols in the RF setting

As discussed above, the state-of-the-art OT protocols [35, 30, 8, 7] fail to give
πrOT in the presence of functionality maintaining tampering. The OT protocol of
[32] provides only passive security in the RF setting and no guarantees against
active corruption of the receiver. We construct πrOT by building upon the classical
OT protocol of [4] in the plain model. For the sake of completeness, we first recall
the protocol.

Protocol of [4]. The sender samples a field element q and computes group
element Q = gq and sends Q to the receiver. The receiver has a choice bit b
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and it samples two public keys (pk0, pk1) such that pkb = gsk for secret key sk
and Q = pk0 · pk1. The receiver sends pk0 to the sender. The sender samples
r0, r1 ←R Zq, and computes R0 = gr0 and R1 = gr1 . The sender sets the
output as k0 = H(pkr00 ) and k1 = H(pkr11 ) where H is the Goldreich-Levin hash
function or a random oracle. The sender sends (R0, R1) to the receiver. The
receiver outputs kb = H(Rsk

b ).

Modifications for Simulation-based security. The protocol of [4] only provides
semantic security. The receiver’s choice bit is perfectly hidden in the first message
pk0 and the sender’s messages are (k0, k1) not extractable. We make the following
changes in order to allow for simulation based security:

– Sender Input Extraction: To extract the sender’s input, we modify the
protocol so that the sender proves knowledge of q such that Q = gq through
an interactive protocol zero knowledge proof of knowledge (ZKPOK) with
the receiver as the verifier. The simulator extracts q from the ZKPOK and
sets the secret keys as sk0 ←R Zq and sk1 = q − sk0. The knowledge of
the two secret keys enables the simulator to extract the corrupt sender’s
outputs (k0, k1). The ZK property of the proof ensures that q is hidden from
a corrupt receiver.

– Receiver Input Extraction: To extract the receiver’s input, we modify
the protocol so that the receiver proves knowledge of sk for the statement
((pk0, pk1,G,Zq) : ∃sk ∈ Zq, b ∈ {0, 1} s.t. (pk0 = gsk ∨ pk1 = gsk)) using
a Witness indistinguishability proof of knowledge (WIPOK). The simulator
extracts (sk, b) from the WI proof. Meanwhile, the simulator against a cor-
rupt sender is able to simulate the proof by setting pk0 = gsk and b = 0
by relying on the WI property. We also set k0 = pkr00 and k1 = pkr11 for
efficiency purposes and remove the Goldreich-Levin hash function. The WI
proof ensures that if the proof accepts then the receiver has full knowledge
of (sk, b). Using the knowledge of sk, we reduce a corrupt receiver breaking
semantic security of the OT scheme to an adversary breaking DDH.

Modifications in RF setting. The above protocol fails to provide exfiltration
resistance. We highlight some problems and suggest solutions.

– Rerandomizing OT parameter Q: A malicious sender can malform Q
and use it as a trigger for a tampered receiver. To address this issue, we
generate Q using coin tossing where the receiver sends T = Com(QR) and
the sender sends a share QS. The receiver later decommits to QR and both
parties set Q = QR ·QS as the parameter. A firewall can sanitize this: sample
q̃ ←R Zq, t̃ ←R {0, 1}∗ and sanitize the commitment as T̂ = T · Com(gq̃; t̃)

and sanitize QS as Q̂S = QS · gq̃ such that the new parameter is Q̂ = Q · gq̃
where q̃ ←R Zq. The firewall also invokes the firewall of the ZK protocol
with instance rerandomizer q̃ since the receiver produces a ZK proof for
(QS,G,Zq) and the firewall sanitizes it to a proof of (QS · gq̃,G,Zq). More
discussion about the ZK firewall can be found in Sec. 2.4. This transformation
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provides ER to both parties corresponding to the OT parameters and the
ZK proof.

– Rerandomizing Receiver’s choice bit and public keys: The fire-
wall needs to rerandomize the receiver’s choice bit and the public keys to
implement FrOT functionality and prevent exfiltration through the public
keys. To enable this, we have the sender commit to a pad p ←R Zq us-
ing an additively homomorphic commitment as cS = Com(p; dS). When the
sender receives (pk0, pk1) the sender decommits to p and the receiver sets
the new public keys as pk′0 = pk0 · gp and pk′1 = pk1 · g−p. These new pub-
lic keys maintain the invariant that pk′0 · pk

′
1 = Q. The firewall sanitizes

the public keys by changing p to p̂ = p + p̃. The commitment is modified

to ĉS = cS · Com(p̃; d̃S). Upon receiving the decommitment (p, dS) the fire-

wall modifies it to (p̂, dS + d̃S). Upon receiving the public keys (pk0, pk1)

the firewall changes it to (pk0 · gp̃, pk1 · g−̃p). This allows both parties to

get sanitized public keys (p̂k0, p̂k1) = (pk0 · gp+p̃, pk1 · g−p−p̃). It is ensured

that p̂k0 · p̂k1 = Q̂ thus preventing any exfiltration through the public keys.
Next, we rerandomize the choice bit of the receiver where the sender sends
a random bit ρ in the last message of the OT protocol. The receiver’s new
choice bit is set to s = b ⊕ ρ where b was initially chosen by the receiver
by sampling sk ←R Zq and setting pkb = gsk. The firewall sanitises ρ to
ρ̂ = ρ ⊕ ρ̃ and it permutes the order of pk0 and pk1 if ρ̃ = 1. The fire-
wall also modifies the commitment cseed accordingly so that the order of the
sanitised public keys are consistent for both parties. Finally, these changes
are also reflected in the WIPOK proof performed by the receiver as the
prover. Recall that the receiver proves knowledge of witness for the state-
ment ((pk0, pk1,G,Zq) : ∃w ∈ Zq, b ∈ {0, 1} s.t. (pk0 = gw∨pk1 = gw)) using
a WIPOK. The firewall sanitizes the proof such that it is consistent with the
sanitized public keys and the order of the keys. In particular, if ρ̃ = 0 the new
statement is ((pk0 · gp̃, pk1 · g−p̃,G,Zq) : ∃w ∈ Zq, b ∈ {0, 1} s.t. (pk0 · gp̃ =
gw∨pk1 ·g−p̃ = gw)). If ρ̃ = 1 the new statement is ((pk0 ·gp̃, pk1 ·g−p̃,G,Zq) :
∃w ∈ Zq, b ∈ {0, 1} s.t. (pk0 · gp̃ = gw ∨ pk1 · g−p̃ = gw)). This is performed
by constructing malleable Interactive WIPOKs in the RF setting where the
instance is also sanitized. The firewall for the OT protocol invokes the WI
RF with input ((p̃,−p̃), ρ̃). Detailed discussion about WI is in Sec. 2.4.

– Rerandomizing sender’s messages: Finally the sender’s pads (R0, R1)
for the OT protocol needs to be rerandomized to implement FrOT function-
ality. The receiver commits to (v0, v1) ←R Zq and sends the commitments
alongwith the public keys. Upon receiving (R0, R1), the receiver opens to
(v0, v1) and considers the sender’s random pads as (R0 · gv0 , R1 · gv1). The
sender sets the new randomness as (r0 + v0, r1 + v1). The firewall sanitizes
the commitment and the interaction such that the random pads are (R0 ·gv0 ·
gṽ0 , R1 ·gv1 ·gṽ1) and the sender’s randomness are (r0+v0+ ṽ0, r1+v1+ ṽ1).
This ensures that the tampered sender’s pads are indistinguishable from an
honestly generated sender random pads.
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We obtain our base OT protocol implementing FrOT in Fig. 6 and 7. by
carefully putting together the above ideas. While this overview is for ℓ = 1
for simplicity, the final protocol implements FrOT for general ℓ. The protocol
and the firewall are presented in Sec. 5. Each OT instance communicates 13
group elements + 15 field elements + 1 bit, and performs 35 exponentiations. In
comparison, previous maliciously secure OT protocols [10, 11] rely on the GMW
compiler, and compute poly(κ) exponentiations and communicate poly(κ) bits.

2.4 Malleable Interactive Protocols in the RF setting

We consider a class of interactive protocols based on Sigma protocols. For the
sake of concreteness, consider the classical Sigma protocol for proving knowledge
of a discrete logarithm [36]. The statement consists of the description of a cyclic
group G of prime order q, a generator g and an instance x = gw, for w ∈ Zq.
The prover’s first message is a random group element a = gα. For a verifier’s
challenge c ∈ Zq, the prover’s response is z = a+wc. The transcript τ = (a, c, z)
is accepting if gz = axc. We need to rerandomize the transcript without breaking
the completeness condition, and without knowing the witness. In addition, since
we use these interactive protocols in constructing our OT protocol, the instance
x could also potentially be subliminal and therefore, we need to randomize the
instance as well, to generate a randomized transcript (x̂, τ̂). In order to build
RFs for the ZK protocol obtained by compiling a Sigma protocol, we need to
sanitize additional messages. Here, we rely on the key and message homomor-
phism of the Pedersen commitment scheme to randomize the commitment key,
the commitment, and the message inside the commitment. Finally, we construct
an RF for the OR composition that not only randomizes each instance in the
compound statement, but the entire statement (by permuting the clauses). This
is necessary since we use the OR protocol as a building block in a larger protocol
where the statement itself could be tampered and needs to be sanitized.

We emphasize that our RFs randomize not just the transcript (a, c, z), but
also the instance x, as opposed to the RF constructions in [24] where the san-
itized transcript still verifies for the same instance x. In our setting, crucially,
the instance could also potentially be subliminal and therefore, needs to be ran-
domized to prevent exfiltration. Our notion of fully malleable Sigma protocol is
stronger than the malleability considered in [24].

2.5 Efficient Zero-Knowledge in the RF setting

The recent works of [38, 3] present interactive ZK protocols for circuits in the
vector OLE model [5, 40]. We focus on the work of Quicksilver [38] for binary
circuits. In this setting, the vector OLE over binary field is modeled by the FcOT

functionality. In Quicksilver, the parties run an interactive preprocessing phase
which depends only on the security parameter. The parties obtain correlated
randomness through this phase. In the online phase the prover obtains the NP
verification circuit C and the witness wire assignment w. The verifier obtains the
circuit C. The parties locally expand their correlated randomness. The prover
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obtains M ∈ {0, 1}ℓ×κ and a random b ∈ {0, 1}ℓ, the verifier obtains K ∈
{0, 1}ℓ×κ and a random ∆ ∈ {0, 1}κ such that the following holds for i ∈ [ℓ],
where K = {Ki}i∈[ℓ], M = {Mi}i∈[ℓ], b = {bi}i∈[ℓ]:

Ki =Mi ⊕ bi ⊙∆

Assume that the number of input wires to the circuit is n, the number of multipli-
cation gates is t and ℓ = n+ t. The prover commits to the n+ t wire assignments
for the input wires and multiplication gates by sending the mapping di = wi⊕bi
to the verifier. Addition gates are free due to additive homomorphism and can
be verified locally. The verifier updates Ki as follows for i ∈ [n+ t]:

Ki = Ki ⊕ di ⊙∆ = (Mi ⊕ bi ⊙∆)⊕ (wi ⊕ bi)⊙∆ =Mi ⊕ wi ⊙∆.

The prover P proves that the committed values wi corresponding to the mul-
tiplication gates are correct by executing a batched verification phase with the
verifier V. For each multiplication gate (α, β, γ) with input wires α and β and
output wire γ, the prover P has (wα,Mα), (wβ ,Mβ), (wγ ,Mγ) and the verifier
V holds Kα,Kβ ,Kγ , ∆ such that the following four equations should hold:

wγ = wα · wβ and Mi = Ki ⊕ wi ⊙∆ for i ∈ {α, β, γ}.

This can be verified by the verifier by performing the following check where
prover sends Ai,0 and Ai,1:

known to V︷ ︸︸ ︷
Bi = Kα ·Kβ ⊕Kγ ·∆

?
=

known to P︷ ︸︸ ︷
Mα ·Mβ + (wβ ·Mα ⊕ wα ·Mβ ⊕Mγ) ·

known to V︷︸︸︷
∆

= Ai,0 ⊕Ai,1 ·∆

A corrupt prover passes the check even if wγ ̸= wα · wβ if it correctly guesses
∆, which occurs with 2−κ probability. This covers the case for one gate. To
check t multiplication gates in a batch the verifier sends a challenge χ. The
prover and verifier also generates a random linear relationship B∗ = A∗

0⊕A∗
1 ·∆

to mask the prover’s inputs. This is performed using additional κ cOTs. The
prover computes (U, V ) as described below. The prover sends (U, V ) and the
verifier locally computes W .

U =
⊕

i∈[n+t]

Ai,0 ⊕A∗
0 , V =

⊕
i∈[n+t]

Ai,1 ⊕A∗
1 , W =

⊕
i∈[n+t]

Bi ⊕B∗

The verifier outputs accept if (W == U⊕V ·∆) and rejects the proof if the equa-
tion fails to satisfy. A corrupt prover successfully cheats in the batch verification
with probability 2−κ by guessing ∆. Meanwhile, the ZK simulator simulates
the proof by passing the check, given the knowledge of (K, ∆) from FcOT. The
simulator computes W , samples V ←R {0, 1}κ and sets U =W ⊕ V ·∆.
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Modifications in RF setting. In order to achieve ER in the firewall setting, we
make the following changes to the above protocol.

– Preprocessing Phase: The above protocol provides ER for the prepro-
cessing phase if we implement FcOT with πcOT with parameter ℓ = n+ t+κ.
However, the parties need to know the number of extended correlated OTs
(i.e. n+ t+ κ) in πcOT during the preprocessing phase and perform commu-
nication proportional to it.

– Batch Verification: The mappings d maybe malformed and can be used
to leak w. Similarly, the challenge χ maybe malformed and can be used by
a malicious verifier to trigger a tampered prover. We address these issues by
following an approach similar to the consistency check in πcOT. The prover
commits to hash of d as cd. Upon receiving the commitment, the parties
participate in an interactive coin tossing protocol to generate the challenge
χ. Upon receiving the challenge, the prover decommits d and computes the
response to the batch verification (following the original Quicksilver proto-
col). The verifier checks the decommitment to d and performs the verifier
algorithm of the original quicksilver protocol. The soundness argument of
the check is preserved if the hash is collision resistant, cd is instantiated
using a binding commitment scheme and the coin-tossing returns a random
χ in the presence of functionality maintaining tamperings. The coin-tossing
subprotocol is same as the coin tossing protocol in πcOT. The firewall con-
struction is also the same and this ensures ER for the coin-tossing. We refer
to the Consistency Checks Sec. 2.2 for the discussion on the coin-tossing.
Given that ∆ is random and the challenge is sanitized by the firewall, a
corrupt prover gets caught if d vector is malformed such that the underlying
w = b⊕d is invalid, i.e. C(w) = 0. The complete protocol πQS cna be found
in Sec. 7.

The original quicksilver paper achieves communication complexity of 1 bit per
multiplication gate. We incur a cost of κ(1 + o(1)) < 2κ bits per multiplication
gate. The number of public key operations is O(κ). The prover and verifier
can run our protocol to verify a batch of m different circuits (C1, C2, . . . , Cm)
with parameters (ℓ1, ℓ2, . . . , ℓm) where ℓi denotes the number of input wires
and multiplication gates in Ci. In such a case the parties invoke FcOT with
parameter L = Σi∈[m]ℓi. The number of public key operations for the base OTs
gets amortized over m runs of the ZK protocol.

3 Preliminaries

Notations: We denote by a ← D a uniform sampling of an element a from a
distribution D. The set of elements {1, . . . , n} is represented by [n]. We denote
the computational security parameter by κ and statistical security parameter
by µ respectively. Let Zq denote the field of order q, where q = p−1

2 and p are
primes. Let G be the multiplicative group corresponding to Z∗

p with generator
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g, where CDH assumption holds. We denote a field of size O(2µ) as F. For a bit
b ∈ {0, 1}, we denote 1−b by b̄. We denote a matrix by M and let Mi refer to the
ith column and Mj to the jth row of M respectively. Given a field element x ∈ F
and a bit vector a = (a1, a2, . . . , aκ) we write component-wise multiplication as
x · a = (a1 · x, a2 · x, . . . , aκ · x). Given two vectors a,b ∈ {0, 1}n, we denote
component-wise multiplication by a⊙ b = (a1 · b1, . . . , an · bn).

Commitment Schemes: We define a non-interactive commitment scheme Com
as a tuple of two algorithms (Gen, Com) such that it satisfies the properties of
computational binding, computational hiding. Additionally, we require Com to
be additively homomorphic over the message space M and randomness space
R, which are written additively, such that for all m,m′ ∈M, r, r′ ∈ R we have:
Com(pp,m; r) · Com(pp,m′; r′) = Com(pp,m + m′; r + r′), where pp are the
public parameters generated by Gen. For our protocols we require additively
homomorphic commitments over Zq and G message spaces. We use Pedersen
and Elgamal commitments respectively for this purpose. More details can be
found in the full version [12].

3.1 Cryptographic Reverse Firewalls

In this section we recall the basic definitions of reverse firewalls following [32,
10, 11]. We focus on the setting of two parties.

Notation. Let Π denote a ℓ-round two-party protocol, for some arbitrary poly-
nomial ℓ(·) in the security parameter κ. For a party P and reverse firewall RF
we define RF ◦ P as the “composed” party in which the incoming and outgoing
messages of A are “sanitized” by RF. The firewall RF is a stateful algorithm that
is only allowed to see the public parameters of the system, and does not get to
see the inputs and outputs of the party P . We denote the tampered implemen-
tation of a party P by P . We write ΠRF◦P (resp. ΠP ) to represent the protocol
Π in which the role of a party P is replaced by the composed party RF◦P (resp.
the tampered implementation P ). We now define the properties that a reverse
firewall must satisfy.

Definition 1 (Functionality maintaining). For any reverse firewall RF and
a party P , let RF1 ◦P = RF ◦P , and RFk ◦P = RF ◦ · · · ◦ RF︸ ︷︷ ︸

k times

◦P . For a protocol

Π that satisfies some functionality requirements F , we say that a reverse firewall
RF maintains functionality F for a party P in protocol Π if ΠRFk◦P also satisfies
F , for any polynomially bounded k ≥ 1.

Definition 2 (Security preservation). A reverse firewall weakly preserves
security S for party P in protocol Π if protocol Π satisfies S, and for any
polynomial-time algorithm P such that ΠP satisfies F , the protocol ΠRF◦P sat-
isfies S. (i.e., the firewall can guarantee security even when an adversary has
tampered with P , provided that the tampered implementation does not break the
functionality of the protocol.)
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A reverse firewall strongly preserves security S for party P in protocol Π
if protocol Π satisfies S, and for any polynomial-time algorithm P , the proto-
col ΠRF◦P satisfies S. (i.e., the firewall can guarantee security even when an
adversary has tampered with party P .)

We now define exfiltration resistance, which intuitively asks the adversary to
distinguish between a tampered implementation P of party P from an honest
implementation (via the reverse firewall). This prevents, for e.g., for a tampered
implementation P to leak the secrets of P .

Definition 3 (Exfiltration resistance). A reverse firewall is weak exfiltra-
tion resistant for party P1 against party P2 in protocol Π satisfying functionality
F if no PPT adversary AER with output circuits P1 and P2 such that ΠP1

and
ΠP2

satisfies F has non-negligible advantage in the game LEAK(Π,P1, P2,RF, κ)
(see Fig.2). If P2 is empty, then we simply say that the firewall is weak exfiltra-
tion resistant.

A reverse firewall is strongly exfiltration resistant for party P1 against party
P2 in protocol Π if no PPT adversary AER has non-negligible advantage in the
game LEAK(Π,P1, P2,RF, κ). If P2 is empty, then we simply say that the firewall
is strongly exfiltration resistant.

LEAK(Π,P1, P2,RF, κ)

(P1, P2, I)← AER(1
κ)

b
$←− {0, 1};

If b = 1, P ∗
1 ← RF1 ◦ P1

Else, P ∗
1 ← RF1 ◦ P1.

τ∗ ← ΠP∗
1 ,{P2→P2}(I).

b∗ ← AER(τ
∗, {stP2

}).
Output (b = b∗).

Fig. 2: LEAK(Π,P1, P2,RF, κ) is the exfiltration-resistance security game for a
reverse firewall RF1 for party P1 in the protocol Π against party P2 with input
I. Here, AER is the adversary, stP2

denote the state of party P2 after the run
of the protocol, and τ∗ denote the transcript of the protocol ΠP∗

1 ,{P2→P2} with

input I.

We recall the transparency property [11] that intuitively, requires that the be-
havior of RF◦P is identical to the behavior of P if P is the honest implementation.

Throughout the paper we refer to weak exfiltration resistance as exfiltration re-
sistance. We will also use the following result established in [11]. It basically
states that exfiltration resistance implies security preservation for protocols sat-
isfying simulation-based definition of security.

Theorem 3 ([11] Exfiltration resistance implies Security preservation
). Let Π denote a two-party protocol running between P1 and P2 that securely
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computes some function f with abort in presence of malicious adversaries in
the simulation-based setting. Assume w.l.o.g, that P1 is honest (i.e., not mali-
ciously corrupted). Then if the reverse firewall RF1 is functionality-maintaining,
(strongly/weakly) exfiltration resistant for P1 against P2, and transparent, then
for all PPT adversaries A and all PPT tempering P1 provided by A, the fire-
wall RF1 (strongly/weakly) preserve security of the party P1 in the protocol Π
according to Definition 2.

4 Correlated OT Extension in the Firewall Setting

We describe our revised cOT extension protocol in Fig. 3 and the corresponding
firewall can be found in Fig. 4. High level overview can be found in Sec. 2.2. We
show security of our protocol by proving Thm. 4 in the full version [12].

Theorem 4. Assuming πrOT implements FrOT functionality, Com is a binding
and hiding commitment scheme, PRG is a pseudorandom generator and H is
a collision resistant hash function, then πcOT implements FcOT functionality
against active corruption of parties in the FRO model.

We show that our protocol provides weak exfiltration resistance against tam-
pering of honest parties by proving Thm. 5 as follows.

Theorem 5. Assuming Com is an additively homomorphic, binding and hiding
commitment scheme, and RFrOT-R provides weak exfiltration resistance for the
receiver (of base OT) in πrOT then RFcOT-S (Fig. 4) provides weak exfiltration
resistance for a tampered sender of πcOT. Similarly if RFrOT-S provides weak
exfiltration resistance for the sender (of base OT) in πrOT then RFcOT-R (Fig. 4)
provides weak exfiltration resistance for a tampered receiver in πcOT.

Proof. We argue weak exfiltration resistance for each phase as follows:

– The RFrOT transcript provides ER to the sender and receiver due to ER of
RFcOT-R and RFcOT-S respectively.

– In the OT extension phase, the ĉcoin and ĉD provides ER due to homomor-
phism and hiding property of the commitment scheme.

– In the consistency check phase if a receiver passes the consistency check the
random oracle FRO(sid, 0, coin), PRG(k1,0) and PRG(k1,1) ensures that the
first column of D is randomly distributed and as a result r′ is random. Both
parties generate the sanitized r′ as follows:

r′ = FRO(sid, 0, coinR + coinS + c̃oin)⊕ PRG(k1,0)⊕ PRG(k1,1),

where k1,0 and k1,1 are outputs from the sanitized base OT protocols. ĉseed
provides ER due to to homomorphism and hiding property of the commit-
ment scheme. The consistency check ensures that a malformed D is detected.
For example if the ith column of D is malformed such that Ri ̸= r then the
check detects and the honest and tampered party aborts when si == 1.
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– Private Inputs: R and S do not possess any private inputs.

– Primitives: Pseudorandom Generators PRG : {0, 1}κ → {0, 1}m+κ, H :
{0, 1}(m+κ)×κ → {0, 1}κ is a Collision Resistant Hash function and Com :
{0, 1}κ → {0, 1}κ is a string commitment scheme. FRO is a random oracle function-
ality such that FRO : {0, 1}κ × {0} → {0, 1}m+κ and FRO : {0, 1}κ × {1} → Fm+κ.

– Subprotocols: Subprotocol πrOT computes ℓ instance of random OT.

Seed OT Phase:

1. S and R participate in πrOT protocol (implementing the FrOT functionality) as
receiver and sender respectively.

2. R receives (k0,k1) as output where kα = {ki,α}i∈[κ] and ki,α ∈ {0, 1}κ for α ∈
{0, 1}, i ∈ [κ].

3. S receives s ∈ {0, 1}κ and k′ where k′ = {k′i}i∈[κ] and k
′
i = ki,si for i ∈ [κ].

OT Extension Phase:

1. R and S perform a coin tossing protocol as follows:
– R samples coinR ←R {0, 1}κ and sends ccoin = Com(coinR; δcoin) to S.
– S obtains ccoin and samples coinS ←R {0, 1}κ and sends coinS to R.
– R computes coin = coinR ⊕ coinS.

2. R forms three (m+ κ)× κ matrices M, R and D in the following way:
– Sets Mi = PRG(ki,0) for i ∈ [κ].
– Sets D1 = FRO(sid, 0, coin). Computes r′ = D1 ⊕M1 ⊕ PRG(k1,1).
– Parses r′ = r||τ where r ∈ {0, 1}m and τ ∈ {0, 1}κ.
– Sets Rj = (r′j , . . . , r

′
j) for j ∈ [m+ κ]. Clearly, Ri = r′ for i ∈ [κ].

– Set Di = Mi ⊕ PRG(ki,1)⊕Ri for i ∈ [κ].
R sets D = {Di}i∈[κ]. R commits to D as cD = Com(H(D); δD) using randomness
d and sends cD to S.

Consistency Check Phase:

1. S and R performs a coin tossing protocol as follows:
– S samples seedS ←R {0, 1}κ and sends cseed = Com(seedS; δseed) to R.
– R obtains cseed and samples seedR ←R {0, 1}κ and sends seedR to S.
– S opens cseed by sending (seedS, δseed) to R and sets seed = seedS + seedR.

2. R aborts if cseed ̸= Com(seedS; δseed). Else R computes challenge from the output of
the coin tossing protocol, as χ = {χ1, . . . , χm+κ} = FRO(sid, 1, seedS + seedR).

3. R computes u =
⊕

j∈(m+κ)(χj ·Mj) and v =
⊕

j∈(m+κ)(χj ·Rj). R sends (D, δD,

u, v) to S as the response. R also decommits ccoin to coinR by sending (coinR, δcoin).
4. On receiving D, S aborts if cD ̸= Com(H(D); δD) or ccoin ̸= Com(coinR; δcoin) or

D1 ̸= FRO(sid, 0, coinR ⊕ coinS). S forms (m + κ) × κ bit-matrix Q with the ith
column of Q set as Qi =

(
si ⊙Di

)
⊕ PRG(k′i). Clearly, (i) Q

i =
(
Mi ⊕ (si ⊙Ri)

)
and (ii) Qj =

(
Mj ⊕ (s⊙Rj)

)
=

(
Mj ⊕ (s⊙ rj)

)
.

5. S constructs χ = FRO(sid, 1, seed) and computes w =
⊕

j∈(m+κ)(χj ·Qj). S aborts
if w ̸= u⊕ s · v.

Output Phase:
S sets (s, {Qj}j∈[m]) as the output. R sets (r, {Mj}j∈[m]) as the output.

Fig. 3: Correlated OT Extension πcOT in the RF setting
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Com is an additively homomorphic commitment where Com(m1; r1) · Com(m2; r2) =
Com(m1 +m2; r1 + r2).

Seed OT Phase:
RFcOT-S (resp. RFcOT-R) invokes the firewall RFrOT-R (resp. RFrOT-S) of base-OT receiver
(resp. sender) for sanitising the cOT-extension sender’s (resp. receiver’s) πrOT messages.

OT Extension Phase:

1. The firewall sanitizes the coin-tossing protocol as follows:
– Upon receiving ccoin from R the firewall samples ĉcoin = ccoin · Com(c̃oin; δ̃coin)

where c̃oin ←R {0, 1}∗ and δ̃coin ←R {0, 1}∗. The firewall sends ĉcoin to the
sender.

– Upon receiving coinS from the sender, the firewall sends ĉoinS = coinS + c̃oin
to the receiver.

2. Upon receiving cD from receiver, the firewall computes ĉD = cD · Com(0; δ̃D)

where δ̃D ←R {0, 1}∗. The firewall sends ĉD to the receiver.

Consistency Check Phase:

1. The firewall sanitizes the coin tossing protocol messages as follows:
– When S sends cseed, the firewall samples s̃eed and computes the sanitized com-

mitment as ĉseed = cseed · Com(s̃eed; δ̃seed) where δ̃seed ←R {0, 1}∗. the firewall
sends ĉseed to the receiver R.

– When R sends seedR, the firewall sends s̃eedR = seedR + s̃eed to the sender S.

– When S sends (seedS, δseed), the firewall sends (ŝeedS, δ̂seed) = (seedS +

s̃eed, δseed + δ̃seed) to the receiver R.

2. When R sends (D, δD, u, v), the firewall computes δ̂D = δD+δ̃D and sends (D, δ̂D,

u, v) to S. When R sends (coinR, δcoin), the firewall sends (coinR + c̃oin, δcoin + δ̃coin)
to the sender.

Fig. 4: Sender’s (resp. Receiver’s) Firewall RFcOT-S (resp. RFcOT-R) in πcOT

When si == 0 the check fails to detect it and the adversary is able to leak
the ith bit of s. The honest sender does not abort following the protocol and
the tampered sender also doesn’t abort since it is functionality maintaining
w.r.t FcOT which enables adversary to guess c bits of s.

⊓⊔
By composing Theorems 3, 5 and 4 we show that the firewalls RFcOT-R and
RFcOT-S (Fig. 4) preserves the security of the underlying protocol πcOT and that
proves Thm. 1.

5 Implementing FrOT in the Firewall Setting

In this section we implement FrOT (Fig. 5) for base OT protocol. Our protocol
πrOT can be found in the full version [12]. Detailed overview can be found in Sec.
2.3. We show simulation based security of πrOT by proving Thm. 6 in the full
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version [12]. We implement the ZK protocol in Fig. 9 and WI protocol in Fig.
10 in Sec. 6.

Functionality FrOT

Upon receiving (Initiate, sid, ℓ) from sender S and a receiver R, the functionality FrOT

interacts as follows:

– If S is corrupted receive (a0,a1) ∈ {0, 1}ℓ×κ from the sender. Else, sample
ai,0, ai,1 ←R {0, 1}κ for i ∈ [ℓ] and set (a0,a1) = {ai,0, ai,1}i∈[ℓ].

– If R is corrupted then receive b ∈ {0, 1}ℓ and a′ ∈ {0, 1}ℓ×κ from the receiver, and
set ai,bi = a′i for i ∈ [ℓ]. Else, sample b←R {0, 1}ℓ.

– Denote b = {bi}i∈[ℓ]. Set a
′ = {a′i}i∈[ℓ] where a

′
i = ai,bi for i ∈ [ℓ].

Send (sent, sid, (b,a′)) to R and (sent, sid, (a0,a1)) to S and store (sen, sid, ℓ, (b,a0,a1))
in memory. Ignore future messages with the same sid.

Fig. 5: The ideal functionality FrOT for Oblivious Transfer with random inputs

Theorem 6. Assuming ComG and Comq be computationally binding and hid-
ing commitment schemes where they are rerandomizable and additively homo-
morphic for message spaces over G and Zq elements respectively, πDL

ZK implement
FZK functionality for the Discrete Log relation RDL, π

OR
WI be a protocol for Wit-

ness Indistinguishability with proof of knowledge for the relation ROR and DDH
assumption holds in group G, then πrOT implements FrOT against active corrup-
tion of parties.

We provide the reverse firewall RFrOT for protocol πrOT in the full version
[12]. We show that the firewall maintains functionality and provides ER for a
tampered sender against a receiver and also provides ER for a tampered receiver
against a sender by proving Thm. 7.

Theorem 7. Assuming ComG and Comq be computationally binding and hiding
commitment schemes where they are rerandomizable and additively homomorphic
for message spaces over G and Zq elements respectively, RFZK and RFWI provides
weak exfiltration resistance for the tampered parties in πDL

ZK and πOR
WI respectively,

then the above firewall RFrOT provides weak exfiltration resistance for a tampered
sender against a receiver, and for a tampered receiver against a sender.

Cost. The protocol πrOT implements FrOT by producing ℓ random OT instances.
Each random OT instance communicates 13 group elements + 15 field elements
+ 1 bit, and performs 35 exponentiations.

6 Fully Malleable Sigma Protocols

We denote a Sigma protocol by Σ = (P,V), where P1 and P2 are algorithms
that compute, respectively, the prover’s first message a, and the prover’s last
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ComG and Comq are commitments for group elements and field elements respectively.
πDL
ZK is a ZK proof for the statement (x,G,Zq) corresponding to relation RDL = (∃w ∈

Zq : x = gw). πOR
WI is a WI proof for the statement (x0, x1,G,Zq) corresponding to

relation ROR = (∃w ∈ Zq, b ∈ {0, 1} : x0 = gw ∨ x1 = gw).

1. Receiver’s Coin-tossing for Parameters: The receiver samples QR ←R G and
sends T = ComG(QR; t) to the sender.

2. Sender’s Coin-tossing for Parameters and Receiver’s Public Key: The
sender samples q ←R Zq and computes QS = gq. For i ∈ [ℓ] the sender performs
the following:
– The sender samples pi ←R Zq to rerandomize the receiver public key.
– The sender computes cSi = Comq(pi; d

S
i ).

The sender sends (QS,C
S) to the receiver, where CS = {cSi}i∈[ℓ].

3. Sender’s Zero-Knowledge Proof for Parameters: The sender and the re-
ceiver run πDL

ZK protocol where sender is the prover for the statement (QS,G,Zq)
corresponding to witness q.

4. Receiver’s generates Public Keys and Performs Coin-tossing for
Sender’s OT message: The receiver computes Q = QR ·QS. The receiver samples
random choice bits b←R {0, 1}ℓ. For i ∈ [ℓ] the receiver performs the following:
– The receiver samples ski ←R Zq and computes pki,b = gski .

– The receiver computes pki,b =
Q

pki,b
.

– The receiver samples shares for sender’s OT randomness vi,0, vi,1 ←R Zq.
– The receiver commits to the shares as cRi,0 = Comq(vi,0; d

R
i,0) and cRi,1 =

Comq(vi,1; d
R
i,1).

The receiver decommits to T by sending (QR, t). The receiver also sends the com-
mitments - (CR

0 ,C
R
1) where CR

0 = {cRi,0}i∈[ℓ] and CR
1 = {cRi,1}i∈[ℓ] and the public

keys {pki,0}i∈[ℓ].
5. Receiver’s WI Proof for Secret Keys: For i ∈ [ℓ], the receiver and the

sender parallely run πOR
WI protocol where receiver is the prover for the statement

{pki,0, pki,1,G,Zq}i∈[ℓ] corresponding to witness {ski, bi}i∈[ℓ].
6. Sender generates OT message, Rerandomizes and Permutes Receiver’s

Public Keys: The sender aborts if T ̸= ComG(QR; t) else it sets Q = QS ·QR. The
sender samples random choice bit permutation ρ←R {0, 1}ℓ. For i ∈ [ℓ] the sender
performs the following:
– The sender computes pki,1 = Q

pki,0
.

– The sender samples ri,0, ri,1 ←R Zq.
– The sender computes Ri,0 = gri,0 and Ri,1 = gri,1 .

The sender sends (ρ, {Ri,0, Ri,1, pi, d
S
i}i∈[ℓ]) to the receiver.

7. Receiver Rerandomizes Sender’s OT message and Computes Output:
The receiver sets the random choice bit string as s = b⊕ρ. For i ∈ [ℓ], the receiver
performs the following:
– The receiver aborts if cSi ̸= Comq(pi; d

S
i ).

– The receiver sets pi,0 = pi and pi,1 = −pi.
– The receiver updates ski = ski + pi,bi and computes k′i = (Ri,si · gvi,si )ski .

The receiver outputs (s,k′) where k′ = {k′i}i∈[ℓ]. The receiver decommits (CR
0 ,C

R
1)

by sending {vi,0, dRi,0, vi,1, dRi,1}i∈[ℓ] to sender.

Fig. 6: Protocol πrOT implementing FrOT
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8. Sender Computes Rerandomized Output: For i ∈ [ℓ] the sender computes
the following:
– For β ∈ {0, 1} : The sender aborts if cRi,β ̸= Comq(vi,β ; d

R
i,β).

– Sets pi,0 = pi and pi,1 = −pi.
– The sender computes ki,0 and ki,1 based on ρi by considering the following

two cases:
• If (ρi == 0): the sender computes the output messages ki,0 = (pki,0 ·
gpi,0)ri,0+vi,0 and ki,1 = (pki,1 · gpi,1)ri,1+vi,1 .

• If (ρi == 1): the sender computes the output messages ki,0 = (pki,1 ·
gpi,1)ri,0+vi,0 and ki,1 = (pki,0 · gpi,0)ri,1+vi,1 .

More generally, the sender computes ki,0 = (pki,ρi · g
pi,ρi )ri,0+vi,0 and ki,1 =

(pki,ρi · g
pi,ρi )ri,1+vi,1 .

The sender sets (k0,k1) = {ki,0, ki,1}i∈[ℓ] as the output.

Fig. 7: Protocol πrOT implementing FrOT

message (response) z. Moreover we require the Sigma protocol to be “unique
response”, i.e., it is infeasible to find two distinct valid responses for a given
first message and fixed challenge. Let A be the space of all possible prover’s first
messages; membership in A can be tested efficiently, so the V always outputs ⊥
when a ̸∈ A. Also, let C denote the challenge space of the verifier.

6.1 Malleability

The work of [24] defines the notion of malleability. A Sigma protocol is malleable
if the prover’s first message a can be randomized into â that is distributed
identically to the first message of an honest prover. In addition, for any challenge
c, given the coins used to randomize a and any response z yielding an accepting
transcript τ = (a, c, z), a balanced response ẑ can be computed such that (â, c, ẑ)
is also an accepting transcript. In our constructions, we need a stronger notion of
malleability: we will need to randomize the instance in addition to the transcript.
We demonstrate that the sigma protocol for discrete log is malleable in Fig. 8.

Prover(x = gw, w) Verifier

a = gα

δ ←R Zq, ρ←R Zq, γ ←R Zq

(x,a)−−−−−−−−−−→ x̂ = x · gδ, â = a · gγ · x−ρ (x̂,â)−−−−−−−−−−→
c←R Zq

ĉ←−−−−−−−−−− ĉ = c+ ρ
c←−−−−−−−−−−

z = α+ ĉw
z−−−−−−−−−−→ ẑ = z + γ + cδ

ẑ−−−−−−−−−−→
gẑ

?
= â x̂c

Fig. 8: Fully Malleable Sigma protocol for discrete log
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We now formally define our notion of fully malleable Sigma protocols.

Definition 4 (Fully Malleable Sigma protocol). Let Σ = (P1,P2,V) be a
Sigma protocol for a relation R. Σ is said to be fully malleable if there exists a
tuple of polynomial-time algorithms (Maul,MaulCh,Bal) specified as follows:

(i) Maul is a probabilistic algorithm that takes as input an instance x, a ∈ A (re-
call that A is set of all possible prover’s first messages), instance randomizer
δ and outputs an instance x̂, and â ∈ A and state σ ∈ {0, 1}∗;

(ii) MaulCh is a probabilistic algorithm that takes as input a challenge c and a
randomizer ρ and returns a modified challenge ĉ.

(iii) Bal is a deterministic algorithm that takes as input x, z, the state σ output
by Maul, a challenge c and returns a balanced response ẑ.

The following properties need to be satisfied.

– Uniformity. For all (x,w) ∈ R, and for all a ∈ A, x̂ is a uniformly
distributed instance in L, and the distribution of â is identical to that of
P1(x̂, ŵ), where (x̂, â, σ) ←R Maul(x, a, δ) such that (x̂, ŵ) ∈ R. Moreover,
for all c ∈ C (recall that C denotes the challenge space) and uniformly random
ρ←R Zq, ĉ is uniformly distributed in C, where ĉ←R MaulCh(c; ρ)

– Malleability. For all x ∈ L, for all ρ ←R Zq and for all τ = (a, ĉ, z) such
that V(x, (a, ĉ, z)) = 1, where ĉ←R MaulCh(c; ρ), the following holds :

Pr[V(x̂, (â, c, ẑ)) = 1 : (x̂, â, σ)← Maul(x, a, δ); ẑ = Bal(x, z, σ, c)] = 1,

where the probability is over the randomness of Maul and MaulCh.

Lemma 1. The Sigma protocol for Discrete Log is fully malleable as per Defi-
nition 4. The construction is shown in Fig 8.

Proof. We instantiateMaul,MaulCh and Bal algorithms for knowledge of discrete
logarithm, where γ ←R Zq:

Maul(x, a, ρ, δ) = (x · gδ, a · gγ · x−ρ, (γ, δ)) MaulCh(c, ρ) = c+ ρ

Bal(x, z, (γ, δ), c) = z + γ + cδ

– Uniformity: For all (x,w), x = gw, for all α ∈ Zq, the distribution of â =
a · gγ · x−ρ = gα · gγ · g−ρw over the choice of γ ←R Zq is identical to the
distribution of a = gα over the choice of α ∈ Zq. Moreover, for all uniformly
random ρ←R Zq, the value ĉ = c+ρ is uniformly distributed in the challenge
space.

– Malleability: For all x ∈ L, for all ρ ∈ Zq, and for all τ = (a, ĉ, z) such that
gz = ax−ĉ, where ĉ = c+ ρ, the following holds:

âx̂−c = agγx−ρx̂−c = agγx−c−ρg−δc = agγx−ĉg−δc = gzgγg−δc = gẑ
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⊓⊔
We note that Maul and Bal easily generalize to the unifying Sigma protocol

for proving knowledge of preimage of a homomorphism [31]. This generalization
gives an RF for the unifying Sigma protocol, even though we only need the
protocol for knowledge of discrete logarithm in our applications.

In general, Sigma protocols are not full-fledged zero knowledge or zero-
knowledge proof of knowledge (ZKPoK) protocols. However, standard techniques
[25] allow to compile a Sigma protocol into a zero knowledge protocol. We recall
the ZKPoK protocol πDL

ZK for the discrete logarithm problem in the full version
[12] and we provide an RF for it in Fig. 9 and prove Thm. 8.

Theorem 8. Let Σ be a fully malleable unique-response Sigma protocol for R
as in Def 4. The RF RFZK in Fig. 9 is functionality-maintaining, weakly ZK
preserving and weak exfiltration resistant for the ZK protocol πDL

ZK of discrete log.

Prover(x = gw, w) RFZK(δ) Verifier

(u,v)−−−−−−−−−→
t1 ←R Zq, t2 ←R Zq

û = ut1 , v̂ = vt2
(û,̂v)−−−−−−−−−→

β̂←−−−−−−−−−− ρ, ζ ←R Zq β̂ = βt−1
1 · uρ · vζ β←−−−−−−−−−−

(x,a)−−−−−−−−−−→
γ ←R Zq

(x̂, â, σ) = Maul(x, a, δ)
(x̂,â)−−−−−−−−−−→
(c,d)←−−−−−−−−−−

ĉ = MaulCh(c; ρ) = c+ ρ, d̂ = d · t2 · t−1
1 + ζ

(ĉ,d̂)←−−−−−−−−−−

z,k−−−−−−−−−−−→
ẑ = Bal(x, z, σ, c)

k̂ = k · t2 · t−1
1

ẑ,k̂−−−−−−−−−−−→
v̂

?
= ûk̂

gẑ
?
= â x̂c

Fig. 9: Reverse Firewall RFZK for ZK compiled Sigma protocol

6.2 RF for OR Transform Sigma Protocol

OR Transform. Given x0, x1, a prover wishes to prove to a verifier that either
x0 ∈ L0 or x1 ∈ L1 without revealing which one is true. The OR relation is
given by: ROR = {((x0, x1), w) : (x0, w) ∈ R0 ∨ (x1, w) ∈ R1}.

Let Σ0 = ((P0
1,P

0
2),V

0) (resp. Σ1 = ((P1
1,P

1
2),V

1)) be a Sigma protocol for
language L0 (resp. L1). Let Sim0 (resp. Sim1) be the HVZK simulator for Σ0

(resp. Σ1). A Sigma protocol πOR
WI for the relation ROR was constructed in [17].

We describe the protocol πOR
WI in Fig. 10. πOR

WI satisfies perfect special HVZK and
perfect WI.
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RF for OR Protocol. In order to construct an RF for the OR transform, we need
to maul the prover’s first message in such a way that the verifier’s challenge can
be balanced in addition to the prover’s last message. We note that [24] considers
an RF for the OR composition, however that definition and construction does
not suffice for our application since we need to randomize the instance as well.
We present the WI protocol for OR composition the full version [12]. We show
the RF for the OR composition in Fig. 10 and demonstrate that it provides ER
by proving Thm. 9.

Prover((x0, x1), w) Reverse Firewall((δ0, δ1), ψ ∈ {0, 1}) Verifier

(x0,x1,a0,a1)−−−−−−−−−−−→
ρ0, ρ1 ←R Zq

(x̂0, â0, σ0)←R Σ0 ·Maul0(x0, a0, ρ0, δ0)
(x̂1, â1, σ1)←R Σ1 ·Maul1(x1, a1, ρ1, δ1)

(x̂ψ,x̂1−ψ,â0,â1)−−−−−−−−−−−−−→
c←−−−−−−−

ρ = ρ0 + ρ1
ĉ = c− ρ

ĉ←−−−−−−−
(z0,z1,c0,c1)−−−−−−−−−−→

ĉ0 = Σ0 ·MaulCh0(c0; ρ0) = c0 + ρ0
ĉ1 = Σ1 ·MaulCh1(c1; ρ1) = c1 + ρ1

ẑ0 = Σ0 · Bal0(z0, σ0, ĉ0)
ẑ1 = Σ1 · Bal1(z1, σ1, ĉ1)

(ẑψ,ẑ1−ψ,ĉψ,ĉ1−ψ)
−−−−−−−−−−−−−−−→

c
?
= ĉ0 + ĉ1

Σ0 · V0(x̂0, (â0, ĉ0, ẑ0))
?
= 1

Σ1 · V1(x̂1, (â1, ĉ1, ẑ1))
?
= 1

Fig. 10: RFWI: RF for the OR composition of Sigma protocols, where (xb, w) ∈
Rb for b ∈ {0, 1}. The bit ψ is an additional input to RFWI provided by a RF of
an higher-level protocol (in our case the RF of our base OT protocol)

Theorem 9. Let Σ0 and Σ1 be fully malleable unique-response Sigma protocols
for R0 and R1 respectively. The RF RFWI in Fig. 10 preserves completeness, is
weakly HVZK/WI preserving and weak exfiltration resistant for πOR

WI .

7 Quicksilver with Reverse Firewall

We present a variant of Quicksilver [38] in the firewall setting, πQS, in the full
version [12]. It is in the FcOT model and provides efficient interactive ZK for
binary circuits. For a circuit with number of input wires n and the number of
multiplication gate t, the proof size is (n+t) bits in the FcOT model. Instantiating
FcOT with πcOT the concrete proof size of πQS is (n+t)κ+O(κ2) bits. The number
of public key operations is O(κ) and is independent of t. Detailed overview can
be found in Section 2.5. Security of πQS is summarized in Thm. 10. More details
can be found in the full version [12].
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Theorem 10. Assuming H is a collision resistant hash function and Com is a
computationally hiding and binding commitment scheme then πQS implements
FZK functionality in the FcOT model.

Proof Sketch. A corrupt prover breaks soundness of the protocol if it 1) breaks
binding of cd, or 2) finds a collision in H, or 3) breaks hiding of cseed, or it
passes the batch verification phase for a circuit C such that ∀w, C(w) = 0.
Breaking binding of cd or finding a collision in H allows the prover to open
the commitment to a different d′ after obtaining the challenge χ and hence
passing the batch verification. Breaking hiding of cseed allows the prover to fix
the challenge to a particular value for which it passes the challenge. Finally,
assuming the above attacks fail the prover can still pass the batch verification
checks if it correctly guesses the entire ∆κ of the V. The functionality FcOT

allows the prover to leak c bits of 2−c bits. However, it successfully guesses the
entire ∆ ∈ {0, 1}κ with 2−κ probability. Zero knowledge of the protocol follows
from the security for a receiver in πcOT. The pads (A∗

0, A
∗
1) perfectly hides the

inputs of the prover and the ZK simulator simulates the proof given corrupt
verifier’s input ∆ to FcOT.

Com is an additively homomorphic commitment scheme. RFcOT-R and RFcOT-S provides
exfiltration resistance for a tampered receiver and a tampered sender in πcOT.

Preprocessing phase:
The firewall for the prover invokes the firewall RFcOT-R (resp. RFcOT-S) to sanitize the
transcript of πcOT for the prover (resp. verifier).

Online phase:
Now the circuit and witness are known by the parties.

4. Input Wire Mapping: This step only includes local computation.
5. Gate Computation: Upon receiving cd from the prover the firewall computes ĉd =

cd · Com(0; δ̃d) by sampling δ̃d ←R {0, 1}κ. The firewall sends ĉd to the verifier.
6. Batch Verification Challenge: The steps of the coin tossing protocol are sanitised

as follows:
– Upon receiving cseed from verifier the firewall computes ĉseed = cseed ·

Com(s̃eed; δ̃seed) by sampling s̃eed←R {0, 1}κ and δ̃seed ←R {0, 1}∗. The firewall
sends ĉseed to the P.

– Upon receiving seedP from the prover the firewall sends ŝeedP = seedP ⊕ s̃eed
to the V.

– Upon receiving (seedV, δseed) from the verifier, the firewall sends (seedV ⊕
ŝeed, δseed ⊕ δ̂seed) to the prover.

7. Batch Verification Response: Upon receiving (d, δd, U, V ) from the prover, the

firewall sends (d, δd ⊕ δ̃d, U, V ) to the verifier as the response.
8. Batch Verification: This step only includes local computation.

Fig. 11: Reverse Firewalls RFQS-P (resp. RFQS-V) providing exfiltration resistance
for a tampered prover (resp. verifier) in πQS
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The Firewall Construction. We provide the firewalls in Fig. 11. Assuming FcOT

is implemented by πcOT in πQS, the firewall RFcOT-S for the sender in πcOT pro-
vides ER to the prover in the preprocessing phase of πQS. Similarly, the firewall
RFcOT-R for the receiver in πcOT provides ER to the verifier in the preprocessing
phase. The coin χ is rerandomized by the firewall to prevent any exfiltration
through the coin-tossing. Similarly, the commitments are also rerandomized to
prevent exfiltration. Thm. 11 summarizes the RF security.

Theorem 11. Let πcOT implement FcOT in πQS. Assuming Com is an additively
homomorphic, binding and hiding commitment scheme, RFcOT-R provides weak
exfiltration resistance for a tampered receiver in πrOT and RFcOT-S provides weak
exfiltration resistance for a tampered sender of πcOT then RFQS-P provides weak
exfiltration resistance for the prover in πQS and RFQS-V provides weak exfiltration
resistance for the verifier in πQS respectively.

By composing Theorems 3, 10 and 11 we show that the firewalls RFQS-V

and RFQS-P (Fig. 11) preserves the security of the underlying protocol πQS thus
proving Thm. 2.

Optimizations. Our protocol admits batching: the prover and verifier can run
our protocol to verify m different circuits (C1, C2, . . . , Cm) with parameters
(ℓ1, ℓ2, . . . , ℓm) where ℓi denotes the number of input wires and multiplication
gates in Ci. The parties invoke FcOT with parameter ℓ = Σi∈[m]ℓi, the com-
bined witness w consists of the individual witnesses (w1,w2, . . . ,wm) and cir-
cuit C(w) = 1 when ∀i ∈ [m], Ci(wi) = 1. In this batched setting, the number
of public key operations for the base OTs gets amortized over m runs of the ZK
protocol.
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