
Optimal Single-Server Private Information
Retrieval

Mingxun Zhou1, Wei-Kai Lin⋆2, Yiannis Tselekounis1, and Elaine Shi1 ⋆⋆

1 Carnegie Mellon University
2 Northeastern University

Abstract. We construct a single-server pre-processing Private Informa-
tion Retrieval (PIR) scheme with optimal bandwidth and server compu-
tation (up to poly-logarithmic factors), assuming hardness of the Learn-
ing With Errors (LWE) problem. Our scheme achieves amortized Õλ(

√
n)

server and client computation and Õλ(1) bandwidth per query, completes
in a single roundtrip, and requires Õλ(

√
n) client storage. In particular,

we achieve a significant reduction in bandwidth over the state-of-the-
art scheme by Corrigan-Gibbs, Henzinger, and Kogan (Eurocrypt’22):
their scheme requires as much as Õλ(

√
n) bandwidth per query, with

comparable computational and storage overhead as ours.

1 Introduction

Imagine that a server holds a large public database DB indexed by 0, 1, . . . , n−1,
e.g., the repository of DNS entries or a collection of webpages. A client wants
to fetch the i-th entry of the database. Although the database is public, the
client wants to hide which entry it is interested in. Chor, Goldreich, Kushilevitz,
and Sudan [21,22] first formulated this problem as Private Information Retrieval
(PIR), and since then, a long line of works have focused on constructing efficient
PIR schemes [4,10,11,15,18–20,23–26,28,30,32,35,37–39,42,43,45,46,49,50,53].

The good news is that PIR schemes with poly-logarithmic bandwidth are well-
known [10,11,15,19,20,28,32,37,38,43,45,49,50,53], either in the single-server or
multi-server settings. The bad news is that in the classical PIR setting without
pre-processing, all known schemes suffer from prohibitive server computation
overhead: the server(s) must (in aggregate) perform computation that is linear
in the database size n to answer each query. Intuitively, if there is an entry that
the server does not look at, it leaks information that the client is not interested
in that entry. Beimel, Ishai, and Malkin [7] formalized this intuition into an
elegant lower bound, showing that any PIR scheme without pre-processing must
incur Ω(n) server computation per query.

Recognizing this inherent limitation, Beimel et al. [7] introduce a new model
for PIR that allows pre-processing, and they were the first to show that the
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linear-computation lower bound can be circumvented with the help of pre-
processing. Subsequently, a line of works further explored PIR in the prepro-
cessing model [23,24,52,54], culminating in the recent works by Corrigan-Gibbs,
Henzinger, and Kogan [23] and by Shi et al. [54]. Corrigan-Gibbs, Henzinger,
and Kogan [23] proved that in the single-server and pre-processing setting, we
can construct a PIR scheme with amortized Õλ(

√
n) server and client compu-

tation per query, while requiring Õλ(
√
n) client storage. Here, we use Õλ(·) to

hide poly(λ, log n) factors, where λ is the security parameter. Corrigan-Gibbs et
al. [23] also showed that their scheme achieves optimality up to poly log factors
in terms of server computation, assuming Õ(

√
n) client storage. Unfortunately,

their scheme suffers from Õλ(
√
n) bandwidth overhead which is significantly

worse than classical PIR schemes without pre-processing. On the other hand,
Shi et al. [54] showed that in a setting with two non-colluding servers, we can
construct a PIR scheme that incurs only Õλ(1) online bandwidth and Õλ(

√
n)

server and client computation per query, while requiring Õλ(
√
n) client storage.

Both of these schemes support unbounded number of queries after a one-time
pre-processing, and the cost of the pre-processing is amortized to each query.

While the two schemes [23,54] achieve similar server and client computation
overhead, Shi et al. [54] has the advantage that it achieves Õλ(1) online band-
width — although unfortunately, this is achieved at the price of requiring two
non-colluding servers. Notably, Shi et al.’s scheme is known to be optimal up to
poly log factors even in the two-server setting, in terms of bandwidth and server
computation, assuming that the client can only download roughly

√
n amount

of data during the offline pre-processing phase [24].
Given the state of the art, we ask whether we can achieve the best of both

worlds. Specifically, we ask the following natural question — the same open
question was also raised by Corrigan-Gibbs et al. in their recent work [23]:

Can we construct a single-server pre-processing PIR scheme that achieves
(near) optimality in both server computation and bandwidth?

1.1 Our Contributions

We provide an affirmative answer to the aforementioned question by proving the
following theorem:

Theorem 1.1. Assume that the Learning With Errors (LWE) assumption holds.
Then, there exists a single-server pre-processing PIR scheme that achieves amor-
tized Õλ(1) bandwidth, Õλ(

√
n) server and client computation per query, and

requires Õλ(
√
n) client storage.

More specifically, in our scheme, there is a one-time pre-processing phase
with the same overheads in all dimensions as Corrigan-Gibbs [23] (up to poly log
factors). During the offline pre-processing, the client and the server engage
in Õλ(

√
n) communication, the server performs Õλ(n) computation, and the

2



Table 1: Comparison of single-server PIR schemes. Q is the batch size for
batch PIR, m is the number of clients, n is the database size, and ϵ ∈ (0, 1) is
some suitable constant. “BW” means bandwidth per query. “CRA” means the
composite residuosity assumption, ϕ-hiding is a number-theoretic assumption
described in [15], “OLDC” means oblivious locally decodable codes, and “VBB”
means virtual-blackbox obfuscation.

Scheme Assumpt. Adaptive BW Per-query time Extra space
Client Server Client Server

Standard CRA or
✓ Õ(1) Õ(1) 0 0[15,19,32] ϕ-hiding

or LWE
O(n)

Batch PIR same
Õ(1) Õ(1) O( n

Q
) 0 0[4,38] as above 5

[13,17] OLDC ✓ nϵ nϵ nϵ O(1) mn

[13] OLDC, VBB ✓ nϵ nϵ nϵ 0 n

[24] LWE ✓ Õλ(
√
n) Õλ(

√
n) Õλ(n) Õλ(

√
n) 0

[23] LWE ✓ Õλ(
√
n) Õλ(

√
n) Õλ(

√
n) Õλ(

√
n) 0

Ours LWE ✓ Õλ(1) Õλ(
√
n) Õλ(

√
n) Õλ(

√
n) 0

client performs Õλ(
√
n) computation. In Theorem 1.1 above, the cost of the

pre-processing is amortized to the subsequent queries. After the one-time pre-
processing, we can support an unbounded number of queries, and for each
query, we incur the same costs as stated in Theorem 1.1, in the worst case.
Our actual construction makes use of two cryptographic primitives: fully homo-
morphic encryption (FHE) [31, 33] and privately programmable pseudorandom
functions [10,41,51], both of which have known instantiations assuming LWE.

Near optimality. Our scheme is optimal up to poly log factors in terms of server
computation and bandwidth, in light of the lower bounds proven in recent
works [23, 24]. Specifically, Corrigan-Gibbs and Kogan [24] showed that for any
pre-processing PIR scheme where the server stores only the original database, it
must be that C ·T ≥ Ω(n) where C is the bandwidth incurred during the offline
pre-processing and T is the online server time per query. The recent work of
Corrigan-Gibbs, Henzinger, and Kogan [23] proved that for any pre-processing
PIR scheme that supports unbounded number of dynamic queries and assuming
the server stores only the original database, it must be that S · T ≥ Ω(n) where
S is client’s storage and T is the online server time per query.

Although in the main body we focus on the special case where the parameters
S and T are balanced, in Appendix B of the online full version [56], we discuss
how to achieve a smooth tradeoff between S and T . In particular, for any function
f(n) ∈ [logc n, n/ logc n] for some suitable positive constant c, we give a scheme
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that requires only Õλ(f(n)) client space, and achieves Õλ(n/f(n)) online server
and client time per query, and Õλ(1) bandwidth per query. Therefore, we achieve
near optimality for every choice of client space.

Comparison with prior schemes. Table 1 compares our scheme against var-
ious prior works. We focus on schemes in the single-server setting, and for
pre-processing PIR schemes, we amortize the pre-processing overhead over an
unbounded number of subsequent queries. Among these schemes, batch PIR
schemes [4,37,38] must have a large batch size of Q to achieve the stated amor-
tized performance, and fail in the scenario when the queries are generated adap-
tively and arrive one by one. We discuss additional related work in Section 1.2.

1.2 Additional Related Work

We now review some additional related work. Besides being first to define PIR
with pre-processing, Beimel et al. [7] additionally showed how to construct a
preprocessing PIR with polylogarithmic online bandwidth assuming polyloga-
rithmically many non-colluding servers, and poly(n) server storage. Unlike our
work as well as the recent works by Corrigan-Gibbs et al. [23,24], the scheme by
Beimel et al. [7] employs a public pre-processing, where the pre-processing results
in no client-side secret state. In fact, in their scheme [7], the server pre-processes
the database, resulting in a poly(n)-sized encoding of the database which is then
stored by the server. The very recent work of Persiano and Yeo [52] proved that
for any PIR scheme with public pre-processing, it must be that T ·R ≥ Ω(n log n)
where T is the server computation per query and R is size of the additional state
computed by the public pre-processing. In comparison, our work considers a pri-
vate pre-processing model, i.e., at the end of the pre-processing, the client stores
some secret state not seen by the server. This model matches well with a “sub-
scription model” in practice. For example, every client that needs private DNS
service can subscribe with the provider, and during subscription, they perform
the one-time pre-processing.

Besides the single-server PIR scheme from FHE mentioned in Table 1, the
work of Corrigan-Gibbs and Kogan [24] also propose another scheme assuming
only linearly homomorphic encryption, which requires O(n2/3) bandwidth and
client computation and O(n) server computation per query, as well as O(n2/3)
client storage. Further, the work of Corrigan-Gibbs, Henzinger, and Kogan [23]
additionally suggests a single-server PIR scheme assuming only linearly homo-
morphic encryption, incurring O(

√
n) bandwidth and client computation, and

O(n3/4) server computation per query, requiring O(n3/4) client storage.
Hamlin et al. [36] suggested a related notion called private anonymous data

access (PANDA). PANDA is a form of preprocessing PIR which requires an
additional third-party trusted setup besides the client and the servers; and more-
over, the server storage and time grow w.r.t. the number of corrupt clients. In
applications (e.g., private DNS) that involve a potentially unbounded number
of mutually distrustful clients, PANDA schemes would be unsuitable.
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A line of works have explored the concrete efficiency of PIR schemes [4,
34, 42, 47, 48, 50]. In particular, the work of Angel et al. [4] relies on batch-
ing to amortize the linear server computation over a batch of queries. Kogan
and Corrigan-Gibbs [42] gives a practical instantiation of the two-server pre-
processing PIR scheme described in their earlier work [24], with a new trick that
removes the k-fold parallel repetition. For their private blocklist application, it
turns out that the database is somewhat small, and therefore, they are willing to
incur Θ(n) client-side computation per online query, in exchange for logarithmic
bandwidth. The work of Patel et al. [50] explores how to rely on a stateful client
to improve the concrete performance of PIR schemes. Our work focuses on the
asymptotical overhead, and we leave it to future work to consider concretely
efficient instantiations that preserve our asymptotical performance.

Some works have considered achieving sublinear server time by relaxing the
security definition to differential privacy. Toledo et al. [55] improved the server
time to sublinear with this relaxation, assuming a large number of servers are
available. Albab et al. [3] also considered the differential privacy notion, and
they can achieve sublinear amortized server computation in a batched setting.

Independent work. Subsequent to our work, Lazaretti and Papamanthou [44]
proposed a similar construction. The main difference in their construction is
that they claim to rely only on privately puncturable PRFs and we rely on pri-
vately programmable PRFs. However, inside their scheme, they are effectively
using rejection sampling to construct a programmable PRF from a puncturable
PRF — earlier work has pointed out that this approach will only work if the pri-
vately puncturable PRF satisfies rerandomizability [16]. Therefore, for Lazaretti
and Papamanthou’s scheme [44] to work, they need to rely on a rerandomizable
privately puncturable PRF like what Canetti and Chen [16] suggested. Addi-
tionally, their privacy proof (in their Eprint version dated 2022-06-23) appears
slightly incomplete but likely fixable. In particular, in the inductive argument in
their privacy proof in their Section B.1, they argue that the sk part of the client’s
table is indistinguishable from randomly sampled secret keys (for the hard punc-
turing key). To prove the PIR scheme secure, they actually need to show that
the client’s table is indistinguishable form randomly sampled keys, not just for
the sk part, but actually for the pair (msk, sk). This is because the server’s view
actually depends on the msks in the client’s table. While it is outside the scope
of our paper to complete their proof, we think changing the security definition of
their pseudorandom sets to include the msk, and reproving their pseudorandom
sets secure under this new definition should lend to fixing this issue.

2 Technical Roadmap

2.1 Starting Point: Optimal 2-Server Scheme By Shi et al.

An Inefficient Toy Scheme Our starting point is the nearly optimal 2-server
scheme by Shi et al. [54], and we will explore how to coalesce the two servers
into one. To understand their scheme, it helps to start out with the following
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toy scheme which is a slight variant of the strawman schemes described in recent
works [24, 54]. Henceforth, we use the notations Right and Left to denote two
non-colluding servers. Let Dn be some distribution from which we can sample
random sets of expected size

√
n — at this moment, the reader need not care

what exactly the distribution Dn is.

Inefficient Toy 2-Server Scheme: Single-Copy Version

Offline preprocessing. (DB[k] denotes the k-th bit of the database)

– Client samples
√
n sets S1, S2, . . . , S√n ⊆ {0, 1, . . . , n− 1} from the dis-

tribution Dn.
– Client sends the resulting sets S1, . . . , S√n to Left. For each set j ∈ [

√
n],

Left responds with the parity bit pj := ⊕k∈SjDB[k] of indices in the set.
– Client stores the hint table T := {Tj := (Sj , pj)}j∈[√n].

Online query for index x ∈ {0, 1, . . . , n− 1}.

– Query: (Client⇔ Right)
1. Find an entry Tj := (Sj , pj) in its hint table T such that x ∈ Sj . Let

S∗ := Sj if found, else let S∗ be a fresh random set containing x.
2. Send the set S := ReSamp(S∗, x) to Right, where ReSamp(S∗, x)

outputs a set almost identical to S∗, except that the coins used to
determine x’s membership are re-tossed.

3. Upon obtaining a response p := ⊕k∈SDB[k] from Right, output the
candidate answer β′ := pj ⊕ p or β′ := 0 if no such Tj was found
earlier.

4. Client obtains the true answer β := DB[x] — the full scheme will
repeat this single-copy scheme k = ω(log λ) times, and β is com-
puted as a majority vote among the k candidate answers, which is
guaranteed to be correct except with negligible probability.

– Refresh (Client⇔ Left)
1. Client samples a random set S′ and sends S′ to Left.
2. Left responds with p′ := ⊕k∈S′DB[k]. Let p̃ = p′ ⊕ β if x /∈ S′, else

let p̃ = p′. If a table entry Tj containing x was found and consumed
earlier, Client replaces Tj with (S′ ∪ {x}, p̃).

In this 2-server toy scheme, during the offline phase, the client samples
√
n

sets each of expected size
√
n from some distribution Dn. It downloads the

parities of all these sets from the Left server. It stores all these sets as well as the
parity of each set in a local hint table. During the online phase, to query an index
x ∈ {0, 1, . . . , n − 1}, the client looks up its hint table and finds a set S∗ that
contains x, whose parity is pj . It then resamples the coins that determine whether
x is in the set or not. It sends the resampled set to the Right server, which returns
the client the parity p′. The client computes β′ = p′⊕pj as the candidate answer.
If we choose the distribution Dn carefully, then, with significant probability, the
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ReSamp(x) will remove the element x from the set, without adding or removing
any other element. In this case, the candidate answer β′ would be correct. If
we can ensure that each single copy has 2/3 correctness probability, then we
can amplify the correctness probability to 1−negl(λ) through parallel repetition
using ω(log λ) copies and majority voting. Finally, once we consume a hint from
the table, we need to replenish it. To achieve this, the client samples a random
set S′, and obtains its parity p′ from the Left server. The client replaces the
consumed entry with the set S′ ∪ {x} and its parity which can be computed
knowing p′ and β = DB[x].

Privacy. Privacy w.r.t. the Left server is easy to see. Basically, the Left server
sees
√
n random sets sampled from Dn during the offline phase, and during each

online query, it sees an additional random set also sampled from Dn. Privacy
w.r.t. the Right server can be proven using an inductive argument. Initially,
the client’s hint table consists of

√
n random sets sampled independently from

Dn. Suppose that at the end of the i-th query the client’s hint table satisfies
the above distribution. Then, during the i-th query that requests some index
x ∈ {0, 1, . . . , n − 1}, if some hint (Sj , pj) is matched, i.e., Sj ∋ x, then, the
distribution of Sj is the same as sampling from Dn subject to containing x.
Therefore, the set sent to the Right server, i.e., ReSamp(Sj) has the same
distribution as sampling at random from Dn. Further, notice that the client
replaces the consumed entry with another set sampled at random subject to
containing x. Thus, at the end of the i-th query, the client’s hint table still has√
n independent and identically distributed (i.i.d.) sets sampled from Dn.

Inefficiency of the toy scheme. In the toy scheme, both the server and the client
perform roughly

√
n computation per query. However, the online bandwidth to

each of the two servers is roughly
√
n, and the client storage is O(n).

Compressing the Bandwidth and Client Storage

Pseudorandom sets with private ReSamp. Shi et al. [54] suggested an idea to
improve the efficiency of the toy scheme in the two-server setting. To achieve
this, they introduce a cryptographic object called a pseudorandom set (PRSet),
allowing us to succinctly represent a pseudorandom set of size roughly

√
n with

a short key of poly(λ) bits. In this way, the client can store a key in place of each
set, and send a key to the server in place of the full description of a set. Their
PRSet scheme must support the following operations:

– sk← Gen(1λ, n): samples a key sk that generates a pseudorandom set emu-
lating the distribution Dn;

– S ← Set(sk): given a key sk, enumerate the set S;
– Member(sk, x): test if an element x ∈ {0, 1, . . . , n− 1} is in Set(sk);
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– sk′ ← ReSamp(sk, x): given a key sk, generates a related key sk′ that effec-
tively resamples the coins that are used to determine whether x is in the set
or not, while preserving all other coins3;

Designing such a PRSet scheme turns out to be non-trivial, since we need to
satisfy the following properties simultaneously.

– Privacy of ReSamp. The resampled key output by ReSamp(sk, x) must
hide the point x that is being resampled.

– Efficient membership test and set enumeration. The membership test al-
gorithm Member(sk, x) must complete in Õλ(1) running time and the set
enumeration algorithm Set(sk) must complete in Õλ(

√
n) time.

Shi et al. [54] show how to rely on a privately puncturable pseudorandom
function [9,14,16] to construct a PRSet scheme that supports a private ReSamp
operation. Further, to satisfy efficient membership test and efficient set enumer-
ation simultaneously, they carefully crafted a distribution Dn that the PRSet
scheme emulates. Notably, whether two elements are in the set may not be inde-
pendent in the distribution Dn. Such weak dependence between elements brings
additional possibilities of errors. In particular, ReSamp(sk, x) may accidentally
remove other elements besides x. If ReSamp(sk, x) either fails to remove x or
ends up removing additional elements besides x, the resulting PIR scheme would
be incorrect. Shi et al. [54] made sure that the probability of such error is small,
such that each single copy of the PIR scheme still has 2/3 correctness.

Optimal 2-server PIR scheme. With such a PRSet scheme, we can easily mod-
ify the aforementioned toy scheme to compress the client storage and band-
width [54]. Specifically, during the offline phase, the client sends

√
n PRSet keys

to the Left server. The Left server uses the set enumeration algorithm Set to
enumerate the sets and sends the client their parity bits. The client now stores
a hint table where each entry is of the form (ski, pi), where ski is a PRSet key
that can be used to generate a set of size roughly

√
n, and pi is the parity bit

as before. During an online query for x ∈ {0, 1, . . . , n − 1}, the client finds an
sk∗ in its hint table such that Member(sk∗, x) = 1, and sends the outcome of
ReSamp(sk∗, x) to the Right server. If such a key is not found, the client simply
samples a random sk′ ← Gen(1λ, n) and sends it to the server. The client com-
putes the candidate answer the same way as before. What is most interesting
is how to perform the refresh operation to replenish the consumed key. This is
achieved in the following manner:

– Sample sk′ ← Gen(1λ, n) subject to Member(sk′, x) = 1, and send the
outcome of ReSamp(sk′, x) to the Left server.

– The Left server enumerates the set using the Set algorithm and sends the
client the parity bit p′. The client replaces the consumed entry with (sk′, p′⊕
β) where β = DB[x] is the true answer to the current query.

3 Shi et al. [54] referred to ReSamp as Punct since the operation is implemented by
calling the puncturing operation of the underlying privately puncturable PRF.
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2.2 Highlights of Our Construction and Proof Techniques

Corrigan-Gibbs and Kogan [24] proposed an FHE-based technique to compile
a two-server pre-processing PIR scheme into a single-server scheme, and the
technique was further extended by Corrigan-Gibbs, Henzinger, and Kogan [23]
— this technique is remotely related to techniques for converting multi-prover
proof systems into single-prover proof systems [1, 8, 27, 29, 40]. The idea is to
get rid of the Left server and redirect the queries originally destined for the Left
server instead to the Right server, but now encrypted under a fully homomorphic
encryption (FHE) scheme. The server now evaluates the answers to the query
through homomorphic evaluation. Unfortunately, this compilation technique is
incompatible with Shi et al. [54]. The technicality arises from the fact that FHE
evaluation relies on circuit as the computation model, whereas the sublinear
server computation time of Shi et al. [54] relies on the RAM model (since dy-
namic memory accesses are needed). Recall that every time the server receives
a pseudorandom set key, it needs to expand the key to a set of size Õ(

√
n), and

retrieve the parity of the database bits at precisely these indices. On a RAM,
this computation costs Õ(

√
n), but now that the key is encrypted under FHE,

using a circuit to homomorphically evaluate this computation would require an
Ω(n)-sized circuit — this defeats our goal of having sublinear server time.

Fortunately, the following critical observation, first made by Corrigan-Gibbs
et al. [23], saves the day.
Observation. Although homomorphically evaluating the parity of a single set
takes a linear-sized circuit, we can batch-evaluate the parity bits of Θ(

√
n) sets

in a circuit of size Õ(n), leveraging oblivious sort. With batch evaluation, the
amortized cost per set is only Õ(

√
n).

Idea 1: Batched refresh operations. The above batching idea allows us to compile
the offline phase of Shi et al. [54] without suffering from the RAM-to-circuit
conversion blowup (ignoring poly-logarithmic factors). However, the online phase
is problematic, since Shi et al. requires that the client talks to the Left server to
perform a refresh operation every time it makes a query.

Our first idea is inspired by Corrigan-Gibbs et al. [23]. Instead of performing
refreshes individually, we can group them into Q =

√
n-sized batches. We first

consider a bounded scheme that supports only Q =
√
n queries — in this way, we

can hope to front-load all Q refresh operations upfront during the pre-processing
phase. It is easy to get an unbounded scheme given a bounded scheme. We can
simply rerun the offline setup every Q queries, and amortize the cost of the
periodic setup over each query — in fact, it is also not hard to deamortize the
periodic setup and spread the work across time.

In summary, through batching the refresh operations, we can hope to achieve
Õλ(
√
n) amortized server computation per refresh operation.

Idea 2: a pseudorandom set scheme supporting Add and ReSamp. If we front-
load all Q refresh operations upfront during the offline pre-processing, a new
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technicality arises. Recall that during a query for x ∈ {0, 1, . . . , n − 1}, we
must replenish the consumed entry with a set sampled subject to containing the
queried element x. During the offline pre-processing, however, we do not have
foreknowledge of x. Therefore, we can only hope to sample (pseudo-)random sets
(represented by keys) during the offline pre-processing, and add the element x
to the set during the online phase.

This means that we need a new PRSet that supports not only ReSamp, but
also an Add operation. Specifically, given a PRSet key sk, the client should be
able to call sk′ ← Add(sk, x) and then call rsk← ReSamp(sk′, y), and send the
resulting rsk to the server. For privacy, the resulting rsk must hide both x and
y. To construct such a PRSet scheme, we need a cryptographic primitive called
privately programmable pseudorandom functions [10, 41, 51], which is stronger
than the privately puncturable pseudorandom functions employed by Shi et al.

New proof techniques. For the optimal two-server scheme of Shi et al. [54], they
have a relatively simple privacy proof. In comparison, our privacy proof is much
more involved, and we need new techniques to make the privacy proof work.
At a high level, the challenges in the privacy proof arise due to the way the
probability analysis is interwined with the cryptography. Our main new idea
in the privacy proof is to introduce a lazy sampling technique4 that provides an
alternative way to view how the client generates the key to send to the server —
called the “frontend” in our proof. In particular, during the scheme, the client
scans through its primary table and checks if each key contains the current query
x. Whenever such a check is made and the answer is no, it creates a constraint
on the entry, i.e., the entry should not contain x. Whenever an entry is matched
during a query x, a constraint is created that the entry should contain x. If
the entry was previously promoted from the backup table, these constraints can
also be modified accordingly. Thus, we can imagine that the client maintains a
set of constraints in this way, and defer the actual sampling of the key to send
to the server to the very last moment, subject to the set of constraints that
have been maintained on the matching entry. With this lazy sampling view, we
can decouple the frontend (i.e., how the client interacts with the server) from
the backend (i.e., how the client maintains its local primary table), and switch
their distributions one by one in the subsequent hybrids. In our actual proof
later, the frontend and the backend diverge at some point when we switch to
the lazy sampling view, and eventually, after switching both the backend and
the frontend, they would converge again, i.e., the distribution of the key sent
to the server matches the distribution of the matched entry (after some post-
processing) again. At this moment, we can undo the lazy sampling view, and
continue to complete the proof.

Another technicality in our proof arises from the fact that the form of the
standard security definition of privately puncturable PRF is not in a convenient
form we can easily use in our proof. For this reason, we introduce a key technical
4 Our lazy sampling is remotely reminiscient of the delayed sampling technique of

Bartusek and Khurana [5].
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lemma (Section 6.2) that is closer to the form we want. We repeatedly apply this
key technical lemma when making the switches between our hybrid experiments.

To help the reader understand the technicalities of our privacy proof and our
new ideas, we give an informal proof roadmap in Section 6.1.

3 Preliminaries
3.1 Privately Programmable Pseudorandom Functions
Intuitively, a privately programmable pseudorandom function [10, 41, 51] is a
pseudorandom function (PRF) with one extra capability: it allows one to create
a programmed key that forces the PRF’s outcomes in at most L distinct input
points {xi} to be a set of pre-determined values {vi}. For security, we want
to guarantee the privacy of the programmed inputs. Specifically, if the set of
output values {vi} are randomly chosen, then the programmed key should not
leak more information about the set of input points programmed. Further, the
programmed key should not leak the original PRF’s evaluation outcomes at the
programmed inputs prior to the programming.

Syntax Let X denote the input domain and let V denote the output range,
whose sizes may depend on the security parameter λ. A programmable pseu-
dorandom function is a tuple (Gen, Eval, Prog, PEval) of efficient, possibly
randomized algorithms with the following syntax:
– Gen(1λ, L): given the security parameter λ and an upper bound, L, on the

number of programmable inputs, output a master secret key msk.
– Eval(msk, x): given the master secret key msk and an input x ∈ X , output

the evaluation result v ∈ V on the input x.
– Prog(msk, P = {(xi, vi)}): given the master secret key msk and a set P

containing up to L pairs (xi, vi) ∈ X × V , where all xi’s must be distinct,
output a programmed key skP .

– PEval(skP , x): given a programmed key skP and an input x ∈ X , output the
evaluation outcome, v ∈ V , over the input x.

Correctness of programming. A programmable function satisfies correctness if
for all λ, L = poly(λ) ∈ N, all sets of up to L pairs P := {(xi, vi)} ⊆ X × V
(with distinct xis), we have the following:
1. For every i ∈ [|P |],

Pr

[
PEval(skP , xi) ̸= vi

msk← Gen(1λ, L)
skP ← Prog(msk, P )

]
≤ negl(λ), and

2. For any x′ not in P , we have

Pr

[
PEval(skP , x

′) ̸= Eval(msk, x′)
msk← Gen(1λ, L)
skP ← Prog(msk, P )

]
≤ negl(λ).

We note that Peikert and Shiehian [51] did not define the second correctness
condition above, but their proof shows that the second condition also holds.
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RealPPRFA(1λ, L):

P := {(xi, vi)}i∈[L′] ← A(1λ, L)
// require: L′ ≤ L

msk← Gen(1λ, L)

skP ← Prog(msk, P )

skP → A
repeat
x← A
Eval(msk, x)→ A

until A halts

IdealPPRFA,Sim(1
λ, L):

P := {(xi, vi)}i∈[L′] ← A(1λ, L)
// require: L′ ≤ L

skP ← Sim(1λ, P, L)

skP → A
repeat
x← A
If x /∈ {xi}i∈[L′] then PEval(skP , x)→ A

Else v
$←V, v → A

until A halts

Fig. 1: The real and ideal experiments for simulation security.

RealPPRFPrivA(1λ, L):

{xi}i∈[L′] ← A(1λ, L)
// require: L′ ≤ L

{vi}i∈[L′]
$←V

P := {(xi, vi)}i∈[L′]

msk← Gen(1λ, L), sk← Prog(msk, P )

sk→ A

IdealPPRFPrivA,Sim(1
λ, L):

{xi}i∈[L′] ← A(1λ, L)
// require: L′ ≤ L

sk← Sim(1λ, L)

sk→ A

Fig. 2: The real and ideal experiments for private programmability.

Security Definitions
Definition 3.1 (Simulation security). A programmable function is simula-
tion secure, if there is a probabilistic polynomial-time (PPT) simulator Sim such
that for any PPT adversary A and any polynomial L(λ),{

RealPPRFA(1
λ, L)

}
λ∈N

c
≈

{
IdealPPRFA,Sim(1

λ, L)
}
λ∈N ,

where RealPPRF and IdealPPRF are the respective views of A in the executions
of Figure 1 and “ c

≈” denotes computational indistinguishability.

Definition 3.2 (Private programmability). A programmable function is pri-
vately programmable, if there is a PPT simulator Sim such that for any PPT
adversary A and any polynomial L(λ),{

RealPPRFPrivA(1
λ, L)

}
λ∈N

c
≈

{
IdealPPRFPrivA,Sim(1

λ, L)
}
λ∈N ,

where RealPPRFPriv and IdealPPRFPriv are the respective views of A in the
executions of Figure 2.
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Last but not the least, we define an additional security property, i.e., the or-
dinary pseudorandomness notion for the PRF. We prove that pseudorandomness
is implied by private programmability — however, defining this notion explicitly
will facilitate our proofs later.
Definition 3.3 (Pseudorandomness). We say that a programmable pseudo-
random function satisfies pseudorandomness iff for every probabilistic polynomial-
time adversary A, there exists a negligible function negl(·) such that the following
holds:∣∣∣Pr[msk← Gen(1λ, L) : AEval(msk,·) = 1]− Pr[rf

$←RF : Arf(·) = 1]
∣∣∣ ≤ negl(λ),

where RF denotes the family of random functions that map the input domain
X to the output range V.

Fact 1 Suppose that a programmable PRF scheme satisfies private programma-
bility, then it also satisfies pseudorandomness.

Proof. Let q be the maximum number of queries made by the pseudorandomness
adversary A. We consider a sequence of hybrids H0,H1, . . . ,Hq. In Hj where
j ∈ {0, 1, . . . , q}, for the first j distinct queries made by A, return to A truly
random answers, and for the remaining queries, return the outcomes of the PRF
evaluation. If A makes any repeat query, it always gets the same answer as
before.

It suffices to show that no probabilistic polynomial-time A can distinguish
Hi and Hi+1 for any i ∈ {0, 1, . . . , q− 1}. To show this, consider an intermediate
hybrid H′i. In H′i, the first i distinct queries are answered with true randomness,
and the remaining queries are answered using a simulated key generated by
sk← Sim(1λ, L).

We first show that Hi+1 is computationally indistinguishable from H′i. Sup-
pose that there is an efficient adversary A that can distinguish H′i and Hi+1.
We can construct an efficient reduction B that breaks the private programma-
bility of the underlying PRF. B answers the first i distinct queries from A using
true randomness. When A submits the (i+1)-th distinct query xi+1, B submits
{xi+1} to its own challenger. It gets back from its challenger sk. For all remain-
ing queries xj for j ∈ [i+ 1, q], it returns PEval(sk, xj) to answer to A. If B is
playing RealPPRFPriv, then A’s view is statistically indistinguishable from Hi+1

(where the negligible statistical failure comes from the “correctness of program-
ming” failure probability), else if B is playing IdealPPRFPriv, then A’s view is
identically distributed as H′i.

Next, we show that H′i is computationally indistinguishable from Hi. Con-
sider H′′i in which all but the first i queries are answered using a key sk generated
as follows: msk ← Gen(1λ, L), sk ← Prog(msk, ∅). Hi is statistically indistin-
guishable from H′′i due to the correctness of the programmable PRF. H′′i is com-
putationally indistinguishable from H′i through a straightforward reduction to
the private programmability of the PRF.

Summarizing the above, Hi is computationally indistinguishable from Hi+1

and this suffices for proving the claim.

13



Construction In our syntax and security definitions above, we want the pro-
grammable PRF to support programming at most L inputs. By contrast, Peikert
and Shiehian [51] gave a construction of privately programmable PRFs where
the Prog function must program exactly L inputs. Similarly, in their security
definitions, the admissible adversary A is required to satisfy L′ = L (as opposed
to L′ ≤ L in our case).

Given a privately programmable PRF construction that programs exactly L
inputs, we now show how to construct a new scheme that allows programming
up to L inputs. In our PIR construction later, we want the PRF’s input domain
to contain all strings of length up to some parameter ℓ ∈ N. We use the notation
{0, 1}≤ℓ to denote all strings of length up to ℓ.

Let PRF′ := (Gen′,Eval′,Prog′,PEval′) denote a privately programmable
PRF whose input domain is X ′ = {0, 1}≤ℓ+1, i.e., all strings of length up to
ℓ+ 1, and whose output range is V, supporting programming exactly L inputs.
We now construct a privately programmable PRF scheme denoted PRF whose
input domain is X = {0, 1}≤ℓ, i.e., all strings of length up to ℓ, and whose output
range is V, i.e., the same as that of PRF′.

– Gen(1λ, L): let msk← Gen′(1λ, L), and output msk;
– Eval(msk, x): output Eval′(msk, x||0);
– Prog(msk, P = {(xi, vi)}i∈[L′]):
• choose L − L′ distinct strings of length at most ℓ + 1 that end with 1,

denoted x′1, . . . , x
′
L−L′ ;

• for j ∈ [L− L′], choose vj
$←V at random;

• call sk ← Prog′(msk, {(xi||0, vi)}i∈[L′] ∪ {(x′j , vj)}j∈[L−L′]), and output
sk.

– PEval(sk, x): let v ← PEval(sk, x||0) and output v.

Claim 1 Suppose that the underlying programmable PRF′ that maps {0, 1}ℓ+1 to
V satisfies correctness, simulation security, and private programmability. Then,
the above PRF which maps {0, 1}ℓ to V also satisfies correctness, simulation
security, and private programmability.

We defer the proof of the above claim to Appendix E.1 of the online full ver-
sion [56].

We can use Peikert and Shiehian [51]’s scheme (based on LWE) as our the
underlying privately puncturable PRF to instantiate Claim 1. The schem by
Boyle et al. [12] is not suitable for our application, since their evaluation time
is quasilinear in the input domain size which would lead to super-linear server
computation.

3.2 Single-Server Private Information Retrieval

We define a single-server private information retrieval (PIR) scheme in the pre-
processing setting. In a single-server PIR scheme, we have two stateful machines
called the client and the server. The scheme consists of two phases:
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– Offline setup. The offline setup phase is run only once upfront. The client
receives nothing as input, and the server receives a database DB ∈ {0, 1}n as
input. The client sends a single message to the server, and the server responds
with a single message.

– Online queries. This phase can be repeated multiple times. Upon receiving
an index x ∈ {0, 1, . . . , n− 1}, the client sends a single message to the server,
and the server responds with a single message. The client performs some
computation and outputs an answer β ∈ {0, 1}.

Correctness. Given a database DB ∈ {0, 1}n, where the bits are indexed 0, 1, . . . , n−
1, the correct answer for a query x ∈ {0, 1, . . . , n− 1} is the x-th bit of DB.

For correctness, we require that for any q, n, that are polynomially bounded
in λ, there is a negligible function negl(·), such that for any database DB ∈
{0, 1}n, for any sequence of queries x1, x2, . . . , xq ∈ {0, 1, ..., n − 1}, an honest
execution of the PIR scheme with DB and queries x1, x2, . . . , xq, returns all
correct answers with probability 1− negl(λ).

Privacy. We say that a single-server PIR scheme satisfies privacy, iff there exists
a probabilistic polynomial-time simulator Sim, such that for any probabilistic
polynomial-time adversary A acting as the server, A’s views in the following
two experiments are computationally indistinguishable:

– Real: an honest client interacts with A who acts as the server and may ar-
bitrarily deviate from the prescribed protocol. In every online step t, A may
adaptively choose the next query xt ∈ {0, 1, . . . , n−1} for the client, and the
client is invoked with xt;

– Ideal: the simulated client Sim interacts with A who acts as the server. In
every online A may adaptively choose the next query xt ∈ {0, 1, . . . , n − 1},
and Sim is invoked without receiving xt.

3.3 The Distribution Dn

For convenience, we often write x ∈ {0, 1, . . . , n − 1} as a binary string, i.e.,
x ∈ {0, 1}log n.

Our pseudorandom set emulates the same distribution Dn that was defined
earlier in Shi et al. [54]. Specifically, to define the distribution Dn, imagine that
we have a random oracle RO(·) : {0, 1}∗ → {0, 1} that is sampled at random
upfront — our actual PRSet scheme later will replace the RO with a PRF so
our construction does not need an RO. Henceforth, let B := ⌈2 log log n⌉. An
element x ∈ {0, 1}log n is in the set iff for every i ∈ [ logn

2 + B], RO
(
(0B ||x)[i :]

)
returns 1 — in other words, if hashing every sufficiently long suffix of the string
0B ||x using the random oracle RO gives back 1. Throughout the paper, we write
log = log2, and assume that log n is an even integer — this is without loss of
generality since we can always round it up to an even number incurring only
constant blowup.
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Efficient membership test and set enumeration. One important observation
about the distribution Dn is that the decisions regarding whether two elements x
and y are in the set or not can be weakly dependent — as Shi et al. [54] pointed
out, this property is important for simultaneously ensuring efficient membership
test and efficient set enumeration. Clearly, to test if an element x ∈ {0, 1}log n is
in the set or not, we only need to make log n

2 +B calls to the RO.
Enumerating all elements in the set can be accomplished by making roughly√

n · poly log n calls to RO with at least 1− o(1) probability. Let ℓ ≥ 1
2 log n+ 1,

and let Zℓ be the set of all strings z of length exactly ℓ, such that using RO to
“hash” all suffixes of z of length at least 1

2 log n+1, outputs 1. To enumerate the
set generated by RO, we can start with Z 1

2 log n+1 which takes at most 2
1
2 log n+1

calls to generate. Then, for each ℓ := 1
2 log n + 2 to log n, we will generate Zℓ

from Zℓ−1. This can be accomplished by enumerating all elements z′ ∈ Zℓ−1, and
checking whether RO(0||z′) = 1 and RO(1||z′) = 1. Finally, for every element
z ∈ Zlog n, we check if it is the case that for every j ∈ [B], 0j ||z hashes to 1. If
so, the element z is in the set.

Useful properties of Dn. We will need to use the following useful facts about the
distribution Dn all of which were proven by Shi et al. [54].

Fact 2 For any fixed x ∈ {0, 1, . . . , n− 1}, Pr
S

$←Dn

[x ∈ S] = 1√
n·2B . Moreover,

E
S

$←Dn

[|S|] ≤
√
n

log2 n
.

Henceforth, let D+x
n be the following distribution: sample S

$←Dn subject to
x ∈ S. Given x, y ∈ {0, 1}log n, we say that x and y are related, if they share a
common suffix of length at least 1

2 log n + 1. Given a set S ⊆ {0, 1, . . . , n − 1},
let Nrelated(S, x) be the number of elements in S that are related to x.

Fact 3 (Number of related elements in sampled set) Fix an arbitrary el-
ement x ∈ {0, 1, . . . , n− 1}. Then,

E
S

$←D+x
n

[Nrelated(S, x)] ≤
1

log n

Fact 4 (Coverage probability) Let m ≥ 6
√
n · log3 n. For any fixed x ∈

{0, 1, . . . , n− 1}, Pr
S1,...,Sm

$←Dm
n

[x /∈ ∪i∈[m]Si] ≤ 1/n.

Henceforth, let EnumTime(RO) denote the number of RO calls made by the
aforementioned set enumeration algorithm to enumerate the set generated by
RO.

Fact 5 (Efficient set enumeration) Suppose that n ≥ 4. For any fixed x ∈
{0, 1, . . . , n− 1},

Pr
RO

$←D+x
n

[
EnumTime(RO) > 6

√
n log5 n

]
≤ 1/ log n
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4 Privately Programmable Pseudorandom Set

4.1 Definition

In our Privately Programmable Pseudorandom Set (PRSet) scheme, we can sam-
ple a key sk that defines a pseudorandom set. We can support two operations
on the key: we can call Add(sk, x) to force x to be added to the set, we can
also call ReSamp(sk, x) to cause the decision whether x is in the set or not
to be resampled. The key output by a ReSamp operation is said to be final,
i.e., we cannot perform any more operations on it. By contrast, keys output by
either Gen or Add are said to be intermediate, i.e., we can still perform more
operations on them. Henceforth, we use the notation rsk to denote a final key
and sk to denote an intermediate key. Jumping ahead, later in our PIR scheme,
the client always sends to the server a final key during an online query; however,
the client locally stores a set of intermediate keys.

– sk ← Gen(1λ, n): given the security parameter 1λ and the universe size n,
samples a secret key sk;

– S ← Set(rsk): a deterministic algorithm that outputs a set S given a final
secret key rsk;

– b ← Member(sk, x): given an intermediate secret key sk and an element
x ∈ {0, 1, . . . , n− 1}, output a bit indicating whether x ∈ Set(sk);

– sk+x ← Add(sk, x): given an intermediate secret key sk and an element
x ∈ {0, 1, . . . , n− 1}, output a secret key sk+x such that x ∈ Set(sk+x);

– rsk−x ← ReSamp(sk, x): given an intermediate secret key sk and an element
x ∈ {0, 1, . . . , n − 1}, output a final key rsk−x that “resamples” the decision
whether x is in the set or not.

We note that a PRSet scheme is parametrized by a family of distributions Dn.
The pseudorandom set generated by the PRSet scheme should emulate the dis-
tribution Dn — we will define this more formally shortly.

Jumping ahead, later in our application, for each PRSet key sampled using
Gen, we perform at most one Add operation on the key before we perform
ReSamp and obtain a final key.

Efficiency requirements. Our PRSet scheme samples pseudorandom sets of size
roughly

√
n. We want an efficient set enumeration algorithm Set(rsk) that takes

time roughly
√
n (rather than linear in n). Additionally, we want that the mem-

bership test Member(sk, x) to complete in polylogarithmic time.

Remark 4.1. We do not give security definitions to our PRSet. Jumping ahead,
the privacy proof of our PIR scheme actually opens up the PRSet scheme and
relies on the properties of the underlying PRF directly. Nonetheless, abstracting
out the PRSet helps to make the description of our PIR scheme conceptually
cleaner.
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4.2 Construction

We now present our PRSet construction. As mentioned, we assume that for each
key sampled through Gen, at most one Add operation can be performed on the
key before we call ReSamp which produces a final key.

Intuition for our PRSet. In our pseudorandom set, we simply replace the RO
with a PRF function, such that its description can be compressed using a short
key.

Our pseudorandom set supports two additional operations:
– The Add(sk, x) operation modifies the secret key sk such that the element

x ∈ {0, 1}log n is forced to be in the set. In our construction, this is done in
the most naïve way: simply attach the element x to the secret key. This will
be fine in our PIR construction since the intermediate key generated by Add
is stored only on the client side and never sent to the server. Therefore, we
do not need the resulting key to hide the point x that is added.

– The ReSamp(sk, x) operation takes in an intermediate key that is either the
output of Gen or the output of a previous Add operation, and it resamples
the decision whether the element x ∈ {0, 1}logn is in the set or not. In our
PIR scheme later, this resampled key will be sent to the server during online
queries. Therefore, we want the resulting key to hide not only the element
x that is being resampled, but also the element x′ that was added earlier
should the input key sk be the result of a previous Add(_, x′) operation.
In our construction, this is accomplished in the following way. First, we sam-
ple at random the answers {vi}i∈[ log n

2 +B] — we want to force the PRF’s
evaluation at points {(0B ||x)[i :]}i∈[ log n

2 +B] to be the values {vi}i∈[ log n
2 +B].

Next, if the input key sk is the result of a previous Add(_, x′) operation,
for any point (0B ||x′)[i :] where i ∈ [ log n

2 + B], if (0B ||x′)[i :] ̸= (0B ||x)[i :],
then we want to force the PRF’s evaluation on (0B ||x′)[i :] to be 1. Finally,
we call the underlying PRF’s Prog function, to force the aforementioned
outcomes on all the relevant points. Clearly, the total number of constraints
to be forced is at most L = 2( log n

2 +B).

Detailed construction. We describe our PRSet construction below.

PRSet Scheme
Parameters: B := ⌈2 log log n⌉, L = 2( log n

2 +B).

– sk← Gen(1λ, n): call msk← PRF.Gen(1λ, L), and output sk := (msk,⊥).
– S ← Set(rsk): Same as the set enumeration algorithm in Section 3.3, ex-

cept that the calls to RO(·) are now replaced with calls to PRF.PEval(rsk, ·).
– b←Member(sk, x):

1. Parse sk := (msk′, x′). Write x ∈ {0, 1}log n as a binary string and let
z := 0B ||x. If x′ ̸= ⊥, write x′ ∈ {0, 1}log n as a binary string and let
z′ := 0B ||x′.
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2. Output 1 if for every i ∈ [ log n
2 + B], the following holds: either

PRF.Eval(msk′, z[i :]) = 1 or (x′ ̸= ⊥ and z[i :] = z′[i :]). Else,
output 0.

– sk+x ← Add(sk, x): parse sk := (msk′,⊥), and output sk+x := (msk′, x).
– rsk−x ← ReSamp(sk, x):

1. Parse sk := (msk′, x′), and write x ∈ {0, 1}logn as a binary string and
let z := 0B ||x.

2. Sample uniformly random v
$←{0, 1}

log n
2 +B , and let P := {(z[i :

], v[i])}i∈[ log n
2 +B].

3. If x′ ̸= ⊥, do the following. Write x′ ∈ {0, 1}log n as a binary string,
and let z′ := 0B ||x′. For i ∈ [ log n

2 + B], if z′[i :] ̸= z[i :], add the
constraint (z′[i :], 1) to the set P .

4. Compute rsk−x ← PRF.Prog(msk′, P ), and output rsk−x.

Additional helpful notations. In our PIR scheme later, we will only need to call
set enumeration for final keys rsk. Therefore, our algorithm description above
defines Set(rsk) only for final keys. However, in our proofs and narratives, it
helps to define the set associated with an intermediate key sk as well — however,
in this case we need not worry about the running time of Set(sk). This is defined
in the most natural manner:

– If sk = (msk,⊥) is the direct output of Gen(1λ, n), then Set(sk) is de-
fined just like in Section 3.3 except that calls to RO(·) are replaced with
PRF.Eval(msk, ·);

– If sk = (msk, x) is the output of an earlier Add operation, then Set(sk) is
defined just like in Section 3.3 except that calls to RO(·) are replaced with
the following outcomes: 1) we force the outcomes to be 1 at the input points
{(0B ||x)[i :]}i∈[ log n

2 +B]; and 2) for all other inputs, we call PRF.Eval(msk, ·)
to obtain the outcome.

Performance bounds. Gen(1λ, n) takes poly(λ, log n) time. Due to Fact 5, Set(rsk)
takes

√
n ·poly log(λ, n) time with 1−1/ log n probability. Member(sk, x) takes

poly(λ, log n) time. Add(sk, x) takes constant time. ReSamp(sk, x) takes poly(λ, log n)
time.

Circuit for set enumeration. Later in our PIR scheme, during the offline phase,
the server needs to perform set enumeration under fully homomorphic encryp-
tion. Therefore, we need to describe how to perform set enumeration in circuit.
We will describe a circuit construction of size at most

√
n · poly(λ, log n) which

obtains as input a final key rsk, and outputs a set S = {(x1, b1), (x2, b2), . . . } of
size at most 2

√
n log2 n with distinct x’s, and a bit bSucc indicating success.

We want to ensure that if bSucc = True, then the set generated is correct in the
following sense:

– for every (x, 1) ∈ S, x is in the correct set defined by PRF.PEval(rsk, ·); and
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– for every element x in the set defined by PRF.PEval(rsk, ·), the pair (x, 1)
appears in S.

Our circuit construction emulates the set enumeration algorithm of Sec-
tion 3.3. Our circuit construction works as follows — henceforth we use the
term “hash” to mean the computing outcome of PRF.PEval(rsk, ·):

Circuit for set enumeration CSetEnum

1. Let bSucc = True.
2. For every x ∈ {0, 1} 1

2 log n+1, let bx = PRF.PEval(rsk, x). Output an
array containing {(x, bx)}

x∈{0,1}
1
2

log n+1 .
3. Obliviously sort above array such that entries with bx = 1 are moved

to the front. Truncate the array at length 2
√
n log2 n elements, and if

the truncation removes any string that hash to 1, set bSucc = False. Let
Z 1

2 logn+1 be the resulting truncated array, where each entry is of the
form (x, bx).

4. For ℓ = 1
2 log n+ 2 to log n, do the following:

– For each (x, bx) ∈ Zℓ−1, if bx = 1, write down (0||x,PRF.PEval(rsk, 0||x))
and (1||x, PRF.PEval(rsk, 1||x)); else write down (0||x, 0) and (1||x, 0).

– Oblivious sort the resulting array such that all entries marked with
1 move to the front. Truncate the resulting array at length exactly
2
√
n log2 n. If the truncation removes any string that hash to 1, set

bSucc = False. Let Zℓ denote the resulting array where each entry is
of the form (x, bx).

5. For every (x, bx) ∈ Zlog n, check if it is the case that for every j ∈ [B],
PRF.PEval(rsk, 0j ||x) = 1. If so, write down (x, bx), else, write down
(x, 0). Output the resulting array as well as bSucc.

Fact 6 Using the AKS sorting network [2] or the bitonic sorting network [6] to
realize the oblivious sort, the above algorithm can be implemented with a circuit
of size

√
n · poly(λ, log n).

Proof. The proof is straightforward given the fact that the AKS sorting circuit
has size O(n′ log n′) for sorting n′ elements, and the bitonic sorting network
has size O(n′ log2 n′). Also, note that each PEval(rsk, ·) consumes poly(λ, log n)
gates to implement.

For correctness, we will imagine that the above algorithm is run where
PRF.PEval(rsk, ·) is replaced with calls to a random oracle RO — we denote
the resulting algorithm as CSetEnumRO. Note that we do not care about the
computational model when stating the correctness probability.

Fact 7 Suppose that n ≥ 4. For any x ∈ {0, 1, . . . , n− 1},

Pr
RO

$←D+x
n

[
CSetEnumRO outputs bSucc = True

]
≥ 1− 1/ log n,
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Moreover,

Pr
RO

$←Dn

[
CSetEnumRO outputs bSucc = True

]
≥ 1− 1/ log n

Proof. CSetEnumRO is a direct implementation of the set enumeration algorithm
in Section 3.3 except that we truncate each Zℓ to size exactly 2

√
n log2 n. Shi

et al. [54] proved that no matter whether RO is sampled from D+x
n or Dn, with

1−1/ log n probability, the following good event holds: for all ℓ ∈ [ logn
2 +1, log n],

|Zℓ| ≤ 2
√
n log2 n — see the proof of Lemma 6.4 in their paper. The algorithm

outputs bSucc = 1 as long as the above good event holds.

5 PIR Scheme

We now describe a PIR scheme that supports a bounded number of queries
denoted Q. Given this scheme, we can compile it to a scheme that supports
unbounded number of queries by performing the offline setup phase every Q
queries, and amortizing this cost over the Q queries.

Intuition. In the offline setup phase, the client chooses Õ(Q) keys each of which
defines a pseudorandom set of size roughly

√
n. It encrypts these keys under

a fully homomorphic encryption (FHE) scheme, and sends the encrypted keys
to the server. Through homomorphic evaluation, the server enumerates the sets
and computes the encrypted parity (i.e., an encryption of ⊕x∈SDB[x]) for each of
these sets S, and returns the encrypted parities to the client. The client decrypts
the parities, and stores each set’s key as well as its parity. These sets are divided
into two parts: the last Q entries are called the backup sets or entries, and the
remaining are called the primary sets or entries. The primary entries are used
for answering queries, whereas the backup entries are later promoted to become
primary entries as they get consumed. Henceforth, we also use the terms primary
table and backup table to refer to the tables that store all primary entries and
backup entries, respectively.

In the online phase, whenever the client wants to make a query for the
database’s value at index x ∈ {0, 1, . . . , n − 1}, it finds the first primary set
(ski, pi) such that Set(ski) contains the query x. It then resamples the decision
whether x is in the set or not, and obtains a programmed key. It sends this
programmed key to the server, which calls the set enumeration algorithm to
enumerate the set S generated by the key. The server then returns the parity p
of the set S to the client. The client computes pi⊕ p as the candidate answer to
the query. Since the resampling operation removes the element x from the set
with high probability, the candidate answer is correct with high probability. The
correctness probability can be further boosted by repeating the same scheme k
times and taking the majority vote among the k copies.
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Detailed construction. We describe the detailed construction below.

PIR Scheme for Q =
√
n queries

Run k = ω(log λ) parallel copies of the single-copy scheme described
below.

Offline phase:

– Client: // let lenT := 6
√
n · log3 n

• fsk← FHE.Gen(1λ);
• For i ∈ [k · (lenT + Q)] where k = ω(log λ), ski ← PRSet.Gen(1λ, n),

ski ← FHE.Enc(fsk, ski);
• Send (sk1, . . . , skk·(lenT+Q)) to the server.

– Server:
• For i ∈ [k · (lenT+Q)], (Si, bSucci)← FHE.Eval(CSetEnum, ski);
• {pi}i∈[k·(lenT+Q)] ← FHE.Eval(CBatchParity, S1, . . . , Sk·(lenT+Q)), where

the CBatchParity circuit is described below. Send {pi, bSucci}i∈[k·(lenT+Q)]

to the client.
– Client:
• for i ∈ [k·(lenT+Q)], pi ← FHE.Dec(fsk, pi); bSucci ← FHE.Dec(fsk, bSucci);
• choose a subset I ⊆ [k · (lenT+Q)] of size exactly lenT+Q such that

for any i ∈ I, bSucci = True — if not enough such entries are found,
simply abort. Copy {(ski, pi)}i∈I to a table.

We call the last Q entries of the above table the backup table, henceforth
renamed to T ∗ := {(sk∗i , p∗i )}i∈[Q]. We call the remaining lenT entries the
primary table, henceforth renamed to T := {(ski, pi)}i∈[lenT].

Online query for index x ∈ {0, . . . , n− 1}:

– Client:
• Sample sk ← PRSet.Gen(1λ, n) subject to PRSet.Member(sk, x) =
1 and append the entry (sk, 0) to the table T of primary sets;
• Find the first entry (ski, pi) in T such that PRSet.Member(ski, x) =
1;
• Compute rsk← PRSet.ReSamp(ski, x) and send rsk to the server.

– Server: Compute S ← PRSet.Set(rsk), and return the parity bit p of the
set S to the client. If the set enumeration algorithm has not completed
even after making 6

√
n log5 n calls to the underlying PRF’s PEval(rsk, ·)

function, then return p = 0 to the client.
– Client: let β′ := p⊕pi be the candidate answer of the current copy, and

remove the last entry of T .
Recall that there are k parallel instances, and let β be the majority vote
among the candidate answers of all k copies. Now, let (sk∗j , p

∗
j ) denote

the next available backup set and perform the following:
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• let sk′ ← PRSet.Add(sk∗j , x); let p′ := p∗j ⊕β if Member(sk∗j , x) = 0,
else let p′ := p∗j ;
• let Tj := (sk′, p′), and mark the backup entry (sk∗j , p

∗
j ) as unavailable.

The circuit CBatchParity. The circuit CBatchParity takes S1, S2, . . . , Sk·(lenT+Q)

as input, where for j ∈ [k · (lenT + Q)], Sj contains exactly 2
√
n log2 n entries

of the form (x, bx) — specifically, bx = True implies that x is the j-th set and
bx = False implies x is not in the j-th set5. The circuit outputs k · (lenT + Q)
parity bits p1, . . . , pk·(lenT+Q) of each of the k · (lenT+Q) sets.

The circuit can be constructed as follows using oblivious sort:

1. Let DB ∈ {0, 1}n be the server’s database, let D := ((0,DB[0]), (1,DB[1]), …,
(n− 1,DB[n− 1])).

2. For j ∈ [k · (lenT+Q)], let Xj = {(x, bx, j)}x∈Sj

3. Obliviously sort the array Y := D||X1|| . . . ||Xk·(lenT+Q), such that each entry
of the form (x,DB[x]) is followed by all tuples of the form (x, bx, j). Hence-
forth, we call a tuple of the form (x, bx, j) a consumer.

4. In a linear scan, all consumers receive the DB[x] they are requesting. At this
moment, each consumer entry is updated to (x, bx, j,DB[x]).

5. Use a circuit that mirrors the oblivious sort circuit in Step 3, and reverse-
routes the DB[x] values back to the position where it came from. As a result,
each consumer entry of the form (x, bx, j) ∈ Y receives DB[x].

6. At this moment, we have an array of the form X′1|| . . . ||X′k·(lenT+Q), where
each X′j contains exactly 2

√
n log2 n entries of the form (x, bx, j,DB[x]). In a

linear scan, we can compute for each j ∈ [k · (lenT+Q)], the parity bit

pj = ⊕(x,bx,j,DB[x])∈X′
j
(bx · DB[x])

It is not hard to see that if we instantiate the oblivious sort using either
AKS [2] or bitonic sort [6], and given lenT = 6

√
n log3 n and Q =

√
n, the above

circuit has size O(n · poly log n).

Performance bounds. We now analyze the performance bounds of our Q-bounded
PIR construction. We may plug in k = log1.1 n since any super-logarithmic
function will work. In the analysis below, the k parameter is absorbed in the
poly log n term, so it does not show up explicitly.

– Offline phase. During the offline phase, the client’s computation and band-
width are upper bounded by

√
n · poly(λ, log n). The server’s computation is

upper bounded by n · poly(λ, log n).
– Online phase. The bandwidth is poly(λ, log n). The client’s computation is√

n · poly(λ, log n). The server’s computation is also
√
n · poly(λ, log n).

5 This input format is inherited from the output format of the circuit CSetEnum.
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Supporting unbounded number of queries and deamortization. To extend the
scheme from Q-bounded to supporting an unbounded number of queries, we
just need to rerun the offline phase every Q =

√
n queries. For the scheme with

unbounded queries, the amortized bandwidth per query is poly(λ, log n), the
amortized client and server computation per query is

√
n · poly(λ, log n).

This periodic offline setup can be deamortized very easily. Specially, upfront,
we perform the offline setup for 2Q queries. During the i-th window of Q queries,
we perform the offline setup for the (i + 2)-th window of Q queries, and so on.
This way, when the (i + 2)-th window of Q queries starts, the corresponding
offline setup will be ready. With deamortization, there is a factor of 2 blowup
in storage. There is no additional blowup in terms of amortized computational
cost.

6 Privacy Proof

Recall that privacy for a single-server PIR scheme was defined earlier in Sec-
tion 3.2. We now prove that our PIR scheme in Section 5, when instantiated
with the PRSet scheme in Section 4.2, satisfies privacy, as stated in the following
theorem.

Theorem 6.1 (Privacy of our PIR scheme). Suppose that the FHE scheme
employed satisfies semantic security, and that the underlying programmable PRF
scheme satisfies correctness, private programmability, and simulation security.
Then, the PIR scheme in Section 5, when instantiated with the PRSet scheme
in Section 4.2, satisfies privacy.

In the remainder of this section, we will prove the above theorem.

6.1 Proof Roadmap
A key insight in our privacy proof is to rely on a lazy sampling technique to
decompose the backend and the frontend of a complicated randomized experi-
ment, where the backend refers to the primary table stored by the client, and the
frontend refers to the message the clients sends to the server during each query.
Below, we explain the proof intuition, and the formal proofs can be found in
Section 6.2 and Appendix C.3 of the online full version [56].

We start from the real-world experiment, where the client interacts with
the server like in the real-world scheme. First, in Hyb1, we replace the FHE
ciphertexts the client sends to the server in the offline phase with encryptions
of 0. Therefore, henceforth we will not be worried about these FHE ciphertexts,
and we will focus on what happens in the online phase. In our full proof in
Appendix C.3 of the online full version [56], the key is how to get from Hyb2 to
Hyb6, which are described below.

If we can get to Hyb6, the rest of the proof can be completed in a similar
manner as Shi et al. [54]’s proof. Therefore, the key is how to get from Hyb2 to
Hyb6. To accomplish this, we introduce a lazy sampling idea to “decouple” the
backend and the frontend in our proof.
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Table 2: Hyb2 and Hyb6.

Hybrid Backend Frontend
promoted key during query y during query x

Hyb2 msk← Gen, sk := (msk, y)

– find sk := (msk, y) in T s.t. msk contains
x after adding y if y ̸= ⊥

– program msk s.t. suffixes(x) are resam-
pled and if y ̸= ⊥, suffixes(y)\suffixes(x)
forced to 1

Hyb6 msk← Gen s.t. y ∈ Set(msk)
– find msk in T s.t. x ∈ Set(msk),
– program msk s.t. suffixes(x) are resam-

pled

Hyb3: introduce lazy sampling. We define a hybrid experiment Hyb3 that is an
equivalent rewrite of Hyb2 by lazy sampling in the following sense.

1. Backend: maintain constraints on each entry in T that defines the a-posteriori
distribution. Let I = {i1, i2, . . . , iq} be the indices of the entries that are
matched during each of the q ≤ Q queries so far. The client maintains the
a-posteriori distribution of each entry of the primary table T conditioned on
the local observation I.
To maintain the a-posteriori distribution, the client maintains a set of con-
straints of the form ⟨−x⟩, ⟨+x⟩, ⟨+y : −x⟩, or ⟨+y : +x⟩ on each entry.
A negative constraint of the form ⟨−x⟩ means that this entry was not pro-
moted from the backup table, and we have checked that x is not in the set
generated by the key, during some query for x. A negative constraint of the
form ⟨+y : −x⟩ means that this entry was promoted from the backup table
during a query for y, and we have checked that after forcing y to be in the
set, x is not in the set generated by the key. The positive constraints ⟨+x⟩
and ⟨+y : +x⟩ are similarly defined but requiring x to be in the set.
During an online query for some x, the client sequentially scans through
the current entries of T . For each entry j, it samples from the a-posteriori
distribution to decide if j should be the match. Depending on the decision,
it adds either a negative or positive constraint to the current entry.

2. Frontend: lazy sampling from the a-posteriori distribution. Whenever the
client is about to send a key to the server, it performs lazy sampling of
the key based on the a-posteriori distribution on the entry that the client
has maintained. More specifically, there are two cases depending on whether
the matched entry comes from the backup table or not : 1) it samples a
key from the correct a-posteriori distribution, calls ReSamp and sends the
resulting key to the server; 2) it samples a key from the correct a-posteriori
distribution, calls both Add and ReSamp, and then sends the resulting key
to the server.
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In our proof, we show that except with negligible probability, the constraints
maintained on any entry can be satisfied with inverse polynomial probability for
a randomly sampled key.

Hyb4: switch the backend. Next, in Hyb4, we change the backend to be like
in Hyb6, and the client uses the resulting table T to decide which entries are
matched during each query, and just like in Hyb3, the client maintains a set of
constraints on each entry of the table, such that the frontend can perform lazy
sampling according to the a-posteriori distribution when interacting with the
server. Note that this change technically affects the distribution of the matched
entries during each query, and thus affects the distribution of the server’s view.
Fortunately, using the security of the privately programmable PRF, we can prove
that even when we make this change on the backend, the server’s view remains
computationally indistinguishable6.

Hyb4 to Hyb6: switch the frontend. Next, from Hyb4 to Hyb6, we change the
way the frontend performs the lazy sampling from the method of Hyb3 to the
method of Hyb6. To complete this proof, we do it in two steps using Hyb5 as a
stepping stone. In Hyb4, after lazy sampling a key according to the maintained
constraints, we program suffixes(x) to be random values and if y ̸= ⊥, we program
suffixes(y)\suffixes(x) to be 1. In Hyb5, we remove all the programming and
replace it with rejection sampling of simulated keys. In Hyb6, we introduce back
the part of the programming, and we program only suffixes(x) to be random
values, while the part suffixes(y)\suffixes(x) being forced to be 1 is achieved
through rejection sampling. To show that Hyb4 and Hyb5 are computationally
indistinguishable and that Hyb5 and Hyb6 are computationally indistinguishable,
we need to make use of the security property of the privately programmable
PRF. Some technicalities arise in this proof, since the security definitions of the
privately programmable PRF are not in a form that we can use conveniently
here. Therefore, as a key stepping stone, we introduce a key technical lemma
(see Section 6.2), that will help us prove the transitions between Hyb4 and Hyb5,
and between Hyb5 and Hyb6 more easily. Further, this key technical lemma can
be proven using the security definitions of the privately programmable PRF.

Hyb6: convergence of backend and frontend. One important observation is that
in Hybb, the frontend and the entry found in the table during each query have
the same distribution (modular some post-processing). Therefore, in this step,
the backend and the frontend converge again, and this is why we can undo the
lazy sampling at this point, and Hyb6 can be equivalently viewed as in Table 2.

6.2 Technical Lemma for Privately Programmable PRF
We shall consider a programmable PRF whose output range is binary, i.e., {0, 1}.
Henceforth, we use the notation predX(msk) to denote an event that looks at the
6 Note that we need NOT prove that the joint distribution of the backend and the fron-

tend are computationally indistinguishable, we only need to prove that the frontend,
i.e., server’s view is computationally indistinguishable.
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outputs of PRF.Eval(msk, ·) at all inputs in X, and outputs either 0 or 1. We
say that predX(·) is an admissible event, iff 1) for a randomly sampled msk ←
Gen(1λ, L), it returns 1 with probability at least 1/p(λ) for some polynomial
function p(·); and 2) pred is polynomial-time checkable.

Lemma 6.2 (Strong privacy of programmable PRF). Let PRF be a pro-
grammable PRF with a binary output range, and suppose that L = O(log λ). Sup-
pose that PRF satisfies private programmability and simulation security. Then,
there exists a probabilistic polynomial-time simulator Sim such that the follow-
ing two experiments are computationally indistinguishable to any probabilistic
polynomial-time adversary.

– RealPPRFStrong(1λ):
• X,X ′, {vx}x∈X′ , predX∪X

′
← A(1λ, L) s.t. |X| + |X ′| ≤ L, X ∩ X ′ = ∅,

and predX∪X
′
(·) is admissible;

• for x ∈ X, let vx
$←V; let P := {(x, vx)}x∈X∪X′ ;

• sample msk ← Gen(1λ, L) subject to predX∪X
′
(msk) = 1, and let sk ←

Prog(msk, P );
• sk→ A;

– IdealPPRFStrong(1λ):
• X,X ′, {vx}x∈X′ , predX∪X

′
← A(1λ, L) s.t. |X| + |X ′| ≤ L, X ∩ X ′ = ∅,

and predX∪X
′
(·) is admissible;

• sample sk ← Sim(1λ, L) subject to the constraint that for any x ∈ X ′,
PEval(sk, x) = vx;

• sk→ A.

In the real experiment RealPPRFStrong, we sample a random key subject
to some admissible predicate on X and X ′, and then program X to be ran-
dom and program X ′ to be values of the adversary A’s choice (e.g., all 1s).
The lemma states that the real experiment RealPPRFStrong is computationally
indistinguishable from an ideal experiment IdealPPRFStrong where we simply
sample a random simulated key subject to the set of points X ′ evaluating to the
choices specified by A. Note that in IdealPPRFStrong, we do not perform any
programming at all, and replace it with rejection sampling that checks if the set
of points in X ′ evaluate to the choices specified by A.

The intuition is the following. In the real experiment, we sample an msk
subject to some predicate pred. The observation is that it does not matter what
predicate pred we check, since we eventually reprogram the points in X ∪ X ′,
and recall that we require the predicate pred to only look at the PRF’s outcomes
on X ∪ X ′. Effectively, the reprogramming cancels the effect of the sampling
subject to a predicate pred that looks at only X ∪X ′. In fact, the distribution of
the final programmed key is indistinguishable from the ideal experiment, where
we simply sample a simulated key that evaluates to adversary-specified values
on the set X ′.
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Deferred Materials

We defer the full privacy proof, the correctness proof of our PIR scheme, how
to tune the tradeoff between client storage and the online computation, as well
as additional preliminaries to the appendices of the online full version [56].
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